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Abstract: Random-effects models are a popular tool for analysing total
narrow-sense heritability for quantitative phenotypes, on the basis of large-
scale SNP data. Recently, there have been disputes over the validity of con-
clusions that may be drawn from such analysis. We derive some of the fun-
damental statistical properties of heritability estimates arising from these
models, showing that the bias will generally be small. We show that the
score function may be manipulated into a form that facilitates intelligible
interpretations of the results. We go on to use this score function to explore
the behavior of the model when certain key assumptions of the model are
not satisfied — shared environment, measurement error, and genetic effects
that are confined to a small subset of sites.

The variance and bias depend crucially on the variance of certain func-
tionals of the singular values of the genotype matrix. A useful baseline is the
singular value distribution associated with genotypes that are completely
independent — that is, with no linkage and no relatedness — for a given
number of individuals and sites. We calculate the corresponding variance
and bias for this setting.
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1. Introduction

Genome-Wide Complex-Trait Analysis, known as GCTA, introduced by Jian
Yang and collaborators in 2010 in [51], has led both to a profusion of research
findings across the biomedical and social sciences and to exuberant controversy.
The general method, as distinct from the GCTA package of algorithms, is now
widely known as GREML, for “Genomic Restricted Maximum Likelihood.” Use
of the method has leapt ahead of clarity about its statistical properties. There
has been extensive discussion of sensitivity to violation of assumptions, but
no consensus on performance when its most basic assumptions are satisfied. Is
statistical bias a concern even in the simplest settings? Some say yes [20]. Some
say no [53]. Do tractable standard errors depend on the presence of residual
population stratification? Formulas in the literature [46] leave the answer murky.
In this paper we seek to settle these basic questions.

e For “Simple GREML”, defined below, with n respondents and p genetic
markers, we go beyond order 1/4/n, derive formulas for bias to order 1/n,
and show this intrinsic bias to be negligible in practice.

e We present interpretable expansions for bias and standard error, drawing
on eigenvalue theory, and contrasting standard errors in the absence and
in the presence of population stratification.

e For less simple settings, we consider known sources of bias including shared
environment and measurment error, and characterize and bound bias aris-
ing from

— observed causal genetic variants at a subset of sites atypical with
respect to their linkage statistics, and

— unobserved causal genetic variants.

e In a companion paper [44], we consider negative estimated values for
the GREML parameter representing heritability which, we argue, remain
meaningful within the model and should not be excluded.

The data for GREML are assays of very large numbers of Single Nucleotide
Polymorphisms (SNPs) in the genomes of individuals along with measurements
of a putatively heritable trait. The model that GREML fits via the technique of
Restricted Maximum Likelihood is defined in Section 2. For simplicity, we refer
to it as “the GREML model”. It is an example of a “linear mixed model,” in
which the contribution of SNPs to trait values are treated as random effects.
(We do not consider fixed effects in this paper, but the same arguments would
apply to reduced phenotypes after elimination of fixed effects in a mixed model.)
Alternative estimation methods for the model such as LD-score Regression and
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Haseman—Elston regression have also come into wide use, bringing up statistical
issues paralleling those we examine here for GREML.

Mixed models form a natural framework for the estimation of total heritabil-
ity for traits whose variability is determined by a wide variety of sites, rather
than by specific identifiable SNPs that each have strong influence. GREML
found notable application in the GCTA work by Yang and Visscher and as-
sociates to identify “missing heritability” in height [51, 49] and other complex
traits, and many groups have followed their lead.

The goal of these methods is to estimate total additive heritability, without
the overfitting that arises in attempts to identify specific loci influencing a trait.
As we have said, most examination of pitfalls — including two papers [50, 55]
with “pitfalls” in the title — have emphasized issues that arise from kinds of
model misspecification: from single large-effect alleles (better treated as fixed
effects [17, 38, 55]), from reliance on linkage disequilibrium when causal alleles
themselves are unobserved [51, 41, 23, 42], from nonlinear increase in heritability
estimates with increasing numbers of SNPs (reflecting saturation of coverage of
a smaller subset of genuinely causal loci), and from ascertainment bias in binary
traits [24, 4, 13].

Recently, Kumar et al. [20] have taken a different tack, criticising GREML on
statistical grounds, on what might be considered issues of inherent mathemat-
ical fallibility for estimation in models relying on high-dimensional covariates.
Their paper has elicited rebuttals from Yang et al. [53] and [54] and rejoin-
ders to the rebuttal [21] and [19] from Kumar et al. Parts of that exchange
are devoted to GREML and the GREML model in more complicated settings,
but our results for “Simple GREML” in this paper settle some of the points in
contention.

In “Simple GREML”, as we use the words, all causal SNPs are observed, all
observed SNPs are causal, and the sizes of causal effects are all drawn indepen-
dently from the same centered normal distribution. We abstract away from the
need, important in practice, for taking advantage of linkage disequilibrium to
tag unobserved causal alleles by observed alleles. Non-genetic variance is con-
tributed by independent draws for each sample from another centered normal
distribution. Fundamental statistical properties are brought into the spotlight
by studying this streamlined version.

Taking as a starting point our treatment of bias and variance in Simple
GREML, to be described shortly, we go on in later sections of this paper to add
our own perspective on model misspecification. It is a crucial motivation for our
approach. In recent decades the foundations of statistics have turned away from
consistency in settings where the the data are sampled from a “true model” to
estimation in what B. Lindsay and J. Liu have termed a “model-false world”
[26]. Tt is important to understand the behavior of model parameters that form
the basis for scientific discussion — such as heritability in GREML — when
the data do not come from the model that gave them a precise meaning. Some
attempts in this direction were made by [20], but these are not founded on a
consistent theory of model misspecification and suffer from some mathematical
misunderstandings, as we shall point out.
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Unlike the setting in Simple GREML, in more complicated settings only a
subset of all SNPs may have causal effects on the phenotype, sometimes observed
SNPs, sometimes unobserved ones. With regard to this topic, Section 4, under
the heading of “Model Misspecification”, assesses potential biases at several
levels of complexity. Yang et al. remark at the outset of [51] that it is harmless
to relax the assumptions of Simple GREML to allow non-zero effect sizes to be
confined to an unknown random subset of observed SNPs. We agree with this
claim up to a point, but show that it needs some correction. As Yang et al. and
others [22] recognize, non-zero effects solely on a fixed, unidentified subset of
SNPs can, in principle, introduce a bias of arbitrary size and direction. While it
is true (as we confirm, using more direct arguments) that this bias averages out
close to zero when the causal set is considered as a randomly chosen subset of all
SNPs, this bias increases the expected error in the heritability estimates. Under
strong but reasonable additional assumptions, however, we can estimate this
additional error, and show that it is small under most circumstances. Non-zero
effects of unobserved causal SNPs in linkage disequilibrium with observed SNPs
is a complicated, widely-discussed issue, on which we offer some brief views of
our own in Section 4.4.2.

Exactly this sort of misspecification forms the central subject of the recent
work by Jiang et al. [16]. Those authors go into more mathematical detail than
the present work and provide similar conclusions with regard to consistency
as the matrix size goes to infinity. But they confine themselves to the special
case of i.i.d. random genotype matrices. Our results, which complement theirs,
offer both an interpretable description of the bias arising from particular geno-
type matrices and of the variance arising from averaging over random subsets
of potential causal loci. Earlier work [15] also provides useful background on
the theoretical underpinnings of Restricted Maximum Likelihood, although the
approach and the orientation are substantially different from those adopted here.

We now return to Simple GREML. For us, the matrix of genotypes is fixed
and observed without error; we condition on it. Statistical properties of GREML
estimates depend on the matrix through its squared singular values, which are
the eigenvalues of the Genetic Relatedness Matrix. Numbers of samples n are
assumed to be in the tens or hundreds of thousands, and numbers of SNPs p
much larger; the ratio p of samples to SNPs is a key parameter.

Empirical studies have alluded to or reported a wide variety of patterns for
sets of squared singular values, sometimes concentrated near unity, sometimes
dispersed across orders of magnitude. We consider two extremes of contrasting
settings intended to bracket the reported patterns in the literature. First, (A),
is the “independent setting,” with a genotype matrix resembling one random
draw from an ensemble of matrices with independent entries, thereby assuming
an absence of population stratification and of linkage disequilibrium. Second,
(B), is a “stratified setting”, represented in this paper by two flavors of stylized
distributions, evoking genotype matrices whose singular values suggest deep
population stratification.

While the independent setting is a frankly artificial idealization, it serves as an
indispensable guide. Intuition suggests that the information content from a set
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of SNPs in linkage disequilibrium should resemble the information content from
a smaller set of independent SNPs. The independent setting with a downward-
adjusted ratio of SNPs to samples might be a good starting point for realistic
genotype matrices. With this advantage in mind, we devote special attention to
explicit formulas for estimator bias and variance in the independent setting.

The key tool in our statistical analysis of GREML is a profile likelihood
function that reduces the estimation problem to finding the root of a univari-
ate function and simplifies simulations. The model is set out in Section 2 and
the profile likelihood and bias formula are derived in Section 3 under the as-
sumptions of Simple GREML. Section 4 takes up the more complicated issues
associated with subsets of causal SNPs and other aspects of model specification.
Section 5 derives the formulas relevant to the independent setting, and Section 6
sums up.

Our findings about bias and variance run contrary to conclusions of Kumar et
al. in [19]. In particular, we see the limitations on accurate GREML estimation in
the absence of stratification arising not from bias but from large standard errors,
in contrast to their conclusions about the salience of bias. We see population
stratification in small doses enhancing the accuracy of GREML estimates of
heritability — at a cost in interpretability, as population structure typically
correlates with environmental confounders [36, 2] — in contrast to their general
contention that stratification undermines the stability of estimates. However, we
do see large departures from the independent setting imperilling the accuracy of
GREML, leading us to be less sanguine than Yang et al. [53] about the statistical
properties of these genome-wide random effects models.

Many further issues about GREML arise in more complicated settings under
more flexible assumptions and rightly engender continuing debate. However,
given the impact of increasingly complex generalizations of Simple GREML to
test association [18, 17, 59, 27, 38, 45, 35, 31, 30, 29, 60, 3], partition heritability
[57, 52, 9], predict phenotype values [37, 58, 39, 6], and learn “co-heritabilities”
[43, 25, 5, 7], it is important, if possible, to reach consensus on some core facts.
Our analysis of bias and variance for Simple GREML aims at this goal.

2. The GREML model

We suppose we are given a data set consisting of an n X p matrix Z, considered
to represent the genotypes of n individuals, measured at p different loci. There
is a vector y, representing a scalar observation for each of the n individuals. The
underlying observations are counts of alleles taking the values 0, 1,2, but the
genotype matrix is centered to have mean zero in each column and normalized
to have mean square over the whole matrix equal to 1.

It is common practice to go further and normalize each column to have unit
variance either empirically or under Hardy-Weinberg equilibrium. (SNPs far
from Hardy-Weinberg equilibrium are generally excluded by quality control
procedures, so these two alternatives amount to much the same thing.) Such
normalization gives all columns equal weight in producing genetic effects. This
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assumption that normalized SNPs have i.i.d. effect sizes implies that unnor-
malized SNP effect sizes decrease with increasing allele frequency in a precise
way [14, 48]. Except where noted, we do not assume this column-by-column
normalization. However, the normalization of the sum of squares of the whole
matrix is required for a sensible interpretation of the parameter representing her-
itability [41]. Moreover, heritability can be estimated under different assumed
relationships between the allele frequency and SNP effect distribution [41], and
non-standard assumptions yield different heritability estimates and may better
model many real datasets [40].

The basic assumption of the model is the existence of a random vector u € RP
of genetic influences from the individual SNPs such that

y=Zu+e. (1)

The vectors u and ¢ are assumed to be independent and to have zero means
and i.i.d. normal components. The variances are determined by two parameters,
which are to be estimated: 6 represents the precision (reciprocal variance) of
the non-genetic noise and v represents the heritability, entering the model as
the ratio of genetic variance to total variance. We use v rather than the more
conventional h? both because of the notational extravagance that results when
these are raised to further powers, and also to accommodate possibly negative
estimates, as is done in depth in [44]. It will be convenient at some points
to use the parameter ¢ = /(1 — ) in place of ¥ itself. We allow the true
values of the parameters to lie in the range 8 > 0 and ¢ € [0,1). Writing
(6o, 10) or (6o, ¢o) for the true values from which the data are generated, we
have uj ~ DN(0, ¢o/(pho)) ~ N0, 1o/ (Pho(1 — 1b0))), and e; ~ 91(0, 1/6y).

In the discussion by [20], much weight is placed on Z being a “random”
matrix. There are several senses in which Z may reasonably be thought of as
random:

1. The individuals are sampled from a larger population.

2. The SNPs have been selected from a larger set of possible SNPs.

3. The genotypes of individuals have been formed by random processes of
mating, mutation, selection, and recombination.

4. There are random errors in the genotypes.

None of these substantially affects the analysis we carry through in this paper
(although, with regard to the fourth kind, see Section 4.3). The model assumes
that all genetic causality runs through Z, so that for purposes of estimation
Z may simply be taken as a deterministic known quantity, a standard setup
for covariates in regression models. On the other hand, as in standard linear
regression models, some choices of independent covariates make the regression
problem easier than others, so it is worth considering which Z may be likely to
occur.

As we show shortly — and as [20] correctly point out — the properties of this
statistical model are determined entirely by the singular-value spectrum of Z. In
our independent setting (A), for a population without stratification and linkage
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disequlibrium, the empirical distribution of the singular values is expected to
be close to a known limiting form, featured in Section 5 and depending only on
the dimension ratio 4 = n/p. In our stratified setting (B), with a proportion
of singular values orders of magnitude larger than those typical of setting (A),
qualitative generalizations need not rely on the detailed singular value spectrum.

3. The profile likelihood and bias formula
3.1. The likelihood function

We begin our derivation of expressions for bias and standard error in estimated
heritability by reducing GREML likelihood estimation from a two-parameter
to a one-parameter problem. We define a profile likelihood function whose local
maximization only requires finding the zero of a univariate function. This device
is the key to the derivation, and it offers the bonus of facilitating simulations.

We present terms for bias and variance up to order 1/n. Giving meaning to
“order 1/n” requires an asymptotic framework. We could imagine the genotype
matrix Z of fixed dimesions n and p to be imbedded in a sequence of matrices of
increasing dimensions, typically for n increasing with p/n converging to a con-
stant. Within the independent setting, such structure is easily specified; outside
it, not so easily. Since the likelihood for 1 only depends on Z through the sin-
gular values, all we need is structure on a triangular array of singular values s, ;
with ¢ = 1,...n, typically just enough structure so that the empirical measures
of the singular values for increasing n converge to a non-trivial limit.

We observe that the likelihood function is a sum of terms corresponding to
the s,,;. The terms are independent but not identically distributed and them-
selves form a triangular array. Textbook theorems for maximum likelihood with
independent observations do not, strictly speaking, cover the GREML model
setup; our theorems (slightly) extend those theorems. As expected from the
standard setup, we show that to order 1/4/n estimator bias is zero. But 1/y/n
is not small enough, in many GREML applications, to make the next term, of
order 1/n, negligible, if it comes with a large constant. We need to compute the
next term explicitly, and do so in order to resolve conflicting claims about bias
in the literature.

The expression for bias brings with it an expression for estimator variance
to order 1/n, equivalent to the standard but unwieldy expression from Fisher
Information, given, e.g., on pages 234235 of [46], We go on to make bias and
variance interpretable by expanding them in the independent setting in terms
of dimension ratios and comparing with stylized cases for stratified settings.

Conditioned on Z, in terms of the Genetic Relatedness Matrix or GRM de-
fined by A := p~!ZZ*, the measurements y are normally distributed with mean
zero and covariance matrix

C* =01 (W/(1— ) A+1,). (2)
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Let Z = Udiag(s;)V* be the singular-value decomposition of Z/,/p, and rotate
the observations to diagonalize the covariance matrix, obtaining

z:=U"y.

The elements of z are independent centered normal random variables with vari-

ances (1— v+ s?) /(81 — 1)),
The log likelihood is then

(0.0 = B10g0(1 —9) — 1S logt —w st - D3 LEVE
i=1 i

Note that z depends only on Z and y, not on the parameters 6 and .

We observe here that [20] claim (without demonstration) that the presence
of singular values in the denominator of the likelihood creates “instability” in
estimates based on this likelihood when the singular values are small, and that
the dependence on the projection onto left singular vectors creates instability
when the singular values are close together. Neither is true. Their representation
of the log likelihood differs from the one we have here by the addition of the
log determinant of A. This is a very large number if there are singular values
close to zero (and indeed infinite if singular values are zero), but the addition of
a constant, however large, has no influence on likelihood-based estimation. (We
note as well that the work done by Sylvester’s Theorem (their equation [A6])
is unnecessary as soon as we interpret the determinant as a product of squared
singular values. Furthermore, in the case when a singular value is exactly zero,
which occurs automatically when using de-meaned SNPs, the conditions for ap-
plying Sylvester’s Theorem are not satisfied.) Similarly, under the assumptions
of the model, the z; are independent normal random variables, with variances
0711 — ¥)~H(1 — b + 1s?), which are positive so long as the environmental
contribution §~! is positive.

3.2. MLFE bias and variance

We define -
w; () = W
and )
o) = g,

The w; are not random, whereas for each value of ¥ the v;(v)) = w;(v)) 22 are
random variables. The expected values of 6pv;(1)) for all ¢ are unity.

The normalization that makes each column of Z sum to 0 induces one singular
value of 0. It corresponds to the constant left singular vector with all entries
equal to 1/4/n.

We use the symbol Cov to represent the empirical covariance of the elements
of two n-dimensional vector arguments. Similarly, we use Var with a vector
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argument for the empirical variance of the elements. When the vector elements
are themselves random variables the output of Cov and of Var are themselves
univariate random variables.

We define 74 (1)) to be a rescaled version of the empirical k-th central moment
of the elements of the vector w;(¢); that is, for k > 2

() =673 (i) — 0)*, where = =3 i),

i=1 =1

We also define

Note that if we define

then
s

Tt s
and 7, () is the central moment of these w;. Hence 74 () is well behaved at
¥ = 0. It is bounded by the maximum of s?* and for ¢ > 0 also by =%, We

write 75, with no argument for 74 (¢p). An important quantity in the scaling of
errors in our estimates will be

w; (1))

1
VT

Since w; (o) € [0,1], we know |7i| < 1/(2ky§), and |74 /75| < 1/(2kpF)
for ¢9 € (0,1]. For k > 3 we may replace 2k by 2k + 2 (c¢f. [8]). For fixed v,
w; (1) is a convex function of s?, and the mean of s? is unity. Jensen’s Inequality
implies that @w > 1—1y and 7, < 1. Formulas for 7, and 75 and 73 under various
assumptions about the singular values of the genotype matrix Z are derived in
Section 5.

We collect our main results about the asymptotic behavior of the MLE for
heritability (’([J) in Theorem 3.1 proved in Appendix A. As shown there, substi-
tuting the maximum likelihood estimator of the precision parameter 6 into the
two-parameter log likelihood leads to a one-parameter “profile log likelihood”,
namely

V=

(=n/2)10g (Y- wi(w)2i?) +(1/2) Y log (wi(s)) + (n/2)(log(n) ~ 1).

For each fixed realization of the random variables z;, this quantity is well-defined
for any trial value of ¢ within the open interval (—1/max(s? — 1), 1). It goes
to minus infinity as v becomes so negative as to approach the lower boundary,
and, thanks to the singular value at zero, it also goes to minus infinity as ¥ goes
to 1. Thus the profile log likelihood has an interior maximum.
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Although the true heritability parameter v is required to be non-negative,
we are allowing estimated values to range below zero. We are not excluding neg-
ative estimates and we are not truncating their distribution at zero. Arguments
for regarding negative estimates as meaningful within the GREML model are
developed in [44]. Trrespective of those arguments, bias that would arise from
truncation is already well-understood, and our focus is naturally on the more
cogent question of estimator bias in the absence of truncation.

For Theorem 3.1 we construct an approximation to the maximum likelihood
estimator of 1y, expanded in powers of v. The approximation is expressed in
terms of g, 7, and 7. If we think of it as a limit these quantities must be
held constant or converge to their own limits as n — oo. The error in the
approximation is bounded in terms of higher moments of w;, up to 716, so these
moments must be uniformly bounded. That is, for the nonasymptotic error terms
to be small these moments must all be small relative to v~!. When ¢y = 0 we
also need the maximum of the singular values to be uniformly bounded, or, at
least, to grow more slowly than any power of n. This condition will indeed be
satisfied, with probability going to 1, in any of the cases we consider in Section 5

Theorem 3.1. The mazimum likelihood estimate (0,1)) satisfies

0 = Cov (w(¥), V(1)) (4)

-1

- %Zvi . (5)

D>
I
S| =

Furthermore, for vy € [0,1)

e The MLE has negative bias on the order of v?, i.e. 1/n. If we drop terms
of order v and higher, we get

Bias = E [@/AJ} — Yo & —2(1_16(;7)_2(1 _T1)7 (6)

which is strictly negative except when ¥y = 0.

e The MLFE has variance

Variance = E [(1/1 - woﬂ ~ Vo) (7)

n Ty
The errors are bounded by a constant times V3~ for any positive . The
constant is bounded by a universal constant for a given g, but goes to co as
o — 0. At the special point 1y = 0 the convergence still happens in the same
way as long as
lim n~% max s? =0

n—oo 1<i<n

for some a > 0.
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The proof is given in Appendix A

We may identify terms in v with terms in n~'/2 when it is asymptotically
true that 75 tends to a constant. In practice our expansions are more general in
two regards: first, asymptotically, they should hold when 75 decreases to zero
but more slowly than 1/n. Then v? would go to zero more slowly than 1/n, and
estimator variance would have different behavior from textbook maximum like-
lihood. Second, for practical purposes, our expansions appear to give serviceable
approximations in simulations of cases for which 75 is not very large compared
with 1/n, so that v is not very small, even when n itself is large.

One peculiarity of this situation, in comparison to textbook MLE theory, is
that we are particularly concerned with the boundary case )y = 0, as in the
common situation where we are testing the null hypothesis {i)g = 0} against
the alternative {19 > 0}. For any finite example )9 = 0 is not really on the
boundary of the mathematically sensible parameter range, a matter that we
discuss at greater length in [44]. But asymptotically, if the large matrices (n —
o) have large singular values (maxs? — o0), the parameter range shrinks
down to [0,1). Nonetheless, Theorem 3.1 guarantees that the MLE remains
asymptotically unbiased and has the expected variance as long as the maximum
singular value does not grow too rapidly.

The ratio of bias to standard error for 1[) is

V2(1—7)

nT2 '

The ratio will be small when nry is large. It is negative, by Jensen’s inequality.
When the variance in {s?} is small we have delta-method approximations

1—7 = (1 — 1) Var(s?)

and
T (1— 1/}0)2 Var(s?).

The consequence is an approximate bias in v of —(21p9 / n). These approxima-
tions may fail utterly if the eigenvalue variance is large, as it may be in stratified
settings, but they correctly pick out leading terms when eigenvalue variance is
small. In the null case when 1y = 0, the bias is zero not just to order 1/y/n but
actually to order 1/n.

For the the independent setting, we can be more precise. Exact formulas for
the contributions of order 1/n to bias and variance in estimated heritability and
for the moments of w; for the independent setting are derived in Section 5, along
with expansions up to second order in g = n/p. The expansions give

L=m = (L=v0) Yo (n+ 2§ —vo)u? + )

and

= (1= o) (1 + (50F — 200)u® + -+ )
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Estimator bias is given by

24

n

Bias () =—( )(1+<w0—3w§>u+---) ®)

Estimator variance is given by

oty 2 2= (2 .
Variance(v)) = v ~ (Tlﬂ> (1 + (5yg — 21/10),“) 9)

We conclude that in the independent setting bias is indeed a very small neg-
ative number, a third-decimal effect even for samples no bigger than a thousand
respondents. Variance, on the other hand, increases as the number of SNPs per
person 1/u increases, implying standard errors as large as 0.14 with 10,000
people and a million SNPs. (In our independent setting, all SNPs are in linkage
equilibrium.)

The contrasting “stratified setting”, as we are using the term, embraces a
wide range of alternatives similar to those found in empirical cases whose geno-
type matrices have a subset of singular values substantially larger than singular
values from the independent setting. Each genotypic singular value distribution
we study represents a possible form of population structure. Since the mean
of squared singular values is constrained to be unity, each large singular value
must be balanced by a number of small ones. We review the behavior of bias and
variance under three stylized models incorporating such balance and broadly re-
sembling singular value distributions described in the literature. We emphasize
these models all exclude confounding environmental structure, though in reality
genotypic stratification almost always correlates with some degree of environ-
mental stratification.

The first two models are built from a specification with paired point masses
developed in Section 5, namely a distribution for s? which puts mass 8/(8 + 1)
at 1/8 and puts mass 1/(8+ 1) at 5.

In the first stylized model, a moderately small proportion « of squared sin-
gular values are drawn from this paired-mass distribution, while the remaining
1 — « recapitulate those from the independent setting. Means and mean squares
for w; are weighted averages of expressions given in Section 5. Such a “dosage”
of more widely dispersed singular values does increase 7o and reduce the stan-
dard error of estimation, but not by much. Small o even in combination with
large (8 limits the improvement. When ¢ = 1/4 and « = 1/100 with g = 1/25,
standard errors drop by less than 25%. The dosage also shifts w, but the bias
remains very small in comparison to the standard error for typical, sizable n.

In the second stylized model the cluster of singular values close to unity
characteristic of the independent setting is taken out, putting o = 1 and leaving
the paired-mass distribution on its own. For large 3, the variance of the squared
singular values is close to 8 and the moments of w; given in Section 5 lead to
approximations for estimator bias and variance:
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)= — (%) o [5(1 —1/8)*4o(1 — o) + %}
_ <%> ¥3(1 = 1), and

g)

Bias (

Q

Vartanco() = (%) [5(1 - 1/8 (1 = o) + (5~ )2

~ (22 v - wop,
n

where the approximation holds for ¢ > 0 and S large. (If ¥y is close to 0
we need 8 > v, 1 3.) Here, the larger the variance in squared singular values
(roughly ), the larger the variance in ’(/AJ Instead of affecting estimator accuracy
in the same fashion as y = n/p (the variance of s? in the independent setting), 3
takes on a role like 1/, eroding accuracy as it grows. The stylized setup makes
the reason apparent. Large squared singular values have to be balanced by large
numbers of near-zero values to preserve the mean of unity. The transformation
from s; to w; discounts the leverage of large values while the preponderance of
small ones pull w toward unity and 7 toward zero.

The third stylized model posits squared singular values from a lognormal
distribution, mimicking the appearance of singular value graphs in [20] and
elsewhere. Denoting the variance of the squared singular values by -, under
the constraint of unit mean the variance of the underlying normal is log(1 +
v) and its mean is —(1/2)log(1 + 7). Our w; then follows a so-called “logit-
normal” distribution. Closed-form moments for w; are not available, but their
behavior is easy to infer. As v increases, squared singular values become heavily
concentrated near zero and w; near 1—1. The variance of w;, that is, 7o, increases
to a maximum and then falls off slowly toward zero. Moderate stratification
reduces standard errors of estimation, but large departures from the independent
setting raise standard errors and spoil estimates.

3.3. Implications of the formulas

The formulas of Section 3.2 have implications that may at first seem surprising
but have logical explanations. First, in the context of Simple GREML, when we
are dealing with independent random genotypes, increasing p — providing more
data — seems to make accurate estimation harder. For fixed n, standard errors
go up with p, not down. Second, stratified populations — something that would
ideally be avoided in real data [51] and that the earlier analysis of [20] suggested
would undermine the model even in theoretical, unconfounded data— seem up
to a point to alleviate the problem of large standard error.

In fact, neither of these implications is surprising. The apparent paradox of
more data producing a worse estimate dissolves when we recognise the struc-
ture of GREML. Increasing p does not simply provide more data. It changes
the assumed set of influences on the phenotype. In Simple GREML, increas-
ing p means dividing the same overall genetic effect into tinier pieces. In more
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complicated versions, where causal SNPs comprise a subset of (observed or un-
observed) SNPs, as we discuss in Section 4.4, positing larger numbers of causal
SNPs similarly means dividing up the overall effect. The Law of Large Numbers
tends to equalize genetic endowments among individuals, regardless of which
particular SNPs happen to have the largest effects. Naturally, the situation be-
comes more complex when causal SNPs are sparse and linkage disequilibrium is
crucial, issues that figure prominently in the literature.

It is also no surprise that some degree of population stratification, as it aug-
ments the variance of squared singular values, reduces standard errors of esti-
mation. Zero or near-zero singular values reflect sets of individuals with high
genetic similarity. Their presence allows noise to be most easily isolated from the
genetic effect. It is common practice to study twins to simplify the identification
of genetic effects. The reason behind the standard practice of removing relatives
from a sample and pulling out population strata as fixed effects is a belief that
relatives are likely to have their common genetic influences confounded with
shared environment, and that genetic strata are likely to reflect stratification in
non-genetic respects, hence also create confounding [36, 34, 51, 2] (though the
magnitude of this effect in typical datasets is debatable [12]). The reason is not
that such individuals make the statistical analysis inherently difficult.

The GREML model implies a correspondence between the covariances of the
measured trait and the covariances of the high-dimensional genotype. Clearly,
there is information in Z and y, but it is not immediately apparent where it
is and how much is there. Passing to the diagonalization of Z*Z clarifies the
situation: The information is in the different magnitudes of the rotated com-
ponents. This is very diffuse information. We are faced with a large number of
observations z; from very similar distributions, differing only in their variances,
which are (1 - +s?)/(0(1 —1)) We are trying to identify ¢ as the parameter
that best orders the z; by magnitude. It is apparent that the challenge increases
as the s; become more compressed, as our formulas prove.

3.4. A symmetry relation

The demonstration in Section 3.2 that the GREML estimator of heritability
is approximately unbiased depends on an approximation to order 1/n that is
incomplete from a practical point of view, insofar as we do not show that terms of
higher order than 1/n are genuinely smaller for ranges of parameters of interest.

The demonstration can be strengthened by appeal to a symmetry relation.
If we replace y by ¥y = A~'/2y, then we obtain a sample from the same class of
multivariate normal distributions defined in (2), with the matrix A replaced by
A=Y 4 replaced by 1 — 1, and 6 by 6(1/¢ — 1).

A genotype matrix that would produce A~! would not have the usual proper-
ties of the normalized genotype matrices we have been considering; in particular,
such inverted GRMs may be unrealistic, in that they have low probability under
typical genotypic models. Any claim that the GREML model generally yields
estimates biased in one direction must depend on such properties. In principle
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an allowable data set that yields a positively biased heritability estimate can be
paired with an alternative allowable data set (obtained by inverting the GRM)
that yields a negatively biased heritability estimate, without changing the form
of the model.

4. Model misspecification
4.1. Basic principles

Models that function well when fitted to data sampled from the correct dis-
tribution may produce unpredictable and unintuitive results when applied to
data generated by a different albeit analogous distribution. Much of the dispute
between [20] and [53] centers around the question of whether the specifica-
tion of the GREML model and algorithm allows for linkage disequilibrium, and
whether population stratification is adequately accounted for. [20] also consid-
ers, by means of subsampling real data, the question of whether the choice of
SNPs to be investigated — as a subset of the full complement of SNPs — in-
creases the variance of heritability estimates in ways that the standard analysis
fails to capture.

The question that needs to be asked is this: Given the simplifications that
we know underlie the GREML model, should we expect approximately sensible
inferences to follow from approximately well specified data? We consider three
types of deviation from the model:

e Shared environment;

e Measurement error;

e A small number of causal loci that are responsible for the influence of
genes on phenotype, while the large majority of SNPs have no influence.

4.2. Shared environment

This problem is well known, and a focus of significant attention. It has long
been recognized that large and small singular values of the genotype matrix are
associated with potential confounding of genetic and environmental influences.
Large singular values arise from stratified populations, reflecting geographical
or ethnic differences that may be associated with trait differences not directly
caused by the genetic differences themselves. Small singular values tend to arise
from small clusters of related individuals, who are likely to be correlated in
their environments as well. (In the extreme case, C' clones produce C — 1 zero
singular values and one singular value of size C'.) The usual practice of working
with the GREML model recognizes these problems: from the outset, population
stratification has been addressed with principal component analyses and cryptic
relatedness by removing samples with suspiciously high kinship [51].

We have ignored environmental effects here, focusing on situations where
all assumptions of the GREML model hold exactly. The one thing we have to
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add to this discussion is to point out that the behavior of models such as the
GREML model depends entirely on the distribution of singular values of the
genotype matrix, and thus any confounding must manifest itself through these
singular values. In particular, any excess variance among the singular values
relative to the known limiting form in the independent setting — which models
i.i.d. genotypes that, by construction, cannot be confounded — must come from
latent structure between samples or between loci. Inter-sample structure almost
inevitably allows the intrusion of shared environment. That is, related samples
present a tradeoff: they increase spectral spread, decreasing the heritability es-
timator’s variance, but expose heritability estimates to potential confounding
bias. Therefore, if one is convinced that the latent inter-sample structure is be-
nign — possibly, for example, in laboratory animals or carefully controlled twin
studies — the additional spectral variance improves heritability estimates.

This also explains apparent peculiarities in the distribution of squared sin-
gular values in the independent setting described in Section 5. First, it has dis-
appointingly small variance because there is no latent sample structure. More
importantly, the problem is exacerbated when p grows larger, as relatedness
that emerges due to chance from a small number of i.i.d. draws will converge
asymptotically to zero, the expected relatedness in i.i.d. data. This is something
like genome-wide Mendelian randomization, and one expects these purely ex-
ogenous genotype effects to cancel out as the number of independent genotype
contributions increases.

4.3. Measurement error

We note here that simple measurement errors do not cause any unusual problems
for the mixed-effects model; as one would expect, it simply biases the estimates
of heritability downward. We look here at two types of error: Independent addi-
tive error in measuring phenotypes, and independent misidentification of SNPs.
Adding an independent measurement error to the phenotype simply increases
the variance of the noise term ¢, so it is equivalent to the same model with a
lower value of ¢ (or v).

Misidentification of SNPs is slightly more complicated. Suppose that instead
of observing Z, we observe Z = Z + Z. We assume the entries of Z to be
independent of each other, and of the noise, with expectation 0. (They obviously
can’t be independent of the entries of Z, but Z is taken to be fixed, not random.)
They are nonzero with probability 7, which we assume is close to 0. Then the
phenotypes will satisfy B

y=(Z—-2)u+e.

Applying the singular value decomposition Z = Udiag(s;)V*, we get
z :=U"y = diag(s;)V*u+U" (5 - Zu) .

The term e — Zu is approximately a vector of independent normal random
variables, with mean zero and variance o2 + cpo2m, where ¢ depends on the
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distribution of Z. Its covariance with diag(s;)V*u will be on the order of V*Z,
which has expectation 0 (averaged over realizations of Z ), and should typically
be on the order of oy,/pm, meaning that the correlations are small as long as
pr is large.

We may conclude, then, that the model with occasional and independent
misidentification of SNPs is very much like the model with increased noise in
the phenotype measurement, with a downward bias in heritability estimates
proportional to the error probability. While more realistic models of genotyping
error may lead to different conclusions, we have assumed only that entries of Z
are independent and sparse.

4.4. Causal loct

The usual practice of working with the GREML model recognizes that the
genetic effect saturates as the number of SNPs sampled increases [27, 30, 28,
58, 11, 10]. This is generally attributed to the increasing amount of linkage to the
(possibly unobserved) causal loci. Here and in the following section we analyze
the effect of applying GREML in a situation where there is a small number of
causal SNPs, either a small subset of the observed SNPs (Section 4.4.1) or an
unobserved set that may be linked to the observed SNPs (section 4.4.2).

4.4.1. Observed causal SNPs

Suppose that the genetic effect on y is produced by a small number k < n of
SNPs. Other SNPs will be linked to these, thus being indirectly correlated with
y. We may represent this as a slightly modified version of the standard GREML
model by assuming that there is a subset n C {1,...,p} of causal SNPs, and
that these causal SNPs have i.i.d. normal effects, with mean 0, conditioned on
the sum of their squares being a fixed number 03. We will also think of ) as a
p-dimensional vector with 1 in the positions corresponding to the causal SNPs
and 0 elsewhere.
We write the noise variance as

2 _ 1=

oL = ™ 03.
(The “true heritability” is naturally identified with 6||u||?; when all but a small
number of the components of u are zero, this will not necessarily be very close
to 1 unless we impose this as a condition.) When we think of the set of causal
SNPs 7 as being fixed we will call this the causal-SNP GREML model (or CS);
when we think of 1 as being a uniform randomly selected subset we call it the
random causal-SNP GREML model (or RCS).
We wish to understand the difference between the true 1y and the asymptotic
estimate 1), to which the estimates would converge if we had a large number of
independent experiments. We define € := (¢, — 1)/ (¢o(1 — 10)).
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Conditioned on a fixed 7,
Yi = Z Ziju]‘ + €;.
Jjen
The MLE will converge to the closest fit (in the Kullback—Leibler sense) to the
generating model. Equivalently, we seek the v, that solves

E|C ! & =0
A GRS R TIFY §

By linearity of covariances, this becomes

Cov (wi (), B[=2Jwi(1,) ) = 0. (10)
For the CS model — so, considering a fixed 7 — we define
P (11)
Jen

This represents the deviation from expectation of the size of the projection of
1 onto the i-th right singular vector. We note for later that v; has expectation
zero (with respect to the choice of a random 7), and is identically zero when
k = p. We note as well that when k < p, we will typically expect v; + k to be
distributed approximately like a chi-squared variable with k degrees of freedom.

Lemma 4.1. ¢, satisfies

wz‘(%))

0 = Cov (wz(z/}*),

w;(to) )
Yo/(1 — o)
+ m (COV (wz(lﬁ*)’ ’71‘) — Cov (wz(d)*),fyzwl(w*))) .

There are two ways we might use this equation. For a given choice of singular-
value distribution and of true parameter 1y, this equation defines ¥, as a func-
tion of (y;). For a given genotype matrix we could compute the distribution of
the ~; jointly with the phenotypes for a random choice of possible causal sites.
In this way we could more efficiently simulate the effect of restricted causality
on the heritability estimates.

Alternatively, we could use the assumption that the ~; are generically i.i.d.
samples from a chi-square distribution.

Theorem 4.2. In the Random causal-SNP model — that is, treating the causal
SNPs as a uniform random sample of all SNPs — for large n and assuming
T4 K To,

and we have a relative increase in the estimation error
2,12
Var(¢.) 798

Var(@) |k )
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Proofs of these results may be found in Appendix B.

Thus, the effect of a restricted set of causal sites may be assumed to be
negligible — relative to the uncertainty already acknowledged in the standard
analysis — as long as the phenotype is influenced by several tens of SNPs, but
to increase the uncertainty substantially when fewer than 10 SNPs are involved.
This effect will be exacerbated when w is small, which will be the case when
the heritability is high.

To illustrate this effect, we conducted simulations in the independent setting.
We took p = 100,000 SNPs, and defined them to have minor allele frequencies
independently chosen, uniform on [0.05,0.5]. We then simulated genotypes for
n =2,000 or 10,000 individuals by independently assigning a random number of
minor alleles to each individual and site, according to the binomial distribution
with the appropriate MAF. The genotypes corresponding to each site were then
normalized to have mean 0 and variance 1. This was our genotype matrix Z.

We then selected a random subset of k sites to be causal and independently
simulated 1,000 datasets using Z, these causal SNPs and heritability either 0.25,
0.5, or 0.75. The heritability was then estimated for each dataset, according to
the standard MLE procedure described in Section 3. We then repeated this
procedure for 100 different random choices of the causal SNPs.

To empirically estimate the variance of ., the asymptotic heritability esti-
mate for a given set of causal SNPs, we use a standard random-effect model.
Specifically, if 1/313- is the estimated heritability for the j-th simulated dataset
derived from the i-th set of causal SNPs, we assume

%Lij =] + €

where the 97 and the €;; are i.i.d. Gaussian, each with an unknown variance
parameter fit using the 1me4 package in R [1].

The results are summarized in Figure 1. The estimates of the variance of
1; are plotted as points in Figure 1 and are compared to their theoretical
predictions from (30) (continuous curves) as k varies. We then repeated the
entire process for another, independently simulated Z matrix, giving two points
for each combination of k, true h% and n. Overall, the theoretical curve is fit very
well, though the fit is worse when the variance between different Z is small (k
large and n small), making it hard to separate from the much larger phenotype
variance. !

These results are consistent with previous empirical observations that ran-
domly choosing a small number of causal SNPs inflates the variance of heritabil-
ity estimates but causes no bias [56, 41, 28]. Our arguments are also in line with
previous approximate characterizations of the likelihood function [22], though
we approximate the profile likelihood and do not require v = 0.

We go further than simulation, though, by analytically characterizing the
variance inflation as a function of the number of causal SNPs. We also show the
variance inflation derives from a random bias, ¥, — vy, defined by the 7; (see

IThe code implementing this analysis is freely available online at: https://github.com/
andywdahl/greml-causals
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# of Causal SNPs

Fic 1. Estimated variance of average heritability estimate for 1000 random phenotypes, from
each of 100 randomly selected subsets of k causal SNPs. Points give empirical variance es-
timates taken over simulated datasets and lines give the theoretical predictions from Theo-
rem 4.2.

Appendix C). When averaging over random -y, perhaps by averaging over choice
of study population, 1& can be interpreted simply as an unbiased estimator with
inflated variance. However, nature chooses ) and, in real data, V will replicate to
some degree across different datasets because of common linkage disequilibrium
patterns, loosely suggesting all real analyses will partially share a common,
albeit in some sense random, bias.

Theorem 4.2 is also comparable to a recent analysis of a similarly misspeci-
fied mixed model — though we have not discussed fixed effects — that showed
1/3 to be consistent as n, p and k jointly grow large [16]. However, we show
(approximate) unbiasedness averaged over 1 and quantify the increase in esti-
mator variance and its dependence on k. Further, we allow u to be non-normally
distributed, which is important when modelling causal SNP effects which are
known to vary over orders of magnitude.

4.4.2. Unobserved causal SNPs

It is generally assumed that the SNPs that directly influence the phenotype y;
are not actually among the p SNPs that have been measured [16], the problem
of “untagged variation”. Clearly we cannot assume that the estimate of ¢ will
be unbiased. In the extreme case where the causal SNPs are independent of the
observed SNPs, of course the expected estimate of ¢ will be 0. In general we
expect to see a downward bias, since the residual uncertainty about the causal



Random-effects models for heritability 341

SNPs will act like regression measurement error, deflating our estimate of the re-
gression slope, which is heritability. While this has been remarked qualitatively,
we are not aware of a formal derivation of the effect of untagged variation on
heritability estimates.

Intuitively, it makes sense that the estimation will be as good as the best
possible imputation of the causal SNPs. Of course, if we knew which were the
causal SNPs we could simply include them in the sample — either measured,
or the imputed values. We are assuming, though, that there is no information
about the causal SNPs, which are not in the panel.

More to the point, there is no inherent meaning to “best imputation” outside
the context of a particular probabilistic model generating the genotypes. For a
given collection of observed and unobserved (but causal) genotype data there
is an answer to the question, what is the bias in the heritability that would
be estimated if we calculated the MLE from the observed genotypes? We write
down this answer formally in (33), but do not see any meaningful interpretation
of this formula. If we embed the genotypes in a probabilistic model, on the other
hand, we are able to discuss the distribution of the unobserved bias understood
as a random quantity, just as we did in Section 4.4.1.

The model is exactly the same as in Section 4.4.1, except that the k causal
SNPs are not among the p observed SNPs, so the model now includes p + &
SNPs in total. (We do not assume independence, so this model includes the
observed-causal model as a special case, if we simply make the causal columns
to be copies of some of the observed columns.)

We consider two probabilistic models:

1. The causal sites are a random sample of all sites, which are then not
included in the observed genotype matrix.
2. The causal genotype matrix is generated by a linear relation

Z.=Z,B+3, (15)

where B is a fixed p X k matrix, and ¢ a random n X k matrix with mean-
zero independent entries, such that the entries in column ¢ have variance
U§e~ We write

14 k
1
0'(22) = E sz-e, O'g = E E Ugf.
j=1 =1

We assume that B is approximately sparse — all but a small fraction
of entries are negligibly small — with no more than one non-small entry
in any row. That is, there is a small number of observed sites that yield
nearly all the information about an individual’s causal SNPs, and these
linked sites are distinct for different causal SNPs. We also assume that

k
>0ty =k =k,
(=1

which is simply a matter of ensuring that Jg is actually the additive genetic
variance.
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At the moment there is not much we can say further about the first model. As
we will see in the discussion below, analyzing this model would require some
general results relating the SVD of a matrix to the SVD of a random sample of
its columns. It would be possible to investigate (33) through simulation. This
would represent only a slight formalization of the simulation approach initially
employed in GCTA to inflate h? estimates post hoc [51].

The second model is somewhat unsatisfactory, as it produces abstract “geno-
types” that are unlike the 0, 1, 2 SNP genotypes produced in real experiments.
We describe it here to illustrate how the behavior of such models may be rig-
orously analyzed, though a more realistic version would be technically more
demanding.

Theorem 4.3. For large n and small values of 0§ the heritability estimates
produced by the model (15) have a negative bias

g
P — Yo = —2039%8 + ;;K (16)

with an error that is bounded in distribution by a uniform multiple of 0(‘51—&—03, and
X is approzimately standard normal (as B varies over different permutations
of possible causal SNPs) and

208 (1 — %0)’ Gy
o] = OT (T2T12 + 2737 +T4) kT ;U?@'

We may draw two conclusions:

1. When o5 is not zero (or very small) — that is, when the causal SNPs are
not completely determined by the observed SNPs — there is a negative
bias in the heritability estimate, proportional to a?, which is a measure of
untagged variation.

2. When o5 is zero this includes the situation of Section 4.4.1, if B is a
binary matrix with only ones and zeros, so that each causal SNP is a copy
of an observed SNP. The formula (16) generalizes the calculation from the
previous Section, so that we see that the added uncertainty (or random
bias) decreases when the information about each causal SNP is split up
among multiple observed SNPs.

5. Singular values

We now present formulas for moments relevant to estimator bias and variance for
special cases of the distribution of squared singular values on which the GREML
heritability estimates depend. We consider first the independent setting, followed
by several stylized models for a stratified setting. Whereas our general treatment
has only assumed a normalization of the total sum of squares of the elements
of the genotype matrix, for these special cases we assume — as is usual in
applications of GREML — that each column of the genotype matrix has been
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normalized to have unit variance as well as zero mean. The methods of this
section can be extended to cases with dispersion in column variances, as well as
to genotype matrices with linkage disequilibrium, but we do not pursue these
extensions here.

There is a closed-form limiting expression for the empirical measure of the
singular values in our independent setting as n grows large for fixed p = n/p.
It was discovered by Marcenko and Pastur, [33] and independently by Mallows
and Wachter (see [32]). We use it in the generality established by Wachter [47].

The theorems provide for almost-sure convergence to a deterministic limit.
Any fixed genotype matrix Z will have singular values with an empirical mea-
sure close (to order 1/n) to this limit, if Z falls within a set of matrices that
would have probability one in an ensemble of random matrices with independent
elements. Recall that the column variances of Z are normalized to be close to
unity.

In order to find expressions for the empirical moments across 7 of w;(¢) as
functions of ¢ and p = n/p. define the Stieltjes Transform for complex ¢ away
from the real interval [a, b] by

b dG(t)

a C -1

Here t = s? stands for the eigenvalues corresponding to the singular values,
and dG is the limiting empirical measure of the eigenvalues, concentrated on
the interval [a,b] where a = (1 — y/n/p)? and b = (1 + /n/p)?. Conversion of
the formulas for singular values to eigenvalues requires removing mass 1 — 2y
conventionally placed at zero and rescaling by p so that dG has unit mass on
[a, b].

The average of w; is given by the value of (M({)/u and the average of w?
by the value of —(2M’(¢)/p when we plug in ¢ = —(1 — 1) /1) = —1/¢, making
1/(1 = ¢) equal the heritability 1. Averages of higher powers of w; are given by
expressions in higher-order derivatives of M (¢)/u. Equation 2.1.1 of [47] shows
that M () is the solution vanishing at infinity to the quadratic equation

M(¢) =p

__H 1
CCuQtToME

The solution can be written

C1l—p—C¢— /(1 —p— ()% —4u¢
_ T

Here the sign on the square root is chosen to agree with the sign on 1 — p — ¢
in order to make M (() vanish at infinity and to make (M () approach u at
infinity.

The expression for M (¢)/u containing the square root can be differentiated
in closed form, and exact expressions for the moments of w; follow from sub-
stituting 1/(1 — ¢) = ¢, and —¢ = (1 — @¥)/4. For practical purposes, it is

M(¢)
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helpful to expand M ({)/u in powers of u. The coefficients conveniently arrange
themselves in powers of (1 — ()™, streamlining differentiation and calculation
of uncentered moments of any order for w;.

Specifically, for small p and ¢ either off the real axis or outside [a, b], we have

1 7 5 2p°
MQ)/u~ - - + - o
Wh="—g a-o a0 a-o
When 1/(1 —¢) = ¢, and —¢ = (1 — )/, evaluating (M/u we find that the
mean over ¢ of w; is given up to second order in p by

W (L=9) + (1 =) u+ (1 =) (20 — D°pu’ + -+
and so
Al = (L= y)p— (1 —9)(2¢ — DY°u® -
Differentiating M by ( yields

i 1 3 4y 1047
M(C)/uw—(l_og Ta-of +(1—C)5 C(1=¢)8 +.

It follows that the scaled variance over ¢ of w; is given by

TR (L= u+ (1 —9)? (59 — 2)p® + -+ - . (17)

We also have
3 (1—0)°(1=3)p” +- -, (18)
=21 =) 4 (19)

Higher-order moments follow by successive differentiation.

Central moments of the eigenvalues themselves around their mean of unity
can be found by collecting terms in powers of 1/(1 — ¢). The variance is p, and
to second order in u the third central moment is +p? and the fourth central
moment 242, Evaluating M (¢)/p at ¢ = 0 shows that the mean of the recip-
rocal eigenvalues is 1/(1 — p), and successive differentiation reveals a variance
of /(1 — p)® and a third central moment of 2u2/(1 — u)? for the reciprocal
eigenvalues.

For the stratified setting, a great variety of scenarios come under considera-
tion. Stratified populations are expected to have genotype matrices with some
or many eigenvalues substantially larger than those in the independent setting,
and large eigenvalues entail large numbers of small ones, since the mean is
unity.

Among the simplest stylized models for eigenvalues arising in a stratified
population, one posits eigenvalues concentrated at two reciprocal values 1/8
and 8 with weights 5/(8 + 1) and 1/(8 + 1). This two point-mass distribution,
with its mean of unity, has variance (8 —1)?/(8+ 1), close to 3 when £ is large.
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Moments over i of w; come out to be

w:(ﬂiﬂ(¢$@¢ﬁm)+(ﬂiJ(1OJfLJ’

which may be simplified to

l-o_ (B-1’(1-v)
O BrE-D(I-¢)

1—’7’1:1—

and

(1—4)2B(8 — 1)?
B+ (8 —1)%(1—y)]*
For large B, the mean of w; is close to 1 and the variance of w; is close to
1/4. In contrast to the independent setting, where the variance of w; is roughly
proportional to the eigenvalue variance, in this stylized model for the stratified
setting, the variance of w; is roughly inversely proportional to the eigenvalue
variance. Implications for bias and variance for GREML heritability estimates
have been described in Section 3.2.

T2 =

6. Discussion

In the simple setting when assumptions are satisfied we have shown that threats
to the accuracy of GREML heritability estimates arise not from bias, but from
potentially large standard errors. Our findings run counter to some recent crit-
icisms of GREML.

We have also evaluated the bias arising from fixed but unknown structured
subsets for causal SNPs. This can be substantial in principle, but seems unlikely
to be disabling in practice. We have argued that the structures that amplify bias
are likely to be the exception rather than the rule. In a separate work [44] we
also show how the approach presented here offers some insights into one other
well-known source of bias, the presumed need to truncate negative heratibility
estimates.

Standard errors for GREML estimates of heritabilities depend on the dis-
persion in the squared singular values of the genotype matrix. In this regard
an idealized baseline case, the independent setting, is something like a worst-
case scenario. Drawing on eigenvalue theory we have given explicit expansions
for standard error and bias in this case in terms of the ratio of respondents to
SNPs. Implications of our formulas have been reviewed in Section 3.3. Depar-
tures from the independent setting which augment the dispersion of the squared
singular values can improve the statistical properties of the estimates, but only
up to a point and only at a cost in substantive interpretability. Linkage disequi-
librium augments dispersion. Unexpunged population stratification augments
dispersion. Their relative roles and their signatures are not yet clear. A priority
for future research is analysis of empirical genotype matrices and their sets of
singular values, the natural next step in elucidating the statistical properties of
random effects models for genetic heritability.
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Appendix A: Proof of Theorem 3.1

We recall that

1—
wi(Y) = ﬁ,
i) = wi(¥)2],
N s?
w; () = [—-l

Ty is the k-th order central moment of w; ().
The log likelihood is a sum over n given by

(1/2) Y (1og(w) — fuw;z? +log(6) )

The partial derivative of the log likelihood with respect to 6 is

o n 1 (1—)2?
_ Z( )

-~ = — /™ 2
0 20 1— 0+ 9s? (20)
Solving 9¢/06 = 0, we get
—1
i [ 1~ (-9
0= n g 11—+ 9s?
Substituting into (3) we get the profile likelihood
tp(¥) = —21o zn:'zilz
P79 O\ Ty v s?
" (21)

——Zlog 1—1/}—1—1/}8) (1ogn—1)

The score function is then

n n

e (S m) Caier) @

1
n 2

Si
" Ty

i=1
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We have now arrived at our profile likelihood equation. Setting the left-hand
side of equation (23) to zero, we have the maximum likelihood estimate of v
equal to a root of the univariate equation

0 = Cov (w(t), v(1)) (24)

The estimate is a function of the transformed observations z and of the singular
values s; of the scaled genotype matrix Z/,/p.

Our next task is to express equation (24) in terms of a power series in the
differences ¥ — 1. The right-hand side of equation (24) as a function of ¢ for
any fixed realization of the random quantities 27 is a polynomial in v times
a weighted sum of fractions 1/(1 + ¢(s? — 1)), and it is an analytic function
everywhere except on the interval (—1/max(s?—1),1), hence on a neighborhood
of [0,1).

We will use K; throughout the following discussion, for different indices j, to
represent constants that are bounded by a universal constant times a power of
w, = max{w; }. We will use V; to represent a random variable — a function of
v — that has fourth moment bounded by a power of w,.

We define

_ Y=o

T
We set out to find a root of equation (24) with € in the “search interval”
(=204, +20.), where

€

0, '= max { 0.01 #}
* wy  6w2VEKs [’
and K3 is a universal constant, to be defined below. We use the relation
-1
vi(¥) = vi(to) <1 + iﬁ%(%)) :
-1
w; (1) = wi(¢o) (1 + é@i(%)) .

For the rest of the proof we will write, unless otherwise indicated, @ for w(vy),
w for w(t)p), and so on. We use the third-order Taylor expansion

—1
1—|—iu~)- :;
1 1+ e(w; — 1)
—1— ey + € [wz—w} e [w§—2w$+wi} + Ri(e),

where the remainder term R;(e) is bounded by

|Ri(e)| < € (@ — 1)° @, (1+€(1 — ;) ™"

< 2wket.
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We apply this to expand the score equation up to third order in e. (This
expansion is the usual one for expressing asymptotic variance in terms of Fisher
information, but we need explicit formulas for the sake of our bias approxima-
tion, and for a similar expansion in section 4.4.) For most purposes it would
suffice to expand only out to second order. An extra order is required to make
the estimates work consistently for 1y near 0, where the lowest order coefficients
may vanish. For this reason, we may ignore — or, rather, lump into the final er-
ror term — any terms that are third-order or higher in € and include in addition
a factor of v or y.

By the bilinearity of covariance,

Cov(w(1),v(1)) = Cov(w,v) — € [Cov (ww, V) + Cov (w, vw)]
+ €2 {Cov (vw,ww) + Cov (v, wv~v2) + Cov (w, vv~v2)
— Cov (ww, v) — Cov (w, vw?v)]
—é [Cov (v,w (V~V3 —ow? + v~v)> + Cov <v <v~v3 —ow? + V~V> ,W)
+ Cov (v~vv7 (\7&/2 — v~v)w) + COV((\7V2 — v~v)v7 V~VW):|
+ e*Va(e),

The factor Vy in the remainder term is a random variable, depending on the
v; (1), that is bounded by

Vi) < Sut - 3" wiluo)
i=1

as € ranges over our search interval.
We write S(¢) for the multiple of the score function given by the covariance
we have just expanded, multiplied by 6y /7 :

S(e) = YovX + € (o + v(voY + X))
e {1+1/;0§+1/(—1/10W+X+(1+1/JO)Y)} (25)

+€ {5 +1+YoKs + VV?J + €*Va(e),

where
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W= (%) v (90 Cov (v~v2, VV~V) + 6y Cov (v~v3, v)

+ 6y Cov <v~v2v, vV) — (213 + 47'17'2))

27’3

i =—— -4 + 1
T2
3 10 4 8
Ky 5 1007 g2 AT 8T
T2 T2 T2 T2

We observe now that 6pv(ig) is a vector of i.i.d. x? random variables. It
follows that X, Y, and W (which are close to normal random variables) have
expectation values of zero and product moments

EX? =2,
8y 24
EY2 =2 4 T80 4 1872 — 6my,
T2 T2
4
EXY = ——2 — 6,
T2

There is a uniform bound on the fourth moments of V3, X, Y, and W, bounded
by a universal constant multiple of 7y¢.

We now express relevant probabilities and moments in terms of powers of v.
We are looking for a solution € to the rescaled score equation S(€) = 0. If v is
small, and if ¢ were on the order of v, we could neglect the remainder term of
order €3, solve the resulting quadratic equation to obtain the proposal solution

€0 1= —vX + 1 [XY - gXQ} (26)

and seek the full solution as a perturbation of order v3 to our quadratic solu-
tion. Except on an exceptional event A of small probability, defined below, this
strategy succeeds.

Substituting into (25), we observe that all terms in S(ey) cancel out that are
not multiples of either v* or v31)y. We assume that v is small enough so that
leo] < O, and consider € = €y + J§, where 4| < .. For all such e

5(60 —‘r(S) — S(Eo) = (5|"(/)0 <1 +vY + (260 —|—(5) (—22 —4m +1 +V(Y— W))

T2

+ (363 + 3600 + 52) K3>

+vX+(20+6) (1+v(X+Y)) + (363 + 3606 + 62) (26 + vV3)

+ ((60 +6)Waeo + 8) — egm(eo)) .
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Consider first the case 19 > 0. Because the random variables all have bounded
moments of all orders, for any o > 0 the exceptional event

A= {|5(60)‘ > 137 %) or v|X| > 0.01 or v|Y] > 0.01

or v|W| > 0.01 or v|V3] > 0.01 or  max |Vi(e)| > 1wa}
€€(—26,,204)

has probability smaller than K,v? for all n (hence all ), where K, as usual is
bounded by a universal constant times a power of w.

By the assumption that |ey] < d, and |0] < ., and the assumption that the
realization of v falls in A, we see that the coefficient of ¢ is bounded below by
o /2. If we set &y := 203~ it follows that S(eg + dp) > 0 and S(eg — dp) < 0.
We conclude that, with probability at least 1 — K,v3~%, there is a solution to
S(€) = 0 with |é — o] < 2037, This corresponds to a solution ¢ satisfying

b — o = (1 — o) <VX 42 {XY — §X2D +0 (ui“*“) .@n

This random variable has distribution independent of the matrix Z, except
through 7, 79, 73, and its mean and variance are as stated in the theorem. This
convergence is uniform as long as v — 0 as n — 0o. As n — oo the probability of
multiple zeros to the score function goes to zero, so with probability approaching
1 as v — 0 the unique solution converges in probability to the solution given
by (27).

If v = 0 we define the exceptional event

A= {|S(60)’ > 147 X? or v|X| > 0.01 or v|Y| > 0.01

or v|W| > 0.01 or v|V3| > 0.01 or max  |[Vi(e)|] > Iwa},
€€(—28,,204)

which again has probability smaller than K,v>.

We note that |eg| > 0.9|vX| on A and we restrict consideration to |§| <
|[vX|/4. Then we can again bound the slope of ¢ in the expression for S(ey +
0) — S(€p) to obtain, for all |§] < |[vX|/4, on the event A

S(eg +0) < S(eo) — |6 X|v/2

when ¢ and X have opposite sign and
S(eg+6) > S(eo) +6Xv/2

when they have the same sign. Thus, if we take dp := 2Xv3~% we have
S(eg — dg) <0 < S(eg + dp),

and we may complete the proof as before.
Our formulas for bias and variance to order 1/n follow because the conver-
gence is also in expectation and in mean square. More precisely, since the error
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term in the above approximation is bounded (outside of A) by (2 V | X|)v3~¢,
we have

l/_2

E [w - M — 21— o) (IE [XY] - ¢E {XQD ' < w4 Ko,

E[ (4= v0)*] = v2(1 —v0)’E [X2| < (Ko + Ka) v.

]/—2

Appendix B: Proof of Theorem 4.2
In the CS model (so, holding 7 fixed)
E[22] = ps?E [(V'w?] + 02

Do 2\ 2 2
- Esl (Z Vji)gg +oe

Jj€n

=$<(%+1>¢05?+1—¢0>

_L(1=%0  to_ o
‘6<mww+k%%>

Substituting this into the equation (10) yields (12), and completes the proof of
Lemma 4.1.

The expression on the right-hand side of (12) is a linear combination of
these, hence is approximately normal. In fact, since we assume n is large, and
the w;(v,) are bounded, the approximation should be extremely good. The
variance of the sum is the sum of the squares of the coefficients, multiplied by
the common variance 2k. Using the equality

wwo_1+<¢o ¢*)ﬁwwa

wi(1)0) I—do 1-4,
_ %o/(1 — o) ( ~ to/(1 —%)) 4
= w—o) T T a—ey) )
this yields
0 = (s — ¥0) T2(1hs) + Yo (1 — P )o (1) X, (28)
where X, defined as a function of the ;, has standard normal distribution, and
o) i= o () — 2 ()ms() + ma(v)). (29)

We may now perform a perturbation analysis, on the assumption that the
discrepancy € = 1, — g is small. If this is true, then we can obtain a first-order
approximation for e by solving

0 = em2(¥0) + tho(1 — Y0)o (1o)X + epo X (1 — )0’ (¢0) — o (1)),
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leading to
Yol =)o) \, , Y81 —20) o
R O R (7

Assuming o/79 and ¢’/ are both small, and that 75 and 74 are much smaller
than 75, we have the approximation

. 2m1(%0)* Y5 (1 — ¢ho)?

Var () ~ oo () : (30)

((1 — o) (Yo)o’ (to) — U(wO)Q) )

If we restrict attention to the independent setting, and assume that yu = n/pis
very small, then we may draw on the results in Section 5 and solve the equation
explicitly. We have 71 ~ 1 and 75 ~ (1 — 1, )?u, while 73 and 74 are moderate

multiples of ;2. We conclude that, to first order in n=1!,

En [1/1*] = ¢07 (31)
2 2
Var, (w*) = kp:fZO'

Regardless of their exact distribution, if the eigenvalues are sufficiently con-
centrated around 1 that 7, < 75, then we will have a ratio of variance due to
random selection of causal SNPs to the variance due to random genetic effects
and genetic phenotypes (the variance considered in standard analyses, given in
(9)) of

278 (1 — 4po)?/knme T3
2(1 —1/10)2/m—2 B k ’

(32)

Appendix C: Proof of Theorem 4.3

Taking UXV* now to be the singular-value decomposition of Z,/,/p, we compute
the rotated phenotypes

z=U"y =U*Z.u+ o.€.

where € := U*e is another vector of i.i.d. standard normal random variables.
Thus
o2
E[z}] = o2 + ?"E U*z.z:U),, .
Using (10), the estimator ), will satisfy
o2
0= 02 Cov (wi (1), w; (¥s)) + ?g Cov (w;(¢4),E[U*Z.Z} U], wi(¥s)) . (33)
We have

U*Z.2:U = U*(Z,B + ) (B*Z; + 6°)U
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= U*Z,BB*Z:U + U*6B* Z:U + U* Z,B5*U + U*66*U.

Since the rows of ¢ are uncorrelated with mean 0 we have E[¢] = 0 and

k
E[66%] =1, > a3
=1

By definition, U*Z, = /pXV ™. Thus

k p k
BV 2.2:0], = 23 (S viViBie) + Yo%
{=1

=1 j=1

(34)
= (vi +k—ko3)s} + koj
where
k P
Vi = ; U(Qe) (¢ - 1), Gie = J&; <]z—:l ﬁvjiBﬂ)’

and so
E[zf] =67" (1 — o + o0} + (”7 +1- a§)¢033>

1— 2
=671 (1 — ) (ug-(z;:f) + 2050 + QZ)’W?) :

Thus (10) becomes

0= (20300 + (1 - 03) (1 — o) ) Var (wi($.))

w* 1- ’(/JO
+ Lm0 o (i), 31— i) ).
By the same sort of calculation used in the previous proofs, and making use of
the fact that the (;y are approximately independent standard normal variables,

we may write this as
0~ (20308 + (1 - 03) (W — v0) ) + 05X,

where X is approximately standard normal. Solving to first order in 0'[% yields
(20). The result then follows immediately, by the same sort of calculation as
above.
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