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Abstract: In this paper we describe an algorithm for estimating the prove-
nance of hacks on websites. That is, given properties of sites and the tem-
poral occurrence of attacks, we are able to attribute individual attacks
to joint causes and vulnerabilities, as well as estimate the evolution of
these vulnerabilities over time. Specifically, we use hazard regression with
a time-varying additive hazard function parameterized in a generalized lin-
ear form. The activation coefficients on each feature are continuous-time
functions over time. We formulate the problem of learning these functions
as a constrained variational maximum likelihood estimation problem with
total variation penalty and show that the optimal solution is a 0th order
spline (a piecewise constant function) with a finite number of adaptively
chosen knots. This allows the inference problem to be solved efficiently and
at scale by solving a finite dimensional optimization problem. Extensive ex-
periments on real data sets show that our method significantly outperforms
Cox’s proportional hazard model. We also conduct case studies and verify
that the fitted functions of the features respond to real-life campaigns.
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1. Introduction

Websites get hacked whenever they are subject to a vulnerability that is known
to the attacker, whenever they can be discovered efficiently, and, whenever the
attacker has efficient means of hacking at his disposal. This combination of
knowledge, opportunity, and tools is quite crucial in shaping the way a group of
sites receives unwanted attention by hackers.

Unfortunately, as an observer we are not privy any of these three properties.
In fact, we usually do not even know the exact time ts a site s was hacked.
Instead, all we observe is that a compromised site will eventually be listed as
such on one (or more) blacklists. That is, we know that by the time a site lands
on the blacklist it definitely has been hacked. However, there is no guarantee that
the blacklists are comprehensive nor is there any assurance that the blacklisting
occurs expediently. Another shortcoming of blacklists is that they do not reveal
which aspect of the website was to blame.

On the other hand, metadata exists for each website and it allows us to
measure the potential vulnerability of the websites quantitatively. This includes
specific string snippets on websites that are indicative of certain versions of
software which might have been identified as exploitable or containing bugs that
lead to possible security breach. An interesting method that uses these features
to identify websites at risk was recently proposed by Soska and Christin [27].
However, it is unclear how each of these features contribute to the “hazard” of
a particular website getting hacked at a given time.
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In this paper, we propose a novel hazard regression model to address this
problem. Specifically, the model provides a clear description of the probability of
a site getting hacked conditioned on its time-varying features, therefore allowing
prediction tasks such as finding websites at risk, or inferential tasks such as
attributing attacks to certain features as well as identifying change points of
the activations of certain features to be conducted with statistical rigor.

Related work The primary strategy for identifying web-based malware has
been to detect an active infection based on features such as small iFrames [16].
This approach has been pursued by both academia [e.g., 1, 8] and industry
[e.g., 6, 17, 18]. While intuitive, this approach suffers from being overly reac-
tive, and defenders must compete against adversaries in an arms race to detect
increasingly convoluted and obscure forms of malice.

Soska and Christin [27] propose a data driven (linear classification) approach
to identify software packages that were being targeted by attackers to predict
the security outcome of websites.

Compared with [27], our method is able to predict the time a site will be
hacked in a survival analysis framework. Our method naturally handles censor-
ing of observations (i.e. inconsistency of exact hacking time and the time listed
on blacklists), automatically identifies a small number of features as exploits and
allows the activation coefficients on each feature to be functions over continuous
time.

Finally, our hazard regression model is quite generic and much more power-
ful than the widely-used Cox model [3] in our applications, therefore it can be
viewed as a novel and alternative way of estimating nonparametric hazard func-
tions at scale, and be used as a drop-in replacement in many other applications
having similar structures. Towards the end of the paper, we provide one such
application on studying the user dropout rate (churn rate) at Alipay — a major
online payment services used by hundreds of millions of people — and illustrate
some interesting insight.

2. Background

Our work is based on two key sets of insights: the specific way of how vul-
nerabilities are discovered, exploited and communicated in the community, and
secondly, the mapping of these findings into a specific statistical model.

2.1. Attacks on websites

We start by describing the typical economics of hackers and websites.
Exploits are first discovered by highly skilled individuals (hackers) who tend

to reserve these exploits for their own purposes for an extended period of time.
Typically, a hacker will retain an exploit as long as there is an ample supply
of vulnerable sites that can be discovered efficiently. Once the opportunity for
such hacks diminishes due to an exhausted supply, the exploits are often sold
or freely published to the benefit of the author’s reputation.
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Once this knowledge enters the public domain, the availability of available
tools increases with it. It is added to the repertoire of popular kits, at the ready
disposal of “script kiddies” who will attempt to attack the remaining sites. The
increased availability of tools often offsets the reduced opportunity to yield a
secondary wave of infections.

An important aspect in the above scenario is the way how sites are discovered.
Quite frequently this is accomplished by web queries for specific strings in sites,
indicative of a given vulnerability (e.g. database, content management system
(CMS), server, scripting language). In other words, string matches are excellent
features to determine the vulnerability of a site and are therefore quite indicative
of the likelihood that such a site will be attacked. Unfortunately, we are not
privy to the search strings a potential attacker might issue. However, we can
use existing fingerprints to learn such sequences, e.g. the tags and attributes in
the pages of a site.

In a nutshell, the above informs the following statistical assumptions on the
nature of website vulnerabilities. Firstly, sites are only effectively vulnerable
once an exploit has been discovered. Second, changes in attack behavior are
discrete rather than gradual. In the following we design a statistical estimator
capable of adapting to this specific profile.

2.2. Hazard regression

Hazard regression is commonly used in survival analysis of patients suffering
from potentially fatal diseases. There, one aims to estimate the chances of sur-
vival of a particular patient with covariates (attributes) x, as a function of
time, such as to better understand the effects of x. Unfortunately, each patient
only has one life, and possibly different attributes x, hence, it is impossible to
estimate the fatality rate directly.

Instead, one assumes that the hazard rate λ(x, t) governs the instantaneous
rate of dying of any x at any given time t:

λ(x, t) = lim
dt→0

p(t ≤ T < t+ dt|T ≥ t, x)

dt

= lim
dt→0

p(t ≤ T < t+ dt|x)
dt

· 1

p(T ≥ t|x) (2.1)

where T is a random variable denoting the time of death. That is, the density
of dying at time t is given by

p(t|x) = λ(x, t) p (survival until t|x)︸ ︷︷ ︸
F (t|x)

. (2.2)

This leads to a differential equation for the survival probability with solution

F (t|x) = exp

(
−
∫ t

0

λ(x, τ)dτ

)
. (2.3)

Here we assumed, without loss of generality, that time starts at 0. Note that a
special case of the above is λ(x, t) = λ0, in which case we have F (t, x) = e−tλ0 .
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This is the well-known nuclear decay equation (also an example of survival
analysis).

In our case, death amounts to a site being infected and λ(x, t) is the rate at
which such an infection occurs. An extremely useful fact of hazard regression is
that it is additive. That is, if there are two causes with rates λ and γ respectively,
(2.2) allows us to add the rates. We tacitly assume here that once a site is
infected, the attacker will take great care to keep further attackers out, or at
least, it will remain blacklisted as long as it is infected in some manner. In terms
of (2.3) we have

F (t|x) = exp

(
−
∫ t

0

λ(x, τ) + γ(x, τ)dτ

)
(2.4)

and p(t|x) = [λ(x, t) + γ(x, t)]F (t|x).

The reason why this is desirable in our case follows from the fact that we may
now model λ as the sum of attacks and can treat them as if they were indepen-
dent in the way they affect sites.

One challenge in our analysis is the fact that we may not always immediately
discover whether a site has been taken over. The probability that this happens
in some time interval [t1, t2] is given by F (t1|x)− F (t2|x), i.e. by the difference
between the cumulative distribution functions.

Finally, the absence of evidence (of an infection) should not be mistaken as
evidence of absence of such. In other words, all we know is that the site survived
until time T . By construction, their probability is thus given by F (T |x). In
summary, given intervals [ti, Ti] of likely infection for site i, at time T we have
the following likelihood for the observed data:

p(sites|T ) =
∏

i∈hacked

[F (ti, xi)− F (Ti, xi)]
∏

i �∈hacked

F (T, xi). (2.5)

Up to this point, the model is completely general and little assumptions
are made. The key of statistical modeling boils down to specify a tractable
parametric or nonparametric form of the hazard rate function λ(x, t), which by
construction only needs to be nonnegative and obeys that

∫∞
0

λ(x, t)dt = ∞ for
all possible x.

Arguably the most commonly used hazard regression model is the Cox’s
proportional hazard model, where λ(t|x) = λ0(t) exp(w

�x) [3]. The linear de-
pendence on feature vector x makes it very appealing for interpretability and
inference and leaving λ0(t) unspecified allows the model to handle global vari-
ations over time that is not captured by covariates x.

There is a large body of work devoted to extending the Cox model by coming
with useful specifications of the hazard rate as more generic functions of the
covariate x and time t [26, 2, 20], and inventing techniques to address the curse-
of-dimensionality associated with nonparametric modeling [30, 33, 21, 7]. We
cannot possibly enumerate these work exhaustively, so we encourage curious
readers to check out the wonderful textbooks [12, 28], the documentation for the
“survival” package in R [29] and the references therein. Part of our contribution
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in this paper is to connect various bits and pieces of the statistical literature for
the task of modeling hacker activities.

2.3. Trend filtering

Trend filtering [11, 32] is a class of nonparametric regression estimators that has
precisely the required property. It is minimax optimal for the class of functions
[0, 1] → R whose αth order derivative has bounded total variation. In particular,
it has the distinctive feature that when α = 0, 1 it produces piecewise constant
and piecewise linear estimates (splines of order 0 and 1) and when α ≥ 2 it
gives piecewise smooth estimates. The local adaptivity stems from the sparsity
inducing regularizers that choose a small but unspecified number of knots. When
α = 0, trend filtering reduces to the fused lasso [31] which solves

argmin
β

L(β) + γ
T−1∑
�=1

|β�+1 − β�|.

for a given loss function L. The advantage of this model is that each discrete
change in the rate function effectively corresponds to the discovery or the in-
creased (or decreased) exploitation of a vulnerability — after all, the rate of
infection should not change unless new vulnerabilities are discovered or a patch
is released.

There has been an increasingly popular body of work on extending of trend fil-
tering to estimate functions with heterogeneous smoothness over graphs [35], in
multiple dimensions (e.g., images, videos) [25] and with additive structures [24].
It will be clear later that our proposed method can be considered as an additive
survival trend filtering model, which as far as we know, is the first time trend
filtering (or additive trend filtering) is used for (time-varying) survival analysis.

3. Attributing hacks

We will now assemble the aforementioned tools into a joint model for attributing
hacks.

3.1. Additive hazard function and variational maximum likelihood

Given the hazard function λ(t, xi) of each website i ∈ {1, ..., n} with feature
vector xi(t) ∈ R

d at time t, we have the following survival problem:

max
∏
i∈B

p(ti ≤ τi < Ti)
∏
i/∈B

p(τi > T )

where τi is the unobserved random variable indicating the exact time that web-
site xi is being hacked. All we know for websites on the blacklist1 is the time

1A blacklist in this context is a list of websites maintained by a third party which are
confirmed to be either malicious, compromised, or otherwise adversarial according to the ex-
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already been hacked Ti and the last time it was alive ti. This is what we call
an “interval-censored” observation. Time T denotes the end of the observation
interval, e.g., now. Websites that were still alive at T are considered “right cen-
sored” because all we know is that their hack time will be beyond of T . Under
the survival analysis framework, we have

p(τi > T ) =e−
∫ T
0

λ(t,xi(t))dt

p(ti ≤ τi < Ti) =p(τi ≥ ti)− p(τi ≥ Ti) = e−
∫ ti
0 λ(t,xi(t))dt − e−

∫ Ti
0 λ(t,xi(t))dt

(3.1)

It remains to specify the hazard function. In our setting, x is a high-dimensional
non-negative feature vector, so we need to impose further structures on the haz-
ard function λ(x, t) to make it tractable. We thus make an additive assumption
and expand the hazard function into an inner product

λ(x, t) = 〈x(t), w(t)〉 = w0(t) +

d∑
i=1

xi(t)wi(t).

This is still an extremely rich class of functions as xi(t) can be different over
time and wi(t) is allowed to be any univariate nonnegative functions2. Leaving
it completely unconstrained will inevitably overfit any finite data set. However,
standard nonparametric assumptions on wi(t) would require the function to be
Lipschitz continuous or even be higher order differentiable. These assumptions
make it a poor fit for modeling the sharp changes of wi(t) in response to sparse
events such as an release of an exploit on hacker forums.

Standard and monotone model with Total Variation penalty To ad-
dress this issue, we propose to penalize the total variation (TV) of wi for each i
and optionally, impose a monotonicity constraint on these functions. This gives
rise to a variational penalized maximum likelihood problem below:

minimize
(w0,w1,...,wd)∈Fd

n∑
i=1

�({xi, zi, ψi};w) + γ

d∑
j=0

TV(wj)

Subject to: wj(t) ≥ 0 for any j ∈ [d], t ∈ R.

(if monotone) wj(t+ δ)− wj(t) ≥ 0

for any j ∈ [d], t ∈ R, δ ∈ R+.

(3.2)

where � is the negative log-likelihood functional; zi is the indicator of censoring
type for observation xi, i.e. interval-censored or right-censored; ψi := {ti, Ti, T}
pertise of the curator. Entries in a blacklist always contain the website in question, but are also
furnished timestamps of the security event and information regarding the nature of the malice.

2A natural alternative formulation would be to take λ(x, t) = exp(w0(t)+
∑d

i=1 xi(t)wi(t))
as in Cox’s model, so we do not have to impose any constraints on feature x and coefficient
vector w. In this paper, since the features are all {0, 1} indicators of the existence of certain
html snippets, so we naturally have nonnegative feature vectors and also it seems more rea-
sonable to assume the contribution to the hazard from each feature adds up linearly, rather
multiplied together exponentially.
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is the associated censoring time;F are the set of all functions [0, T ] → R; and
wj(t) is the evaluation of function wj at time t. We define total variation as
follows:

Definition 1 (Total Variation). The total variation of a real-valued function f
defined on interval [a, b] ⊂ R is

TV(f) = sup
P∈{P={t0,...,tnP

}|P is a partition of [a,b]}

nP−1∑
i=1

|f(ti+1)− f(ti)|.

When f is differentiable almost everywhere, total variation reduces to the L1

norm of the first derivative

‖f‖L1
=

∫ b

a

|∂tf(t)| dt.

This should be compared to the squared L2 norm penalty with degree 1, com-
monly used as a regularizer in the variational form of smoothing splines:

‖f‖2L2
=

∫ b

a

[∂tf(t)]
2
dt.

By construction, a piecewise constant function f would have small total varia-
tion but unbounded L2 norm of its first derivative.

We now make two remarks on the constraints. First of all, the non-negativity
constraints are necessary to ensure the hazard function λ(x) to be a valid haz-
ard function for all x ≥ 0. Secondly, whether the monotonicity constraints are
needed is completely application specific. We call the model with or without
the monotonicity constraints the “monotone model” and “standard model” re-
spectively. There could also be a “mixed” model where we impose monotonicity
constraints only on a subset of the features where there are reasons to believe the
corresponding hazard only increase over time. From the modeling point of view,
when we impose the “monotone” constraints, it trivializes the total variation
penalty as TV(wj) = wj(T ) − wj(0); as a result, in cases where monotonicity
of hazard makes sense, we often take γ = 0 which makes the model attractively
parameter-free.

Non-convex variant of total variation While the total variation penalty
is convex and it often induces a sparse number of change points, it also results
in substantial estimation bias due to the shrinkage of the magnitude of the
changes. The issue is exacerbated when we use a monotonicity constraint. Since
TV(wj) = wj(T )−wj(0), the total variation remains the same no matter there
is only one change point or there are infinite number of change points. This
is a nice feature as the class of functions contains functions that are smoothly
changing, but on the other hand, it does not always give us a sparse number of
change points that are useful for interpreting the results. This motivates us to
consider a non-convex variant of the total variation penalty of the following form:
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TVlog(f) := sup
P∈{P={t0,...,tnP

}|P is a partition of [a,b]}

nP−1∑
i=1

log(ε+ |f(ti+1)− f(ti)|).

(3.3)
where 0 < ε ≤ 1 is a tuning parameter. Note that the functional is 0 only when
f is a constant function if taking ε = 1. We call this variant of the model the
“log” model or the “log + Monotone” when the monotonicity constraints are
imposed. The new functional has a number of desirable properties:

Lemma 2. When ε = 1, for any function f we have that TVlog(f) ≤ TV(f).
Moreover, if f is Lipschitz continuous it follows that TVlog(f) = TV(f).

Proof. We use two elementary properties of log(1+x), which follow from concav-
ity. Firstly, the tangent at 0 majorizes the function, i.e. log(1+x) ≤ x for all x >
−1. Secondly, for any x, y ≥ 0 we have that log(1+x+y) ≤ log(1+x)+log(1+y).

The first property shows that for any partition of [a, b] the value of the supre-
mum in (3.3) is smaller than that of its counterpart for TV. Hence the supremum
is majorized, too.

The second property follows from the fact that for TV we can take the limit
of infinitesimally small segments without decreasing its value. In other words,
the limit of an infinite partition has the same value as TV(f). On the other
hand,

x+ y ≤ log(1 + x+ y) + C(x2 + y2) for some C > 0 (3.4)

Hence, any δ-partition of the interval [a, b] for a Lipschitz continuous function
f with Lipschitz constant L will yield a value of the log(1 + x) penalty that
is at most L2δ|b − a| smaller than TV (f). Hence, for δ → 0 this converges to
TV (f).

A consequence of this is that TVlog favors functions that are not Lipschitz,
i.e. functions that have a small number of larger jumps, which is exactly what
we want. The following example illustrates this.

Example 3. Consider three functions f, g, h : [0, 1] → R. Let f = I(t ≤ 0.5),
g = 0.5I(t ≤ 1/3)+0.5I(t ≤ 2/3), and h = t. Note that f has one change point,
g has two and h has an infinite number of change points.

Assuming ε ≤ 1, then

TVlog(f) = log(ε+ 1)

and the optimal partition is a single block at t0 = 0, t1 = 1. It is clear that since
ε ≤ 1 the more block we partition it into, it can only make it smaller. Turns out
that we can also calculate the expression for g and by Jensen’s inequality and
concavity of log, we can clearly see that

TVlog(g) = 2 log(ε+ 0.5) ≥ log(ε+ 1).

Now

TVlog(h) ≥ sup
δ∈(0,1]

1

δ
log(ε+ δ).
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When ε = 1, it is not hard to check that the supremum is achieved at δ → 0,
since [

1

δ
log(1 + δ)

]′
=

1

δ2

(
δ

1 + δ
− log(1 + δ)

)
≤ 0.

For other ε ≤ 1, there exists an optimal δ > 0 that maximizes the expression.
However, taking δ → 0 will provide a valid lower bound for all 0 < ε ≤ 1. By
l’Hospital’s rule, we get

TVlog(h) ≥
1

ε
,

which is bigger than TVlog(g) with two change points (and TVlog(f) with one-
change point). We conjecture that it is also bigger than any of the TVlog of any
functions with a finite number of change points but the same total variation.

We will experiment with different variants of the model in simulation and
real data experiments to illustrate the merits of the various approaches.

Comparison to the Cox model Note that our model (regardless of which
variant) is a much richer representation comparing to Cox’s proportional hazard
model [3]. Our method handles time-varying coefficients and feature vectors
while Cox model is static. Also, the semiparametric nature of Cox model by
construction leaves out the baseline hazard λ0(t) such that it becomes non-
trivial to produce a proper survival distribution. For example, a common trick
is to parametrize the baseline hazard rate λ0(t) by a either a constant or a
log-Weibull density. Our formulation does not require a parametric assumption
and produces a nonparametric estimate of it to account for all the effects that
are not explained by the given feature.

The only remaining issue is that (3.2) is an infinite dimensional functional
optimization problem and could be very hard to solve. In the subsequent two
sections, we address this problem by reducing the problem to finite dimension
and deriving scalable optimization algorithms to solve it.

3.2. Variational characterization

The following theorem provides a finite set of simple basis functions that can
always represent at least one of the solutions to (3.2).

Theorem 4 (Representer Theorem). Assume all observations are either right
censored or interval censored 3, feature xi(t) for each site is nonnegative, piece-
wise constant over time with finite number of change points. Let sτ (t) = 1(t ≥ τ)
be the step function at τ . Then there exists an optimal solution (w∗

1 , ..., w
∗
d) of

Problem (3.2) (either standard model or monotone model) such that for each
j = 1, .., d,

w∗
j (t) =

∑
τ∈T

sτ (t)c
(j)
τ

3This is not restrictive because any uncensored data point can be made interval censored
with a tiny interval.
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for some set T that collects all censoring boundaries and time steps where feature
xj(t) changes. The coefficient vector c(j) ∈ R

|T |.

The proof, given in the appendix, uses a variational characterization due to
De Boor [4], Mammen et al. [15] and a trick that reparameterizes our problem

using the cumulative function Wi(t) =
∫ t

0
wi(t)dt. Extra care was taken to han-

dle the non-negativity and monotone constraints. We remark that the above
result also applies trivially to the case when γ = 0 (unpenalized version).

The direct consequence of Theorem 4 is that we can now represent piecewise
constant functions by vectors in R

|T | and solve (3.2) by solving a tractable finite
dimensional fused lasso problem (with a nonnegativity constraint and possibly
a monotonicity constraint) of the form:

minimize
w0,w1,...,wd∈R

|T |
+

n∑
i=1

�({xi, zi, ψi};w) + γ
d∑

j=0

‖Dwj‖1

subject to: wj(�) ≥ 0 for any j ∈ [d], � = 1, ..., |T |.
(if monotone) wj(�+ 1)− wj(�) ≥ 0

for any j = 1, ..., d, � = 1, ..., |T | − 1.

(3.5)

where we abuse the notation to denote wj as the vector of evaluations of function
wj at the sorted time points in T ; and D ∈ R

(|T |−1)×|T | is the discrete forward
difference operator.

Although the above result does not cover the cases when we replace the
TV-penalty with the nonconvex the log penalty described in (3.3). we can still
restrict our attention to the class of piecewise constant functions, and penalize

T̃V
ε

log(wj) :=

|T |−1∑
�=1

log
(
ε+ |wj(�+ 1)− wj(�)|

)
(3.6)

instead of (3.3). We claim that this is a sensible approximation because this is
effectively choosing a specific partition according to the time points that comes
from the data, therefore is always a lower bound of (3.3). In fact, when ε = 1
and we can check that the number of non-zero summand in (3.6) is exactly the
same as the number of jumps in the fitted function wj and for the same total
variation of wj , this penalty would be smaller when the number of change points
are larger.

Remark 5 (Higher order Trend Filtering). For k-th order trend filtering with
k ≥ 1, we do not get the same variational characterization. Although it is still
true that the optimal solution set contains a spline W ∗

j , there is no guarantee
that the knots of W ∗

j are necessarily a subset of T . Fortunately, by Proposition 7
of Mammen et al. [15], restricting our attention to the class of splines with knots
in T will yield a solution that is very close to the W ∗

j at every τ ∈ T and it has
total variation of its kth derivative on the same order as TV(W ∗

j ). In addition, a
spline is uniformly approximated by the class of functions that can be represented
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by the falling factorial basis [32, 34], therefore, the function from kth order trend
filtering defined on T will be a close approximation to the optimal solution of
the original variational problem.

Remark 6 (A sparse and memory-efficient update scheme). The theorem sug-
gests a memory-efficient scheme for optimization, as one can only keep track of
the coefficients of the step functions rather than representing the dense vectors
w0, ..., wd. Moreover, each stochastic gradient update will be sparse since each
user has only a handful of changes in his feature vectors over time and at most
two censoring brackets.

Remark 7 (Sparsity in the features as implicit regularization). On top of that,
while the feature vectors are ultra high-dimensional, they are extremely sparse.
When xj(t) = 0, the additive structure of the model ensures that changes in
wj(t) do not affect the hazard rate, therefore wj(t) will be chosen such that the
TV penalty is minimized. This suggests that sparsity structures in features also
serve as an implicit “regularization” which helps to improve the generalization
of the model.

3.3. Algorithms

The previous section reduces the optimization over functions to an optimization
problem over vectors in finite dimensional Euclidean space. However, it does not
imply that the problem is easy to solve. Due to the interval-censoring, the loss
functions are not convex, and the penalty is either convex (TV) or nonconvex
(log(| · |+ε)) but non-smooth. In addition, there are non-negativity and possibly
monotonicity constraints. In this section, we derive numerical optimization tech-
niques for solving problem (3.5) and discuss the convergence rate to a stationary
point.

Specifically, we propose to train all four variants of our models (standard
and monotone / TV or TV-log) using the proximal gradient algorithm with a
stochastic variance-reduced gradient approximation [10]. The proposed method
is computationally efficient and system-friendly by design, which allows us to
scale up the method to work with hundreds of thousands of data points. While
the problem is nonconvex, we find the proposed techniques extremely effective
in simulation and real data experiments.

In the subsequent discussions, we will first derive the gradient of the loss
function and write down the variance-reduced unbiased estimate of the gradient
as per [10]. Then we will describe the key steps of the algorithms. While the
proximal gradient algorithm itself is standard, the main challenge for this specific
problem is to be able to solve the proximal map efficiently, since there are several
non-smooth terms. We show using a general technique due to Yu [37] that we
can decompose the proximal map into two simpler ones which both admit linear-
time algorithms.

Gradient calculations Note that the probability of each interval-censored

data − log(p(ti ≤ τi < Ti)) in (3.1) can be decomposed as
∫ ti
0

λ(t, xi)dt−log
(
1−
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exp
(
−
∫ Ti

ti
λ(t, xi)dt

))
. As a result we only need to calculate the integral between

ti and Ti for interval-censored data while evaluating the gradients:

∇gi(w) =

⎧⎨
⎩

1

1−exp
( ∫ Ti

ti
λ(t,xi)dt

)Dτ� if ti ≤ t < Ti.

Dτ�, otherwise.

where gi(·) is the negative log-likelihood function on xi; τ ∈ R
d,T denotes sorted

times in T for each feature j ∈ {1, ..., d}.

Proximal-SVRG algorithm The proximal-SVRG algorithm iteratively
solves the following with learning rate η, minibatch size m, for t = 0, 1, 2, 3, ...
until convergence:

1. If mod(t, �n/m) = 0, then for each j ∈ [d], assign w̃j = wj , evaluate the
full gradient μ̃j =

∑n
i=1 ∇gi(w̃j). Note that the full gradient evaluation is

only called every data pass.
2. for j = 1, ..., d:

(a) Pick a random minibatch S ⊂ [n]:

wtmp
j = w

(t)
j − η

(∑
i∈S

∇gi(w
(t)
j )−

∑
i∈S

∇gi(w̃j) + μ̃j

)
.

(b) Solve the proximal map:

w
(t+1)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
argminw∈R|T |

1
2‖w − wtmp

j ‖2 + γ‖Dw‖1 + δ(w ≥ 0),

for standard model.

argminw∈R|T |
1
2‖w − wtmp

j ‖2 + γ‖Dw‖1 + δ(w ≥ 0)

+δ(Dw ≥ 0), for monotone model.

(3.7)

Here δ : R
|T | → R ∪ {+∞} is the standard indicator function in

convex analysis that evaluates to 0 when condition is true and +∞
otherwise.

Proposition 8 (Decomposable proximal map.). (3.7) is equivalent to first solv-
ing

wtmp2 = argmin
w

‖wtmp − w‖22 + δ(w ≥ 0)

and then solving

w
(t+1)
j = argmin

w
‖wtmp2 − w‖22 + γ‖Dw‖1 (3.8)

or
w

(t+1)
j = argmin

w
‖wtmp2 − w‖22 + γ‖Dw‖1 + δ(Dw ≥ 0). (3.9)

for the standard model and monotone model respectively.
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The proof makes use of Theorem 1 of Yu [37], and basic definition and prop-
erties of subdifferential in convex analysis (see, e.g., [23]). The full proof is
presented in the appendix.

The above result ensures that we can solve the proximal map in two steps.
The first step update is simply a projection to the first orthant, which involves
trivially projecting each coordinate separately to R+. The second step can also
be solved in linear time by a dynamic programming algorithm [9].

Using the same algorithm for the non-convex penalty We now show
how to use the same algorithm for the log-model. The idea is that we decompose
the non-convex penalty as follows

T̃V
ε

log(w) =
‖Dw‖1

ε
+ ξ(w).

The following lemma describes the convenient property of ξ(w) that allows us
to group it into the smooth loss function.

Lemma 9. ξ(w) is continuously differentiable. Also, the gradient of ξ is

DTdiag

(
1

ε+ |Dw| −
1

ε

)
sign(Dw).

Note that ξ(w) always exists so the only thing we need to prove is that
ξ(w) is continuously differentiable. The proof uses the definition of multivariate
differentiability by checking that at all point w, all directional derivatives exists.
It is mostly elementary calculus but is somewhat long ans technical, so we defer
the detailed arguments to the appendix.

The lemma implies that we can rewrite the objective function of the log-model
into:

d∑
i=1

�({xi, zi, ψi}) + γ

d∑
j=1

ξ(wj) +
γ

ε

d∑
j=1

‖Dwj‖1, (3.10)

which is of the same form as the TV-model, except for an additional smooth
term γ

∑d
j=1 ξ(wj). In other word, the same prox-TV algorithm with a slightly

modified gradient can be used to find a stationary point for the log-model.

Convergence rate Lastly, Reddi et al. [22] proved fast convergence rate of
proximal SVRG to a stationary point for nonconvex loss functions, which guar-
antees that with an appropriately chosen learning rate, only O(1/ε) proximal
operators calls and O(n+n2/3/ε) incremental gradient computation are needed
to get to ε accuracy.

In our experiments, we find that using diagonal preconditioning with Ada-
grad [5] improves the convergence of both algorithms with little added system
overhead; also we find that it is helpful to run a few data passes of prox-SGD
before starting prox-SVRG and updating the full gradient only a few data passes
(rather than every data pass). Understanding the convergence properties with
these additional heuristics included is beyond the scope of this paper.
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4. Experiments

In this section, we show the accuracy of the learned latent hazard function
evaluated on synthetic data with ground truth and by conducting case studies
on real data evaluated using domain expertise. We evaluate the out-of-sample
predictive power measured by log-likelihood, which significantly outperforms
Cox’s models. The hope is that the hidden hazard function of each attack over
time could reveal the underlying reason why and how some of the websites were
hacked. Finally, we show the generality of the model by applying it to other
applications.

The experimental code is publicly available4.

4.1. Synthetic experiments

To demonstrate the effectiveness of the model, we simulate two kinds of attacks.
The first type of attack possess a monotonically increasing hazard rate. This
corresponds to our statistical model with monotone constraint on the hazard
rate which is easy to understand since once a exploit is known it will become
easier and easier for hackers to attack as more tools are available. The second
type of simulated attack does not have a monotonic hazard rate. This leads to
our “standard” or “non-monotone” model. It’s a practical assumption because
in reality the attack campaigns could be quite complex. We will talk about both
the pros and cons of these two schemes in the analysis of the real-world data.

Data. In both cases, we simulate the data as follows:

1. We generate 40 features among which 4 are indicators for the existence of
a vulnerability that is potentially under attack.

2. To simulate the true attacks, we assume there could be several attack
campaigns for each exploit. For each exploit:

(a) We randomly pick change points over time, cast as real numbers in
[0, 10.0], each of which corresponds to the start of one attack cam-
paign.

(b) For each campaign, the hazard rate is randomly sampled.

3. Given the ground truth hazard rate we got in step 2, we sample the exact
hacked times for each of 1000 data points.

4. Independently, we assume another uniformly sampled checking points
served as censoring times. Finally we obtain our experimental interval-
censored times by finding the nearest censoring times around each exact
hacked time.

Comparison methods. The purpose of this section is to verify the ability
of our models, other time-varying coefficient hazard regression models and their
abilities to recover hazard curves with sharp changes. First, most of the exist-
ing state-of-art methods rely on splines where the change points are pre-fixed or
automatically estimated based on model selection. Second, to best of our knowl-

4https://github.com/ziqilau/Experimental-HazardRegression

https://github.com/ziqilau/Experimental-HazardRegression
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edge, we are not aware of any existing work allowing both time-varying coeffi-
cients and interval censored data. We study the popular “polspline” [13] which
is a time-varying coefficient hazard regression tool archived in the R repository5.
The “polspline” automatically learn splines including constant functions, linear
functions of time and so on. Note that “polspline” only works on uncensored
data and right censored data.

We denote “�1” as �1 penalized Total Variation, and “log” as log penalty
defined in Eq.(3.6). For convenient, we use the term “non-monotone” as standard
model in Eq.(3.7) without Total Variation or log penalty. Similarly we use the
term “monotone” as monotone model in Eq.(3.7) without Total Variation or log
penalty. In our experiments, we will see the effects of placing “�1” and “log”
onto “monotone” and “non-monotone” models.

Fig 1. Estimated hazard rate on one exploit: log+monotone(first), l1+monotone ( second),
monotone ( third and polspline ( fourth)).

The results for monotonic hazard rates are reported in Figure 1 and 2. The
convergence in Figure 2 shows that compared with “�1” and monotone, “log”
penalty works a bit better. The reason for this can be seen from Figure 1 (1

5https://cran.r-project.org/web/views/Survival.html

https://cran.r-project.org/web/views/Survival.html
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Fig 2. Convergence on training data ( left) and test data ( right) respectively. (monotone
hazard rate)

out of 4 exploit) where the “log” penalty produces a much sharper hazard curve
and approximates the ground truth quite well.

Figures 3 and 4 and show the results on data generated without the monotonic
hazard rate constraint. In this case both the “�1” and “log” penalties work well.
It is expected that the non-monotone model without any regularizer will overfit
the data quite aggressively. The minor difference between “�1” and “�1 + log”
is that “�1+ log” produces sharper curves but tends to ignore weak signals, e.g.
the second knot, when the signal-to-noise ratio is relative small, i.e. it prefers
significant signals. The convergence in Figure 4 shows that both “�1” and “log”
penalty significantly outperform the plain non-monotone model.

Note that our model consistently assigns all features that are not exploits to
zero.

In order to compare with our models, we build the data for “polspline” as
follows. First, we start with the interval and right censored data simulated in
the beginning of this section. We leave right censored data unchanged. Second,
we generate two data points (uncensored and right censored) for every interval
censored data point, i.e., the left end point of interval censored time serves as
right censored time, and the exact hacking time serves as uncensored time.

We show the results of “polspline” in Figures 1 and 3. It can be seen that
spline based models which allow relatively smooth changes struggle to model the
sharp hazard rate well enough. It is expected from the shape of the hazard rate
curve that the negative log-likelihood of “polspline” compared with our models
is inferior. Due to the algorithm of “polspline” is not iterative-like, we are not
able to obtain the results of estimated hazard rate in each iteration, therefore
we instead report the final results after the algorithm is done in Table 1.

4.2. Real-world data

The data used for evaluation was sourced from the work of Soska and Christin
[27] and was comprised as a collection of interval censored sites from blacklists
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Fig 3. Estimated hazard rate on one exploit: log+l1(first), l1 ( second), non-monotone
( third) and polspline ( fourth).

Fig 4. Convergence on training data ( left) and test data ( right) respectively. (non-monotone
hazard rate)
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Table 1

Negative log-likelihood of the estimates of “polspline” compared with our models on test set,
synthetic settings.

Cases Ground Truth Our models polspline
non-monotone 1.082 1.085 4.123

monotone 0.823 0.823 3.512

and right censored sites randomly sampled from .com domains6. As a conse-
quence of the time-varying distribution of software deployed on the web, all
the samples were drawn from The Wayback Machine7 only when archives were
available at appropriate dates.

One of the blacklists that was sampled was PhishTank, a blacklist of pre-
dominately phishing8 websites for which 11,724,276 unique URLs from 91,155
unique sites were observed between February 23, 2013 and December 31, 2013.
The Wayback Machine contained usable archives for 34,922 (38.3%) domains.
The other blacklist that was used contains websites that perform search redi-
rection attacks [14] and was sampled from October 20, 2011 to September 16,
2013. In total the sample contained 738,479 unique links, from 16,173 unique
domains. The Wayback Machine contained archives in the acceptable range for
14,425 (89%) of these sites.

These two blacklists are particularly well suited for providing labeled samples
of attacked websites as manual inspection has shown, an overwhelmingly large
proportion of these sites were compromised by a hacker. This is contrary to
other websites which may simply have been maliciously hosted or contained
controversial content without even being vulnerable or hacked.

Lastly, the .com zone file from January 14th, 2014 was randomly sampled,
ignoring cases where an image of the site was not available in The Wayback Ma-
chine. In total 336,671 archives distributed uniformly between February 20th,
2010 and September 31st, 2013 were collected. These samples were checked
against our blacklists as well as Google Safe Browsing to ensure that as few
compromised sites remained in the sample as possible.

We automatically extracted raw tags and attributes from webpages, that
served as features (a total of 159,000 features). Examples of these tags and at-
tributes include <br>, and <meta> WordPress 2.9.2</meta>. They are useful
for indicating the presence of code that is vulnerable or may be the target of
adversaries. Our corpus of features corresponds to a very large set of distinct
and diverse software packages or content management systems.

4.3. Real-world numeric results

There are a total of 120 million websites registered in .com zone file at the end
of our observation. According to a rough estimates of the distribution of hacked

6A .com zone file is the list of all registered .com domains at the time.
7The Wayback Machine is a service that archives parts of the web.
8A phishing website is a website that impersonates another site such as a bank, typically

to trick users and steal credentials.
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Fig 5. Convergence on websites hacking data, training data ( left) and test data ( right)
respectively.

and non-hacked sites, we reweigh the non-hacked websites by 200 times. To
report the results, we randomly select 80% for training and validation, and the
rest as test data.

Comparison methods. The baseline method is the classic Cox Proportional
model [3] which has been extensively used for hazard regression and survival
analysis. Ever since its invention, has been considered a “gold standard” in epi-
demiology, clinical trials and biomedical studies [see e.g., 36]. The Cox model is
parametrized based on the features just as our model is, but is not time-varying.
As has been discussed in section 3.1, to estimate the survival probabilities we
specify a uniform distribution for the baseline hazard function. We are not able
to compare with other time-varying models in R repository due to the scale of
the data.

An experimental comparison between our models and the Cox model on the
aforementioned dataset are shown in Figure 5. By comparison, the Cox model
underfits the data quite a bit. Our “monotone” model which allows only a non-
decreasing hazard rate also underfits the data slightly but still significantly out-
performs Cox. Moreover due to much smaller parameter space need to search,
we find that it converges faster than the “�1+non-monotone” model. Addi-
tionally, our “log+monotone” model performs nearly the same on convergence
(overlapped). Again it is well expected that “non-monotone” model without any
constraint overfits the data severely. As a consequence, the “�1+non-monotone”
model which is well-regularized performs the best. These results clearly show
that the latent hazard rate recovered by our models improves upon the classic
Cox model in this setting.

Due to the sparsity of our models, table 2 shows that we require only about
three times the storage to give significantly better estimates compared with
the Cox model. Most importantly, identifying the changes of each feature’s sus-
ceptibility over time can help people understand the latent hacking campaigns
and leverage these insights to take appropriate action. We will discuss more in
section 4.3.1.
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Table 2

Empirical model size (active breakpoints for our methods, number of parameters for Cox)
estimated by different statistic models.

Methods Empirical model size
non-monotone 2 · 106

monotone 4.04 · 105
�1+nonmonotone 5.16 · 105

Cox 1.59 · 105

Fig 6. λt(i) of a feature known to correspond directly to instances of Wordpress 3.2.1 and
Wordpress 3.5.1.( left); λt(i) of features known to correspond directly to different versions of
the Wordpress content management system that were attacked in the summer of 2011.( right)

Finally it is imperative that the model does not assign non-zero hazard rate
to features that are uncorrelated with the security outcome of a website. The
hazard curve for 200 random features believed to be uncorrelated with security
(such as code for custom font colors, styles, and links to unique images) were
manually studied, 182 (9% false positive rate) of which generated a hazard
value of 0 for the entire duration of the experiment. Of the 18 features that
were assigned a non-zero hazard curve, all of them reported a value of less than
0.04 which can be ignored.

4.3.1. Real-world case study

In this section, we manually inspect the model’s ability to automatically discover
known security events. To this end, the model was trained on the aforementioned
dataset and λi(t) and was measured for features i that corresponded directly to
websites that were known to be the victim of attacks.

Figure 6 (left) demonstrates some of the differences between the well penal-
ized monotone and non-monotone models by following the hazard assigned to
features that correspond to Wordpress 3.5.1. In early 2013, our dataset recorded
a few malicious instances of Wordpress 3.5.1 sites (among some benign ones).
These initial samples appeared to be part of a small scale test or proof of con-
cept by the adversary to demonstrate their ability to exploit the platform. Both
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models detect these security events and respond by assigning a non-zero haz-
ard.

Following the small scale test was a lack of activity for a few weeks, during
which the non-monotone model relaxes its hazard rate back down to zero, just
before an attack campaign on a much larger scale is launched. This example
illustrates the importance of not letting a guard down in the context of security.
Once a vulnerability for a software package is known, that package is always at
risk, even if it is not actively being exploited.

Despite not taking the most prudent approach to security, the non-monotone
model captures the notion that adversaries tend to work in batches or attack
campaigns. Previous work [27] has shown that it is economically efficient for
adversaries to compromise similar sites in large batches, and after a few attack
campaigns, most vulnerable websites tend to be ignored. This phenomena is
shown in Figure 6 where Wordpress 3.2.1 was attacked in late 2011 and then
subsequently ignored with the exception of a few small attacks that were likely
the work of amateurs or password guessing attacks which are orthogonal to the
underlying software and any observable content features. The monotone model
in this case is very prudent while the non-monotone model captures the notion
that the software is not being targeted.

It can be observed from Figure 6 (right) that a number of distinct Wordpress
distributions experienced a change-point in the summer of 2011 (between July
8th 2011 and August 11th 2011). This phenomena was present in several of the
most popular versions of Wordpress in the dataset including versions 2.8.5, 2.9.2
and 3.2.1.

This type of correlation between the hazard of features corresponding to
different versions of a software package is expected. This correlation often occurs
when adversaries exploit vulnerabilities which are present in multiple versions
of a package, or plugins and third party add-ons that share compatibility across
the different packages.

Manual investigation revealed that a number of impactful CVEs9 such as
remote file inclusion and privilege escalation were found for these versions of
Wordpress as well as a particular plugin around the time of July 2011. While
it is impossible to attribute with certainty any particular vulnerability, the ob-
served behavior is consistent with vulnerabilities that impact large number of
consecutive iterations of software.

Another spot check for the model is the ability to corroborate existing lit-
erature on malicious web deteciton. Figure 7 demonstrates the change-points
in λi(t) for specific versions of Wordpress. The model assigns Wordpress 2.9.2,
3.2.1, 3.3.1 and 3.5.1 change-points around July 2011, August 2011, December
2011, and February 2013 respectively. The work of Soska et al. [27] found nearly
identical attack campaigns for Wordpress 2.9.2, 3.2.1 and 3.3.1 but failed to
produce a meaningful result for 3.5.1.

9CVE stands for Common Vulnerabilities and Exposures, which is a list of publicly dis-
closed vulnerabilities and security risks to software.



Attributing hacks with survival trend filtering 5333

Fig 7. λt(i) of features known to correspond directly to particular versions of Wordpress.

4.4. Studies on dropout rate from Alipay.com

It is worth noting that our time-varying hazard regression model with capacity
of adaptively learning local estimates of hazard rate could be potentially use-
ful in other scenarios but not limited in analyzing hacking procedures. In this
section, we study another dataset from Alipay10, a third-party online payment
platform that serves 400 million users in China and control of half of China’s on-
line payment market in October 2016. Basic services provided by “Alipay app”
include the digital wallet and personalized investment through various commer-
cial funds. Here, the dropout rate of users and how does the rate respond to
campaigns promoted by Alipay is the object of interest.

We define one “dropout” as a user will not login in seven consecutive days.
The Alipay service would simulate or promote new campaigns for the users who
are apt to dropout.

We randomly select 3,760,455 users who were active during 20 and 26 Feb
as long as the user login Alipay app in any of these days. There are around 8
million features representing users’ demographic background and past behaviors.
We observe the users’ dropout behaviors during 20 Feb and 30 Apr. The ratio of
users who survive until 30 Apr is a confidential number due to commercial privay.

We analyze the data with our “non-monotone” models to study the dropout
rate and how does it change as new campaigns are promoted. The convergence
rate on training data and test data are shown in 8. No surprisingly, the “non-
monotone” model without any constraint overfit the data severely. The “l1+non-
monotone” model with ‖Dw‖1 generalized well.

It is interesting to study the curves of hazard rate associated with each fea-
ture. We show examples in Figure 9 that how the estimated hazard rates change
over time. The overall trend of users who are older than 55 and youth were de-
clining. We align some change points with important campaigns launched at
Alipay. On 10 Mar, Alipay announced a brand new program that every proper

10https://www.alipay.com/

https://www.alipay.com/
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Fig 8. Convergence on Dropout data from Alipay.com: convergence on train (left), covergence
on test (right).

Fig 9. Hazard rate related to different groups of users from Alipay.

payment is eligible for a cashback. On 18 Apr, Alipay announced another brand
new healthcare program that each payment can accumulate users’ own health
insurance amount. The two change points along “red” line in figure 9 respond
to such two campaigns quite clearly. On the other hand, we observed a sharp
decline around 5 March among youth users, this is probably because of the con-
secutive warm-up campaigns for 8 March shopping festival. One explaination
of this phenomenon may be that the youth are interested in consuming rather
than saving compared with the habits of older users. Such analyses would be
useful for understanding the promotion strategies in the near future.

5. Conclusion

In this paper, we propose a novel survival analysis-based approach to model
the latent process of websites getting hacked over time. The proposed model
attempts to solve a variational total variation penalized optimization problem,
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and we show that the optimal function can be linearly represented by a set of
step functions with the jump points adaptively estimated. This allows us to solve
the problem by either Lasso or fused lasso efficiently using proximal stochastic
variance-reduced gradient algorithm. The results suggest that the model signif-
icantly outperforms the classic Cox model and is highly interpretable. Through
a careful case study, we found that at least some of the active features and
jump points we discovered by fitting the model to data are indeed important
components of known vulnerability, and major jump points often clearly marks
out the life cycles of these exploits. Finally, we applied the model to estimate
user churn rate with Alipay.com data. This demonstrates the effective usage of
the proposed model to other applications of survival analysis.

Appendix A: Proofs of technical results

Proof of Theorem 4. Let the feature j of user i at time t be xij(t) and nonneg-
ative, the hazard function for user i

λ(t) =
d∑

j=1

xij(t)wj(t)

and the cumulative hazard function

Λ(t) =

∫ t

−∞

d∑
j=1

xij(t)wj(t)dt =

d∑
j=1

∫ t

−∞
xij(t)wj(t)dt

=

d∑
j=1

⎛
⎝ ∑

τ∈Tj ,τ≤t

αj,τWj(τ) + αj,tWj(t)

⎞
⎠ . (A.1)

where Wj(t) =
∫ t

−∞ wj(t)dt, Tj denotes all break points of the piecewise con-
stant xij(t) and αj,τ are coefficients that depends only on xij . When there are
no uncensored observations, we can re-parameterize the above variational opti-
mization problems (3.2) using the Λ(t) hence Wj(t) alone:

minimize
(W0,W1,...,Wd)∈Fd

L({τ ,Ψ,Z},W ) + γ

d∑
j=0

TV(
∂

∂t
Wj)

subject to Wj(t) ≥ 0,Wj(t+ δ)−Wj(t) ≥ 0

for any j ∈ [d], t ∈ R, δ ∈ R+.

(if monotone) Wj is convex, for any j ∈ [d].

(A.2)

Let T be the set of observed time points (including 0, T and all censored interval
boundaries). For each j ∈ [d], let W ∗

j be the optimal solution to (A.2).
By Proposition 7 of Mammen et al. [15], we know that for each j, there is a

spline W̃j of order 1 such that
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All knots of the spline are contained in T \{0, T}
W̃j(τ) = W ∗

j (τ) for all τ ∈ T

TV(
∂

∂t
W̃j) ≤ TV(

∂

∂t
W ∗

j )

(A.3)

We will now show that W̃j also defines a set of optimal solution using these
properties.

Note that the loss function L({τ ,Ψ,Z},W ) can be decomposed into the
sum of negative log-probability of form as described in (3.1), and when there
are no uncensored data, the value of the loss function is completely determined
by the survival function S(t) evaluated at t ∈ T . There is a one-to-one mapping
between survival functions and the cumulative hazard functions through S(t) =
exp(−Λ(t)). It follows from (A.1) that L({τ ,Ψ,Z},W ) is a function of W only
through its evaluations at W (T ), therefore

L({τ ,Ψ,Z}, W̃ ) = L({τ ,Ψ,Z},W ∗).

By TV( ∂
∂tW̃j) ≤ TV ∂

∂t (W
∗
j ), we know that W̃ has a smaller overall objective

function than the optimal solution.
It remains to show that W̃ is feasible. First note that the only spline of order

1 that satisfy the first and second condition is the piecewise linear interpolation
of W ∗

j (τ) the knots in T . For each j, the constraints require that W ∗
j obeys

that W ∗
j is non-negative, non-decreasing. This ensures that the piecewise linear

interpolation of any subset of points in the domain ofW ∗
j to be also nonnegative,

monotonically nondecreasing, which ensures the feasibility of W̃j .
In the monotone model, the monotonicity constraints on wj translates into

a condition that says Wj is convex. Since W ∗
j is feasible then it is convex. A

piecewise linear interpolation of points on a convex function is also convex. This
follows directly by checking that all the sublevel sets are convex sets.

Finally, W̃j can be represented by a nonnegative linear combination of trun-
cated power basis functions defined on T and the corresponding hazard function
wj can be represented by the same nonnegative combination of step functions
defined at T . This completes the proof.

Proof of Proposition 8.. Define proximal operator Proxf (x) := argminy 0.5‖x−
y‖2 + f(y) for function f . Theorem 1 of Yu [37] states that Proxf+g = Proxf ◦
Proxg if for any x,

∂g(Proxf (x)) ⊇ ∂g(x). (A.4)

We will verify this condition for the “Standard model”, namely, the case when
f(x) = δ(x ≥ 0) and g(x) = γ‖Dx‖1 or g(x) = γ‖Dx‖1 + δ(Dx ≥ 0).

In the first case

∂g(x)

= γDT

{
u ∈ R

n−1

∣∣∣∣∣ui = sign(xi+1 − xi) if |[Dx]i| > 0

− 1 ≤ ui ≤ 1 otherwise;
for i = 1, ..., n− 1

}
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It suffices to verify that for each i, if [Dx]i > 0 then [DProxf (x)]i ≥ 0 and if
[Dx]i < 0 then [DProxf (x)]i ≤ 0.

[Dx]i = xi+1 − xi. Proxf (x) is simply the projection to the nonnegative
cone. There are only for cases of xi+1 and xi. When at least one of them is
positive, the projection does not change the sign of xi+1 − xi, so the condition
easily checks out. When both of them are not positive, [DProxf (x)]i = 0 which
only enlarges the subdifferential set. Therefore, Yu’s condition (A.4) is true for
f(x) = δ(x ≥ 0) and g(x) = γ‖Dx‖1 and the proximal operator decomposes.

We now move on to check (A.4) for the “monotone model”, in this case
g(x) = γ‖Dx‖1 + δ(Dx ≥ 0).

∂g(x) = ∂x‖Dx‖1 + ∂xδ(Dx ≥ 0)

= DT {γu+ v|u ∈ Su, v ∈ Sv}

where S1(x) =

{
u ∈ R

n−1

∣∣∣∣∣ui = sign(xi+1 − xi) if |[Dx]i| > 0

− 1 ≤ ui ≤ 1 otherwise;
for i = 1, ...,

n− 1

}
and the subdifferential of indicator function is

S2(x) =

{{
v ∈ R

n−1
∣∣vTDx ≥ vT y for any y ≥ 0

}
if Dx ≥ 0,

∅ otherwise.

When x is feasible, the subdifferential is known as the “normal cone”.

First of all, we have already shown that if u ∈ S1(x) then u ∈ S1(Proxf (x)).
It remains to check that if S2(x) ⊆ S2(proxf (x)). First of all if x is not feasible,
then the inclusion holds trivially. If x is feasible, namely, Dx ≥ 0, then we need
to show that if v ∈ S2(x), then v ∈ S(proxf (x)).

The condition for v ∈ S2(x) also decomposes to every coordinate, since

sup
y≥0

〈v, y〉 =
{
∞, if maxi vi > 0

0, otherwise.

In other word, we have vi = 0 if [Dx]i > 0, vi ≤ 0 if [Dx]i = 0 (check that this
is an alternative definition of the normal cone geometrically).

We now discuss the different cases of xi+1 and xi. Since x is feasible, there
are only three cases of potential signs of xi and xi+1. If xi+1 and xi are both
nonnegative, then proxf (x) = x and the constraint on vi remains unchanged.
If xi+1 and xi are both negative, then [Dproxf (x)]i = 0 and the constraint
on vi changes from possibly vi = 0 to vi ≤ 0. If xi+1 ≥ 0 and xi < 0, then
[DProxf (x)]i ≥ 0, so the constraints on vi is either unchanged or changes from
vi = 0 to vi ≥ 0. To conclude, in all cases, the subdifferential set is only enlarged
when we replace x with proxf (x). This checks Yu’s sufficient condition (A.4) for
the monotone model and completes the proof.
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Proof of Lemma 9. We prove by a direct calculation.

ξ(w) = T̃V
ε

log(w)−
‖Dw‖1

ε

always exists. It remains to prove differentiability. For any h ∈ R
|T |, for conve-

nience in notation, we do a change of variable and define u := Dw and v := Dh.
By Taylor’s theorem, there exists 0 ≤ ηi ≤ |ui + vi| − |vi| such that

log(ε+ |ui|+ |ui + vi| − |ui|)

= log(ε+ |ui|) +
|ui + vi| − |ui|

ε+ |ui|
− (|ui + vi| − |ui|)2

2(ε+ |ui|+ ηi)2
.

ξ(w + h)

=

|T |−1∑
i=1

[
log(ε+ |u+ v|i)−

|ui + vi|
ε

]

=

|T |−1∑
i=1

[
log(ε+ |ui|) +

|ui + vi| − |ui|
ε+ |ui|

− (|ui + vi| − |ui|)2
2(ε+ |ui|+ ηi)2

−|ui + vi| − |ui|
ε

− |ui|
ε

]

= ξ(w) +

|T |−1∑
i=1

[
|ui + vi| − |ui|

ε+ |ui|
− |ui + vi| − |ui|

ε
− (|ui + vi| − |ui|)2

2(ε+ |ui|+ ηi)2

]

For any w, we decompose the coordinate of Dw into S = {i ∈ [|T | −
1] | [Dw]i = 0} and its complement Sc, and we look at the above summation.
If i ∈ S, we get[

|vi|
ε

− |vi|
ε

+
(|vi|)2

2(ε+ ηi)2

]
=

(|vi|)2
2(ε+ ηi)2

= O(|vi|2).

Now we take limit.

lim
h→0

ξ(w + h)− ξ(h)

‖h‖ = lim
h→0

⎡
⎣∑
i∈Sc

|ui+vi|−|ui|
ε+|ui| − |ui+vi|−|ui|

ε

‖h‖ +
O(|T |[Dh]i|2)

‖h‖

⎤
⎦

= lim
h→0

⎡
⎣∑
i∈Sc

|[D(w+h)]i|−|[Dw]i|
ε+|Dwi| − |[D(w+h)]i|−|[Dw]i|

ε

‖h‖

⎤
⎦

=
∑
i∈Sc

(
1

ε+ |Dw| −
1

ε

)
lim
h→0

|[D(w + h)]i| − |[Dw]i|
‖h‖

Note that [Dw]i �= 0, therefore |[Dw]i| = |eiDw| is differentiable in w and

lim
h→0

|[D(w + h)]i| − |[Dw]i|
‖h‖ = 〈 h

‖h‖ ,
∂

∂w
|eiDw|〉 = 〈 h

‖h‖ , D
T eisign([Dw]i)〉
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In other word, we have

lim
h→0

ξ(w + h)− ξ(x)− 〈h,Ddiag( 1
ε+|Dw| −

1
ε )sign(Dw)〉

‖h‖ = 0

which checks the definition of the differentiability for multivariate functions and
the gradient is

Ddiag(
1

ε+ |Dw| −
1

ε
)sign(Dw)

as claimed. Since the gradient is a Lipschitz function in w, we conclude that ξ
is continuously differentiable.
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