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Abstract: We study the problem of estimating an unknown vector θ from
an observation X drawn according to the normal distribution with mean
θ and identity covariance matrix under the knowledge that θ belongs to
a known closed convex set Θ. In this general setting, Chatterjee (2014)
proved that the natural constrained least squares estimator is “approxi-
mately admissible” for every Θ. We extend this result by proving that the
same property holds for all convex penalized estimators as well. Moreover,
we simplify and shorten the original proof considerably. We also provide
explicit upper and lower bounds for the universal constant underlying the
notion of approximate admissibility.
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1. Introduction

The Gaussian sequence model is a commonly used model for theoretical inves-
tigations in nonparametric and high dimensional statistical problems. Here one
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models the data vectorX ∈ R
n as an observation having the normal distribution

with unknown mean θ ∈ R
n and identity covariance matrix i.e., X ∼ N(θ, In).

Often one assumes some structure on the unknown mean θ in the form of a
convex constraint. Specifically, it is common to assume that θ ∈ Θ for some
closed convex subset Θ of Rn. A natural estimator for θ under the constraint
θ ∈ Θ is the least squares estimator (LSE) defined as

θ̂(X; Θ) := argmin
α∈Θ

1

2
‖X − α‖22 (1.1)

where ‖·‖2 denotes the usual Euclidean norm on R
n. It is easy to see that many

common estimators in nonparametric and high-dimensional statistics such as
shape constrained estimators (see, for example, Groeneboom and Jongbloed
(2014)) and those based on constrained LASSO (see, for example, Bühlmann
and van De Geer (2011)) are special cases of the LSE (1.1) for various choices
of Θ.

In this abstract setting, Chatterjee (2014) asked the following question: Does

the estimator θ̂(X; Θ) satisfy a general optimality property that holds for every
closed convex set Θ? This is a non-trivial question; obvious guesses for the
optimality property might be admissibility and minimaxity but the LSE does
not satisfy either of these for every Θ. Indeed, θ̂(X; Θ) is not minimax (even
up to multiplicative factors that do not depend on the dimension n) when Θ :=
{α ∈ R

n :
∑

i<n α
2
i +n−1/2α2

n ≤ 1} as noted by Zhang (2013) (a more elaborate

counterexample for minimaxity is given in Chatterjee (2014)). Also, θ̂(X; Θ)
is not admissible when Θ = R

n where the James-Stein estimator dominates
θ̂(X) = X (see, for example, Lehmann and Casella (1998)).

Chatterjee (2014) answered the general optimality question of the constrained

LSE in the affirmative by proving that θ̂(X; Θ) is approximately admissible over
Θ for every Θ. The precise statement of Chatterjee’s theorem is described below.
Let us say that, for a constant C > 0, an estimator d(X) is C-admissible over
Θ if for every other estimator d̃(X), there exists θ ∈ Θ such that

CEθ‖d(X)− θ‖22 ≤ Eθ‖d̃(X)− θ‖22. (1.2)

In words, the above definition means that for every estimator d̃(X), there exists
a point θ ∈ Θ at which the estimator d(X) performs as well as the estimator
d̃(X) up to the multiplicative factor C. Note that the point at which d(X)
performs better than d̃(X) would depend on the estimator d̃(X) as well as on
the constraint set Θ. Essentially an estimator d(X) being C-admissible over Θ
means that it is impossible for any estimator to dominate d(X) uniformly over
Θ by more than the multiplicative factor C.

Chatterjee (2014) proved that there exists a universal constant 0 < C ≤ 1

such that for every n ≥ 1 and closed convex subset Θ ⊆ R
n, the LSE θ̂(X; Θ)

is C-admissible for Θ.

Theorem 1.1. [Chatterjee (2014)] There exists a universal constant 0 < C ≤ 1
(independent of n and Θ) such that for every n ≥ 1 and closed convex subset

Θ ⊆ R
n, the least squares estimator θ̂(X; Θ) is C-admissible over Θ.
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Remarkable features of the above theorem are that it is true for every Θ and
that the constant C does not depend on n or Θ. We would like to mention here
that Theorem 1.1 is a rather difficult result (in Chatterjee’s own words, “from
a purely mathematical point of view, this is the deepest result of this paper”)
and the original proof in Chatterjee (2014) is quite complex.

Our paper has the following twin goals: (a) we extend Theorem 1.1 (which
only involves constrained estimators) to penalized estimators, which are more
commonly used in practice, and (b) we simplify considerably the proof of The-
orem 1.1 given in Chatterjee (2014) and our proof is also much more intuitive.
To describe our main result, let us first introduce penalized estimators. Given a
closed convex set Θ ⊆ R

n and a real-valued convex function f on Θ, let

θ̂(X; Θ, f) := argmin
α∈Θ

(
1

2
‖X − α‖22 + f(α)

)
. (1.3)

Strictly speaking θ̂(X; Θ, f) is a least squares estimator that is both constrained
and penalized. We can of course write it as a pure penalized estimator with the
penalty function f̃(x) = f(x)+IΘ(x), where IΘ(x) is the indicator function that
takes the value 0 when x ∈ Θ and +∞ otherwise. We choose to separate the
constraint and penalty as it is more natural for many statistical applications. In
doing so, note that we have required that f is real-valued (i.e., f does not take
the value +∞) on Θ.

For Θ = R
n in (1.3), we obtain penalized estimators for which the LASSO

is the most common example. For f ≡ 0, we get back the constrained LSEs of
(1.1). There are examples where one uses both a non-trivial constraint set Θ
and a non-trivial penalty function f(·); for example, in isotonic regression, it is
common to use

Θ := {α ∈ R
n : α1 ≤ · · · ≤ αn} and f(α) := λ (αn − α1)

for some λ ≥ 0. This estimator fits non-decreasing sequences to the data while
constraining the range of the estimator so as to prevent the spiking effect that
the usual isotonic LSE suffers from; see, for example, Woodroofe and Sun (1993).

Because of the presence of the penalty function f , it is clear that the class
of estimators given by θ̂(X; Θ, f) is larger compared to the class given by the
LSEs in (1.1). The main result of our paper is the following.

Theorem 1.2. There exists a universal constant 0 < C ≤ 1 (independent of n,Θ
and f) such that for every n ≥ 1, closed convex set Θ ⊆ R

n and real-valued

convex function f on Θ, the estimator θ̂(X; Θ, f) is C-admissible over Θ.

The above theorem generalizes Theorem 1.1 by showing that all estimators
θ̂(X; Θ, f) have the C-admissibility property over Θ for a universal constant C.
In words, this means that given any estimator d(X), there exists a point θ ∈ Θ

at which the estimator θ̂(X; Θ, f) performs as well as the estimator d(X) up to
the multiplicative factor C. This point θ ∈ Θ would depend on the estimator
d(X) as well as on the constraint set Θ and the penalty function f .
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Remark 1.1 (Generalization to Linear Regression). Because Theorem 1.2 ap-
plies to arbitrary closed convex sets Θ ⊆ R

n and arbitrary real-valued convex
functions f on Θ, Theorem 1.2 can be generalized to deal with prediction error
for convex-regularized estimators in linear regression. Indeed, if β̂ satisfies

β̂ = argmin
β∈Rp

(
1

2
‖X −Dβ‖22 + Λ(β)

)
for a real-valued convex function Λ and an n× p design matrix D, then

Dβ̂ = argmin
θ∈{Dβ:β∈Rp}

(
1

2
‖X − θ‖22 + inf

β∈Rp:θ=Dβ
Λ(β)

)
It is now easy to check that

θ 
→ inf
β∈Rp:θ=Dβ

Λ(β)

is a real-valued convex function on {Dβ : β ∈ R
p}. This means therefore that

Dβ̂ is an estimator of the form (1.3) so that Theorem 1.2 applies directly to it.

We therefore obtain that the estimator β̂ is C-admissible in terms of prediction
error (defined as ‖Dβ̂ −Dβ‖22) for every choice of the convex regularizer Λ(·).
Dealing with estimation error (defined as ‖β̂ − β‖22) in the regression context is
more complicated and might involve assumptions on the design matrix D.

Let us conclude this introduction by a brief description of the significance of
our main result. The class of estimators θ̂(X; Θ, f) is used very frequently in
applications and, from a practical perspective, the fact that these estimators may
be inadmissible might be slightly disconcerting. Our Theorem 1.2 shows that
although these estimators may be inadmissible, they are always C-admissible
for a universal positive constant C. Informally, this means that it is impossible
for other estimators to uniformly dominate these estimators by more than a
universal multiplicative constant.

1.1. Connections to the normalized minimax risk

There is a restatement of Theorem 1.2 that is illuminating and gives a minimax
flavor to Theorem 1.2. Given Θ and f , let us define the normalized minimax
risk over Θ by

Rnor(Θ; f) := inf
d

sup
θ∈Θ

Eθ‖d(X)− θ‖22
Eθ‖θ̂(X; Θ, f)− θ‖22

. (1.4)

where the infimum is over all estimators d(X). Here we use the conventions
0
0 = 1 and a

0 = +∞ for a > 0. Note that Rnor(Θ; f) is defined just like the
usual minimax risk over the parameter space Θ except that the risk of every es-
timator d(X) is rescaled (normalized) by the risk of θ̂(X; Θ, f). This therefore a
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reasonable measure of comparison of arbitrary estimators d(X) to our estimator

θ̂(X; Θ, f).
It is clear that Rnor(Θ; f) ≤ 1 as can be seen by bounding the infimum in (1.4)

by the term corresponding to d(X) = θ̂(X; Θ, f). A small value for Rnor(Θ; f)
means that there exists an estimator d(X) and some point θ ∈ Θ at which the

risk of d(X) is smaller, by a large factor, than the risk of θ̂(X; Θ, f).
Let us now define a universal constant C∗ by taking the worst possible value

of Rnor(Θ; f) over all possible values of the dimension n, convex constraint set
Θ and convex penalty function f . Specifically, let

C∗ := inf
n≥1

inf
Θ∈Cn

inf
f∈F(Θ)

Rnor(Θ; f) (1.5)

where Cn denotes the class of all closed convex subsets of Rn and F(Θ) denotes
the class of all real-valued convex functions on Θ. Note first that C∗ is a universal
constant and, a priori, it is not clear if C∗ is zero or strictly positive.

It is now straightforward to verify that Theorem 1.2 is equivalent to the
statement that C∗ is strictly positive. Another contribution of our paper is to
provide explicit lower and upper bounds for C∗.

Theorem 1.3. The universal constant C∗ satisfies

6.05× 10−6 ≤ C∗ ≤ 1

2
. (1.6)

The lower bound of 6.05×10−6 for C∗ comes from our argument for the proof
of Theorem 1.2. It must be noted here that Chatterjee (2014) does not provide
any explicit values for C in his C-admissibility result. Even if the constant C
were tracked down in the proof of Chatterjee (2014), it appears that it will be
smaller than 6.05 × 10−6 by several orders of magnitude. The improvement of
the lower bound also shows the advantage of using our new arguments in the
proof of admissibility.

The upper bound of 1/2 for C∗ is a consequence of an explicit construction

of Θ and f such that θ̂(X; Θ, f) is uniformly dominated over Θ by a factor of
2 by another estimator. We believe that this example is non-trivial. Please see
Section 4 for the proof of Theorem 1.3.

The determination of the exact value of the constant C∗ is likely to be a very
challenging problem, which is left to be a future work. It will also be interesting
to develop techniques to accurately bound the quantity Rnor(Θ, f) for specific
choices of Θ and f .

1.2. Proof sketch

As a summary, the contributions of the paper include: (1) a novel and intuitive
proof of a generalization of a result of Chatterjee (2014) on C-admissibility in
Theorem 1.2; (2) explicit bounds for the worst possible value of the normalized
minimax risk C∗ in Theorem 1.3. In this subsection, we provide an outline of
our proofs of these results.
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Admissibility results are almost always proved via Bayesian arguments involv-
ing priors. Analogous to the notion of C-admissibility, we can define a notion
of C-Bayes as follows. For C > 0 and a proper prior w over Θ, we say that an
estimator d(X) is C-Bayes with respect to w if

C

∫
Θ

Eθ‖d(X)− θ‖22w(dθ) ≤ RBayes(w) := inf
d̃

∫
Θ

Eθ‖d̃(X)− θ‖22w(dθ) (1.7)

where RBayes(w) is the Bayes risk with respect to w and the infimum in the
definition of RBayes(w) above is over all estimators d̃.

It is now trivial to see that an estimator d(X) is C-admissible over Θ if it is
C-Bayes for some proper prior w supported on Θ. As a result, in order to prove
that θ̂(X; Θ, f) is C-admissible over Θ, it is sufficient to construct a proper

prior w on Θ such that θ̂(X; Θ, f) is C-Bayes with respect to w. We construct
such a prior w by modifying the construction of Chatterjee (2014) (which only
applied to the LSE) appropriately. The prior w will concentrate in the vicinity
of a suitably chosen point θ∗ ∈ Θ (see the proof of Theorem 1.2 for the exact
description of w).

For our chosen prior w, in order to prove that θ̂(X; Θ, f) is C-Bayes, we need
to

1. bound
∫
Θ
Eθ‖θ̂(X; Θ, f)− θ‖22w(dθ) from above, and

2. bound RBayes(w) from below

and make sure that the two bounds differ only by the multiplicative factor C.
More precisely, we shall prove that∫

Θ

Eθ‖θ̂(X; Θ, f)− θ‖22w(dθ) ≤ c′t2θ∗ ≤ RBayes(w)/C

for a positive constant c′. Here θ∗ is the point near which w concentrates and
tθ∗ is a quantity which controls the risk behavior of θ̂(X,Θ, f) at θ∗ (see Section
2 for the precise definition of tθ∗).

For the first step above, we need to study the risk properties of the estimator
θ̂(X,Θ, f). This is done in Section 2 For the second step, we apply a recent
general Bayes risk lower bound from Chen, Guntuboyina and Zhang (2016).
The application of this risk bound shortens the proof considerably. In contrast,
Chatterjee (2014) used a bare hands for lower bounding the Bayes risk via
“a sequence of relatively complicated technical steps involving concentration
inequalities and second moment lower bounds”.

For proving Theorem 1.3, we first observe that our proof of Theorem 1.2 also
yields the lower bound of 6.05 × 10−6 for the constant C∗. For proving that
C∗ ≤ 1/2, we explicitly construct a convex set Θ over which the normalized
minimax risk is arbitrarily close to 1/2 (see Section 4 for details).

The rest of this paper is structured as follows. In Section 2, we describe some
results on the risk of the estimator θ̂(X; Θ, f). These can be seen as an exten-
sion of the results of Chatterjee (2014) for penalized estimators. We will also
discuss the connection of our risk bounds to a recent work by van de Geer and
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Wainwright (2015). Section 3 contains the proof of Theorem 1.2 while Section
4 contains the proof of Theorem 1.3. Section 5 contains the proofs for the risk
results of penalized estimators from Section 2.

2. Risk behavior of θ̂(X; Θ, f)

Throughout this section, we fix a closed convex set Θ in R
n and a real-valued

convex function f on Θ. The data vector X will be generated according to the
normal distribution with mean θ and identity covariance. We study the risk of
the estimator θ̂(X; Θ, f). The main risk result is Theorem 2.1 below which will
be used in the proof of Theorem 1.2 to bound the quantity∫

Θ

Eθ‖θ̂(X; Θ, f)− θ‖22w(dθ)

for a suitable prior w.
The basic fact about the estimator θ̂(X; Θ, f) (proved in Theorem 2.1 below)

is that the loss ‖θ̂(X; Θ, f)−θ‖2 is concentrated around a deterministic quantity
tθ which depends on θ, the constraint set Θ and the regularizer f . The quantity
tθ is defined as the maximizer of the function Gθ : [0,∞) → R over [0,∞) where

Gθ(t) := mθ(t)−
t2

2
(2.1)

with

mθ(t) := Eθ

(
sup

α∈Θ:‖α−θ‖2≤t

{〈X − θ, α− θ〉 − f(α)}
)
. (2.2)

The quantity mθ(t) can be viewed as an extension of notion of (localized) Gaus-
sian width with the penalty function f(α) (note that X − θ is a standard Gaus-
sian random variable). Indeed, when f ≡ 0, mθ(t) is the Gaussian width of the
set {α− θ : α ∈ Θ, ‖α− θ‖2 ≤ t}. The existence of tθ as a unique maximizer of
Gθ(t) over t ∈ [0,∞) is proved in Lemma 2.2 (see the end of this section). We
also note that tθ depends on the choice of the penalty f .

Theorem 2.1. Fix θ ∈ Θ and consider the estimator θ̂(X; Θ, f) constructed from
X generated according to the model X ∼ N(θ, In). Then

P

{
‖θ̂(X; Θ, f)− θ‖2 ≥ tθ + δ

}
≤ 2 exp

(
− δ4

32(tθ + δ)2

)
(2.3)

for every δ ≥ 0 and

Eθ‖θ̂(X; Θ, f)− θ‖22 ≤ t2θ +
(
2
√
84
)
tθ min(

√
tθ, 1) + 84min(tθ, 1). (2.4)

When f ≡ 0 i.e., when the estimator θ̂(X; Θ, f) becomes the LSE over Θ, then
the above result has been proved by Chatterjee (2014, Theorem 1.1). Therefore,
Theorem 2.1 can be seen as an extension of Chatterjee (2014, Theorem 1.1) to
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penalized estimators. Muro and van de Geer (2015) also studied concentration
for penalized estimators; however their result (see Muro and van de Geer (2015,
Theorem 1)) proves concentration for (in our notation) the quantity

τ(θ̂(X; Θ, f)) :=

√
‖θ̂(X; Θ, f)− θ‖22 + 2f(θ̂(X; Θ, f)).

More recently, van de Geer and Wainwright (2015) studied concentration of the
loss of empirical risk minimization estimators in a very general setting. Two
of their results are relevant to Theorem 2.1. In van de Geer and Wainwright
(2015, Theorem 2.1), it is proved that ‖θ̂(X; Θ, f) − θ‖2 concentrates around

its expectation Eθ‖θ̂(X; Θ, f) − θ‖2 at a rate that is faster than that given by
Theorem 2.1. However to prove our admissibility result, we require concentration
of ‖θ̂(X; Θ, f)−θ‖2 around tθ and not around Eθ‖θ̂(X; Θ, f)−θ‖2. The relation
between tθ and Eθ‖θ̂(X; Θ, f)−θ‖2 is not completely clear although it has been

very recently observed in Bellec (2017, Section 5) that

√
Eθ‖θ̂(X; Θ, f)− θ‖2 −√

tθ is bounded from above by a universal positive constant. Another result from
van de Geer and Wainwright (2015) that is relevant to us is their Theorem 4.1.

However it also gives concentration for the quantity τ(θ̂(X; Θ, f)) while we

require concentration for ‖θ̂(X; Θ, f) − θ‖2. It is also worthwhile to note that
van de Geer and Wainwright (2015) also studied concentration in models more
general than Gaussian sequence models.

We would also like to point out that results similar to Theorem 2.1 (and some
parts of Lemma 2.2 below) have also recently appeared in Bellec (2017) (this
latter paper appeared two days after our paper on arXiv).

In addition to Theorem 2.1, we shall require some additional facts about tθ
and the function mθ. These are summarized in the following result which also
includes a statement on the existence and uniqueness of tθ. For the case of the
LSE (i.e., when f ≡ 0), the facts stated in the lemma below are observed in
Chatterjee (2014) and most of the results in the following lemma are straight-
forward extensions of the corresponding facts in Chatterjee (2014).

Lemma 2.2. Recall the functions Gθ(·) and mθ(·) from (2.1) and (2.2) respec-
tively.

1. For every θ ∈ Θ, the function mθ is non-decreasing and concave.
2. For every θ ∈ Θ, the function Gθ(·) has a unique maximizer tθ on [0,∞).
3. For every θ ∈ Θ and t ≥ 0, we have

mθ(t) ≤ mθ(tθ) + tθ(t− tθ). (2.5)

4. For every θ ∈ Θ and t ≥ 0, we have

Gθ(t)−Gθ(tθ) ≤
−(t− tθ)

2

2
. (2.6)

5. The risk function θ 
→ Eθ‖θ̂(X; Θ, f) − θ‖22 is smooth in the following
sense: for every θ1, θ2 ∈ Θ, we have

Eθ1‖θ̂(X; Θ, f)− θ1‖22 ≤ 2Eθ2‖θ̂(X; Θ, f)− θ2‖22 + 8‖θ1 − θ2‖22. (2.7)
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6. The function θ 
→ tθ is smooth in the following sense: for every θ1, θ2 ∈ Θ,
we have

tθ2 ≥
(
tθ1 −

√
‖θ1 − θ2‖22 + 4tθ1‖θ1 − θ2‖2

)
+

(2.8)

and

tθ2 ≤ tθ1 +
√

‖θ1 − θ2‖22 + 4tθ1‖θ1 − θ2‖2. (2.9)

Also for every θ1, θ2 ∈ Θ and ρ ≥ 0, we have(
1−
√

ρ2 + 4ρ
)
+
tθ1 ≤ tθ2 ≤

(
1 +
√

ρ2 + 4ρ
)
tθ1 (2.10)

provided ‖θ1 − θ2‖2 ≤ ρtθ1 .

With Theorem 2.1 and Lemma 2.2 in place, we first provide the proof of our
main result (Theorem 1.2) in the next section. The proofs for Theorem 2.1 and
Lemma 2.2 will be relegated to the end of the paper in Section 5.

3. Proof of Theorem 1.2

We follow the program outlined in the introduction. For proving that θ̂(X; Θ, f)
is C-admissible for a constant C, it is enough to demonstrate the existence of a
prior w on Θ such that θ̂(X; Θ, f) is C-Bayes with respect to w. As described

in the introduction, a key step for proving that θ̂(X; Θ, f) is C-Bayes involves
bounding from below the Bayes risk RBayes(w) with respect to w. For this pur-
pose, we shall use the following result from Chen, Guntuboyina and Zhang
(2016, Corollary 4.4). This result states that the following inequality holds for
every prior w on Θ:

RBayes(w) ≥
1

2
sup

{
t > 0 : sup

a∈Θ
w{θ ∈ Θ : ‖θ − a‖22 ≤ t} <

1

4(1 + I)

}
(3.1)

where I is any nonnegative number satisfying

I ≥ inf
Q

∫
Θ

χ2(Pθ‖Q)dw(θ). (3.2)

Here Pθ denotes the n-dimensional normal distribution with mean θ and iden-
tity covariance and the infimum in (3.2) is over all probability measures Q on
R

n. Also χ2(P‖Q) denotes the chi-square divergence defined as
∫
(p2/q)dμ − 1

where p and q are densities of P and Q respectively with respect to a common
dominating measure μ.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We break the proof into two separate cases: the case
when infθ∈Θ tθ is strictly smaller than some constant b and the case when
infθ∈Θ tθ is larger than b. The first case is the easy case where we show that
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θ̂(X; Θ, f) is C-Bayes with respect to a simple two-point prior via Le Cam’s
classical two-point testing inequality. The second case is harder where we use a
more elaborate prior w together with inequality (3.1) to lower bound RBayes(w).

Easy Case: Here we assume that infθ∈Θ tθ ≤ b (the precise value of the
constant b will be specified later). Choose θ∗ ∈ Θ such that tθ∗ ≤ b (note
that θ 
→ tθ is continuous from (2.8) and (2.9) and that Θ is closed so that
such a θ∗ exists). Let θ1 ∈ Θ be any maximizer of ‖θ∗ − θ‖2 as θ varies over
{θ ∈ Θ : ‖θ − θ∗‖2 ≤ 1}. Let w be the uniform prior over the two-point set
{θ∗, θ1}. The Bayes risk with respect to w can be easily bounded by below by
Le Cam’s inequality (from Le Cam (1973)) which gives

RBayes(w) ≥
1

4
‖θ∗ − θ1‖22 (1− ‖Pθ∗ − Pθ1‖TV )

where ‖Pθ∗−Pθ1‖TV denotes the total variation distance between the probability
measures Pθ∗ and Pθ1 . Pinsker’s inequality (see for example (Tsybakov, 2009,
Lemma 2.5)) now implies

2‖Pθ∗ − Pθ1‖2TV ≤ D(Pθ∗‖Pθ1) =
1

2
‖θ∗ − θ1‖22 ≤ 1

2

and hence

RBayes(w) ≥
1

8
‖θ∗ − θ1‖22. (3.3)

By the definition of θ1, we have ‖θ1 − θ∗‖2 ≤ 1. We consider the following two
cases by the value of ‖θ1 − θ∗‖2.

1. ‖θ∗ − θ1‖2 = 1: Here inequality (3.3) gives RBayes(w) ≥ 1/8. Further, by
the assumption tθ∗ ≤ b and inequality (2.4), we have

Eθ∗‖θ̂(X)− θ∗‖22 ≤ b2 + (2
√
84)b3/2 + 84b

Moreover, by inequality (2.7) and (2.4), we have

Eθ1‖θ̂(X; Θ, f)− θ1‖22 ≤ 2Eθ∗‖θ̂(X; Θ, f)− θ∗‖22 + 8‖θ∗ − θ1‖22
≤ 2
(
b2 + (2

√
84)b3/2 + 84b

)
+ 8‖θ∗ − θ1‖22

≤ 2
(
b2 + (2

√
84)b3/2 + 84b

)
+ 8.

Combining the above two inequalities, we deduce that∫
Θ

Eθ‖θ̂(X; Θ, f)− θ‖22dw(θ) ≤
3

2

(
b2 + (2

√
84)b3/2 + 84b

)
+ 4.

This inequality together with RBayes(w) ≥ 1/8 allow us to obtain

1

12
(
b2 + (2

√
84)b3/2 + 84b

)
+ 32

∫
Θ

Eθ‖θ̂(X; Θ, f)−θ‖22dw(θ) ≤ RBayes(w).
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This means that θ̂(X; Θ, f) is C-Bayes with respect to w with

C :=
1

12
(
b2 + (2

√
84)b3/2 + 84b

)
+ 32

. (3.4)

2. ‖θ∗ − θ1‖2 < 1: In this case, γ := diam(Θ) ≤ 2 and ‖θ∗ − θ1‖2 ≥ γ/2.
Inequality (3.3) then gives RBayes(w) ≥ γ2/32. Also for every θ ∈ Θ,

we have Eθ‖θ̂(X; Θ, f) − θ‖22 ≤ γ2 (because both θ̂(X; Θ, f) and θ are
constrained to take values in Θ whose diameter is at most γ). These two
inequalities imply that

1

32

∫
Θ

Eθ‖θ̂(X; Θ, f)− θ‖22dw(θ) ≤ RBayes(w)

which means that θ̂(X; Θ, f) is C-Bayes with respect to w with C = 1/32.

Therefore in this easy case, we have proved that θ̂(X; Θ, f) is C-Bayes for some
C that is atleast the minimum of (3.4) and 1/32.

Hard Case: We now work with the situation when infθ∈Θ tθ > b. We fix a
specific θ∗ ∈ Θ and choose w as a specific prior that is supported on the set

U(θ∗) := Θ ∩ {θ ∈ R
n : ‖θ − θ∗‖2 ≤ ρtθ∗} (3.5)

for some constant ρ > 0 (to be specified later) which satisfies ρ2 +4ρ < 1. More
precisely, for a fixed small constant η, let θ∗ be chosen so that

mθ∗(ρtθ∗) ≥ sup
θ∈Θ

mθ(ρtθ)− η (3.6)

where mθ(·) is defined in (2.2). Let Ψ : Rn 
→ Θ be any measurable mapping
such that Ψ(z) is a maximizer of 〈z, α− θ∗〉 − f(α) as α varies in U(θ∗). Let w
be the prior given by the distribution of Ψ(Z) for a standard Gaussian vector
Z in R

n.
Now because of inequalities (2.4) and (2.7), we can write the following for

every θ ∈ U(θ∗):

Eθ‖θ̂(X; Θ, f)− θ‖22 ≤ 2Eθ∗‖θ̂(X; Θ, f)− θ∗‖22 + 8‖θ − θ∗‖22
≤ 2
(
t2θ∗ + (2

√
84)t

3/2
θ∗ + 84tθ∗

)
+ 8‖θ∗ − θ‖22

≤ 2
(
t2θ∗ + (2

√
84)t

3/2
θ∗ + 84tθ∗

)
+ 8ρ2t2θ∗

= (2 + 8ρ2)t2θ∗ + (4
√
84)t

3/2
θ∗ + 168tθ∗ .

This clearly implies∫
Θ

Eθ‖θ̂(X; Θ, f)− θ‖22dw(θ) ≤ (2 + 8ρ2)t2θ∗ + (4
√
84)t

3/2
θ∗ + 168tθ∗

≤ t2θ∗

(
2 + 8ρ2 + 4

√
84b−1/2 + 168b−1

)
(3.7)

where the second inequality above follows from the fact that tθ∗ ≥ infθ∈Θ tθ > b.
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The goal now is to provide a lower bound for RBayes(w). We shall use inequal-
ity (3.1) for this purpose. Because the prior w is concentrated on the convex set
U(θ∗), we can replace the supremum over a ∈ Θ in (3.1) by the supremum over
a ∈ U(θ∗). This gives the following lower bound for RBayes(w):

RBayes(w) ≥
1

2
sup

{
t > 0 : sup

a∈U(θ∗)
w{θ ∈ Θ : ‖θ − a‖22 ≤ t} <

1

4(1 + I)

}
(3.8)

where I is any upper bound on infQ
∫
Θ
χ2(Pθ‖Q)dw(θ). Here Pθ is the n-

dimensional normal distribution with mean zero and identity covariance and
the infimum is over all probability measures Q.

To obtain a suitable value for I, we use

inf
Q

∫
Θ

χ2(Pθ‖Q)dw(θ) ≤
∫
Θ

χ2(Pθ‖Pθ∗)dw(θ)

=

∫
U(θ∗)

χ2(Pθ‖Pθ∗)dw(θ)

≤ sup
θ∈U(θ∗)

χ2(Pθ‖Pθ∗) ≤ exp(ρ2t2θ∗)− 1

where, in the last inequality, we used the expression χ2(Pθ‖Pθ∗) = exp(‖θ −
θ∗‖22)− 1 and the fact that ‖θ− θ∗‖2 ≤ ρtθ∗ for all θ ∈ U(θ∗). We can therefore
take 1 + I to be exp(ρ2t2θ∗) in (3.8) which gives

RBayes(w) ≥
1

2
sup

{
t > 0 : sup

a∈U(θ∗)
w{θ ∈ Θ : ‖θ − a‖22 ≤ t} <

1

4
exp(−ρ2t2θ∗)

}
.

(3.9)
We shall now bound from above

sup
a∈U(θ∗)

w{θ ∈ Θ : ‖θ − a‖22 ≤ t} for
√
t = (1− β)ρ

(
1−
√

ρ2 + 4ρ
)
tθ∗

(3.10)
for a constant β ∈ (0, 1). The goal is to show that the above quantity is smaller
than exp(−ρ2t2θ∗)/4.

Because w is defined as the distribution of Ψ(Z) which is a maximizer of
〈Z,α− θ∗〉 − f(α) over α ∈ U(θ∗), the inequality

w(A) ≤ P

{
sup
α∈A

(〈Z,α− θ∗〉 − f(α)) ≥ sup
α∈U(θ∗)

(〈Z,α− θ∗〉 − f(α))

}

holds for every measureable subset A of Rn. Therefore for every a ∈ U(θ∗), the
prior probability w{θ ∈ Θ : ‖θ − a‖22 ≤ t} is bounded from above by

P

{
sup

θ∈Θ:‖θ−a‖2
2≤t

(〈Z, θ − θ∗〉 − f(θ)) ≥ sup
θ∈Θ:‖θ−θ∗‖2≤ρtθ∗

(〈Z, θ − θ∗〉 − f(θ))

}
.
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The above probability can be exactly written as P{M2 +M3 ≥ M1} where

M1 := sup
θ∈Θ:‖θ−θ∗‖2≤ρtθ∗

(〈Z, θ − θ∗〉 − f(θ)) ,

M2 := sup
θ∈Θ:‖θ−a‖2

2≤t

(〈Z, θ − a〉 − f(θ)) and M3 := 〈Z, a− θ∗〉 .

Now if γ ≥ 0 is such that EM1 − EM2 ≥ γ, then we can write:

P{M2 +M3 ≥ M1} = P {M2 − EM2 +M3 + EM1 −M1 ≥ EM1 − EM2}
≤ P {M2 − EM2 +M3 + EM1 −M1 ≥ γ}

≤ P

{
M2 − EM2 ≥ γ

3

}
+ P

{
M3 ≥ γ

3

}
+ P

{
M1 − EM1 ≤ −γ

3

}
≤ exp

(
−γ2

18t

)
+ exp

(
−γ2

18‖a− θ∗‖22

)
+ exp

(
−γ2

18ρ2t2θ∗

)
.

where the last inequality follows by standard Gaussian concentration and the
observation that (a) M2, as a function of Z, is Lipschitz with Lipschitz constant√
t, (b) M3, as a function of Z, is Lipschitz with Lipschitz constant ‖a− θ∗‖2,

and (c) M1, as a function of Z, is Lipschitz with Lipschitz constant ρtθ∗ .
We now use the fact that for every a ∈ U(θ∗), the inequality ‖a−θ∗‖2 ≤ ρtθ∗

holds to deduce that

w
{
θ ∈ Θ : ‖θ − a‖22 ≤ t

}
≤ exp

(
−γ2

18t

)
+ 2 exp

(
−γ2

18ρ2t2θ∗

)
≤ 3 exp

(
−γ2

18ρ2t2θ∗

)
as t ≤ ρ2t2θ∗(see (3.10)) (3.11)

Here γ is any nonnegative lower bound on EM1 − EM2. To obtain a suitable
value of γ, we argue as follows. Observe first that EM1 = mθ∗(ρtθ∗) and EM2 =
ma(

√
t) where m is defined in (2.2). Because θ∗ is chosen so that inequality (3.6)

is satisfied, we have EM1 = mθ∗(ρtθ∗) ≥ ma(ρta)− η. Thus

EM1 − EM2 ≥ ma(ρta)−ma(
√
t)− η.

We now use inequality (2.10) which states that

ta ≥
(
1−
√
ρ2 + 4ρ

)
tθ∗ for every a ∈ U(θ∗). (3.12)

Now from the expression for t given in (3.10) and inequality (3.12) above, it
is clear that

√
t ≤ ρta for every a ∈ U(θ∗). Therefore using concavity of ma(·)

(proved in Lemma 2.2) and inequality (2.5), we deduce

EM1 − EM2 ≥ ma(ρta)−ma(
√
t)− η

≥ ma(ta)−ma(ta − ρta +
√
t)− η by concavity of ma(·)
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≥ ta

(
ρta −

√
t
)
− η by inequality (2.5)

≥ ρβt2θ∗

(
1−
√
ρ2 + 4ρ

)2
− η

where the last inequality follows from inequality (3.12) and the expression for
t. We therefore take γ to be

γ = ρβt2θ∗

(
1−
√
ρ2 + 4ρ

)2
− η.

Inequality (3.11) then gives

sup
a∈U(θ∗)

w
{
θ ∈ Θ : ‖θ − a‖22 ≤ t

}
≤ 3 exp

⎛⎜⎝−
{
ρβtθ∗(1−

√
ρ2 + 4ρ)2 − η

}2

18ρ2t2θ∗

⎞⎟⎠ .

By a straightforward computation, it can be seen that the right hand side above
is strictly smaller than 1

4 exp(−ρ2t2θ∗) if and only if

1

18ρ2t2θ∗

(
ρβt2θ∗

(
1−
√

ρ2 + 4ρ
)2

− η

)2

− ρ2t2θ∗ > log 12 (3.13)

Now, as a result of the following inequality (note that we are working under the
condition infθ∈Θ tθ > b which implies that tθ∗ > b):(

ρβt2θ∗

(
1−
√
ρ2 + 4ρ

)2
− η

)2

≥
(
ρβt2θ∗

(
1−
√

ρ2 + 4ρ
)2

− η
t2θ∗

b2

)2

= t4θ∗

(
ρβ
(
1−
√

ρ2 + 4ρ
)2

− ηb−2

)2

,

a sufficient condition for (3.13) is

t2θ∗ > (log 12)

(
1

18ρ2

(
ρβ(1−

√
ρ2 + 4ρ)2 − ηb−2

)2
− ρ2

)−1

(3.14)

We now make the choices:

ρ = 0.0295 β = 0.42 η = 10−20 b = 51.53. (3.15)

With these, the right hand side of (3.14) can be calculated to be strictly smaller
than b2 so that the condition (3.14) holds because tθ∗ > b. Therefore we deduce
from inequality (3.9) that

RBayes(w) ≥
t

2
=

ρ2

2
(1− β)2

(
1−
√
ρ2 + 4ρ

)2
t2θ∗ .

Combining the above inequality with (3.7), we obtain

ρ2(1− β)2(1−
√
ρ2 + 4ρ)2

2(2 + 8ρ2 + 4
√
84b−1/2 + 168b−1)

∫
Θ

Eθ‖θ̂(X; Θ, f)− θ‖22dw(θ) ≤ RBayes(w)
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The constant above (for our choice of ρ, β and b in (3.15)) is at least 6.05×10−6.

This means therefore that θ̂(X; Θ, f) is C-Bayes with respect to w with C ≥
6.05× 10−6 in the case when infθ∈Θ tθ > b = 51.53.

It is also easy to check that for b = 51.53, the constant in (3.4) is also at least
6.05× 10−6. Therefore in every case, we have proved the existence of a prior w
such that θ̂(X; Θ, f) is C-Bayes with respect to w for C ≥ 6.05 × 10−6. This

means that θ̂(X; Θ, f) is C-admissible for some constant C ≥ 6.05× 10−6. This
completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Theorem 1.2 shows that for every n ≥ 1, Θ ∈ Cn and f ∈ F(Θ), the estimator

θ̂(X; Θ, f) is C-admissible over Θ for some C ≥ 6.05× 10−6. This immediately
implies that C∗ ≥ 6.05× 10−6. We therefore only need to prove that C∗ ≤ 1/2.

For this it is enough to show that for every ε > 0, there exists a closed convex
set Θ ⊆ R such that the LSE θ̂(X; Θ) satisfies

inf
d

sup
θ∈Θ

Eθ‖d(X)− θ‖22
Eθ‖θ̂(X; Θ)− θ‖22

≤ 1

2
+ ε. (4.1)

Note that θ̂(X; Θ) is a special case of θ̂(X; Θ, f) for f ≡ 0.
Let Θ := [−a, a] for some a > 0 (to be specified later). It is then clear that

θ̂(X; Θ) =

⎧⎨⎩
X if −a ≤ X ≤ a
a if X > a

−a if X < −a

Note now that

inf
θ∈Θ

Pθ{X > a} = P−a{X > a} = 1− Φ(2a).

and similarly

inf
θ∈Θ

Pθ{X < −a} = 1− Φ(2a).

Therefore for every θ ∈ Θ = [−a, a], we have

Eθ‖θ̂(X; Θ)− θ‖22 ≥ Eθ

(
‖θ̂(X; Θ)− θ‖22{X > a}

)
+ Eθ

(
‖θ̂(X; Θ)− θ‖22{X < −a}

)
= (θ − a)2Pθ{X > a}+ (θ + a)2Pθ{X < −a}
≥ (θ − a)2P−a{X > a}+ (θ + a)2Pa{X < −a}
≥ (1− Φ(2a))

[
(θ − a)2 + (θ + a)2

]
= 2 (1− Φ(2a))

(
θ2 + a2

)
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where in the third line above, we used the fact that infθ∈[−a,a] Pθ{X > a} =
P−a{X > a} and infθ∈[−a,a] Pθ{X < −a} = Pa{X > a}

As a result, we deduce that

inf
d

sup
θ∈Θ

Eθ‖d(X)− θ‖22
Eθ‖θ̂(X; Θ)− θ‖22

≤ sup
θ∈Θ

θ2

Eθ‖θ̂(X; Θ)− θ‖22

≤ 1

2(1− Φ(2a))
sup
θ∈Θ

θ2

θ2 + a2
=

1

4(1− Φ(2a))

where in the first inequality above, we bounded the infimum over all estimators
d by the simple estimator d(X) ≡ 0. Note now that by taking the limit a ↓ 0,
the right hand side above goes to 1/2. Therefore it is possible to choose a small
enough depending on ε to ensure (4.1). This proves C∗ ≤ 1/2 and completes the
proof of Theorem 1.3.

5. Proofs of Theorem 2.1 and Lemma 2.2

In this section, we shall provide proofs for Theorem 2.1 and Lemma 2.2. We
first give the proof of Lemma 2.2 below before proceeding to the proof of The-
orem 2.1. This is because parts of Lemma 2.2 will be useful for proving Theo-
rem 2.1.

Proof of Lemma 2.2 . 1. Fix θ ∈ Θ. We need to prove that mθ(·) is a non-
decreasing and concave function. It is trivial to see that mθ is a non-decreasing
function because the sets {α ∈ Θ : ‖α − θ‖2 ≤ t} are increasing in t. To prove
concavity of mθ, observe that it is enough to show that

Hθ(t) := sup
α∈Θ:‖α−θ‖2≤t

(〈X − θ, α− θ〉 − f(α))

is concave for every X ∈ R
n and θ ∈ Θ. This is because mθ(t) = EHθ(t).

To prove concavity of Hθ, let us fix 0 ≤ t1 < t2 < ∞, 0 < u < 1 and t =
(1 − u)t1 + ut2. For every η > 0, by the definition of Hθ(t), for each i = 1, 2,
there exists θi ∈ Θ with ‖θi − θ‖2 ≤ ti such that

Hθ(ti) ≤ 〈X − θ, θi − θ〉 − f(θi) + η.

Now with α := (1 − u)θ1 + uθ2, it is easy to see that ‖α − θ‖2 ≤ t, α ∈ Θ and,
by convexity of f , that

Hθ(t) ≥ 〈X − θ, α− θ〉 − f(α)

≥ (1− u) [〈X − θ, θ1 − θ〉 − f(θ1)] + u [〈X − θ, θ2 − θ〉 − f(θ2)]

≥ (1− u)Hθ(t1) + uHθ(t2)− η.

Because η > 0 is arbitrary, this proves concavity of Hθ on [0,∞) which implies
concavity of mθ on [0,∞).
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2. The concavity of mθ implies that Gθ(t) := mθ(t)− t2/2 is strictly concave
on [0,∞). Moreover

mθ(t) = Eθ

(
sup

α∈Θ:‖α−θ‖2≤t

{〈X − θ, α− θ〉 − f(α)}
)

≤ Eθ

(
sup

α∈Θ:‖α−θ‖2≤t

〈X − θ, α− θ〉
)

− inf
α∈Θ

f(α)

≤ ‖X − θ‖2t− inf
α∈Θ

f(α)

where, in the last inequality above, we used the Cauchy-Schwarz inequality. As
a result, Gθ(t) = mθ(t)− t2/2 converges to −∞ as t ↑ +∞. This, together with
strict concavity of Gθ(·) on [0,∞), immediately imply that Gθ has a unique
maximizer tθ over [0,∞).

3. Fix θ ∈ Θ and t ≥ 0. Then the inequality Gθ(tθ) ≥ Gθ(t) holds because tθ
maximizes Gθ(·). This inequality is equivalent to

mθ(t) ≤ mθ(tθ) +
t2 − t2θ

2
.

Applying this inequality to (1− u)tθ + ut instead of t for a fixed u ∈ (0, 1), we
obtain

mθ((1− u)tθ + ut) ≤ mθ(tθ) +
(−2u+ u2)t2θ + u2t2 + 2u(1− u)t tθ

2
.

Using mθ((1−u)tθ+ut) ≥ (1−u)mθ(tθ)+u mθ(t) on the right hand side above,
we get

u mθ(t) ≤ u mθ(tθ) +
(−2u+ u2)t2θ + u2t2 + 2u(1− u)t tθ

2
..

Dividing both sides of the above inequality by u and then letting u → 0, we
obtain

mθ(tθ)−mθ(t) ≥ t2θ − t tθ

which proves (2.5).
4. The expression Gθ(t) := mθ(t) − t2/2 implies that inequality (2.6) is

equivalent to (2.5). Therefore, inequality (2.6) follows from the previous part.

5. To prove (2.7), we first observe that the map X 
→ θ̂(X; Θ, f) is 1-Lipschitz
(for a proof of this standard fact, see e.g., van de Geer and Wainwright (2015,
Proof of Theorem 2.1)). As a result, for every θ1, θ2 ∈ Θ, we can write (for

simplicity below, we write θ̂(X) for θ̂(X; Θ, f))

‖θ̂(X)− θ1‖2 ≤ ‖θ̂(X)− θ̂(X − θ1 + θ2)‖2 + ‖θ̂(X − θ1 + θ2)− θ2‖2
+ ‖θ1 − θ2‖2
≤ ‖θ̂(X − θ1 + θ2)− θ2‖2 + 2‖θ1 − θ2‖2
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where the first inequality is due to the triangle inequality while the second
inequality is because ‖θ̂(X)− θ̂(X − θ1 + θ2)‖2 ≤ ‖θ1 − θ2‖2 by the 1-Lipschitz

property of X 
→ θ̂(X). By squaring both sides of the above displayed inequality
and using (a+ b)2 ≤ 2a2 + 2b2, we get

‖θ̂(X)− θ1‖22 ≤ 2‖θ̂(X − θ1 + θ2)− θ2‖22 + 8‖θ1 − θ2‖22.

Taking expectations with respect to X ∼ N(θ1, In) on both sides and using the
fact that X − θ1 + θ2 ∼ N(θ2, In), we obtain the required inequality (2.7).

6. Fix θ1, θ2 ∈ Θ and observe that, for every t ≥ 0, we have

mθ2(t) = Eθ2

(
sup

α∈Θ:‖α−θ2‖2≤t

{〈X − θ2, α− θ2〉 − f(α)}
)

= Eθ2

(
sup

α∈Θ:‖α−θ2‖2≤t

{〈X − θ2, α〉 − f(α)}
)

≤ Eθ2

(
sup

α∈Θ:‖α−θ1‖2≤t+‖θ1−θ2‖2

{〈X − θ2, α〉 − f(α)}
)

= Eθ1

(
sup

α∈Θ:‖α−θ1‖2≤t+‖θ1−θ2‖2

{〈X − θ1, α− θ1〉 − f(α)}
)

= mθ1(t+ ‖θ1 − θ2‖2).

Switching the roles of θ1 and θ2, we obtain

mθ1(t) ≤ mθ2(t+ ‖θ1 − θ2‖2).

Combining the above two inequalities, we deduce that

mθ1(t− ‖θ1 − θ2‖2) ≤ mθ2(t) ≤ mθ1(t+ ‖θ1 − θ2‖2)

provided ‖θ1 − θ2‖2 ≤ t. Using Gθ2(t) = mθ2(t)− t2/2, we further deduce that

mθ1(t− ‖θ1 − θ2‖2)−
t2

2
≤ Gθ2(t) ≤ mθ1(t+ ‖θ1 − θ2‖2)−

t2

2

Therefore for every t ≥ 0, we have

Gθ2(tθ1 + ‖θ1 − θ2‖2)−Gθ2(t) ≥
{
mθ1(tθ1)−

1

2
(tθ1 + ‖θ1 − θ2‖2)2

}
−
{
mθ1(t+ ‖θ1 − θ2‖2)−

t2

2

}
= {mθ1(tθ1)−mθ1(t+ ‖θ1 − θ2‖2)}

− 1

2

{
(tθ1 + ‖θ1 − θ2‖2)2 − t2

}
≥ tθ1 (tθ1 − t− ‖θ1 − θ2‖2)
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− 1

2

{
(tθ1 + ‖θ1 − θ2‖2)2 − t2

}
where we used (2.5) for the last inequality above. Simplifying the right hand
side above, we deduce that

Gθ2(tθ1+‖θ1−θ2‖2)−Gθ2(t) ≥
1

2
(t− tθ1)

2− 1

2
‖θ1−θ2‖22−2tθ1‖θ1−θ2‖2. (5.1)

From this expression, it follows that

Gθ2(tlow) ≤ Gθ2(tθ1 + ‖θ1 − θ2‖2) ≤ Gθ2(tup) (5.2)

for

tlow := tθ1 −
√

‖θ1 − θ2‖22 + 4tθ1‖θ1 − θ2‖2
and

tup := tθ1 +
√
‖θ1 − θ2‖22 + 4tθ1‖θ1 − θ2‖2

as long as tlow ≥ 0. Inequality (5.2), together with the fact that Gθ2(·) is strictly
concave on [0,∞) (this follows from concavity of mθ(·) and the observation that
t 
→ −t2/2 is strictly concave) implies that tlow ≤ tθ2 ≤ tup as long as tlow ≥ 0.
Because tθ2 is always nonnegative, we deduce inequalities (2.8) and (2.9) for
every θ1, θ2 ∈ Θ. It is easy to see that inequality (2.10) is a simple consequence
of (2.8) and (2.9).

Proof of Theorem 2.1. Let Z := X − θ ∼ N(0, In). By the calculation

‖X − α‖22 = ‖Z + θ − α‖22 = ‖Z‖22 − 2 〈Z,α− θ〉+ ‖α− θ‖22,

it follows that

θ̂(X; Θ, f) = argmax
α∈Θ

{
〈Z,α− θ〉 − f(α)− 1

2
‖α− θ‖22

}
(5.3)

For convenience, we shall write θ̂ for θ̂(X; Θ, f) in the rest of the proof.

From (5.3), one can see as follows that ‖θ̂−θ‖2 maximizes the function Ãθ(t)
over t ≥ 0 where

Ãθ(t) := sup
θ∈Θ:‖α−θ‖2=t

{〈Z,α− θ〉 − f(α)} − t2

2
.

To see this, just observe that

Ãθ(‖θ̂ − θ‖2) = sup
θ∈Θ:‖α−θ‖2=‖θ̂−θ‖2

{〈Z,α− θ〉 − f(α)} − ‖θ̂ − θ‖22
2

≥
〈
Z, θ̂ − θ

〉
− f(θ̂)− ‖θ̂ − θ‖22

2

= sup
α∈Θ

(
〈Z,α− θ〉 − f(α)− ‖α− θ‖22

2

)
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≥ sup
α∈Θ:‖α−θ‖2=t

(
〈Z,α− θ〉 − f(α)− ‖α− θ‖22

2

)
= Ãθ(t)

for every t ≥ 0. Using this fact, we shall now argue that ‖θ̂−θ‖2 also maximizes
the function Aθ(t) over t ≥ 0 where

Aθ(t) := sup
θ∈Θ:‖α−θ‖2≤t

{〈Z,α− θ〉 − f(α)} − t2

2
.

Note that the difference between Ãθ(t) and Aθ(t) is that the supremum is taken
over ‖α− θ‖2 = t in Ãθ(t) while it is over the larger set ‖α− θ‖2 ≤ t in Aθ(t).

This in particular means that Ãθ(t) ≤ Aθ(t) for every t ≥ 0. To see that ‖θ̂−θ‖2
maximizes Aθ(t), fix t ≥ 0 and η > 0. By definition of Aθ(t), there exists α ∈ Θ
with ‖α− θ‖2 ≤ t such that

Aθ(t) ≤ 〈Z,α− θ〉 − f(α) + η − t2

2
.

Because ‖α− θ‖2 ≤ t, we can write

Aθ(t) ≤ 〈Z,α− θ〉 − f(α) + η − t2

2

≤ 〈Z,α− θ〉 − f(α) + η − ‖α− θ‖22
2

≤ Ãθ(‖α− θ‖2) + η

≤ Ãθ(‖θ̂ − θ‖2) + η because ‖θ̂ − θ‖2 maximizes Ãθ(·)
≤ Aθ(‖θ̂ − θ‖2) + η because Ãθ(t) ≤ Aθ(t) for every t ≥ 0.

Because t ≥ 0 and η > 0 are arbitrary, we have proved that ‖θ̂− θ‖2 maximizes
Aθ(t) over t ≥ 0.

Note now that Aθ(t) is a concave function of t ≥ 0. This is because the
function

t 
→ sup
α∈Θ:‖α−θ‖2≤t

(〈Z,α− θ〉 − f(α))

is concave as shown in the proof of Lemma 2.2(1) and also t 
→ −t2/2 is trivially
concave. As a result of the concavity of Aθ(·), it follows that for every δ ≥ 0,

‖θ̂ − θ‖2 < tθ + δ (5.4)

provided

max (EθAθ(tθ)−Aθ(tθ), Aθ(tθ + δ)− EθAθ(tθ + δ))

<
1

2
{EθAθ(tθ)− EθAθ(tθ + δ)} . (5.5)
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To see this, assume that (5.5) holds for some δ ≥ 0. Then, if B := (EθAθ(tθ) +
EθAθ(tθ + δ))/2, then (5.5) implies that

Aθ(tθ) > EθAθ(tθ)−
1

2
(EθAθ(tθ)− EθAθ(tθ + δ)) = B

and also

Aθ(tθ + δ) < EθAθ(tθ + δ) +
1

2
(EθAθ(tθ)− EθAθ(tθ + δ)) = B.

We thus have Aθ(tθ + δ) < B < Aθ(tθ). Because Aθ(·) is concave, this implies
that every maximizer of Aθ has to be strictly smaller than tθ + δ which proves
(5.4). From (5.4), we immediately have

Pθ

{
‖θ̂ − θ‖2 ≥ tθ + δ

}
(5.6)

≤ Pθ

{
EθAθ(tθ)−Aθ(tθ) ≥

Δ

2

}
+ Pθ

{
Aθ(tθ + δ)− EθAθ(tθ + δ) ≥ Δ

2

}
where

Δ := EθAθ(tθ)− EθAθ(tθ + δ).

We now note that EθAθ(t) = mθ(t) − t2/2 = Gθ(t) where Gθ(t) and mθ(t) are
defined in (2.1) and (2.2) respectively. Therefore, from Lemma 2.2(4), we get

Δ = Gθ(tθ)−Gθ(tθ + δ) ≥ δ2

2
.

Thus (5.6) gives

Pθ

{
‖θ̂ − θ‖2 ≥ tθ + δ

}
≤ Pθ

{
EθAθ(tθ)−Aθ(tθ) ≥

δ2

4

}
+ P

{
Aθ(tθ + δ)− EθAθ(tθ + δ) ≥ δ2

4

}
We now use the trivial fact that for every t ≥ 0, the quantity Aθ(t), as a function
of Z, is Lipschitz with Lipschitz constant t. Therefore, by standard concentration
for Lipschitz functions of Gaussian random variables, we get

Pθ

{
‖θ̂ − θ‖2 ≥ tθ + δ

}
≤ exp

(
−δ4

32t2θ

)
+ exp

(
−δ4

32(tθ + δ)2

)
≤ 2 exp

(
−δ4

32(tθ + δ)2

)
which proves inequality (2.3).

We now turn to the proof of (2.4). For convenience, let L := ‖θ̂(X; Θ, f)−θ‖2.
First assume that tθ ≥ 1. Using (2.3), we can write

Pθ

{
L ≥ tθ + x

√
tθ
}
≤ 2 exp

⎛⎜⎝ −x4

32
(
1 + xt

−1/2
θ

)2
⎞⎟⎠ ≤ 2 exp

(
−x4

32(1 + x)2

)
.
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As a result, via the identity EX2
+ = 2

∫∞
0

xP{X ≥ x}dx which holds for every
random variable X, we obtain

Eθ

(
L− tθ√

tθ

)2

+

= 2

∫ ∞

0

x Pθ

{
L ≥ tθ + x

√
tθ
}
dx

≤ 4

∫ ∞

0

x exp

(
−x4

32(1 + x)2

)
dx ≤ 84.

where we have also used the fact that the integral above is at most 21 (as can
be verified by numerical computation). Note that the above bound also implies
that

Eθ

(
L− tθ√

tθ

)
+

≤
√
84.

Thus if L := ‖θ̂(X; Θ, f)− θ‖2, then the inequality

L ≤ (L− tθ)
2
+ + t2θ + 2tθ(L− tθ)+ (5.7)

together with the above two bounds for E(L− tθ)
2
+ and Eθ(L− tθ)+ proves (2.4)

in the case when tθ ≥ 1.
When tθ ≤ 1, inequality (2.3) gives

Pθ {L ≥ tθ + x} ≤ 2 exp

(
−x4

32(t+ x)2

)
≤ 2 exp

(
−x4

32(1 + x)2

)
which implies, as before, that

Eθ(L− tθ)
2
+ ≤ 84 and Eθ(L− tθ)+ ≤

√
84.

so that the required inequality (2.4) again follows from (5.7).
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