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Abstract: This is a study of principal component analysis performed on a
statistical sample. We assume that this data sample is made of independent
copies of some random variable ranging in a separable real Hilbert space.
This covers data in function spaces as well as data represented in repro-
ducing kernel Hilbert spaces. Based on some new inequalities about the
perturbation of nonnegative self-adjoint operators, we provide new bounds
for the statistical fluctuations of the principal component representation
with the draw of the statistical sample.

We suggest two kinds of improvements to decrease these fluctuations:
the first is to use a robust estimate of the covariance operator, for which
non-asymptotic bounds of the estimation error are available under weak
polynomial moment assumptions. The second improvement is to use some
modification of the projection on the principal components based on func-
tional calculus applied to the covariance operator. Using this modified pro-
jection, we can obtain bounds that do not depend on the spectral gap but
on some more favorable factor.

In appendix, we provide a new approach to the analysis of the relative
positions of two orthogonal projections that is useful for our proofs and
that has an interest of its own.
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1. Introduction

Principal Component Analysis (PCA) is a classical tool for dimensionality re-
duction that relies on the spectral properties of the covariance matrix. In this
paper we consider a data set (X1, . . . , Xn) made of independent copies of a
random variable X taking its values in a real separable Hilbert space H.

The basic idea of PCA is to reduce the dimensionality of X by projecting
it into a finite dimension linear subspace while keeping the variance as high as
possible. This subspace, as is well known, is the linear span of the eigenvectors
of the covariance operator associated with the largest eigenvalues and called the
principal components of X.

Several results can be found in the literature concerning the non-asymptotic
setting. These results rely on sharp non-asymptotic bounds for the approx-
imation error of the covariance matrix (e.g. Rudelson [18], Tropp [22], Ver-
shynin [23]).

PCA in a separable Hilbert space that we consider here includes the analysis
of samples in a functional space (PCA for functional data, Ramsay and Silver-
man [17]) and of samples embedded in a reproducing kernel Hilbert space. The
latter is for example the case of kernel PCA, that uses the kernel trick to embed
the dataset in a reproducing kernel Hilbert space in order to get a representation
with a simplified geometry. (e.g. Schölkopf, Smola, Müller [21], Zwald, Bousquet,
Blanchard [25], Shawe-Taylor, Williams, Cristianini, Kandola [19], [20]).

We consider the covariance operator

Σ = E
(〈

, X − E(X)
〉 (

X − E(X)
))

(1.1)

where E is the expectation with respect to the law of the random vector X, or
the Gram operator

G = E
(
〈 , X〉X

)
,

whose principal eigenvectors provides the directions with maximum energy in-
stead of maximum variance. Moreover, as we will show, the study of Σ can be
deduced from the study of G.

We assume that the law of X is unknown, so that we cannot work directly
with Σ but we have to construct an estimator Σ̂ as a function of the sample
(X1, . . . , Xn). Results concerning the estimation of the spectral projectors of
the covariance operator by their empirical counterparts in a Hilbert space can
be found in Koltchinskii, Lounici [14], [15]. The authors study the problem in
the case of Gaussian centered random vectors, based on the bounds obtained
in [13], and in the setting where both the sample size n and the trace of the
covariance operator are large.

A question that arises in standard PCA is how to determine the number of
relevant components. A common choice is to maximise the gap between the
lowest eigenvalue that is kept and the next one.

This type of choice is justified by the fact that the bounds available for the
statistical deviations of the representation depend on the inverse of this spectral
gap.
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Our goal is to improve these bounds by improving on one hand the choice of
the estimator Σ̂ of the covariance matrix and on the other hand the choice of
the representation itself, to make principal component analysis more robust to
statistical fluctuations depending on the draw of the sample (X1, . . . , Xn).

So the kind of robustness we are after is not the same as in Candès, Li,
Ma, Wright in [3] where they show that it is possible to recover the principal
components of a data matrix in the case where the observations are contained
in a low-dimensional space but arbitrarily corrupted by additive noise.
Our approach provides two kinds of robustness. The first idea is to replace
the projection on the principal eigenvectors by an alternative using functional
calculus on the covariance operator. The fluctuations of this modified projection
from sample to sample can be bounded depending on a quantity that is more
favorable than the spectral gap.

While this improvement is of no help if we are precisely interested in per-
forming a projection on the span of a given number of eigenvectors, in many
situations, PCA is used more loosely to shrink the dimension of the data space
while keeping as much of the variance as possible. One example of such a case
is k-means unsupervised clustering for high-dimensional data. The usual recom-
mendation is to avoid using directly the k-means algorithm in a high-dimensional
space, but rather to perform a PCA reduction first. In such a context, except in
some restrictive models, there is no reason why there should always be a large
gap between meaningful and meaningless eigenvalues. Nonetheless, we still need
a stable dimension reduction method, because it is still desirable to minimise
the fluctuations of the cluster boundaries when the statistical sample used to
compute them is replaced by another one. To start with, we cannot hope to
compute stable clusters if we base the clustering on a change of representation
that is sample dependent. This is where our modified projection may help: it will
remain weakly dependent on the statistical sample choice (the precise meaning
of this statement being provided by a non-asymptotic bound), even when no
large spectral gap is available.

The second kind of robustness consists in using an estimator of the covari-
ance operator from a statistical sample that has sub-exponential non asymptotic
deviation bounds under polynomial moment assumptions, as explained in sec-
tion 3 on page 3912.

The paper is divided into two parts. One is devoted to the theory of pertur-
bations of nonnegative self-adjoint operators and the other one to the statistical
analysis of PCA. In appendix, we propose a new treatment to the analysis of
the relative positions of two projections, that we need for the proofs, and that
has also some interest of its own.

2. A contribution to the perturbation theory of nonnegative
self-adjoint operators

Proposition 2.1. Let A,B : H → H be two compact self-adjoint nonnega-
tive operators on the separable real Hilbert space H. According to the spectral
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representation theorem, we can write

A =

∞∑
i=1

λi〈 , pi〉pi,

B =
∞∑
i=1

μi〈 , qi〉qi,

where {pi, 1 ≤ i < ∞} (resp. {qi, 1 ≤ i < ∞}) form an orthonormal basis of
eigenvectors of A (resp. B) and where λ1 ≥ λ2 ≥ · · · are the eigenvalues of A
(resp. μ1 ≥ μ2 ≥ · · · are the eigenvalues of B), sorted in decreasing order and
satisfying

lim
i→∞

λi = 0, (resp. lim
i→∞

μi = 0).

Let us consider the orthogonal projectors on the span of the r first eigenvectors
of each operator, defined as

Πr(A) =

r∑
i=1

〈 , pi〉pi,

Πr(B) =

r∑
i=1

〈 , qi〉qi.

Define the spectral gaps

γr(A,B) = max
{
λr − μr+1, μr − λr+1

}
≥ 1

2

(
λr − λr+1 + μr − μr+1

)
≥ 1

2
max

{
λr − λr+1, μr − μr+1

}
≥ 0

and γ̃r(A,B) = max
{
0,min{λr − μr+1, μr − λr+1}

}
.

The differences Πr(A)−Πr(B) and A−B are related by the relations

∥∥Πr(A)−Πr(B)
∥∥
∞ ≤

√
r

γr(A,B)
‖A−B‖∞,

∥∥Πr(A)−Πr(B)
∥∥
HS

≤
√
2r

γr(A,B)
‖A−B‖∞,

∥∥Πr(A)−Πr(B)
∥∥
HS

≤
√
2‖A−B‖HS
γr(A,B)

,

∥∥Πr(A)−Πr(B)
∥∥
HS

≤ ‖A−B‖HS
γ̃r(A,B)

,

where ‖ ‖∞ is the operator norm and ‖ ‖HS is the Hilbert-Schmidt norm.
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Proof. Recall that

‖A‖2HS = Tr(A∗A) =
∞∑
i=1

‖Aei‖2 =

∞∑
i=1

λ2
i

for any orthonormal basis {ei, 1 ≤ i < ∞} of H. Our proofs are essentially based
on the identity

A−B =

∞∑
i=1

∞∑
j=1

(
λi − μj

)
〈pi, qj〉〈 , pi〉qj ,

=
∞∑
i=1

∞∑
j=1

(
λi − μj

)
〈pi, qj〉〈 , qj〉pi, (2.1)

and its consequence

‖A−B‖2HS =
∞∑
i=1

∞∑
j=1

(
λi − μj

)2〈pi, qj〉2, (2.2)

as well as on the relative positions of two projections, as described in the ap-
pendix. Eq. (2.1) is implied by the identities

pi =

∞∑
j=1

〈pi, qj〉qj and qj =

∞∑
i=1

〈pi, qj〉pi.

According to Lemma A.4 on page 3921,∥∥Πr(A)−Πr(B)
∥∥2

∞ = sup
u∈S∩ImΠr(B)

∥∥[Πr(A)−Πr(B)
]
u
∥∥2

,

where S denotes the unit sphere of H. Moreover, for any u ∈ S ∩ ImΠr(B),

∥∥[Πr(A)−Πr(B)
]
u
∥∥2

=
∥∥Πr(A)− u

∥∥2
=

∥∥∥∥ ∞∑
i=r+1

〈u, pi〉pi
∥∥∥∥2

=

∞∑
i=r+1

〈u, pi〉2.

On the other hand, u =

r∑
j=1

〈u, qj〉qj and

r∑
j=1

〈u, qj〉2 = ‖u‖2 = 1.

Using the Cauchy-Schwarz inequality and assuming without loss of generality
that μr − λr+1 ≥ 0, we get

∥∥[Πr(A)−Πr(B)
]
u
∥∥2

=

∞∑
i=r+1

( r∑
j=1

〈u, qj〉〈qj , pi〉
)2

≤
∞∑

i=r+1

r∑
j=1

〈qj , pi〉2

≤
∞∑

i=r+1

r∑
j=1

(μj − λi)
2

(μr − λr+1)2
〈pi, qj〉2 ≤

r∑
j=1

∞∑
i=1

(λi − μj)
2

(μr − λr+1)2
〈pi, qj〉2

=

r∑
j=1

‖(A−B)qj‖2
(μr − λr+1)2

≤ r

(μr − λr+1)2
‖A−B‖2∞. (2.3)
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Exchanging the roles of A and B, this proves also that when λr − μr+1 ≥ 0,

∥∥Πr(A)−Πr(B)
∥∥2

∞ ≤
r∑

i=1

‖(A−B)pi‖2
(λr − μr+1)2

≤ r

(λr − μr+1)2
‖A−B‖2∞,

so that

‖Πr(A)−Πr(B)‖∞ ≤
√
r

γr(A,B)
‖A−B‖∞.

According to Lemma A.4 again, assuming without loss of generality that μr −
λr+1 ≥ 0, and using eq. (2.3), we see that

‖Πr(A)−Πr(B)‖2HS = 2

r∑
j=1

∥∥(Πr(A)−Πr(B)
)
qj
∥∥2

= 2

r∑
j=1

∞∑
i=r+1

〈pi, qj〉2 ≤ 2

r∑
j=1

‖(A−B)qj‖2
(μr − λr+1)2

,

so that ∥∥Πr(A)−Πr(B)
∥∥2

HS
≤ 2r

(μr − λr+1)2
‖A−B‖2∞

and
∥∥Πr(A)−Πr(B)

∥∥2

HS
≤ 2

(μr − λr+1)2
‖A−B‖2HS.

Exchanging A and B, this proves also that∥∥Πr(A)−Πr(B)
∥∥2

HS
≤ 2r

(λr − μr+1)2
‖A−B‖2∞

and
∥∥Πr(A)−Πr(B)

∥∥2

HS
≤ 2

(λr − μr+1)2
‖A−B‖2HS,

and therefore that∥∥Πr(A)−Πr(B)
∥∥
HS

≤
√
2min

{√
r‖A−B‖∞, ‖A−B‖HS

}
γr(A,B)

.

Let us now assume without loss of generality that λr−μr+1 > 0 and μr−λr+1 >
0 (because otherwise γ̃r(A,B) = 0 and there is nothing to prove). Applying eq.
(2.2) to Πr(A) and Πr(B) shows that

∥∥Πr(A)−Πr(B)
∥∥2

HS
=

(
r∑

i=1

∞∑
j=r+1

+

∞∑
i=r+1

r∑
j=1

)
〈pi, qj〉2

≤ 1

min{(λr − μr+1)+, (μr − λr+1)+}2
∞∑
i=1

∞∑
j=1

(λi − μj)
2〈pi, qj〉2

=
‖A−B‖2HS
γ̃r(A,B)

.
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Except maybe for the precise definition of the spectral gap, the last two results
are well-known, but usually proved in a different way, applying the Cauchy
integral formula to the resolvent. One advantage of our proof is to lead to a
definition of the spectral gap γr(A,B) ≥

(
λr − λr+1

)
/2 that is bounded from

below independently of the value of B, so that we do not need to assume that the
perturbation B −A is small in any sense and still get a meaningful bound.

Proposition 2.2. In the same setting as in Proposition 2.1 on page 3905, let
us consider some arbitrary L-Lipschitz function f : R+ → R and define

f(A) =

∞∑
i=1

f(λi)〈 , pi〉pi.

Define similarly f(B). The transformed operators f(A) and f(B) are such that

‖f(A)− f(B)‖HS ≤ L‖A−B‖HS
≤ L inf

r∈N

√
2r‖A−B‖2∞ +Trr+1(A2) +Trr+1(B2)

≤ 23/4L‖A−B‖1/2∞

(
Tr(A)2 +Tr(B)2

)1/4

,

and ‖f(A)− f(B)‖∞ ≤ L

(
‖A−B‖∞ + inf

r∈N

√
8r‖A−B‖2∞ + 2Trr+1(A2)

)
,

≤ L

(
‖A−B‖∞ + 2

√
2‖A−B‖1/2∞ Tr(A)1/2

)
,

where Trr+1(A
2) =

∞∑
i=r+1

λ2
i .

Remark 2.1. For the second bound to be finite, A should be Hilbert-Schmidt,
but not necessarily B. On the other hand, as may be expected, the first bound
is finite only when both A and B are Hilbert-Schmidt operators. Note that the
question of extending inequalities for projections to other functions of A and
B was already identified as important in [6, Open question 10.4, page 44]. We
will explain in the next section how to use functional calculus to replace the
usual principal component representation by some alternative for which more
favorable statistical deviation bounds can be proved.

Proof. First remark that

∥∥f(A)− f(B)
∥∥2

HS
=

∞∑
i=1

∞∑
j=1

(
f(λi)− f(μj)

)2〈pi, qj〉2
≤ L2

∞∑
i=1

∞∑
j=1

(
λi − μj

)2〈pi, qj〉2 = L2‖A−B‖2HS.
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Moreover, for any positive integer r,

‖A−B‖2HS =
∞∑
i=1

∞∑
j=1

(
λi − μj

)2〈pi, qj〉2
≤

(
r∑

i=1

∞∑
j=1

+

∞∑
i=1

r∑
j=1

+

∞∑
i=r+1

∞∑
j=r+1

)(
λi − μj

)2〈pi, qj〉2
=

r∑
i=1

‖(A−B)pi‖2 +
r∑

j=1

‖(A−B)qj‖2 +
∞∑

i=r+1

∞∑
j=r+1

(
λi − μj

)2〈pi, qj〉2
≤ 2r‖A−B‖2∞ +

∞∑
i=r+1

∞∑
j=r+1

(
λ2
i + μ2

j

)
〈pi, qj〉2

≤ 2r‖A−B‖2∞ +

∞∑
i=r+1

λ2
i +

∞∑
j=r+1

μ2
j ,

proving that

‖A−B‖HS ≤ inf
r∈N

√
2r‖A−B‖2∞ +Trr+1(A2) +Trr+1(B2).

Let us now remark that

Trr+1(A
2) ≤ λr+1 Tr(A) ≤ (r + 1)−1 Tr(A)2,

so that

inf
r∈N

√
2r‖A−B‖2∞ +Trr+1(A2) +Trr+1(B2)

≤ inf
r∈N

√
2r‖A−B‖2∞ + (r + 1)−1

(
Tr(A)2 +Tr(B)2

)
.

Consider r∗ =

√
Tr(A)2 +Tr(B)2

2‖A−B‖2∞
and choose r such that r ≤ r∗ ≤ r + 1.

Remark that for this choice of r√
2r‖A−B‖2∞ + (r + 1)−1

(
Tr(A)2 +Tr(B)2

)
≤

√
2r∗‖A−B‖2∞ + r−1

∗
(
Tr(A)2 +Tr(B)2

)
=

√
2‖A−B‖∞

√
2
(
Tr(A)2 +Tr(B)2

)
,

so that
‖A−B‖HS ≤ 23/4‖A−B‖1/2∞

(
Tr(A) +Tr(B)

)1/4
.

Introduce C =

∞∑
i=1

λi〈 , qi〉qi the operator obtained by replacing μi by λi in the

definition of B, and remark that

‖f(A)− f(B)‖∞ ≤ ‖f(A)− f(C)‖∞ + ‖f(C)− f(B)‖∞.



Robust PCA and pairs of projections in Hilbert spaces 3911

On the one hand,

‖f(C)− f(B)‖2∞ = sup
u∈S

∞∑
i=1

(
f(λi)− f(μi)

)2〈u, qi〉2
= sup

i

(
f(λi)− f(μi)

)2 ≤ L2 sup
i

(
λi − μi

)2 ≤ L2‖A−B‖2∞,

where the last inequality will be proved later, in Proposition 2.3. On the other
hand,

‖f(A)− f(C)‖∞ ≤ ‖f(A)− f(C)‖HS
≤ L inf

r∈N

√
2r‖A− C‖2∞ +Trr+1(A) +Trr+1(C)

≤ 23/4L‖A− C‖1/2∞
(
Tr(A)2 +Tr(B)2

)1/4
We can then remark that

‖A− C‖∞ ≤ ‖A−B‖∞ + ‖B − C‖∞ ≤ 2‖A−B‖∞,

and that Trr+1(C) = Trr+1(A), to conclude that

‖f(A)− f(C)‖∞ ≤ L inf
r∈N

√
8r‖A−B‖2∞ + 2Trr+1(A2)

≤ 23/2L‖A−B‖1/2∞ Tr(A)1/2.

Proposition 2.3. Let S be the unit sphere of H. In the same setting as in
Proposition 2.1 on page 3905, assume that for some non-decreasing function
g : R+ → R+, for any u ∈ S,∣∣〈(A−B)u, u〉

∣∣ ≤ g
(
〈Au, u〉

)
.

Assume moreover that t �→ t− g(t) is also non-decreasing on R+. Then for any
positive integer i,

|λi − μi| ≤ g(λi).

In particular taking for g the constant function equal to ‖A − B‖∞, we obtain
that

sup
i≥1

|λi − μi| ≤ ‖A−B‖∞.

Proof. Let us remark that

λi = inf
e
sup

{
〈Au, u〉, u ∈ span{e1, . . . , ei−1}⊥ ∩ S

}
,

where the infimum is taken on all families of i − 1 independent vectors e1, . . . ,
ei−1. This is similar to inequality (1.10) of [6] and is also related to eq. (6.73)
on page 60 of [11] (or page 62 of [12]). Consequently,

λi − g(λi) = inf
e
sup

{
〈Au, u〉 − g

(
〈Au, u〉

)
, u ∈ span{e1, . . . , ei−1}⊥ ∩ S

}
≤ sup

{
〈Bu, u〉, u ∈ span{q1, . . . , qi−1}⊥ ∩ S

}
= μi.
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On the other hand,

μi = inf
e
sup

{
〈Bu, u〉, u ∈ span{e1, . . . , ei−1}⊥ ∩ S

}
≤ sup

{
〈Au, u〉+ g

(
〈Au, u〉

)
, u ∈ span{p1, . . . , pi−1}⊥ ∩ S

}
= λi + g(λi).

3. Statistical study of principal component analysis in a separable
Hilbert space

In this section, we will apply the previous bounds on the perturbation of a
self-adjoint operator to the estimation of the principal components of a random
vector X taking its values in a real separable Hilbert space H.

In [8, Proposition 3.4] we constructed an estimator Ĝ of the Gram operator
G = E

(
〈 , X〉X

)
satisfying the following properties (where we have made the

choice of σn explained just after [8, eq. (2.13)]).

Proposition 3.1. Assume that

Tr(G) = E
(
‖X‖2

)
≤ T < ∞

and that

sup

{
E
(
〈u,X〉4

)
E
(
〈u,X〉2

)2 , u ∈ H,E
(
〈u,X〉2

)
> 0

}
≤ κ < ∞,

where κ and T are known constants. Remark that as a consequence

E
(
‖X‖4

)
≤ κT 2 < ∞.

Assume without loss of generality that κ ≥ 3/2. Let δ, ε > 0 and

σn =
100κT

n/128− 4.35− log(δ−1)
and define

γn(t) =

√
2.4(κ− 1)

n

(
0.73T

t
+ 4.35 + log(δ−1)

)
+

√
99κT

nt
,

ηn(t) =
2γn(t)

1− 4γn(t)
,

gn(t) = max{t, σn}η
(
min

{
max{t, σn}, κ1/2T

})
+ σn + ε‖G‖HS.

Remark that for any fixed positive value of t, gn(t) is of order n−1/2 + ε‖G‖HS,
and that more precisely,

gn(t) ≤ O
(√

κt

n

(
T + t log(δ−1)

)
+ ε‖G‖HS

)
,

t ≥ O
(
κT

n

)
, n ≥ O

(
log(δ−1)

)
, (3.1)
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where O represents numerical constants in non-asymptotic bounds. For any
value of ε > 0, we can compute an estimator Ĝn of G, based on a sample
(X1, . . . , Xn) made of n independent copies of X, whose computation cost de-
pends on ε, such that, with probability at least 1− 2δ, for any u ∈ S,∣∣〈u,Gu〉 − 〈u, Ĝnu〉

∣∣ ≤ gn
(
〈u,Gu〉

)
and

∣∣〈u,Gu〉 − 〈u, Ĝnu〉
∣∣ ≤ gn

(
〈u, Ĝnu〉

)
.

Moreover, the functions gn and t �→ t − gn(t) are non-decreasing on R+. As a
consequence, on the same event of probability at least 1− 2δ as above,

‖G− Ĝn‖∞ ≤ min
{
gn

(
‖G‖∞

)
, gn

(
‖Ĝn‖∞

)}
.

Moreover, if λ1 ≥ λ2 ≥ . . . are the eigenvalues of G and λ̂1 ≥ λ̂2 ≥ . . . are the
eigenvalues of Ĝn, counted with their multiplicities, on the event of probability
at least 1− 2δ mentioned above,

|λi − λ̂i| ≤ min
{
gn(λi), gn(λ̂i)

}
, 1 ≤ i < ∞.

The fact that gn is non-decreasing is proved in [8, Lemma 7.7]. The fact that
t �→ t− gn(t) is non-decreasing is a straightforward consequence of the fact that
γn is non-increasing.

This proposition, along with the results of the previous section concerning the
perturbation of self-adjoint operators, can be used to estimate the fluctuations of
Πr(Ĝn), the estimated principal component representation of X. We give in the
following corollary both theoretical and empirical bounds for these fluctuations.
We give also the generalization of these bounds to the estimation of Lipschitz
functionals f(G).

Corollary 3.1. With probability at least 1− 2δ, for any r ∈ N,

‖Πr(Ĝn)−Πr(G)‖∞ ≤ 2
√
r

λr − λr+1
gn

(
‖G‖∞

)
‖Πr(Ĝn)−Πr(G)‖∞ ≤ 2

√
r

λ̂r − λ̂r+1

gn
(
‖Ĝn‖∞

)
,

and for any L-Lipschitz function f : R+ → R+,

‖f(Ĝn)− f(G)‖∞ ≤ L

(
gn(‖G‖∞) + inf

r∈N

√
8rgn(‖G‖∞)2 + 2Trr+1(G2)

)
≤ L

(
gn(‖G‖∞) + 2

√
2gn(‖G‖∞)1/2 Tr(G)1/2

)
,

and ‖f(Ĝn)− f(G)‖∞ ≤ L

(
gn(‖Ĝn‖∞)

+ inf
r∈N

√
8rgn(‖Ĝn‖∞)2 + 2Trr+1(Ĝ2

n)

)
.
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Let us give an example of the use of a Lipschitz functional f(G) instead of a
projection Πr(G). For any positive real parameters a > b ≥ 0, let us define

fa,b(t) = max

{
0,min

{
1,

t− b

a− b

}}
.

This is a Lipschitz function with Lipschitz constant (a− b)−1. There is a unique
pair of indices r ≤ s ∈ N such that λr ≥ a > λr+1 and λs > b ≥ λs+1. We can
express fa,b(G) as

fa,b(G) =

r∑
i=1

〈 , pi〉pi︸ ︷︷ ︸
=Πr(G)

+

s∑
i=r+1

λi − b

a− b
〈 , pi〉pi

where pi is an orthonormal basis of eigenvectors of G and where

0 <
λi − b

a− b
< 1, r < i ≤ s.

We see therefore that fa,b(G) lies between Πr(G) and Πs(G), in the sense that

〈u,Πr(G)u〉 ≤ 〈u, f(G)u〉 ≤ 〈u,Πs(G)u〉, u ∈ H.

Consequently, the energy kept by the representation f(G)X also lies in between:

E
(∥∥Πr(G)X

∥∥2
)
≤ E

(∥∥f(G)X
∥∥2

)
≤ E

(∥∥Πs(G)X
∥∥2

)
.

In the same way, there is a unique pair of indices r̂ ≤ ŝ such that λ̂r̂ ≥ a >
λ̂r̂+1 and λ̂ŝ > b ≥ λ̂ŝ+1. The estimate fa,b(Ĝn) of fa,b(G) is also a kind of

interpolation between the two projections Πr̂(Ĝn) and Πŝ(Ĝn), since it can be
written as

fa,b(Ĝn) =

r̂∑
i=1

〈 , qi〉qi +
ŝ∑

i=r̂+1

λ̂i − b

a− b
〈 , qi〉qi,

where qi is an orthonormal basis of eigenvectors of Ĝn.

The benefit of using fa,b(Ĝn) instead of Πŝ(G) to map the data into a space
of dimension ŝ, is that the fluctuations of this representation now depend on
the larger multi-step gap a − b 
 λ̂r̂ − λ̂ŝ, rather than on the single-step gap
λ̂r̂ − λ̂r̂+1.

Another option is to use a data dependent function f̂ = fλ̂r,λ̂s
, for some pair

of indices r < s. Our deviation bounds being uniform on the choice of f , they
allow for a data dependent f , so that we get for instance with probability at
least 1− 2δ that∥∥f̂(Ĝn)− f̂

(
G
)∥∥

∞ ≤ 1

λ̂r − λ̂s

(
gn

(
‖Ĝn‖∞

)
+ inf

t∈N

√
8tgn

(
‖Ĝn‖∞

)2
+ 2Trt+1

(
Ĝ2

n

) )
.
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Proposition 3.2 (Energy estimates). We will show here that it is possible to get
an empirical estimate of the energy contained in the estimated representation.

In the previous setting, with probability at least 1− 2δ, for any r ∈ N,

0 ≤ E
(∥∥Πr(G)X

∥∥2
)
− E

(∥∥Πr(Ĝn)X
∥∥2 | (X1, . . . , Xn)

)
≤ 2min

{ r∑
i=1

gn(λ̂i),

r∑
i=1

gn(λi)

}
(3.2)

and

∣∣∣E(∥∥Πr(Ĝn)X
∥∥2 | (X1, . . . , Xn)

)
−

r∑
i=1

λ̂i

∣∣∣
≤

r∑
i=1

gn(λ̂i) ≤
r∑

i=1

gn
(
λi + gn(λi)

)
. (3.3)

Moreover, for any non-decreasing measurable function f : R+ → R+,∣∣∣E(∥∥f(Ĝn)X
∥∥2 | (X1, . . . , Xn)

)
−

∞∑
i=1

λ̂if(λ̂i)
2
∣∣∣ ≤ ∞∑

i=1

gn(λ̂i)f(λ̂i)
2, (3.4)

and for any indices r < s,

E
(∥∥Πr(G)X

∥∥2
)
− 2

r∑
i=1

gn(λ̂i)

≤ E
(∥∥fλ̂r,λ̂s

(
Ĝn

)
X

∥∥2 | (X1, . . . , Xn)
)

≤ E
(∥∥Πs(G)X

∥∥2
)
. (3.5)

Proof. Remark that

E
(∥∥Πr(Ĝn)X

∥∥2 | (X1, . . . , Xn)
)
= E

( r∑
i=1

〈X, qi〉2 | (X1, . . . , Xn)

)

=
r∑

i=1

〈qi, Gqi〉. (3.6)

Moreover, with probability at least 1− 2δ,

〈qi, Ĝnqi〉 − 〈qi, Gqi〉 ≤ gn
(
〈qi, Ĝnqi〉

)
, 1 ≤ i < ∞,

that can also be written as

〈qi, Gqi〉 ≥ λ̂i − gn(λ̂i), 1 ≤ i < ∞.
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Since on the same event of probability at least 1− 2δ

λ̂i ≥ λi −min
{
g(λ̂i), g(λi)

}
, 1 ≤ i < ∞

we have both
〈qi, Gqi〉 ≥ λi − 2gn(λ̂i), 1 ≤ i < ∞,

and, since the functions gn and t �→ t− gn(t) are non-decreasing,

〈qi, Gqi〉 ≥ λi − gn(λi)− gn
(
λi − gn(λi)

)
≥ λi − 2gn(λi), 1 ≤ i < ∞.

Since
r∑

i=1

λi = E
(∥∥Πr(G)X

∥∥2
)
,

this implies that

E
(∥∥Πr(Ĝn)X

∥∥2 | (X1, . . . , Xn)
)

≥ E
(∥∥Πr(G)X

∥∥2
)
− 2min

{ r∑
i=1

gn(λi),

r∑
i=1

gn(λ̂i)

}
.

On the other hand,

E
(∥∥Πr(Ĝn)X

∥∥2 | (X1, . . . , Xn)
)
≤ sup

P projector
of rank k

E
(∥∥PX

∥∥2
)
≤ E

(∥∥Πr(G)X
∥∥2

)
,

ending the proof of eq. (3.2). From eq. (3.6) and the fact that with probability
at least 1− 2δ ∣∣〈qi, Gqi〉 − λ̂i

∣∣ ≤ gn(λ̂i), 1 ≤ i < ∞, (3.7)

we obtain eq. (3.3). Observe now that

E
(∥∥f(Ĝn)X

∥∥2 | (X1, . . . , Xn)
)
= E

( ∞∑
i=1

f(λ̂i)
2〈X, qi〉2 | (X1, . . . , Xn)

)

=
∞∑
i=1

f(λ̂i)
2〈qi, Gqi〉,

that leads to eq. (3.4) when combined with eq. (3.7). Finally, eq. (3.5) is a
consequence of eq. (3.2) and the fact that

E
(∥∥Πr(Ĝn)X

∥∥2 | (X1, . . . , Xn)
)

≤ E
(∥∥fλ̂r,λ̂s

(Ĝn)X
∥∥2 | (X1, . . . , Xn)

)
≤ E

(∥∥Πs(Ĝn)X
∥∥2 | (X1, . . . , Xn)

)
.
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If we want to exploit the inequality ‖f(A)−f(B)‖HS ≤ L‖A−B‖HS of Propo-
sition 2.2 on page 3909, we can use an estimator Ĝ of G such that ‖Ĝ−G‖HS is
properly controlled. One is given by Minsker in [16, Corollary 4.3]. It is based
on a multidimensional extension of the median of means estimator and is such
that with probability at least 1− δ,

‖Ĝ−G‖HS ≤ 11

√[
E
(
‖X‖4

)
−Tr(G2)

]
log

(
1.4/δ

)
n

.

In this setting, the only assumption on the data is that E
(
‖X‖4

)
< ∞. Minsker’s

estimator is such that with probability at least 1− δ, for any a ≥ b ∈ R+,

∥∥fa,b(Ĝ)− fa,b(G)
∥∥
HS

≤ 11

a− b

√[
E
(
‖X‖4

)
−Tr(G2)

]
log(1.4/δ)

n
.

Remark that since ‖Ĝ−G‖∞ ≤ ‖Ĝ−G‖HS, Minsker’s estimator can also be used
in conjunction with the operator norm bounds of Propositions 2.1 on page 3905
and Proposition 2.2 on page 3909, but that it would give looser inequalities.
Note that the estimator we proposed in [8] has a better proved operator bound
than Minsker’s, at least in some cases. Therefore, it makes sense to use our
estimator in conjunction with operator norm bounds instead of Minsker’s. In-
deed, under the assumptions of Proposition 3.1 on page 3912, considering that
Tr(G)2 ≤ E

(
‖X‖4

)
≤ κTr(G)2, we do not weaken much Minsker’s bound by

replacing E
(
‖X‖4

)
with κTr(G)2, at least when κ is of order one. Making this

substitution for the sake of comparison, we get that, for Minsker’s estimator,

‖Ĝn−G‖∞ ≤ ‖Ĝn−G‖HS ≤ O

⎛⎝√
κTr(G)2 log(δ−1)

)
n

⎞⎠ , n ≥ O
(
log

(
δ−1

))
,

whereas for our estimator we get the bound described in Proposition 3.1, that
is of order

‖Ĝn −G‖∞ ≤ O
(√

κ‖G‖∞
n

(
Tr(G) + ‖G‖∞ log(δ−1)

) )
,

‖G‖∞ ≥ O
(
κTr(G)

n

)
, n ≥ O

(
log

(
δ−1

))
,

where O represents numerical constants in non-asymptotic bounds. We have
dropped the additional term in ε present in eq. (3.1), since it can be made arbi-
trarily small depending on the computation cost of the estimator. The difference
between the two bounds is better understood while making a parallel with the
finite dimension case. Here, after normalization by ‖G‖∞, Tr(G) plays the role
that would be played by the dimension d. Minsker’s estimate uses the Hilbert-
Schmidt norm. In other words, in the finite dimension case, it estimates the
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matrix G, considering it as a vector of coefficients of dimension d×d. Therefore
Minsker gets a convergence rate of order

√
d2/n, whereas considering G as a

matrix and working with the operator norm, we can get a rate in
√

d/n in-
stead (although for a different estimator). In our bound, the interplay between
log(δ−1) and the substitute for the dimension Tr(G) is also more favorable.

So far we considered the Gram operator G = E
(
〈 , X〉X

)
, whereas principal

component analysis is most often concerned with the covariance operator

Σ = E
[
〈 , X − E(X)〉

(
X − E(X)

)]
.

We can nevertheless use the results we presented for G in order to study Σ. One
way to make the link between the two settings is to consider two independent
copies (X1, X2) of X and to remark that

Σ =
1

2
E
(〈

, X1 −X2

〉
(X1 −X2)

)
,

so that Σ turns out to be the Gram operator of (X1 − X2)/
√
2, and can be

estimated as such from a sample (X1, . . . , X2n) of size 2n by forming the reduced
centered sample

{
(X2i−1 −X2i)/

√
2, 1 ≤ i ≤ n

}
of size n.

Appendix A: Pairs of Orthogonal Projections

In this appendix we introduce some results on orthogonal projectors that are
interesting for their own sake.

Let P, Q : H → H be two orthogonal projectors with finite ranks, defined
on some separable real Hilbert space H. Let S be the unit sphere of H. The
description of the relative positions of P and Q, or equivalently of Im(P ) and
Im(Q) is a classical topic that goes back at least to [10]. More recently it has
been treated in [6, 12]. We would like to bring a contribution to this question
based on the use of an orthonormal basis of eigenvectors of P+Q. In such a basis
the description can be split into an orthogonal sum of problems of dimension
one or two, reducing the description to the relative positions of two lines in the
plane. This decomposition is related to the notion of principal angles introduced
by Jordan [10]. In the following contribution, we obtain it from a straightforward
construction that to our knowledge was not available in the literature, although
the relation between the spectrum of P + Q and principal angles is proved in
[7].

Let us start by listing the properties of the eigenvectors of P +Q.

Lemma A.1. Let x ∈ S be an eigenvector of P +Q with eigenvalue λ.

1. In the case when λ = 0, then Px = Qx = 0, so that x ∈ ker(P )∩ker(Q);
2. in the case when λ = 1, then PQx = QPx = 0, so that

x ∈ ker(P ) ∩ Im(Q)⊕ Im(P ) ∩ ker(Q);
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3. in the case when λ = 2, then x = Px = Qx, so that x ∈ Im(P ) ∩ Im(Q);
4. otherwise, λ ∈]0, 1[∪]1, 2[,

(P −Q)2x = (2− λ)λx �= 0,

so that (P −Q)x �= 0. As

(P +Q)(P −Q)x = (2− λ)(P −Q)x,

the vector (P − Q)x is an eigenvector of P + Q with eigenvalue 2 − λ.
Moreover

0 < ‖Px‖ = ‖Qx‖ =

√
λ

2
< 1, 〈Px,Qx〉 = 1

2
λ(λ− 1),

x−Px �= 0, and
(
Px, x−Px

)
is an orthogonal basis of span

{
x, (P−Q)x

}
.

Proof. The operator P + Q is self-adjoint, nonnegative, of finite rank, and
‖P + Q‖∞ ≤ 2, so that there is a basis of eigenvectors and all eigenvalues
are in the intervall [0, 2].

In case 1, 0 = 〈Px+Qx, x〉 = ‖Px‖2 + ‖Qx‖2, so that Px = Qx = 0.

In case 2, PQx = P (x− Px) = 0 and similarly QPx = Q(x−Qx) = 0, so that
x = Px+Qx, where Px ∈ ker(Q) ∩ Im(P ) and Qx ∈ ker(P ) ∩ Im(P ).

In case 3,

‖Px‖2 + ‖Qx‖2 = 〈(P +Q)x, x〉 = 2〈x, x〉
= ‖Px‖2 + ‖x− Px‖2 + ‖Qx‖2 + ‖x−Qx‖2,

so that ‖x− Px‖ = ‖x−Qx‖ = 0.

In case 4, remark that

PQx = P (λx− Px) = (λ− 1)Px

and similarly QPx = Q(λx−Qx) = (λ− 1)Qx. Consequently

(P −Q)(P −Q)x = (P −QP −PQ+Q)x = (2− λ)(P +Q)x = (2− λ)λx �= 0,

so that (P −Q)x �= 0. Moreover

(P +Q)(P −Q)x = (P − PQ+QP −Q)x = (2− λ)(P −Q)x.

Therefore (P−Q)x is an eigenvector of P+Q with eigenvalue 2−λ �= λ. Remark
now that

〈Px,Qx〉 = 〈x, PQx〉 = (λ− 1)〈x, Px〉.
Similarly

〈Px,Qx〉 = 〈QPx, x〉 = (λ− 1)〈x,Qx〉.
so that

〈Px,Qx〉 = 1

2
(λ− 1)〈x, (P +Q)x〉 = 1

2
λ(λ− 1).
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Coming back to the two previous equations, we then deduce that

‖Px‖2 = 〈x, Px〉 = λ

2
.

In the same way

‖Qx‖2 = 〈x,Qx〉 = λ

2
.

Now ‖x − Px‖2 = ‖x‖2 − ‖Px‖2 > 0, proving that x − Px �= 0. Similarly,
x−Qx �= 0.

As P is an orthogonal projector, (Px, x−Px) is an orthogonal pair of non-zero
vectors. Moreover

x = x− Px+ Px ∈ span{Px, x− Px}

and

(P −Q)x = 2Px− λx = (2− λ)Px− λ(x− Px) ∈ span{Px, x− Px}

therefore, (Px, x− Px) is an orthogonal basis of span{x, (P −Q)x}.
Lemma A.2. There is an orthonormal basis {xi, 1 ≤ i < ∞} of eigenvectors
of P + Q with corresponding eigenvalues {λi, 1 ≤ i < ∞} and indices 2m ≤
p ≤ q ≤ s, such that

1. λi ∈]1, 2[, if 1 ≤ i ≤ m,
2. λm+i = 2− λi, if 1 ≤ i ≤ m, and xm+i = ‖(P −Q)xi‖−1(P −Q)xi,
3. span{x2m+1, . . . , xp} = Im(P ) ∩ ker(Q), and λ2m+1 = · · · = λp = 1,
4. span{xp+1, . . . , xq} = Im(Q) ∩ ker(P ), and λp+1 = · · · = λq = 1,
5. span{xq+1, . . . , xs} = Im(P ) ∩ Im(Q), and λq+1 = · · · = λs = 2,
6. span{xi, s < i < ∞} = ker(P ) ∩ ker(Q), and λi = 0, i > s.

Proof. As already explained in the beginning of the proof of Lemma A.1, there
exists a basis of eigenvectors of P +Q. From the previous lemma, we have that
all eigenvectors in the kernel of P +Q are in ker(P )∩ker(Q), and on the other
hand obviously ker(P ) ∩ ker(Q) ⊂ ker(P +Q) so that

ker(P +Q) = ker(P ) ∩ ker(Q).

In the same way the previous lemma proves that the eigenspace corresponding
to the eigenvalue 2 is equal to Im(P )∩Im(Q). It also proves that the eigenspace
corresponding to the eigenvalue 1 is included in and consequently is equal to(
Im(P )∩ker(Q)

)
⊕
(
ker(P )∩Im(Q)

)
, so that we can form an orthonormal basis

of this eigenspace by taking the union of an orthonormal basis of Im(P )∩ker(Q)
and an orthonormal basis of ker(P ) ∩ Im(Q).

Consider now an eigenspace corresponding to an eigenvalue λ ∈]0, 1[∪]1, 2[ and
let x, y be two orthonormal eigenvectors in this eigenspace. From the previous
lemma, remark that

〈(P −Q)x, (P −Q)y〉 = 〈(P −Q)2x, y〉 = (2− λ)λ〈x, y〉 = 0.
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Therefore, if x1, . . . , xk is an orthonormal basis of the eigenspace Vλ correspond-
ing to the eigenvalue λ, then (P −Q)x1, . . . , (P −Q)xk is an orthogonal system
in V2−λ. If this system was not spanning V2−λ, we could add to it an orthogonal
unit vector yk+1 ∈ V2−λ so that x1, . . . , xk, (P −Q)yk+1 would be an orthogonal
set of non-zero vectors in Vλ, which would contradict the fact that x1, . . . , xk

was supposed to be an orthonormal basis of Vλ. Therefore,(
‖(P −Q)xi‖−1(P −Q)xi, 1 ≤ i ≤ k

)
is an orthonormal basis of V2−λ. Doing this construction for all the eigenspaces
Vλ such that λ ∈]0, 1[ achieves the construction of the orthonormal basis de-
scribed in the lemma.

Lemma A.3. Consider the orthonormal basis of the previous lemma. The set
of vectors (

Px1, . . . , Pxm, x2m+1, . . . , xp, xq+1, . . . , xs

)
,(

x1 − Px1, . . . , xm − Pxm, xp+1, . . . xq, xs+1, . . .
)
,(

Qx1, . . . , Qxm, xp+1, . . . , xq, xq+1, . . . , xs

)
,(

x1 −Qx1, . . . , xm −Qxm, x2m+1, . . . , xp, xs+1, . . .
)

are respectively orthogonal bases of Im(P ), ker(P ), Im(Q) and ker(Q).

Proof. According to Lemma A.1, (Pxi, xi − Pxi) is an orthogonal basis of
span{xi, xm+i}, so that(

Px1, . . . , Pxm, x1 − Px1, . . . , xm − Pxm, x2m+1, . . .
)

is another orthogonal basis of H. Each vector of this basis is either in Im(P ) or
in ker(P ) and more precisely

Px1, . . . , Pxm, x2m+1, . . . , xp, xq+1, . . . , xs ∈ Im(P ),

x1 − Px1, . . . , xm − Pxm, xp+1, . . . , xq, xs+1, . . . ∈ ker(P ).

This proves the claim of the lemma concerning P . Since P and Q play symmetric
roles, this proves also the claim concerning Q, mutatis mutandis.

Corollary A.1. The projectors P and Q have the same rank if and only if

p− 2m = q − p.

Lemma A.4. Assume that rank(P ) = rank(Q). Then

‖P −Q‖∞ = sup
x∈Im(P )∩S

‖(P −Q)x‖, (A.1)

and for any orthonormal basis
(
e1, . . . , er

)
of Im(P ),

‖P −Q‖2HS = 2

r∑
i=1

‖(P −Q)ei‖2. (A.2)
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Proof. As P −Q is a self-adjoint operator, we have

sup
x∈S

‖(P −Q)x‖2 = sup
{
〈(P −Q)2x, x〉 | x ∈ S

}
= sup

{
〈(P −Q)2x, x〉 | x ∈ S is an eigenvector of (P −Q)2

}
.

Remark that the basis described in Lemma A.2 is also a basis of eigenvectors of
(P −Q)2. More precisely, according to Lemma A.1

(P −Q)2xi = λi(2− λi)xi, 1 ≤ i ≤ m,

(P −Q)2xm+i = λi(2− λi)xm+i, 1 ≤ i ≤ m,

(P −Q)2xi = xi, 2m < i ≤ q,

(P −Q)2xi = 0, q < i ≤ d.

If q − 2m > 0, then ‖P − Q‖∞ = 1, and q − p > 0, according to Lemma A.1,
so that ‖(P −Q)xp+1‖ = 1, where xp+1 ∈ Im(Q). If q = 2m and m > 0, there
is i ∈ {1, . . . ,m} such that ‖P − Q‖2∞ = λi(2 − λi). Since xi and xm+i are
two eigenvectors of (P −Q)2 corresponding to this eigenvalue, all the non-zero
vectors in span{xi, xm+i} (including Pxi) are also eigenvectors of the same
eigenspace. Consequently (P −Q)2Pxi = λi(2− λi)Pxi, proving that∥∥∥(P −Q)

Pxi

‖Pxi‖

∥∥∥2

= λi(2− λi),

and therefore that supx∈S‖(P−Q)x‖ is reached in Im(P ). Finally, if q = 0, then
P − Q is the null operator, so that supx∈S‖(P − Q)x‖ is reached everywhere,
including in Im(P ) ∩ S. This concludes the proof of eq. (A.1).
As for eq. (A.2), since

r∑
i=1

‖(P −Q)ei‖2

is the trace of P (P − Q)2P , its value is independent of the choice of the or-
thonormal basis (e1, . . . , er) of Im(P ). Therefore it is enough to prove eq. (A.2)
for any special choice of orthonormal basis for Im(P ). Let us put

ei = ‖Pxi‖−1Pxi, 1 ≤ i ≤ m,

em+i = ‖xi − Pxi‖−1(xi − Pxi), 1 ≤ i ≤ m,

ei = xi, 2m < i < ∞.

According to Lemma A.3, {ei, 1 ≤ i < ∞} is an orthonormal basis of H while
(e1, . . . , em, e2m+1, . . . , ep, eq+1, . . . , es) is an orthonormal basis of Im(P ). More-
over, according to Lemma A.1 and Lemma A.2,

〈(P −Q)2ei, ei〉 = λi(2− λi), 1 ≤ i ≤ m,

〈(P −Q)2em+i, em+i〉 = λi(2− λi), 1 ≤ i ≤ m,
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〈(P −Q)2ei, ei〉 = 1, 2m < i ≤ q,

〈(P −Q)2ei, ei〉 = 0, q < i < ∞.

Accordingly, remembering that p− 2m = q − p, as stated in Corollary A.1, we
see that

‖P −Q‖2HS =
∞∑
i=1

〈(P −Q)2ei, ei〉

= 2

( m∑
i=1

+

p∑
i=2m+1

+

s∑
i=q+1

)
〈(P −Q)2ei, ei〉

= 2

( m∑
i=1

+

p∑
i=2m+1

+

s∑
i=q+1

)
‖(P −Q)ei‖2.

Our study of the eigenvectors of P + Q is related to the notion of principal
angles, as shown in [7]. Nevertheless, in [7], the properties of P + Q and its
spectrum are deduced from other results about principal angles, whereas here
we show conversely that the above fairly simple and elementary study of P +Q
can be used to derive a description of principal angles.

Proposition A.1. In the previous setting, (of finite rank orthogonal projectors
in a separable real Hilbert space) the principal angles between Im(P ) and Im(Q)
are recursively defined as

cos(θk) = 〈uk, vk〉, θk ∈ [0, π/2].

where (uk, vk) ∈ argmax
(u,v)

{
〈u, v〉, u ∈ Im(P ) ∩ S, v ∈ Im(Q) ∩ S,

u ⊥ span{u1, . . . , uk−1}, v ⊥ span{v1, . . . , vk−1}
}
,

for 1 ≤ k ≤ min{rank(P ), rank(Q)}.
In the previous setting, assuming without loss of generality that λ1 ≥ λ2 ≥ · · · ≥
λm, and that s− q + p−m = rank(P ) ≤ rank(Q) = s− p+m,

cos(θk) =

⎧⎪⎨⎪⎩
1, 1 ≤ k ≤ s− q,

λk−s+q − 1, s− q + 1 ≤ k ≤ s− q +m,

0, s− q +m+ 1 ≤ k ≤ s− q + p−m

A possible choice of uk and vk is

uk = vk = xq+k, 1 ≤ k ≤ s− q,
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uk = ‖Pxk−s+q‖−1Pxk−s+q,

vk = ‖Qxk−s+q‖−1Qxk−s+q,
s− q + 1 ≤ k ≤ s− q +m,{

uk = xm+k−s+q,

vk = xp+k−s+q−m,
s− q +m+ 1 ≤ k ≤ s− q + p−m.

Proof. In the case when s − q > 0, obviously cos(θ1) = 1, u1 = v1 ∈ Im(P ) ∩
Im(Q) = span{xq+1, . . . , xs} and any unit vector in this set can be chosen. This
reasoning can be repeated for the restriction of P andQ to span{u1, . . . , uk−1}⊥.
After s−q iterations, the restriction P̃ , Q̃ of P and Q to span{u1, . . . , us−q}⊥ =(
Im(P ) ∩ Im(Q)

)⊥
will be such that Im(P̃ ) ∩ Im(Q̃) = {0}.

So let us now assume without loss of generality that this is the case from the be-
ginning (that is from iteration one). In other words, let us assume that s−q = 0.
Let us write, according to Lemma A.3 on page 3921,

u =

m∑
i=1

αi‖Pxi‖−1Pxi +

p−m∑
i=m+1

αix2m+i

and v =

m∑
i=1

βi‖Qxi‖−1Qxi +

m+q−p∑
i=m+1

βixp+i−m.

Remark that

‖u‖2 =

p−m∑
i=1

α2
i = 1, (A.3)

‖v‖2 =

m+q−p∑
i=1

β2
i = 1,

and that

〈u, v〉 =
m∑
i=1

αiβi
〈Pxi, Qxi〉
‖Pxi‖‖Qxi‖

=

m∑
i=1

αiβi(λi − 1)

From there, it is elementary to deduce that 〈u, v〉 is maximum if and only if

{i : αi �= 0} ∈ argmax
i

λi and βi = αi,

in which case 〈u, v〉 = λ1 − 1. Indeed, from the Cauchy-Schwarz inequality,

m∑
i=1

αiβi(λi − 1) ≤

√√√√ m∑
i=1

α2
i (λi − 1)2,

and in view of (A.3), the right-hand side of this inequality is maximal, and
equal to λ1 − 1, if and only if {i : αi �= 0} = argmaxi λi, and equality with the
left-hand side then occurs if and only if βi = αi.
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We can repeat this reasoning m times, showing that

cos(θk) = λk−s+q, s− q + 1 ≤ k ≤ s− q +m.

and describing the possible choices of (uk, vk) as above. We can then assume
without loss of generality that s − q = m = 0, or equivalently that Im(P ) ⊂
ker(Q) and Im(Q) ⊂ ker(P ). In this case we can choose for u any vector in
Im(P ) ∩ S = span{x2m+1, . . . , xp} ∩ S and for v any vector in Im(Q) ∩ S =
span{xp+1, . . . , xq} ∩ S, and 〈u, v〉 = 0. This proves that θk = π/2, when
s− q +m+ 1 ≤ k ≤ s− q + p−m, and shows the possible choices for (uk, vk)
in this range of values of the index k.
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