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Abstract: It is well-known that the Kullback–Leibler support condition
implies posterior consistency in the weak topology, but is not sufficient for
consistency in the total variation distance. There is a counter–example.
Since then many authors have proposed sufficient conditions for strong
consistency; and the aim of the present paper is to introduce new conditions
with specific application to nonparametric mixture models with heavy–
tailed components, such as the Student-t. The key is a more focused result
on sets of densities where if strong consistency fails then it fails on such
densities. This allows us to move away from the traditional types of sieves
currently employed.
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1. Introduction

In this paper we consider a novel approach to Bayesian consistency in nonpara-
metric problems, specifically concentrating on mixture models, which are the
usual type of nonparametric model used in practice. The first formulation is
given by Doob [9]; but this approach has a drawback in infinite dimensional
models, see [7, 8]. Instead it is commonly assumed that observations are i.i.d.
from some fixed but unknown density function, and a general sufficient condition
for weak consistency is given in Schwartz [25].

To set the scene, assume that the observations X1, . . . , Xn are i.i.d. real-
valued random variables from a true density p0. Let the model L be the space
of all Lebesgue densities on (R,R) equipped with the total variation metric,
and Π be a prior on (L ,L), where R and L are Borel σ-algebras. Formally,
for a (pseudo-)metric d on L , the posterior distribution Π(·|X1, . . . , Xn) is
called to be d-consistent at p0 if Π(d(p0, p) > η|X1, . . . , Xn) converges to zero
in probability for every η > 0. When d is the total variation (Lévy–Prokhorov,
resp.) metric, it is often called strongly (weakly, resp.) consistent.

LetK(p, q) =
∫
p log(p/q) dμ be the Kullback–Leibler (KL) divergence, where

μ is the Lebesgue measure. Schwartz [25] has shown that if p0 lies in the KL
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support of Π, i.e.

Π
(
p ∈ L : K(p0, p) < δ

)
> 0 for every δ > 0, (1.1)

then the posterior distribution is weakly consistent at p0. Along with the KL
support condition (1.1), various sufficient conditions for strong consistency have
been studied in infinite–dimensional models, see [3, 29, 28, 6] for general con-
ditions. Some important references concerning specific models and priors are
[1, 11, 13, 5]. Further work incorporating convergence rates can be found in
[16, 12, 31, 21], for example.

Since the total variation is a stronger metric than Lévy–Prokhorov, see [20,
p. 34], the KL support condition (1.1) is often insufficient for strong consis-
tency. In this regard, Barron, Schervish and Wasserman [3] constructed a prior
satisfying the KL support condition (1.1) but the corresponding posterior dis-
tribution is not strongly consistent. Walker, Lijoi and Prünster [30] explained
this phenomenon with the notion of data tracking.

In this paper we present a new sufficient condition for strong consistency
and apply it to nonparametric mixture models. Since the convergence in Lévy–
Prokhorov metric is equivalent to weak convergence, once the prior satisfies
the KL support condition (1.1), Schwartz’s theorem implies that there exists
some sequence εn ↓ 0 such that Π(dP (p0, p) > εn|X1, . . . , Xn) converges to
zero in probability. For strong consistency, therefore, it suffices to show that
Π(An,η|X1, . . . , Xn) → 0 in probability for every η > 0, where

An,η =
{
p ∈ L : dP (p0, p) ≤ εn, dV (p0, p) > η

}
. (1.2)

The new approach is based on the fact that An,η is a collection of “weird” den-
sities in the sense that it consists of highly fluctuating densities with a centering
around p0. With a reasonable prior, therefore, prior mass imposed on An,η is
negligible, which in turn implies strong consistency. The focus on An,η allows
us to move away from the typical uses of sieves.

Our approach is very different from [30], relying on a special property of
densities in An,η. The new approach entails different kinds of sieves avoiding
the calculation of Hellinger entropy or prior probabilities of small Hellinger
balls. Instead, we require a Lévy–Prokhorov convergence rate (εn) for which we
provide a general sufficient condition. Our new approach significantly simplifies
conditions required on the hyperparameter of a Dirichlet process in a mixture
model, for example. In particular, a mean parameter can have an arbitrarily
heavy tail. We also consider a mixture of Student’s t distributions which can
be used to model heavy-tailed distributions; the consistency of which is yet to
been done in the literature.

Notation

For p ∈ L , the corresponding probability measure is denoted as P , and vice
versa. The expectation of a function f with respect to P is denoted Pf , i.e. Pf =
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∫
f(x)dP (x). The expectation under the true distribution is denoted E. Let

dV (p1, p2) = 2 supA∈R |P1(A)−P2(A)| and dH(p1, p2) = {
∫
(
√
p1−

√
p2)

2dμ}1/2
be the total variation and Hellinger metrics. The indicator function for a set
A is denoted 1A. For two positive sequence (an) and (bn), an � bn represents
an/bn → 0. The maximum of two numbers a and b are denoted a ∨ b. The
inequality � represents “less than up to a constant multiplication,” where the
constant is universal (such as 2, π, e) unless specified explicitly.

2. Main results

For p ∈ L and γ > 0, define a non–negative function pγ on R as

pγ(x) =
P (Bγ(x))

μ(Bγ(x))
= (2γ)−1

∫
{y:|y−x|<γ}

p(y) dy,

where Bγ(x) = {y ∈ R : |y−x| < γ}. Note that pγ = p∗Uγ , where ∗ denotes the
convolution and Uγ is the uniform distribution on the interval [−γ, γ]. Therefore,
pγ is also a probability density which can be understood as a smoothed version
of p, where γ controls the degree of smoothness. For example, suppose

p(y) =

{
2 0 < y < 1/4 or 1/2 < y < 3/4
0 otherwise.

Then

p1/4(y) =

⎧⎨
⎩

1 0 ≤ y ≤ 3/4
0 y ≤ −1/4 or y ≥ 1
linear −1/4 ≤ y ≤ 0 or 3/4 < y < 1.

See Figure 1. For simplicity, (p0)γ is written as p0,γ . For two probability measures
P and Q, let

dP (P,Q) = inf
{
ε > 0 : P (A) ≤ Q(Aε) + ε and Q(A) ≤ P (Aε) + ε, ∀A ∈ R

}
be the Lévy–Prokhorov metric, where Aε = ∪x∈ABε(x). Note that the con-
vergence in dP is equivalent to weak convergence, and one inequality in the
definition of dP can be omitted; see [17].

For a given density p0, suppose that a density p is close to p0 in dP but far
away from p0 in dV . This is only possible when p is a “weird” density in the sense
that it highly fluctuates with a centering around p0; as illustrated in Figure 2. It
is an important property of such a density that dV (p, pγ) is large even for small
γ. Note that for every fixed p ∈ L , dV (p, pγ) converges to zero as γ goes to 0
by Lebesgue differentiation theorem and Scheffé’s lemma, but never converges
uniformly over L due to highly fluctuating densities. Therefore, if the prior
probability for large dV (p, pγ) is sufficiently small, the posterior distribution
would be strongly consistent. The key point here is that after excluding weird
densities from L , dV (p, pγ) can be shown to converge uniformly.
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Fig 1. An illustration of p (red) and pγ (black) with γ = 1/4.

To be more specific, note that by Scwartz’s theorem [25], the KL support
condition (1.1) guarantees the existence of a sequence εn ↓ 0 such that

E Π
(
dP (p0, p) ≥ εn

∣∣X1, . . . , Xn

)
→ 0. (2.1)

If dP (p, p0) ≤ εn, then for any sequence (γn), with γn → 0 and εn/γn → 0, we
have

dV (p, p0) ≤ dV (p, pγn) + dV (pγn , p0,γn) + dV (p0,γn , p0)

≤ dV (p, pγn) + o(1)
(2.2)

as n → ∞, where the o(1) term depends on εn, γn and p0 only, see the proof of
Theorem 2.1. Thus, strong consistency holds if there exists a sequence (Ln) of
subsets of L such that

EΠ(L c
n |X1, . . . , Xn) = o(1) and sup

p∈Ln

dV (p, pγn) = o(1). (2.3)

This is summarized in Theorem 2.1 with more details.
Before stating the main theorem, we assume for the true density p0 that

(i) sup
x∈R

p0(x) is bounded by a universal constant, and

(ii) P0

(
x : |x| > ε−1

)
� ε for every ε > 0,

(2.4)

which is not essential but simplifies the proof. Note that condition (ii) holds if
the tail of p0 is not heavier than that of the Cauchy distribution.
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Fig 2. An example that dP (p0, p) is small but dV (p0, p) is large, where p0 (black) is the
standard uniform density and p (red) fluctuates with a centering around p0.

Theorem 2.1. Suppose that p0 satisfies (2.4) and that (2.1) holds for some
εn ↓ 0. Furthermore, assume that there exists Ln ⊂ L satisfying (2.3) for some
(γn) with εn � γn � 1. Then, Π(·|X1, . . . , Xn) is strongly consistent.

Since dV (p, pγn) = o(1) for every fixed p ∈ L , (Ln) can typically be chosen
to increase to L , constituting new sieves. In the existing Bayesian literature,
such sieves are required to have bounded entropy [11, 3] or satisfy a certain
prior summability condition [29]. Instead of these conditions, our requirement is
(2.3), which eventually gives An,η∩Ln = ∅, where An,η is defined as (1.2). Note
that An,η decreases to the singleton {p0}, while Ln grows to the whole set L .
As illustrated in the next section, we can easily find (γn) and (Ln) satisfying
(2.3) in nonparametric mixture models.

Note that in Barron’s counter–example [3], the prior puts large mass on
a set of weird densities such as the one in Figure 2. As a consequence, we
cannot choose a sequence of sets (Ln) satisfying (2.3), resulting in posterior
inconsistency.

It should be emphasized that to prove (2.3), we need to know a Lévy–
Prokhorov rate (εn), which can be interpreted as the “price” for avoiding the
construction of complicated sieves. Note that the KL support condition guaran-
tees the existence of “some” rate sequence (εn). If we do not know what εn is,
we only know that there exists a sequence γn such that γn → 0 and εn/γn → 0.
If γn converges too slowly, however, Ln satisfying the second assumption of
(2.3) cannot contain sufficiently many densities. As a consequence the posterior
probability of L c

n might not be sufficiently small.
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For a given sequence (δn), define a specialized KL ball around p0 as

Kn =

{
p ∈ L : K(p0, p) ≤ δ2n, P0

(
log

p0
p

)2

≤ δ2n

}
. (2.5)

Note that Π(Kn) ≥ e−nδ2n is a standard assumption to achieve the posterior
convergence rate of at least (δn); see for example [12, 31]. Let Bn = {p ∈ L :
dP (p, p0) ≤ εn}. Since dP induces the weak topology, there exist a number r > 0
and finite number of bounded continuous functions g1, . . . , gk such that

Bn ⊃
k⋂

j=1

{
p ∈ L :

∫
gjdP <

∫
gjdP0 + r

}
. (2.6)

Note that the number k of sub–bases and radius r may depend on p0 and εn.
The key idea for obtaining the Lévy–Prokhorov rate is to find these numbers.
In this context, it is shown in Lemma 5.2 that for every εn ↓ 0 with nε4n → ∞,
there exists a sequence of tests (ϕn) such that

Pn
0 ϕn ≤ e−Knε2n and sup

{p∈L :dP (p,p0)≥εn}
Pn(1− ϕn) ≤ e−Knε2n , (2.7)

where K > 0 is a universal constant. As a consequence, Π(Kn) ≥ e−nδ2n implies
(2.1) for every εn � δn ∨ n−1/4. Although n−1/4 might be far away from the
optimal rate, it is sufficient for strong consistency in many examples.

Theorem 2.2. Suppose that p0 satisfies (2.4) and Π(Kn) ≥ e−c1nδ
2
n for a con-

stant c1 > 0 and a sequence δn ↓ 0. Then, (2.1) holds for every sequence (εn)
with δn ∨ n−1/4 � εn.

Note that Π(Kn) ≥ e−c1nδ
2
n and Π(L c

n) ≤ e−(c1+4)nδ2n implies

EΠ(L c
n |X1, . . . , Xn) = o(1),

see Lemma 8.1 of [12]. Combining this with the previous two theorems, we have
the following corollary.

Corollary 2.1. Under the assumption of Theorem 2.2, let (εn) be a sequence
satisfying (2.1). Also, suppose that there exist Ln ⊂ L such that Π(L c

n) ≤
e−(c1+4)nδ2n and supp∈Ln

dV (pγn , p) = o(1) for some (γn) with εn � γn � 1.
Then, Π(·|X1, . . . , Xn) is strongly consistent.

3. Illustrations

3.1. Mixture of normal distributions

Consider a location mixture of normal distributions

pF,σ(x) = (φσ ∗ F )(x) =

∫
φσ(x− z)dF (z),
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where φσ(x) = φ(x/σ)/σ, φ is the standard normal density and F is a probability
measure. A prior Π on L can be constructed by putting independent priors for
σ and F . With a slight abuse of notation, we use the notation Π for denoting
both a prior for (σ, F ) and a prior for p.

For p = pF,σ, it can be shown that

dV (p, pγ) � γ

σ

(
1 +

γ

σ
+

γ2

σ2

)
, (3.1)

see Lemma 5.3. Note that the right hand side of (3.1) depends on p through σ
only. Therefore, sieves (Ln) can be constructed independent of F .

Theorem 3.1. Let Π be a mixture of normal prior described above. Suppose
that p0 satisfies (2.4) and that (2.1) holds with a rate εn. Furthermore, if
EΠ(L c

n |X1, . . . , Xn) = o(1), where

Ln = {pF,σ : σ ≥ σn} for some σn � εn,

then Π(·|X1, . . . , Xn) is strongly consistent.

For a concrete example, we consider an inverse gamma Γ−1(a1, a2) prior
for σ2, which is standard in both theory and practice, where a1, a2 > 0 are
hyperparameters and Γ−1(a1, a2) denotes the inverse gamma distribution whose
density is proportional to x �→ x−a1−1e−a2/x. Note that the prior on σ2 puts
little mass around zero implying that prior mass for large dV (p, pγ) with small
γ is nearly zero, c.f. (3.1).

Theorem 3.2. Put a Γ−1(a1, a2) prior on σ2. Suppose that p0 satisfies (2.4)

and Π(Kn) ≥ e−cnδ2n for a sequence δn � n−1/4. Then, Π(·|X1, . . . , Xn) is
strongly consistent.

In most examples Π(Kn) ≥ e−nδ2n with δn much smaller than n−1/4, so the
condition given in Theorem 3.2 is very mild. A natural choice for the prior on
F is DP(a3, G), where DP(a3, G) denotes the Dirichlet process with precision
a3 > 0 and mean G. For the Dirichlet process mixture of normal prior, the
prior concentration condition has been extensively studied in literature, see for
example [15, 26, 22, 4]. In most existing papers, the true density p0 is firstly

approximated by a finite mixture p∗(x) =
∑N

j=1 wjφσ(x−zj) with a sufficiently
small number N , and then prove that a DP mixture prior puts sufficiently large
mass around p∗. It should be noted that in the above mentioned papers, the tail
of G must be exponentially thin to construct suitable sieves. Lijoi, Prünster and
Walker [23] partly resolved this problem using the martingale approach of [29],
but it is still required that G has a finite mean. With our approach, however, the
only requirement is the prior concentration on Kn which holds if the tail of G is
not extremely thin, see Proposition 2 in [4] for the most recent result. Therefore,
conditions on G can be significantly weakened. For example, the Cauchy and
heavier-tailed distributions can be taken for G which are not allowed with any
other methods.
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3.2. Mixture of Student’s t distributions

If the true density p0 is heavy-tailed, e.g. the tail is of a polynomial order,
then it is theoretically unknown that Bayesian procedures based on normal
mixtures work well. Practically, there are two possible methods to utilize a
Dirichlet process mixture of normal for fitting data generated from a heavy-
tailed distribution. The first one is to use a location-scale mixture. In this regard,
Tokdar [27] proved the posterior consistency with a location-scale mixture under
mild conditions. His result allows a heavy-tailed distribution such as Cauchy
for the true density. Secondly, one may use a heavy-tailed mean parameter G.
Unfortunately for both methods, it is challenging to generalize the theoretical
results beyond consistency. In particular, existing mathematical tools for getting
convergence rates might be difficult to apply because it is rarely possible to
find (δn) satisfying Π(Kn) ≥ e−nδ2n with a heavy-tailed p0. We are not aware
of whether this is due to the mathematical difficulty or the intrinsic limit of
normal mixtures.

As an another alternative, we consider a mixture of Student’s t distributions.
While a mixture of Student’s t distributions has been considered in some appli-
cation, see for example [24, 10, 18], its asymptotic behavior has not been studied
in the literature. In Bayesian analysis, this is due to the technical challenge for
constructing suitable sieves with heavy-tailed components. Since the approach
given in the present paper avoids the construction of complicated sieves, it can
also be applied to Student’s t mixtures.

Let h be the density of Student’s t distribution with v > 0 degrees of freedom,
and hσ(x) = σ−1h(x/σ). For a fixed v, consider a location mixture of the form

pF,σ(x) =

∫
hσ(x− z)dF (z).

Similarly as in normal mixtures, for p = pF,σ, we have

dV (p, pγ) � γ

σ

(
1 +

γ

σ

)
(3.2)

by Lemma 5.4, where the constant in the inequality depends only on v. A prior
Π can be constructed by putting independent priors for σ and F . As in the case
of normal mixtures, we can put an inverse gamma prior on σ2. We abbreviate
the proof of the following two theorems because after replacing (3.1) by (3.2),
it is identical to the normal mixture case.

Theorem 3.3. Let Π be a mixture of Student’s t prior described above. Sup-
pose that p0 satisfies (2.4) and that (2.1) holds with a rate εn. Furthermore, if
EΠ(L c

n |X1, . . . , Xn) = o(1), where

Ln = {pF,σ : σ ≥ σn} for some σn � εn,

then Π(·|X1, . . . , Xn) is strongly consistent.
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Theorem 3.4. Put a Γ−1(a1, a2) prior on σ2. Suppose that p0 satisfies (2.4)

and Π(Kn) ≥ e−nδ2n for a sequence δn � n−1/4. Then, Π(·|X1, . . . , Xn) is
strongly consistent.

We put DP(a3, G) prior on F . Although the required condition for the prior

concentration is mild, it is technically demanding to prove Π(Kn) ≥ e−cnδ2n .
We imitate techniques known for normal mixtures. As mentioned earlier, the
key part of the proof is the approximation of p0, which can be approximated
by pF,σ for some (F, σ), a finite mixture of normal distributions. To be a bit
more specific, for any probability measure F on a compact interval [−a, a], the
total variation between φσ ∗ F and φσ ∗ F ′ is small if the first few, say N ,
moments of F and F ′ are the same, see Lemma 3.1 of [14]. Also, there exists
discrete measures F ′ at most N components such that this moment condition is
satisfied, see Lemma A.1 of [14]. Since Student’s t distribution is a scale mixture
of normal distributions [2], we have, see (5.3) for details,

dV (pF,σ, pF ′,σ) ≤
∫

dV (φστ ∗ F, φστ ∗ F ′)dH(τ−2),

where H is Γ(v/2, v/2) distribution. Therefore, by applying the finite approxi-
mation technique of continuous normal mixtures, a mixture of Student’s t dis-
tribution can also be approximated by a finite mixture. Combining with known
concentration results for the Dirichlet distribution, we have the following theo-
rem. Although the proof is long and quite similar to [15], we provide full details
for the reader’s convenience. We note that the main difference from normal mix-
tures is that a discrete measure F ′ should be constructed independent of the
scale parameter, see Lemma 5.9.

Theorem 3.5. Put independent Γ−1(a1, a2) and DP(a3, G) priors for σ2 and F ,
respectively, where v > 4 and G is the standard Cauchy. Suppose that p0 satisfies
(2.4) and twice continuously differentiable with first and second order derivatives
p′0 and p′′0 . Furthermore, assume that

∫
(p′′0/p0)

2p0dμ < ∞,
∫
(p′0/p0)

4p0dμ < ∞
and P0([−x, x]) ≥ 1 − x−β for some β > 4/3 and every large enough x. Then,

Π(Kn) ≥ e−nδ2n for some δn � n−1/4.

Note that the mean parameter G of the Dirichlet process is assumed to be the
standard Cauchy, but it can be replaced by other distribution whose tail is of a
polynomial order. Although Theorem 3.5 cannot allow the Cauchy distribution
as p0 due to the tail assumption required for p0, it is not difficult to extend
the result further with more elaborate proof. For example, if p0 is smoother
than the twice differentiablity condition in Theorem 3.5, refined approximation
techniques can be applied to obtain better rates as in [22, 4, 26].

4. Discussion

The key idea for the proof of Theorem 2.1 lies in the inequality (2.2). This can be
extended to the consistency incorporating a rate (ηn). Assume for the moment
that the support of p0 is bounded. To find an upper bound of (2.2), we applied
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dV (p, pγn) � γn/σn, dV (p0, p0,γn) � γn and dV (p0,γn , pγn) � εn/γn. By taking

γ2
n � εnσn, a rate sequence (ηn) can be chosen as ηn �

√
εn/σn. However, this

rate is far from optimal rate even when εn � n−1/2 and σn � 1/ logn. Better
rates can be obtained if we have a better bounds for dV (p, pγn), dV (p0, p0,γn) and
dV (p0,γn , pγn) (or similar quantities). For example, if p0 belongs to a β-Hölder
class, the bound for dV (p0, p0,γn) might be improved to dV (p0, p0,γn) � γβ

n , as
with normal mixtures [22]. We leave this more delicate analysis of rates as future
work; and since our approach does not require entropy calculations, we believe
that it can eliminate additional log n terms in the existing literature.

5. Proofs

5.1. Proof of Theorem 2.1

Lemma 5.1. Let ε ≡ dP (p, p0). Then

p0,γ(x) ≤ pγ(x) +
ε+ 2ξ(ε)

2γ

for every γ > ε and x ∈ R, where ξ(ε) = supx∈R
P0(Bε(x)).

Proof. For γ > ε, note that Bγ−ε(x) and Bγ(x) are equal to intervals (x− γ +
ε, x+ γ − ε) and (x− γ, x+ γ), respectively. Thus,

P0(Bγ−ε(x)) = P0(Bγ(x))−
∫ x−γ+ε

x−γ

p0(x)dx−
∫ x+γ

x+γ−ε

p0(x)dx

≥ P0(Bγ(x))− 2ξ(ε).

From the definition of dP , we have

ε+ P (Bγ(x)) ≥ P0(Bγ−ε(x)).

Combining the last two display, we have P0(Bγ(x)) ≤ P (Bγ(x)) + ε+2ξ(ε). By
dividing both sides by 2γ, the proof is complete.

Proof of Theorem 2.1. It suffices to prove that for every η > 0, An,η ∩Ln is an
empty set for large enough n, where An,η is defined as (1.2). For every p ∈ An,η,
we have

dV (pγn , p) ≥ dV (p, p0)− dV (p0, p0,γn)− dV (p0,γn , pγn)

≥ η − dV (p0, p0,γn)− dV (p0,γn , pγn).
(5.1)

Note that γn = o(1) implies dV (p0, p0,γn) = o(1). Also, for any M > 0 and
p ∈ An,η, we have

dV (p0,γn , pγn) = 2 sup
B∈R

|P0,γn(B)− Pγn(B)|

= 2

∫
{p0,γn(x)− pγn(x)}1{p0,γn (x)>pγn (x)}dx
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≤ 2

∫
[−M,M ]

{p0,γn(x)− pγn(x)}1{p0,γn (x)>pγn (x)}dx

+2P0,γn([−M,M ]c).

The last integral is bounded by 2Mγ−1
n (εn + ξ(εn)) by Lemma 5.1. Note that

if X and Uγn are independent random variables following P0 and Unif[γn, γn],
respectively, the law of X + Uγn is equal to P0,γn . This implies that

P0,γn([−M,M ]c) = Pr(|X + Uγn | > M) ≤ Pr(|X| > M − γn)

= P0([−M + γn,M − γn]
c).

Therefore, we have

dV (p0,γn , pγn) ≤ 4M
εn + 2ξ(εn)

γn
+ 2P0([−M + γn,M − γn]

c)

Since ξ(εn) � εn by (2.4), M can be arbitrarily large and εn � γn = o(1), the
right hand side of (5.1) is bounded below by η/2 for every p ∈ An,η and large
enough n. Since supp∈Ln

dV (p, pγn) = o(1), we conclude that An,η ∩ Ln is an
empty set for large enough n.

5.2. Proof of Theorem 2.2

Lemma 5.2. Assume that (2.4) holds. Then, for every εn ↓ 0 with nε4n → ∞,
there exists a sequence of tests ϕn such that (2.7) holds for a universal constant
K > 0 and every large enough n.

Proof. For a given ε > 0, let U = {p ∈ L : dP (p, p0) < ε}. Let Mε > 0 be
a number such that P0({x : |x| > Mε}) ≤ ε/4. By condition (2.4), Mε can be
chosen so that Mε � ε−1 for every small enough ε. Let N be the smallest positive
integer greater than or equal to 2Mε/ε, and choose a real sequence (aj)

N
j=0 such

that a0 ≤ −Mε and aN ≥ Mε, where aj = aj−1 + ε for j = 1, . . . , N . Let
B−∞ = (−∞, a0], B∞ = (aN ,∞) and Bj = (aj−1, aj ] for j = 1, . . . , N . For
δ > 0, define bounded continuous functions ψj , for j = 1, . . . , N , such that
ψj(x) = 1 for x ∈ [aj−1 + δ, aj − δ], ψj(x) = 0 for x ≤ aj−1 or x ≥ aj and
ψj is linear on the intervals [aj−1, aj−1 + δ] and [aj − δ, aj ]. We can choose δ
sufficiently small so that

P0(Bj) ≤ P0ψj +
ε

4N
for j = 1, . . . , N.

For k = (k1, . . . , kN ) ∈ {0, 1}N with k �= (0, . . . , 0), let gk =
∑

kj=1 ψj and

Uk =
{
p ∈ L : P0gk ≤ Pgk +

ε

2

}
.

For A ∈ R, let J = {j : 1 ≤ j ≤ N,A∩Bj �= ∅}. Then, for p ∈ ∩kUk, where the
intersection is taken over 2N − 1 indices, we have
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P0(A) ≤ ε

4
+

∑
j∈J

P0(A ∩Bj) ≤
ε

4
+

∑
j∈J

P0(Bj) ≤
ε

4
+

∑
j∈J

(
P0ψj +

ε

4N

)

≤ ε

2
+

∑
j∈J

P0ψj ≤ ε+
∑
j∈J

Pψj ≤ ε+
∑
j∈J

P (Bj) ≤ ε+ P (Aε).

It follows that ∩kUk ⊂ U .
Let

ϕn,k = 1{n−1
∑n

i=1 gk(Xi)<P0gk−ε/4}

and ϕn = maxk ϕn,k. Since gk is bounded by 1, Hoeffding’s inequality [19]
implies

Pn
0 ϕn,k = Pn

0

(
1

n

n∑
i=1

gk(Xi) < P0gk − ε

4

)
≤ exp

(
−nε2

8

)

and for p ∈ U c
k ,

Pn(1− ϕn,k) = Pn

(
1

n

n∑
i=1

gk(Xi) ≥ P0gk − ε

4

)

= Pn

(
1

n

n∑
i=1

gk(Xi) ≥ Pgk + (P0 − P )gk − ε

4

)

≤ Pn

(
1

n

n∑
i=1

gk(Xi) ≥ Pgk +
ε

4

)
≤ exp

(
−nε2

8

)
.

The last display implies

sup
p∈Uc

Pn(1− ϕn) ≤ exp

(
−nε2

8

)
.

If N ≤ nε2/(16 log 2), we have

Pn
0 ϕn ≤

∑
k

Pn
0 ϕn,k ≤ 2N exp

(
−nε2

8

)
≤ exp

(
−nε2

16

)
.

Since N � Mε/ε � ε−2, the desired sequence of tests exists provided that nε4n
is bigger than a universal constant.

Proof of Theorem 2.2. Let εn be a sequence such that δn∨n−1/4 � εn � 1 and
An = {p ∈ L : dP (p0, p) ≥ εn}. By Lemma 8.1 of [12] and Lemma 5.2, there
exists a constant c2 > 0 such that Pn

0 (Ωn) → 1, where Ωn is the event that∫
Rn(p)dΠ(p) > e−c2nδ

2
n . Also, by Lemma 5.2, there exist a constant K > 0 and

a sequence of tests (ϕn) satisfying (2.7) for every large enough n. It follows that
Π(An|X1, . . . , Xn) = Π(An|X1, . . . , Xn)1Ωn(1− ϕn) + oP0(1). Since

EΠ(An|X1, . . . , Xn)1Ωn(1− ϕn) ≤ ec2nδ
2
nE

∫
An

(1− ϕn)Rn(p)dΠ(p)

≤ ec2nδ
2
n sup

p∈An

Pn(1− ϕn) ≤ ec2nδ
2
n−Knε2n = o(1),

the proof is complete.
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5.3. Proof of Theorem 3.1

Lemma 5.3. For p(x) =
∫
φσ(x− z)dF (z, σ), where F is a probability measure

on R× (0,∞), we have

dV (p, pγ) �
∫

γ

σ

(
1 +

γ

σ
+

γ2

σ2

)
dF (z, σ).

Proof. Let γ > 0 be given, φ′
σ(x) = ∂φσ(x)/∂x and gσ(x) = sup|y−x|<γ |φ′

σ(y)|.
Since

φ′
σ(x) = − x

σ2
φσ(x)

and

sup
|y−x|<γ

φσ(x) =

⎧⎨
⎩

φσ(x− γ) if x > γ
φσ(x+ γ) if x < −γ
φσ(0) if |x| ≤ γ

we have∫ ∞

−∞
gσ(x)dx

≤
∫ ∞

γ

x+ γ

σ2
φσ(x− γ)dx+

∫ −γ

−∞

−x+ γ

σ2
φσ(x+ γ)dx+

∫ γ

−γ

2γ

σ2
φσ(0)dx

≤
∫ ∞

0

x+ 2γ

σ2
φσ(x)dx+

∫ 0

−∞

−x+ 2γ

σ2
φσ(x)dx+

4γ2

σ2
φσ(0)

=

∫ ∞

−∞

|x|
σ2

φσ(x)dx+

∫ ∞

−∞

2γ

σ2
φσ(x)dx+

4γ2

σ2
φσ(0)

� 1

σ

(
1 +

γ

σ
+

γ2

σ2

)
.

Note that

|p(x)− pγ(x)| ≤
1

2γ

∫
|p(x)− p(y)|1{|y−x|<γ}dy

≤ 1

2γ

∫ ∫
|φσ(x− z)− φσ(y − z)|1{|y−x|<γ}dydF (z, σ)

≤ 1

2γ

∫ ∫
|x− y|gσ(x− z)1{|y−x|<γ}dydF (z, σ)

≤γ

∫
gσ(x− z)dF (z, σ),

(5.2)

where the third inequality holds by the Taylor expansion. It follows that

dV (p, pγ) =

∫
|p(x)− pγ(x)|dx ≤ γ

∫ ∫
gσ(x− z)dxdF (z, σ)

�
∫

γ

σ

(
1 +

γ

σ
+

γ2

σ2

)
dF (z, σ).

This completes the proof.
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Proof of Theorem 3.1. Take a sequence (γn) such that εn � γn � σn. Then,

sup
p∈Ln

dV (p, pγn) � γn
σn

= o(1)

by Lemma 5.3. Therefore, strong consistency holds by Theorem 2.1.

5.4. Proof of Theorem 3.2

For a sufficiently slowly diverging (will be described below) sequence (Mn) → ∞,
let εn = n−1/4Mn and γn = εnMn. IfMn grows sufficiently slowly, we can choose
a seqeunce (βn) such that nδ4nM

8
n � β4

n and γn � βn � 1.
Let Ln = {pF,σ : γn/σ ≤ βn} Then,

Π (L c
n) = Π

(
σ2 <

γ2
n

β2
n

)
= C

∫ γ2
n/β

2
n

0

x−a1−1e−a2/xdx

≤
∫ γ2

n/β
2
n

0

e−a2/(2x)dx ≤ γ2
n

β2
n

e−a2β
2
n/(2γ

2
n) ≤ e−a2β

2
n/(2γ

2
n)

for large enough n, where C is a constant depending only on a1 and a2. By the
construction of (βn), we have

β2
n

γ2
n

�
√
nδ2nM

4
n

γ2
n

= nδ2n.

It follows that Π(L c
n) ≤ e−5nδ2n . Also, for any p = pF,σ in Ln, we have

dV (pγn , p) � γn
σ

≤ βn = o(1),

where the first inequality holds by Lemma 5.3. Therefore, the strong consistency
holds by Corollary 2.1.

5.5. Proof of Theorem 3.5

Throughout this subsection, h is the density of Student’s t distribution with v
degrees of freedom, hσ(x) = σ−1h(x/σ), and constants in � may depend on v.

Lemma 5.4. Let F be a probability measure on R and p(x) =
∫
hσ(x−z)dF (z).

Then, (3.2) holds, where the constant in the inequality depends only on the degree
of freedom v.

Proof. Let γ > 0 be given, h′
σ(x) = ∂hσ(x)/∂x and gσ(x) = sup|y−x|<γ |h′

σ(y)|.
Since

|h′
σ(x)| = (v + 1)hσ(x)

|x|
vσ2 + x2

≤ v + 1

2
√
vσ

hσ(x)
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and

sup
|y−x|<γ

hσ(x) =

⎧⎨
⎩

hσ(x− γ) if x > γ
hσ(x+ γ) if x < −γ
hσ(0) if |x| ≤ γ

we have∫ ∞

−∞
gσ(x)dx �

∫
{x:|x|>γ}

hσ(|x| − γ)

σ
dx+

∫
{x:|x|≤γ}

hσ(0)

σ
dx � 1

σ

(
1 +

γ

σ

)
.

As (5.2), we have

|p(x)− pγ(x)| ≤ γ

∫
gσ(x− z)dF (z).

Therefore, the desired bound for dV (p, pγ) can be obtained by the Fubini’s
theorem.

Lemma 5.5. Let p(x) =
∫
hσ(x−z)dF (z) with σ ≤ 1. Suppose that p0 satisfies

(2.4) and
∫
|z|δ(v+1)dF (z) ∨

∫
|x|δ(v+1)dP0(x) ≤ M for some positive δ ≤ (v +

1)−1 and M ≥ 1. Then, ∫ (
p0
p

)δ

dP0 � Mσ−vδ,

where the constant in � depends only on v.

Proof. Note that∫
{hσ(x− z)}δdF (z) �

∫
σ−δ

{1 + (x− z)2/(vσ2)}δ(v+1)/2
dF (z)

≥ σ−δ∫
{1 + (x− z)2/(vσ2)}δ(v+1)/2dF (z)

� σ−δ

1 + {x2/(vσ2)}δ(v+1)/2 +
∫
{z2/(vσ2)}δ(v+1)/2dF (z)

≥ σ−δ

1 + (vσ2)−δ(v+1)/2(|x|δ(v+1) +M)
� 1

σδ + σ−δv(|x|δ(v+1) +M)
,

where the second inequality holds by Jensen, the third inequality holds by that
(a + b)2 ≤ 2(a2 + b2) and (a + b)ζ ≤ aζ + bζ for any positive numbers a, b and
ζ ≤ 1, and the last inequality holds by treating v as a constant. Therefore,∫ (

p0
p

)δ

dP0 =

∫ [
p0(x)∫

hσ(x− z)dF (z)

]δ
dP0(x)

�
∫

1∫
{hσ(x− z)}δdF (z)

dP0(x)

� σδ + σ−δv

(∫
|x|δ(v+1)dP0(x) +M

)
� σ−δvM,

where the first inequality holds by Jensen.
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Lemma 5.6. Let (Tzhσ)(x) = hσ(x− z). For σ, σ1, σ2 > 0 and z ∈ R,

dV (Tzhσ, hσ) � |z|
σ

and dV (hσ1 , hσ2) � |σ1 − σ2|
min{σ1, σ2}

,

where constants in � depends only on v.

Proof. Let

h′
σ(x) =

∂hσ(x)

∂x
= − (v + 1)x

vσ2 + x2
hσ(x)

and

ḣσ(x) =
∂hσ(x)

∂σ
=

1

σ
hσ(x)

(
(v + 1)x2

vσ2 + x2
− 1

)
.

Let g be the density proportional to (1+x2/v)−(v+1)/2−1 and gσ(x) = σ−1g(x/σ).
Then, by the Taylor expansion, we have

dV (Tzhσ, hσ) =

∫
|hσ(x− z)− hσ(x)|dx ≤

∫
|z|

∫ 1

0

|h′
σ(x− tz)|dtdx

= |z|
∫

|h′
σ(x)|dx � |z|

σ2

∫ |x|
1 + x2/(vσ2)

hσ(x)dx � |z|
σ2

∫
|x|gσ(x)dx

≤ |z|
σ

∫ |x|
σ
gσ(x)dx =

|z|
σ
.

This proves the first inequality.
For the second inequality, assume that σ1 < σ2 without loss of generality,

and let σt = σ1 + t(σ2 − σ1) for t ∈ (0, 1). Then,

dV (hσ1 , hσ2) =

∫
|hσ1(x)− hσ2(x)|dx ≤

∫
|σ1 − σ2|

∫ 1

0

|ḣσt(x)|dtdx.

Since ∫
1

σ

(v + 1)x2

vσ2 + x2
hσ(x)dx �

∫
x2

σ3
gσ(x)dx � 1

σ
,

dV (hσ1 , hσ2) is bounded by a constant multiple of |σ1 − σ2|/σ1.

Lemma 5.7. Let F ∗ =
∑N

j=1 pjδzj such that
∑N

j=1 pj = 1 and |zj − zk| ≥ 2ε
for j �= k, where δz denotes the Dirac measure at z. Then,

dV (pF,σ, pF∗,σ∗) � ε+ |σ − σ∗|
min{σ, σ∗} +

N∑
j=1

∣∣F [zj − ε, zj + ε]− pj
∣∣,

where the constant in � depends only on v.

Proof. Note that

dV (pF,σ, pF∗,σ∗) ≤ dV (pF,σ, pF∗,σ) + dV (pF∗,σ, pF∗,σ∗)
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and

dV (pF∗,σ, pF∗,σ∗) ≤ dV (hσ, hσ∗) � |σ − σ∗|
min{σ, σ∗} ,

where the last inequality holds by Lemma 5.6. Also,

|pF,σ(x)− pF∗,σ(x)| =
∣∣∣∣
∫

hσ(x− z)d(F − F ∗)(z)

∣∣∣∣
≤

∫
{|z−zj |>ε,∀j}

hσ(x− z)dF (z) +

N∑
j=1

∣∣∣∣∣
∫
{|z−zj |≤ε}

hσ(x− z)d(F − F ∗)(z)

∣∣∣∣∣
and the summand in the right hand side is bounded by∫

{|z−zj |≤ε}
|hσ(x− z)− hσ(x− zj)|dF (z) + hσ(x− zj)

∣∣F [zj − ε, zj + ε]− pj
∣∣.

Combining the last two displays, we have

dV (pF,σ, pF∗,σ) ≤ F
(
z : |z − zj | > ε, ∀j

)

+

N∑
j=1

∫
{|z−zj |<ε}

dV (Tzhσ, Tzjhσ)dF (z) +

N∑
j=1

∣∣F [zj − ε, zj + ε]− pj
∣∣,

where Tzhσ is defined as in Lemma 5.6. Since

F
(
z : |z − zj | > ε, ∀j

)
= 1−

N∑
j=1

F [zj − ε, zj + ε] ≤
N∑
j=1

∣∣F [zj − ε, zj + ε]− pj
∣∣,

dV (pF,σ, pF∗,σ) is bounded by a constant multiple of

ε

σ
+

N∑
j=1

∣∣F [zj − ε, zj + ε]− pj
∣∣

by Lemma 5.6.

Lemma 5.8. Let p(x) =
∫
hσ(x − z)dP0(z). Assume that p0 is twice continu-

ously differentiable with first and second order derivatives p′0 and p′′0 .

• If v > 2 and p0 is bounded with
∫
|p′′0 |dμ < ∞, then dV (p0, p) ≤ c1σ

2.
• If v > 4,

∫
(p′′0/p0)

2p0dμ < ∞ and
∫
(p′0/p0)

4p0dμ < ∞, then dH(p0, p) ≤
c2σ

2.

In both cases, constants c1, c2 depend on v and given integrals only.

Proof. By the Taylor expansion with the integral form of the remainder, we
have

p0(x+ y)− p0(x) = yp′0(x) + y2
∫ 1

0

(1− t)p′′0(x+ ty)dt
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for every x and y. Since p(x) =
∫
p0(x+ σy)h(y)dy, we have

p(x)− p0(x) =

∫
{p0(x+ σy)− p0(x)}h(y)dy

=

∫ {
σyp′0(x) + σ2y2

∫ 1

0

(1− t)p′′0(x+ tσy)dt

}
h(y)dy

=

∫ ∫ 1

0

σ2y2(1− t)p′′0(x+ tσy)h(y) dt dy.

Thus, for some constant c1 > 0,

dV (p, p0) ≤ 1
2c1σ

2

∫
y2h(y)dy,

where the last integral is finite for v > 2.
The proof for the second inequality is identical to Lemma 4 of [15], for which∫
y4h(y)dy < ∞ is required.

The following lemma is an extension of Lemma 2 in [15] in the sense that a
discrete probability measure F ′ can be taken independent of σ ≥ σ0.

Lemma 5.9. Let a, σ0, ε > 0 be given numbers such that a/σ0 ≥ 1. For any
probability measure F on [−a, a], there exists a discrete probability measure F ′

on [−a, a] with fewer than Daσ−1
0 log ε−1 support points, such that

dV (φσ ∗ F, φσ ∗ F ′) � ε(log ε−1)1/2

for every σ ≥ σ0, where D is a universal constant.

Proof. Throughout this proof, pF,σ denotes φσ ∗ F , not hσ ∗ F . Partition the
interval [−a, a] into k disjoint, consecutive subintervals I1, . . . , Ik of length σ0

and a final interval Ik+1 of length lk+1 smaller than σ, where k is the largest

integer less than or equal to 2a/σ0. Write F =
∑k+1

i=1 F (Ii)Fi, where each Fi is

a probability measure concentrated on Ii, then pF,σ =
∑k+1

i=1 F (Ii)pFi,σ. Let Zi

be a random variable distributed according to Fi, and for ai the left endpoint
of Ii, let Gi be the law of Wi = (Zi − ai)/σ0. For σ ≥ σ0, let Gi,σ be the law of
Wi,σ = Wiσ0/σ. Thus, Gi and Gi,σ are supported on [0, 1] and [0, σ0/σ] ⊂ [0, 1],
respectively.

As the proof of Lemma 2 in [15], it can be shown that for each i, there exists
a discrete probability measure G′

i with fewer than Ni � log ε−1 support points
such that dV (pGi,1, pG′

i,1
) � ε(log ε−1)1/2. Note that, from the construction, the

first Ni moments of Gi and G′
i are identical, see the proof of Lemma 3.1 in

[14]. Let G′
i,σ be the law of W ′

i,σ = W ′
iσ0/σ, where W ′

i is a random variable
distributed according to G′

i. Then, the first Ni moments of Gi,σ and G′
i,σ are

also identical, so dV (pGi,σ,1, pG′
i,σ,1

) � ε(log ε−1)1/2 by Lemmas 3.1 and 3.2 in

[14]. Let F ′
i be the law of ai + σ0W

′
i and set F ′ =

∑k+1
i=1 F (Ii)F

′
i . Note that

pFi,σ(x) = Eφσ(x− Zi) = σ−1
Eφ

(
(x− ai)/σ −Wi,σ

)
= σ−1pGi,σ,1

(
(x− ai)/σ

)
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and similarly for F ′
i and G′

i,σ. It follows that

dV (pFi,σ, pF ′
i ,σ

) = dV (pGi,σ,1, pG′
i,σ,1

) � ε(log ε−1)1/2.

Since dV (pF,σ, pF ′,σ) ≤
∑k+1

i=1 F (Ii)dV (pFi,σ, pF ′
i ,σ

) � ε(log ε−1)1/2 and the

number of support points of F ′ is bounded by
∑k+1

i=1 Ni � aσ−1
0 log ε−1, the

proof is complete.

Lemma 5.10. Let a, σ, ε > 0 be given numbers such that a/σ ≥ 1. For any
probability measure F on [−a, a], there exists a discrete probability measure F ′

on [−a, a] with fewer than Daσ−1(log ε−1)3/2 support points, such that

dV (pF,σ, pF ′,σ) � ε(log ε−1)1/2,

where D and the constant in � depend only on v.

Proof. Since dV is bounded by 2, we may assume that ε > 0 is sufficiently small.
Note that h(x) =

∫
φτ (x)dH(τ−2), where H is Γ(v/2, v/2) distribution (mean

1 and variance 2/v), see [2]. Thus, hσ(x) =
∫
φστ (x)dH(τ−2). Let F be a given

probability measure on [−a, a]. Then, for any probability measure F ′ on [−a, a],
we have

dV (pF,σ, pF ′,σ) =

∫ ∣∣∣∣
∫

hσ(x− z)dF (z)−
∫

hσ(x− z)dF ′(z)

∣∣∣∣ dx
=

∫ ∣∣∣∣
∫ ∫

φστ (x− z)dH(τ−2)dF (z)−
∫ ∫

φστ (x− z)dH(τ−2)dF ′(z)

∣∣∣∣ dx
≤

∫ ∫ ∣∣∣∣
∫

φστ (x− z)dF (z)−
∫

φστ (x− z)dF ′(z)

∣∣∣∣ dxdH(τ−2)

=

∫
dV (φστ ∗ F, φστ ∗ F ′)dH(τ−2).

(5.3)

Since H is a Gamma distribution, we have

H([t,∞)) �
∫ ∞

t

xv/2−1e−vx/2dx ≤
∫ ∞

t

e−vx/3dx � e−vt/3

for every large enough t. The right hand side of the last display is bounded by
ε provided that t ≥ 3v−1 log ε−1. Thus, the right hand side of (5.3) is bounded
by

Cε+

∫
{τ2> v

3 (log ε−1)−1}
dV (φστ ∗ F, φστ ∗ F ′)dH(τ−2), (5.4)

where C > 0 is a constant depending only on v. By Lemma 5.9, there exists a
discrete probability measure F ′, with fewer than

D

√
3

v
aσ−1(log ε−1)3/2 � a

σ
(log ε−1)3/2
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support points, such that dV (φστ ∗ F, φστ ∗ F ′) � ε(log ε−1)1/2 for every τ with
τ2 > v

3 (log ε
−1)−1, where D is a universal constant. Therefore, the right hand

side of (5.4) is bounded by a multiple of ε(log ε−1)1/2.

Proof of Theorem 3.5. Throughout this proof, constants in the notation � may
depend on hyperparameters a1, a2, a3, v, G and the true density p0. For a given
sufficiently small positive number σ∗, let P ∗

0 be a restricted renormalization
of P0 on [−a, a], where a is the minimal number satisfying P0[−a, a] ≥ 1 −
(σ∗)4. The tail condition of p0 implies that a ≤ (σ∗)−4/β . By Lemma A.3 of
[14], dV (pP0,σ∗ , pP∗

0 ,σ∗) � (σ∗)4. Also, dH(p0, pP0,σ∗) � (σ∗)2 by Lemma 5.8.
Furthermore, by Lemma 5.10, there exists a discrete probability measure F ∗ =∑N

j=1 p
∗
jδz∗

j
such that N � a(σ∗)−1(log(σ∗)−1)3/2 and dV (pP∗

0 ,σ∗ , pF∗,σ∗) �
(σ∗)4. Therefore, for a probability measure F and σ > 0, we have

d2H(p0, pF,σ)

� d2H(p0, pP0,σ∗) + d2H(pP0,σ∗ , pP∗
0 ,σ∗) + d2H(pP∗

0 ,σ∗ , pF∗,σ∗) + d2H(pF∗,σ∗ , pF,σ)

� (σ∗)4 + dV (pP0,σ∗ , pP∗
0 ,σ∗) + dV (pP∗

0 ,σ∗ , pF∗,σ∗) + dV (pF∗,σ∗ , pF,σ)

� (σ∗)4 + dV (pF∗,σ∗ , pF,σ).

Without loss of generality, we may assume that the support points of F ∗ are
at least 2(σ∗)5 separated. Otherwise, take a maximal 2(σ∗)5-separated set in the
support points of F ∗, and let F ∗∗ be the discrete measure on this 2(σ∗)5-net
with weights obtained by moving the masses in F ∗ to the closest point in the
support of F ∗∗. Then, dV (pF∗,σ∗ , pF∗∗,σ∗) � (σ∗)4 by Lemma 5.7, and hence we
can replace F ∗ by F ∗∗.

From the last display, we have

Π
(
pF,σ : d2H(p0, pF,σ) � (σ∗)4

)
≥ Π

(
(σ, F ) : dV (pF∗,σ∗ , pF,σ) ≤ (σ∗)4

)

≥ Π

⎛
⎝(σ, F ) : |σ − σ∗| � (σ∗)5,

N∑
j=1

|F [z∗j − (σ∗)5, z∗j + (σ∗)5]− p∗j | � (σ∗)4

⎞
⎠ ,

where the last inequality holds by Lemma 5.7. For F with
∑N

j=1 |F [z∗j − (σ∗)5,

z∗j+(σ∗)5]−p∗j | ≤ (σ∗)4, it holds that F [−a, a] ≥ 1/2, and thus
∫
(p0/pF,σ)

δdP0 �
aσ−vδ for every small enough σ and δ by Lemma 5.5. Let (δn) be a sequence
decreasing to zero and set (σ∗)4 = δ2+ε

n , where ε is sufficiently small as de-
scribed below. Then, by Lemma 5.5 and Theorem 5 of [32], |σ−σ∗| � (σ∗)5 and∑N

j=1 |F [z∗j − (σ∗)5, z∗j + (σ∗)5]− p∗j | � (σ∗)4 imply pF,σ ∈ Kn for large enough
n.

Since σ2 follows an inverse gamma distribution,

Π
(
σ : |σ − σ∗| � (σ∗)5

)
≥ e−c1/(σ

∗)2

for some constant c1 > 0. Combining this with Lemma 10 of [15], there exist
constants c2 > 0 such that

Π(Kn) � e−c2N log(σ∗)−1−c1/(σ
∗)2 .
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Since β > 4/3 and N � (σ∗)−4/β−1(log(σ∗)−1)3/2, there exists small ζ > 0
depending only on β such that

Π(Kn) � exp
[
−c3(σ

∗)−(4−ζ)
]
= exp

[
−c3δ

−(4−ζ)(1/2+ε/4)
n

]
,

where c3 > 0 is a constant. If ε < ζ/4 then (4 − ζ)(1/2 + ε/4) < 2 − ζ/4. It

follows that Π(Kn) � exp[−c3δ
−(2−ζ/4)
n ]. Therefore, we can choose (δn) such

that δn � n−1/4 and Π(Kn) ≥ e−nδ2n .
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