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Abstract: Existing Bayesian nonparametric methodologies for bandit prob-
lems focus on exact observations, leaving a gap in those bandit applications
where censored observations are crucial. We address this gap by extending a
Bayesian nonparametric two-armed bandit problem to right-censored data,
where each arm is generated from a beta-Stacy process as defined by Walker
and Muliere (1997). We first show some properties of the expected advan-
tage of choosing one arm over the other, namely the monotonicity in the
arm response and, limited to the case of continuous state space, the conti-
nuity in the right-censored arm response. We partially characterize optimal
strategies by proving the existence of stay-with-a-winner and stay-with-
a-winner/switch-on-a-loser break-even points, under non-restrictive condi-
tions that include the special cases of the simple homogeneous process and
the Dirichlet process. Numerical estimations and simulations for a variety
of discrete and continuous state space settings are presented to illustrate
the performance and flexibility of our framework.
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1. Introduction

1.1. Problem description

In a discrete-stage two-armed bandit problem, there are two stochastic processes
(the two arms), and a sequential decision process (a strategy) selects, at each
stage, which one of the two processes to observe. This selection is made on
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the basis of the previous observations, and it balances two conflicting benefits:
the immediate payoff coming from the exploitation of a better known arm and
the information concerning future payoffs coming from the exploration of a less
known arm. A strategy is said to be optimal if it yields the maximal expected
payoff, and an arm is said to be optimal if it is selected at the beginning of an
optimal strategy.

More formally, let Xk, Yk ∈ [0,∞) =: R+ be random variables (responses)
generated from, respectively, arm 1 and 2 at stage k, for k = 1, 2, . . . , n, where
n ∈ N \ {0}, N := {0, 1, 2, 3, . . . }, is the (possibly infinite) bandit horizon. If
Xk and Yk are the responses of the k-th patient to treatment 1 and 2, the k-th
stage is interpreted as the moment at which it has to be decided the treatment
to assign to the k-th patient, given past responses of the previous k−1 patients
to the treatments. Generally speaking, the k-th stage of the bandit problem
is the phase when one of the two arms is chosen to be observed, on the basis
of the responses of past k − 1 subjects. We assume that X1, X2, . . . , Xn given
the probability law F 1 are i.i.d with law F 1, and that Y1, Y2, . . . , Yn given the
probability law F 2 are i.i.d with law F 2, with F 1 and F 2 independent. Then,
we assume exchangeable responses within treatments and independent responses
between treatments.

A strategy is interpreted, following Berry and Fristedt (1985), as a function
that assigns, to each partial history of observations, the integer 1 or 2 indicat-
ing the arm to be observed at the next stage, or, equivalently, to which arm
to assign the next subject. With the exception of the simplest cases, explicit
specifications of optimal strategies are hindered by computational issues. As a
consequence, as in Chattopadhyay (1994), optimal strategies can only be par-
tially characterized in terms of break-even observations. We will consider two
kinds of strategies: stay-with-a-winner and stay-with-a-winner/switch-on-a-loser
strategies, assuming, without loss of generality, that a higher realized value of
a random variable gives a higher payoff. Intuitively, if at the current stage arm
1 is optimal, according to the stay-with-a-winner strategy, arm 1 is optimally
chosen to be observed at the next stage if the observation from arm 1 at the
current stage is higher than a break-even point. The stay-with-a-winner break-
even point is defined such that the expected advantage of arm 1 over arm 2 is at
least as high as it was before the observation at the current stage. On the other
hand, in a stay-with-a-winner/switch-on-a-loser strategy, if arm 1 is currently
observed, optimally or not, arm 1 will be optimally chosen at the next stage
if the current observation is higher than a break-even point (different from the
break-even point of the previous strategy), otherwise arm 2 is optimally chosen.
The stay-with-a-winner/switch-on-a-loser break-even point is defined such that
the expected advantage remains positive after the observation from the arm at
the current stage. We will define more formally the two strategies in Section 3.3.

1.2. Related literature

Early examples of bandit problems are treated in Robbins (1952), Bellman
(1956) and Bradt, Johnson and Karlin (1956). Among later works, Chernoff
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(1968) focuses on two Gaussian arms F i = N(μi, σ2), i = 1, 2, with unknown
drifts μ1 and μ2 of the first and second arm respectively, and known constant
and common variance σ2; Berry (1972) gives sufficient conditions for optimal
selection and the existence of a stay-with-a-winner strategy in a Bernoulli two-
armed bandit, F i = Bern(pi), i = 1, 2, where pi is the unknown probability of
observing a realized value of 1 from arm i; Berry and Fristedt (1979) charac-
terize optimal strategies for Bernoulli one-armed bandits (F 1 = Bern(p) and
F 2 known) with regular discount sequences; Gittins (1979) introduces dynamic
allocation indices for optimal strategies in multi-armed bandits. Clayton and
Berry (1985) is the first paper that extends the bandit problem to a Bayesian
nonparametric framework, considering a random F 1 ∼ DP (α), the Dirichlet
process introduced in Ferguson (1973), with bounded nonnull measure α on R,
and known F 2: the probability measure associated to the random variables in
one of the two arms is random and extracted from the Dirichlet process. Dirich-
let bandits are generalized to two-armed problems F i ∼ DP (αi), αi probabil-
ity measure on R, i = 1, 2, in Chattopadhyay (1994), where the existence of
stay-with-a-winner and stay-with-a-winner/switch-on-a-loser optimal strategies
is proven. Some other properties of Dirichlet bandits are studied in Yu (2011).

1.3. Our contribution

In this paper we extend Bayesian nonparametric bandits to problems where each
arm generates an infinite sequence of exchangeable random variables (de Finetti
1937) having, as de Finetti measure, the beta-Stacy process (BS) of Walker
and Muliere (1997). In our framework the two arms are random, with F i ∼
BS(αi, βi), i = 1, 2, where αi and βi, extensively discussed in Section 2, char-
acterize the two beta-Stacy processes. As specified in Phadia (2013), the beta-
Stacy process generalizes the Dirichlet process in two respects: more flexible
prior information may be represented and, unlike the Dirichlet process, it is
conjugate to right-censored data. Also, when the prior process is assumed to
be Dirichlet, the posterior distribution given right-censored observations is a
beta-Stacy process. We will discuss in more details in Section 2 the properties
of the beta-Stacy process.

The Dirichlet bandit of Clayton and Berry (1985) and Chattopadhyay (1994)
is therefore an important special case of our setting, as is the bandit problem
with the simple homogeneous process of Susarla and Van Ryzin (1976) and
Ferguson and Phadia (1979). Our main result is that, under constraints on the
parameters of the beta-Stacy processes (constraints that include the cases of
the simple homogeneous process and the Dirichlet process), stay-with-a-winner
and stay-with-a-winner/switch-on-a-loser break-even points characterizing op-
timal strategies exist and can be used for dealing with right-censored or exact
observations. A right-censored observation is a realized value that is capped
by a known censoring level: the observed response from arm 1 at stage k is
xk = min{x∗

k, c
x
k}, the minimum between a true exact unobserved x∗

k and a
known censoring level cxk, and equivalently for arm 2. We stress that we know if
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each observation has been censored or not, so that in the sequel we will simply
denote by X1, . . . , Xn the exact random variables from arm 1, and by Y1, . . . , Yn

those from arm 2, with realized values x1, . . . , xn and y1, . . . , yn each known to
be right-censored or not. For every k, cxk and cyk become known at stage k + 1,
after the response of the k-th subject is observed. We assume that subjects’s
responses are immediate, in the sense that the (realized) response of subject k
is observed together with the information that it is censored or not and with the
value of cxk (or cyk), but in our setting a censored observation will never become
exact. A typical example of censored observation in our setting would be the
survival time returned at the current stage by a patient who dies for causes
not related to the treatment or who abandons the study, with no possibility of
having in the future the exact response of the patient.

Arm responses with missing values can be seen as a special case of arms
with right-censored observations: since Xk and Yk ∈ R

+, a missing observation
can be treated as a censored observation with censorship level equal to zero.
Coherently to Hardwick, Oehmke and Stout (1998), we then consider a missing
observation as an observation subject to the hardest case of censorship: the one
giving no information whatsoever on the true response value. On the other hand,
in commonly right-censored observations (as in the motivating examples in In-
troduction) the censorship level obviously provides information on the minimum
value of the true exact but unobserved response.

1.4. Some examples motivating bandits with censorship

Beta-Stacy bandit problems are motivated by the importance of dealing with
censored observations in typical bandit applications: the two arms can be two
treatments available for a certain disease (Berry and Fristedt 1985); patients
arrive one at a time and a treatment is assigned. The patient returns information
on the effectiveness of the treatment: this response can be censored if the patient
returns its survival time after the treatment, but she interrupts the treatment
or she dies for unrelated causes, or the obervational period ends before her
death. The responses are therefore patients’ survival times after the treatment
(which may be censored) and the objective is to maximize the total discounted
expected survival times. Another classical example of a bandit application with
censored observations may arise when a manager of several teams of chemical
scientists has to decide on the allocation of resources among the teams, with
the aim of minimizing the expected time up to the creation of new successful
products (Nash 1973): the two arms are the two teams of scientists, and a fixed
budget for the creation of the new product is assigned only to one team. The
arm response is the time invested by the team to create the successful product, a
response that can be right-censored if the project is interrupted due to reduced
financial support. A final example of a bandit problem with censored data is
that of a batch job scheduling of an industrial processor, choosing which jobs to
process at each stage, in the aim of minimizing the whole expected processing
time (Gittins, Glazebrook and Weber 2011 and references therein): the arms
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correspond to the different jobs that the machine has to execute, and the arm
response is the time needed to execute a specific task componing the job. The
response may be censored if the task has failed and is unfinished for system
breakdowns, or if it lasts more than the maximum amount of time allocated to
the job. We then know that the task lasts at least up to the breakdown or up
to the maximum time, but we do not have the precise task duration.

1.5. Outline of the paper

In Section 2 we introduce and define the beta-Stacy process (Section 2.1), re-
lating it to other known stochastic processes (2.2) and recalling its posterior
properties (2.3). The beta-Stacy bandit problem with two discrete-stage arms is
detailed in Section 3: we first describe the mechanism of the problem in Section
3.1, then we introduce some further notation in Section 3.2, with particular em-
phasis on the expected bandit payoff and the expected advantage of choosing
arm 1 over arm 2; finally in Section 3.3 we characterize the stay-with-a-winner
and stay-with-a-winner/switch-on-a-loser strategies we study. In Sections 4 and
5 we show, respectively for discrete and continuous beta-Stacy arms, some prop-
erties of the expected advantage, namely its monotonicity (Sections 4.2 and
5.2) and continuity (5.3) in the arm response, and we then show the existence
of break-even points of stay-with-a-winner and stay-with-a-winner/switch-on-
a-loser strategies (4.3 and 5.4). We apply our methods to simulated problem
instances in Section 6, and conclude with examples of potential further applica-
tions and research directions in Section 7.

2. Beta-Stacy process preliminaries

2.1. Introduction and definition

Under the assumption of exchangeability of the sequence of random variables
X1, . . . , Xk, . . . , with k ∈ N\{0} and each Xi ∈ R

+, from de Finetti Representa-
tion theorem (de Finetti 1937) there exist a random probability measure P and
a corresponding random cumulative distribution function (cdf) F , conditionally
on which X1, . . . , Xk, . . . , are i.i.d. from F . That is, there exists a unique prob-
ability (or de Finetti) measure Q, defined on the space of probability measures
on (R+,A), A the Borel σ-field of subsets of R+, such that the joint distribution
of X1, . . . , Xn, for any n ∈ N and events A1, . . . , Ak in A, can be written as

P (X1 ∈ A1, . . . , Xk ∈ Ak) =

∫ {
k∏

i=1

P (Ai)

}
Q(dP ).

In our framework F is fixed to be the beta-Stacy process defined below. In
the rest of the paper we denote with E the expected value with respect to the
probability measure P. The expected value of F , E[F (t)] for all t ∈ R

+, is called
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the base measure of F . Furthermore, the assumption of exchangeability implies,
for any event A ∈ A, that

P (Xk+1 ∈ A|X1, . . . , Xk) = E [P (A)|X1, . . . , Xn ∈ Ak] ,

with the special case, for any t ∈ R
+,

P (Xk+1 ≤ t|X1, . . . , Xk) = E [F (t)|X1, . . . , Xk] . (1)

Let the right continuous measure α and the positive function β both be
defined on R

+, with α(0) = 0. For t ∈ R
+, we write α(t) for the value of the

measure α over the region [0, t], that is α(t) := α([0, t]). Let α{t} := α(t) −
α(t−) ≥ 0 for all t ∈ R

+, where α(t−) := lims↑t α(s). Let {tk}, k ∈ N, be the
countable set of discontinuity points of α, corresponding to jumps α{t} > 0. Let
αc(t) = α(t)−

∑
tk≤t α{tk}, so that αc is a continuous measure.

Definition 2.1. F is a beta-Stacy process on (R+,A) with parameters α(t) and
β(t), t ∈ R

+ or t ∈ N, that is F ∼ BS(α, β), if F (t) = 1− exp{−Z(t)} for all t,
where Z is a Lévy process with Lévy measure for Z(t) given, for v > 0, by

dNt(v) =
dv

1− exp(−v)

∫ t

0

exp(−v(β(s) + α{s}))dαc(s)

and with log moment generating function given by

logE
[
e−φZ(t)

]
=

∑
tk≤t

logE [exp(−φStk)] +

∫ ∞

0

(exp(−φv)− 1)dNt(v),

where 1 − exp(−Stk) ∼ Beta(α{tk}, β(tk)), and tk for some k ∈ N are the
discontinuity points of α. If α is purely atomic on N (it is strictly positive only
at tk, for some k ∈ N), we denote the beta-Stacy process to be discrete, otherwise
the beta-Stacy process is said to be continuous.

In the previous definition we can intepret dNt(v) as the rate of arrival (inten-
sity) of a Poisson process with jump of size v, whilst φ denotes the argument of
the characteristic function E [−φZ(t)]. Note also that dα(t) and β(t), t ∈ R

+ can
be respectively thought intuitively as the measure that a priori the Beta-Stacy
process assigns to the infinitesimal interval around t, and to the interval (t,∞).
Finally note that it is not relevant to include the point 0 in the domain of the
beta-Stacy parameters, since from the assumption α(0) = 0 the point zero has
always null mass. For X|F ∼ F , F ∼ BS (α, β) discrete1, from (1) we can write,
for all t ∈ R

+,

P (X ≤ t) =

t∏
j=1

(
1− α{j}

α{j}+ β(j)

)
,

1The argument t of F is an element of R
+, and F a random cdf of a random variable

with discrete or continuous support. Therefore the domain of F has to be distinguished from
the discrete or continuous support of the random variables following the law F , and from the
stages of the bandit problem, which in the current paper are always assumed to be discrete.
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whilst if F ∼ BS (α, β) continuous, with α having discontinuity points {tk}:

P (X ≤ t) = 1− exp

{
−
∫ t

0

dαc(s)

α{s}+ β(s)

} ∏
tk≤t

(
1− α{tk}

α{tk}+ β(tk)

)
.

In order for Q to have a cdf almost surely (a.s.), the parameters α and β of a
discrete beta-Stacy process are required to satisfy the condition

∏
t∈N

(
1− α{t}

β(t) + α{t}

)
= 0. (2)

When α has no discontinuity points, the analogue of condition (2) is the re-
quirement of α and β satisfying∫ ∞

0

dα(t)/β(t) = ∞. (3)

When α has both continuous and discrete parts, condition (2) has to hold for
all t which are discontinuity points of α, and condition (3) has to hold for αc,
the continuous part of α defined above.

2.2. A first example and relation to other processes

In the current subsection we illustrate an example of beta-Stacy process with
one prior discontinuity point, and we clarify under which conditions on the
parameters of the process it reduces to the Dirichlet process and to the simple
homogeneous process.

As a first instance of a (continuous) beta-Stacy process, we fix, for all t ∈ R
+

and some λ, l ∈ R
+

α(t) = 1− e−λt + 1{l}(t), β(t) = e−λt,

where, for some event A, 1A denotes the indicator function of A, equal to 1 if its
argument belongs to A and 0 otherwise, and l is the prior discontinuity point.
Then it is clear that the Lévy measure is given, for all t, v ∈ R

+, by

dNt(v) =
dv

1− e−v

(
e−ve−λt − e−v

v

)
, (4)

and the log moment generating function, for all φ ∈ R, can be shown to be equal
to

logE
[
e−φZ(t)

]
=

1

v(1− e−v)

((
φ+ e−λt

)−1 − eλt + 1− (φ+ 1)−1
)

+ log

⎛
⎝ ∞∑

j=0

(
φ+ j − 1
φ− 1

)
e−λjB

(
j + 1, e−λj

)⎞⎠1[−∞,0)(φ)
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+ log

(
e−λk

e−λk + φ

)
1[0,∞)(φ), (5)

where B(·, ·) is the usual beta function. Therefore, for all t ∈ R
+,

E[F (t)] = 1− e−t 1 + e−λl − 1[l,+∞)(t)

1 + e−λl
.

When β(t) = α((t,∞)) for all t ∈ R
∗ or t ∈ N, and α any measure on R

+, we ob-
tain the Dirichlet process prior of Ferguson (1973), as in this case α(t) = 1−e−λt

and β(t) = e−λt, with Lévy measure as in (4), log moment generating function
equal to the first term in the right hand side of (5), and a base measure with
exponential density of parameter λ. Note that if β(t) = α((t,∞)) (then a priori
a Dirichlet process) and then there are right-censored observations, a posteriori
the process is not a Dirichlet process but a more general beta-Stacy, since the
relation between the α and β, both updated after the right-censored observa-
tions, changes. Another important special case is the homogenous process of
Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979), arising when
β(t) = β ∈ R

+ constant for all t ∈ R
+. As an example of simple homogeneous

process, if we fix α(t) = 1 − e−λt and β(t) = β, it can be shown that the Lévy
measure and the corresponding log moment generating function of the process
are, for φ ∈ R, the following:

dNt(v) =
1− e−λt

1− e−v
e−vβdv

logE
[
e−φZ(t)

]
=

(
e−λt − 1

)
(Hβ+φ−1 −Hβ−1) ,

where Hx =
∫ 1

0
(1− yx) (1− y) dy is the harmonic number for x ∈ R \ {−1,−2,

. . . }. The base measure of the simple homogeneous process is

E[F (t)] = 1− exp

{
− 1

βλ

(
e−λt−1

)}
, t ∈ R

+

In the rest of the paper, we only consider beta-Stacy processes in the general
formulation of Definition 2.1, but it is reasonable to conjecture that the results
can be generalized to the class of Neutral to the Right (NTR) processes (Doksum
1974). The NTR process may be viewed in terms of a process with independent
non-negative increments, via the parameterization F (t) = 1 − e−Z(t), t ∈ R

+,
where Z is a process with independent nonnegative increments. The beta-Stacy
process is a NTR process where Z is a so-called log-beta process (Walker and
Muliere 1997), that keeps the conjugacy property under sampling exact or right-
censored observations.

2.3. Posterior properties

We now state the theorem of Walker and Muliere (1997) on the conjugacy of
the beta-Stacy process.
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Theorem 2.2. (Walker and Muliere 1997) Assume we observe Xk = xk, for
k = 1, . . . , n, n ∈ N denoting the sample size, and such that Xk|F ∼ F ,
where F ∼ BS(α, β) is a discrete (continuous) beta-Stacy process. We parti-
tion x = (x1, . . . , xn) as [xexact,xcens] for respectively exact and right-censored
observations. Then the posterior F |(X1 = x1, . . . , Xn = xn) is also a discrete
(continuous) beta-Stacy process BS(α + Nx, β + Mx), where, for all t ∈ R

+,
Nx{t} =

∑
j:xj∈xexact 1{xj}(t) is the number of exact observations equal to t and

Mx(t) =
∑

i:xi∈xexact 1[0,xi)(t) +
∑

i:xi∈xcens 1[0,xi](t) is the sum of the number
of exact observations greater than t and censored observations greater or equal
to t.

The theorem above clarifies an important property of the (continuous or dis-
crete) beta-Stacy process: its conjugacy under sampling, possibly with right
censoring. A posteriori (after the observation of x) the corresponding jumps St,
for all t ∈ x, are such that

1− exp(−St) ∼ Beta(α{t}+Nx{t}, β(t) +Mx(t)).

From the conjugacy property and equation (1), for X1, . . . , Xn exchangeable
from F ∼ BS (α, β) continuous and α with discontinuity points {tk} each in R

+

or in N, we can write, for any n ∈ N and t ∈ R
+

P (Xn+1 ≤ t|X1, . . . , Xn) = 1− exp

{
−
∫ t

0

dαc(s)

α{s}+ β(s) +Nx{s}+Mx(s)

}

·
∏
tk≤t

(
1− α{tk}+Nx{tk}

α{tk}+ β(tk) +Nx{tk}+Mx(tk)

)
,

which specializes, for α with no discontinuity points, to

P (Xn+1 ≤ t|X1, . . . , Xn) = 1− exp

{
−
∫ t

0

dα(s)

β(s) +Nx{s}+Mx(s)

}

and, for the discrete beta-Stacy process and for all t ∈ N to

P (Xn+1 ≤ t|X1, . . . , Xn) =

t∏
j=1

(
1− α{j}+Nx{j}

α{j}+ β(j) +Nx{j}+Mx(j)

)
.

Note that the update of the discrete or continuous beta-Stacy parameters keeps
track of not only the number of observations (censored or not), but also of their
values.

3. The discrete-stage two-armed bandit problem

3.1. Beta-Stacy bandit problem formulation

In the proposed framework,
(
{α1, β1}, {α2, β2};An

)
denotes the two-armed

beta-Stacy bandit problem, with arm i having a beta-Stacy prior BS(αi, βi), for
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i = 1, 2, and withAn = (a1, a2, . . . , an) being a nonincreasing discount sequence.
Therefore the special choice of βi that follows the discussion after Equation (5),
together with the absence of censored observations, reduce our setting to the
Dirichlet bandit problem ({α1}, {α2};An) of Chattopadhyay (1994). The ob-
jective in the bandit problem is to maximize the expected payoff, more precisely
defined in the next subsection. Assuming without loss of generality that a higher
response from the arms corresponds to a higher payoff, we want to choose at
each stage which arm to observe with the aim of maximizing in expectation the
sum of all observations from the arms.

We only consider bandit problems with discrete stages: at the beginning of
stage 1 (in the disease motivating example, before the assigment of the first
patient to treatment 1 or 2) it is chosen which arm to observe, only on the basis
of α1, β1 and α2, β2: if the first arm is chosen, we will observe some realized
value of X1, possibly right-censored, where X1|F 1 ∼ F 1 and F 1 ∼ BS

(
α1, β1

)
;

if the second arm is chosen, we will observe some realized value of Y1, possibly
right-censored, where Y1|F 2 ∼ F 2 and F 2 ∼ BS

(
α2, β2

)
. Therefore at stage 1

the best arm is chosen for the first subject, optimally only on the basis of the
prior choices of α1, β1 and α2, β2, since no previous observations is available yet.
Taking into account the additional information coming from the observation at
stage 1 of X1 or Y1, we will choose the arm to observe at stage 2, in a way that
maximizes the expected payoff. Intuitively, if for instance a high realized value
of X1 is observed, it will be more likely to observe X2 instead of Y2, that is to
observe again from the same arm at the next stage, in a trade-off between the
exploitation of an arm that is better known to return high observations, and
the exploration of the potentially better but less known arm. At stage k > 1,
k ∈ N, we decide to observe Xk from arm 1 or Yk from arm 2 on the basis of
the obervations [xk−1,yk−1] = [xexact

k−1 ,xcens
k−1 ,y

exact
k−1 ,ycens

k−1 ] from the past k − 1
stages, where xk−1 are defined to be the observations from arm 1 at stages from
1 to k−1, partitioned in [xexact

k−1 ,xcens
k−1 ] for exact and right-censored observations,

and similarly for yk−1 and [yexact
k−1 ,ycens

k−1 ] from arm 2.
It is important to highlight that we assume throughout that we know if an

observation is right-censored or not. Furthermore, the elements of

[xexact
k−1 ,xcens

k−1 ,y
exact
k−1 ,ycens

k−1 ]

can be empty: for instance if all the observations from arm 1 are exact up to
stage k − 1, xcens

k−1 = ∅, or if arm 2 has never been observed up to stage k − 1,
yexact
k−1 = ycens

k−1 = ∅
For all k ∈ N, Xk|(F 1, [xk−1,yk−1])

d
= Xk|F 1 ∼ F 1, where F 1 ∼ BS

(
α1, β1

)
(and similarly for Yk), but with no conditioning on F 1, there is a dependence
between Xk and previous observations from arm 1:

Xk|[xk−1,yk−1] = Xk|xk−1 =

∫
Xk|F 1 dF 1

k−1, (6)

and similarly for Yk, with

F 1
k−1 ∼ BS(α1

xk−1
, β1

xk−1
),
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F 2
k−1 ∼ BS(α2

yk−1
, β2

yk−1
),

beta-Stacy processes with parameters updated in accordance to Theorem 2.2
above, defined as:

α1
xk−1

:= α1 +Nxk−1
, β1

xk−1
:= β1 +Mxk−1

, (7)

α2
yk−1

:= α2 +Nyk−1
, β2

yk−1
:= β2 +Mxk−1

, (8)

where, coherently with the notation set up in Section 2.3, for all t ∈ R
+ (or in

N for the discrete beta-Stacy process),

Nxk−1
{t} =

∑
j:xj∈xexact

k−1

1{xj}(t),

Mxk−1
(t) =

∑
j:xj∈xexact

k−1

1[0,xj)(t) +
∑

j:xj∈xcens
k−1

1[0,xj ](t),

and similarly for Nyk−1
and Myk−1

. For notational convenience, we also define
quantities prior to any information as F i

0 := F i, i = 1, 2, α1
x0

:= α1, α2
y0

:= α2,
β1
x0

:= β1 and β2
y0

:= β2.

3.2. Expected payoff and advantage

As detailed in the previous section, in a bandit problem ({α1, β1}, {α2, β2};An),
a strategy selects at each stage k = 1, . . . , n which arm to observe, on the basis
of past observations from the two arms. Then, a strategy can be characterized
by a n-dimensional binary vector Γ = (γ1, . . . , γn), where for k = 1, . . . , n,

γk := γk([xk−1,yk−1]) =

{
1, if observe arm 1
0, if observe arm 2

,

with γk dependent on past observations from both arms. Without loss of gen-
erality, we assume that higher observations are better, so that, for the discount
sequence An = (a1, . . . , an), we can write the payoff as

n∑
k=1

ak (γkXk + (1− γk)Yk) .

An optimal strategy maximizes the expected payoff, that is the expected dis-
counted sum of arms responses. With the exception of the simplest cases, explicit
characterizations of optimal strategies are hindered by computational difficul-
ties, imposing the need of partial characterizations of optimal strategies via
break-even observations (Chattopadhyay 1994; Clayton and Berry 1985). In
particular, we will prove the existence of stay-with-a-winner and stay-with-a-
winner/switch-on-a-loser break-even points. Similarly to Chattopadhyay (1994),
we let

W ({α1, β1}, {α2, β2};An) := sup
Γ

E

{
n∑

k=1

ak (γkXk + (1− γk)Yk)

}
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be the expected payoff under an optimal strategy, whilst W i({α1, β1}, {α2, β2};
An) is defined to be the expected payoff of a strategy starting from arm i and
proceeding optimally. We define Δ({α1, β1}, {α2, β2};An) to be the expected
advantage of initially choosing arm 1 over arm 2 assuming optimal continuation,
that is

Δ({α1, β1}, {α2, β2};An) =

W 1({α1, β1}, {α2, β2};An)−W 2({α1, β1}, {α2, β2};An).

Furthermore, we use the notation

Δ+({α1, β1}, {α2, β2};An) := max(0,Δ({α1, β1}, {α2, β2};An))

and

Δ−({α1, β1}, {α2, β2};An) := min(0,Δ({α1, β1}, {α2, β2};An)).

All the quantities defined above can be written more generally, substituting to
the prior beta-Stacy parameters, the correspondent posterior parameters. For
instance,

Δ({α1
xk−1

, β1
xk−1

}, {α2
yk−1

, β2
yk−1

};Ak−1
n )

is the expected advantage of choosing arm 1 over arm 2 at stage k ∈ N, after
the observation of [xk−1,yk−1] from the arms in the preceding k−1 stages, and
where Ak−1

n := (ak, ak+1, . . . , an).

3.3. Bandit strategies with optimal properties

Let Xk|F 1 ∼ F 1, Yk|F 2 ∼ F 2, with F 1 ∼ BS(α1, β1), F 2 ∼ BS(α2, β2), F 1

and F 2 independent, and bandit stages k ∈ {1, 2, . . . , n}, n ∈ N. We study two
strategies: stay-with-a-winner and stay-with-a-winner/switch-on-a-loser strate-
gies, following the nomenclature of Chattopadhyay (1994). As anticipated in
Section 1, in a stay-with-a-winner strategy, the arm currently chosen to be ob-
served is again observed at the next stage if its expected advantage, relative to
the alternative arm, is higher than the expected advantage computed before the
current observation of the arm. Therefore, an optimal arm chosen at the current
stage will again be optimal at the next stage if chosen by the stay-with-a-winner
strategy. We now characterize this first strategy:

Definition 3.1. The stay-with-a winner strategy at stage k = 1 selects arm 1 if

Δ
(
{α1, β1}, {α2, β2};An

)
> 0

and arm 2 otherwise. At stage k > 1, after the observation of [xk−1,yk−1], the
strategy chooses to observe arm 1 if

Δ
(
{α1

xk−1
, β1

xk−1
}, {α2

yk−1
, β2

yk−1
};Ak−1

n

)
≥

Δ
(
{α1

xk−2
, β1

xk−2
}, {α2

yk−2
, β2

yk−2
};Ak−2

n

)
,
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and selects arm 2 otherwise. The stay-with-a-winner break-even point at stage
k − 1, k > 1, is the realized value of Xk−1 from the first arm (or Yk−1 from the
second arm) for which the inequality above becomes an equality, making the
strategy indifferent in the choice of the two arms at the next stage k.

On the other hand, in a stay-with-a-winner/switch-on-a-loser strategy, the
currently observed arm is optimal at the next stage and it will be chosen if the
observation is higher than the break-even point at the current stage; if not, the
optimal arm to observe at the next stage is the other one.

Definition 3.2. The stay-with-a-winner/switch-on-a-loser strategy at stage
k ≥ 1, after the observation of [xk−1,yk−1], chooses to observe arm 1 if

Δ
(
{α1

xk−1
, β1

xk−1
}, {α2

yk−1
, β2

yk−1
};Ak−1

n

)
≥ 0

and selects arm 2 otherwise. The stay-with-a-winner/switch-on-a-loser break-
even point at stage k − 1, k < n is the realized value of Xk−1 from the first
arm (or Yk−1 from the second arm) for which the inequality above becomes an
equality, making the strategy indifferent in the choice of the two arms at the
following stage k.

4. Bandit solution with discrete beta-Stacy processes

4.1. Framework setting

The first (second) bandit arm is observed as long as it yields a value higher
(lower) than the break-even point. Let F i be the random distribution function
corresponding to arm i, F i ∼ BS(αi, βi) discrete, with Xk and Yk having sup-
ports in N for all k ≥ 1, for i = 1, 2. Omitting for notational convenience from
now on the dependence of P and E on α1, β1, α2, β2, at stage 1 and for all t ∈ N,
we have

P(X1 = t) =
α1{t}

α1{t}+ β1(t)

t−1∏
j=0

(
1− α1{j}

α1{j}+ β1(j)

)

and similarly for Y1. Then the prior means of the two arms are respectively

E[X1] =

+∞∑
t=1

P(X1 ≥ t) =

+∞∑
t=1

t−1∏
j=0

(
1− α1{j}

α1{j}+ β1(j)

)
=: μ1

and

E[Y1] =

+∞∑
t=1

t−1∏
j=0

(
1− α2{j}

α2{j}+ β2(j)

)
=: μ2.

Given observations [xk−1,yk−1] = [xexact
k−1 ,xcens

k−1 ,y
exact
k−1 ,ycens

k−1 ] from arms 1
and 2 up to stage k − 1, the conditional expectation of any function h(X)
can be computed using Theorem 2.2, and it is denoted by E[h(Xk)|xk−1]. In
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the sequel, the updates a posteriori of αi and βi, i = 1, 2, follow the notation
introduced in formulae (7) and (8): for instance, α1

xk−1
is the update of α1 after

having observed xk−1, and it is a fixed measure since xk−1 is fully observed;
similarly, α1

X1
is the random measure (since X1 is random) that updates α1 by

taking into account the randomness of the first arm at the first stage. Then
P(Xk = t|xk−1) is, for t ∈ N,

P(Xk = t|xk−1) =
α1
xk−1

{t}
α1
xk−1

{t}+ β1
xk−1

(t)

t−1∏
j=0

(
1−

α1
xk−1

{j}
α1
xk−1

{j}+ β1
xk−1

(j)

)
,

and the posterior mean is

E[Xk|xk−1] =

+∞∑
t=1

t−1∏
j=0

(
1−

α1
xk−1

{j}
α1
xk−1

{j}+ β1
xk−1

(j)

)
=: μ1

xk−1
.

A useful result we will often use below and that we show in the Appendix is
that the expected advantage of arm 1 over arm 2 can be written as

Δ({α1, β1}, {α2, β2};An) = (a1 − a2)(μ
1 − μ2)

+ E
[
Δ+({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

+ E
[
Δ−({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]

(9)

where, coherently with the notation introduced, for t ∈ N

α1
X1

= α1 +NX1 , NX1{t} =

{
1{X1}(t), X1 exact
0, X1 right-censored

,

β1
X1

= β1 +MX1 , MX1(t) =

{
1[0,X1)(t), X1 exact
1[0,X1](t), X1 right-censored

,

with similar construction for α2
X1

and β2
X1

. In general, for k ∈ {1, 2, . . . , n}:

Δ({α1
xk−1

, β1
xk−1

}, {α2
yk−1

, β2
yk−1

};Ak−1
n ) = (ak − ak+1)(μ

1
xk−1

− μ2
yk−1

)

+E

[
Δ+({α1

[xk−1,Xk]
, β1

[xk−1,Xk]
}, {α2, β2};Ak

n)
]

+E

[
Δ−({α1, β1}, {α2

[yk−1,Yk]
, β2

[yk−1,Yk]
};Ak

n)
]
, (10)

where α1
[xk−1,Xk]

= α1
xk−1

+NXk
, and similarly for all other quantities of interest

in (10).

4.2. Monotonicity of the expected advantage

In the next proposition we show that, given an exact or a right-censored ob-
servation X1 = x from arm 1, the expected advantage of choosing arm 1 over
arm 2 at stage 2 increases as x increases. We remark that we prove this and all
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subsequent results for the expected advatage at stage 2, and after the observa-
tion of arm 1 at stage 1, but identical statements can proved in the same way
for the expected advantage at stage k ≥ 1 after the observation of [xk−1,yk−1]
up to stage k − 1, at the cost of the slight increase in the notational burden
of substituting in the next propositions and theorems α1

x and β1
x with α1

[xk−1,x]

and β1
[xk−1,x]

and α2 and β2 with α2
xk−1

and β2
xk−1

. Furthermore, all the results

are stated assuming that the arm to observe at stage 1 is the first one, but they
can all similarly be stated in the case when arm 2 is observed at stage 1.

Proposition 4.1. For all α1, β1 and α2, β2 such that β1(t) ≤ β1(t+1)+α1{t+
1}, for all t ∈ N, and for all nonincreasing discount sequences An,

Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
is nondecreasing in x, for all x ∈ N.

Proof. By induction, for n = 1, we have

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= a1

⎛
⎝+∞∑

t=1

t−1∏
j=0

(
1− α1

x{j}
α1
x{j}+ β1

x(j)

)
− μ2

⎞
⎠

= a1(μ
1
x − μ2). (11)

Fix x∗ = x + 1. We first prove that μ1
x∗ − μ1

x ≥ 0. For this purpose, we study
separately the t-terms in the sum of μ1

x and μ1
x∗ when t ≤ x, t = x∗ and t > x∗.

When x is an exact observation,

• The t-terms with t ≤ x are the same in μ1
x and μ1

x∗ .
• For t = x∗, in μ1

x we have

t−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x)

α1{x}+ β1(x) + 1
,

whilst in μ1
x∗ ,

t−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x) + 1

α1{x}+ β1(x) + 1
,

and the x∗-term of μ1
x∗ is higher than or equal to the corresponding term

in μ1
x.

• For t > x∗, the t-term of μ1
x is

x−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x)

α1{x}+ β1(x) + 1

· β1(x∗)

α1{x∗}+ β1(x∗)

t−1∏
j=x∗+1

β1(j)

α1{j}+ β1(j)
,
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whilst the t-term of μ1
x∗ is

x−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x) + 1

α1{x}+ β1(x) + 1

· β1(x∗)

α1{x∗}+ β1(x∗) + 1

t−1∏
j=x∗+1

β1(j)

α1{j}+ β1(j)
;

the t-term of μ1
x∗ is higher than or equal to the corresponding term in μ1

x

if
β1(x) + 1

α1{x∗}+ β1(x∗) + 1
≥ β1(x)

α1{x∗}+ β1(x∗)
,

equivalent to β1(x) ≤ α1{x∗}+ β1(x∗), for all x and for all x∗ > x.

Similarly, the monotonicity of μ1
x can be proved when x is a right-censored

observation: the t-terms with t ≤ x∗ are the same in μ1
x and μ1

x∗ , whilst for
t > x∗ the two terms in, respectively, μ1

x and μ1
x∗ are

x−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x) + 1

α1{x}+ β1(x) + 1

· β1(x∗)

α1{x∗}+ β1(x∗)

t−1∏
j=x∗+1

β1(j)

α1{j}+ β1(j)
,

x−1∏
j=0

(
β1(j) + 1

α1{j}+ β1(j) + 1

)
β1(x) + 1

α1{x}+ β1(x) + 1

· β1(x∗) + 1

α1{x∗}+ β1(x∗) + 1

t−1∏
j=x∗+1

β1(j)

α1{j}+ β1(j)
,

where the term in μ1
x∗ is higher than or equal to the corresponding term in

μ1
x. Then, for n = 1 the statement is true since μ1

x is nondecreasing in x and
a1 ≥ 0. From the induction hypothesis, we assume the monotonic property for
n = m− 1 for some natural number m > 1. By (10),

Δ({α1
x, β

1
x}, {α2, β2};Am) = (a1 − a2)(μ

1
x − μ2)

+ E

[
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)
]

+ E
[
Δ−({α1

x, β
1
x}, {α2

Y2
, β2

Y2
};A1

m)
]
. (12)

The first term in the right hand side of (12) is nondecreasing in x since μ1
x is

nondecreasing in x and a1−a2 ≥ 0. The second and third term are nondecreasing
in x from the induction hypothesis.

Remark 4.2. The constraints β1(t) ≤ β1(t+ 1) + α1{t+ 1}, for all t ∈ N, are
enough for the monotonicity of μ1

x. The constraint is naturally verified in the
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Dirichlet two-armed problem, obtained from the beta-Stacy in the special case
of β1(t) = β1(t + 1) + α1{t + 1}, t ∈ N. Also, a bandit problem with simple
homogeneous processes (Susarla and Van Ryzin 1976; Ferguson and Phadia
1979) for each arm, corresponding to the case β1(t + 1) = β1(t) for all t ∈ N,
satisfies the constraints.

4.3. Existence of break-even points

We now prove the existence of stay-with-a-winner and stay-with-a-winner/
switch-on-a-loser break-even points in a bandit problem with discrete beta-Stacy
processes. The following proposition is preliminary to Theorems 4.5 and 4.6.

Proposition 4.3. For all α1, β1 and α2, β2 as in Proposition 4.1 and for all
nonincreasing discount sequences An,

Δ
(
{α1

x=0, β
1
x=0}, {α2, β2};An

)
= inf

x
Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
.

Furthermore, if the condition

∏
t∈N

(
1− α1{t}

α1{t}+ β1(t) + 1

)
> 0 (13)

is verified, then
lim

x→+∞
Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
= ∞.

Proof. The result for the x → 0 is a direct consequence of the monotonicity
property shown in Proposition 4.1. We are left to prove the limit to +∞. Con-
sider x increasing to ∞. By induction, for n = 1, μ1

x diverges to +∞ as x → +∞
since

lim
x→+∞

μ1
x ≥

+∞∑
t=1

∏
j∈N

β1(j) + 1

α1{j}+ β1(j) + 1

=
∏
j∈N

(
1− α1{j}

α1{j}+ β1(j) + 1

)
·
+∞∑
t=1

1 = +∞. (14)

Then, Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= a1(μ

1
x−μ2) goes to +∞ since μ1

x is divergent
and a1 > 0. Assume now that the statement is true for n = m − 1, for some
natural number m > 1. By (12),

Δ({α1
x, β

1
x}, {α2, β2};Am) = (a1 − a2)(μ

1
x − μ2)

+ E

[
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)
]

+ E
[
Δ−({α1

x, β
1
x}, {α2

Y2
, β2

Y2
};A1

m)
]
.

For the first term (a1 − a2)(μ
1
x − μ2) on the right hand side of the formula

above there are two possible cases: a1−a2 > 0 or a1−a2 = 0. In the latter case
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the term is zero, while when a1−a2 > 0 it diverges to +∞. For the second term,
note that Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m) is a nondecreasing sequence in x

(by Proposition 4.1), bounded below by 0 (by definition) and divergent to +∞
(by the induction hypothesis). We can then apply the monotone convergence
theorem and obtain

lim
x→+∞

E

[
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)
]

= E

[
lim

x→+∞
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)

]
= +∞.

For the third term, notice that, for all y ∈ N,

Δ({α1
x, β

1
x}, {α2

y, β
2
y};A1

m) = −Δ({α2
y, β

2
y}, {α1

x, β
1
x};A1

m).

Furthermore, Δ+({α2
y, β

2
y}, {α1

x, β
1
x};A1

m) converges to 0 as x diverges, and it

is bounded above by
∣∣Δ+({α2

y, β
2
y}, {α1

x=0, β
1
x=0};A1

m)
∣∣. By the dominated con-

vergence theorem we have

lim
x→+∞

E
[
Δ−({α1

x, β
1
x}, {α2

Y2
, β2

Y2
};A1

m)
]

= − lim
x→+∞

E
[
Δ+({α2

Y2
, β2

Y2
}, {α1

x, β
1
x};A1

m)
]

= −E

[
lim

x→+∞
Δ+({α2

Y2
, β2

Y2
}, {α1

x, β
1
x};A1

m)

]
= 0.

Remark 4.4. In Proposition 4.3 condition (13) is a sufficient condition, and the
discrete beta-Stacy process is defined such that condition (2) is verified. Both
conditions are satisfied when their ratio diverges, that is when

lim
t→∞

t−1∏
j=0

(
1 +

1

β1(j)

)
α1{j}+ β1(j)

α1{j}+ β1(j) + 1
= +∞.

This constraint does not pose restrictions, and it is satisfied, as expected, in the
special cases of the simple homogeneous process and the Dirichlet process.

We finally state the following theorems, showing that there exist break-
even points determining, respectively, a stay-with-a-winner and a stay-with-
a-winner/switch-on-a-loser strategy. The theorems generalize Theorem 2.1 and
Theorem 2.2 of Chattopadhyay (1994), proving the existence of the break-even
observations in a context more general than the Dirichlet arms, at the cost of
some restrictions on the choice of the parameters of the beta-Stacy process.

Theorem 4.5. For all α1, β1 and α2, β2 as in Proposition 4.1, for all non-
increasing discount sequences An and n > 1, there exists a break-even point
b
(
{α1, β1}, {α2, β2};An

)
∈ N such that

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
≥ Δ

(
{α1, β1}, {α2, β2};An

)
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if x ≥ b
(
{α1, β1}, {α2, β2};An

)
and

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
< Δ

(
{α1, β1}, {α2, β2};An

)
if x < b

(
{α1, β1}, {α2, β2};An

)
.

Proof. From Proposition 4.1, Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
is non decreasing in x,

starting from a value lower than Δ
(
{α1, β1}, {α2, β2};An

)
and going to infinity

(Proposition 4.3). This is enough to claim that there exists a break-even point
b which satisfies the properties in the theorem.

Theorem 4.6. For all α1, β1 and α2, β2 as in Proposition 4.1, for all nonin-
creasing discount sequences An and n > 1, if the condition

Δ
(
{α1

x=0, β
1
x=0}, {α2, β2};A1

n

)
≤ 0 (15)

holds, there exists a break-even point d
(
{α1, β1}, {α2, β2};An

)
∈ N such that

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
≥ 0 if x ≥ d

(
{α1, β1}, {α2, β2};An

)
and

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
< 0 if x < d

(
{α1, β1}, {α2, β2};An

)
.

Proof. As in the proof of Theorem 4.5, there exists a point d satisfying the
properties.

Remark 4.7. Sufficient condition (15) arises because the support of the base
measure of the beta-Stacy process is bounded below by zero. Both Clayton
and Berry (1985) and Chattopadhyay (1994) notice that when the support is
bounded, additional conditions at the boundaries are sufficient for the existence
of break-even observations. In particular, the condition intuitively means that if
a very bad observation from arm 1 is extracted at stage 1 (x close to 0), the alter-
native arm 2 is preferred under the current strategy. Note that in Theorem 4.5
it is superfluous a condition of the kind

Δ
(
{α1

x=0, β
1
x=0}, {α2, β2};A1

n

)
≤ Δ

(
{α1, β1}, {α2, β2};An

)
,

that is a condition that imposes a reduction in the expected advantage of arm 1
after the observation of x = 0: the worst observation x = 0 always causes a
decrease in the expected advantage. On the other hand, without condition (15)
in Theorem 4.6 we cannot exclude cases of prior values of αi and βi, i = 1, 2
such that μ1 >> μ2, with an expected advantage that does not change sign
after the observation of x = 0.

5. Bandit solution with continuous beta-Stacy processes

5.1. Framework setting

In the continuous beta-Stacy discrete-stage two-armed problem, Xk and Yk,
respectively from arm 1 and arm 2 at stage k ∈ {1, 2, . . . , n}, can assume values
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in R
+ and α1 and β1 (and also α2 and β2) are, respectively, a continuous measure

and a positive function, both defined on R
+. α1 and α2 are assumed a priori to

have no discontinuity points.
Recalling that we omit the dependence on α1, α2, β1 and β2, the results in

Section 2.1 say that, for t ∈ R
+,

P(X1 ≤ t) = 1− exp

{
−
∫ t

0

dα1(s)

β1(s)

}

=: 1−
∏
[0,t]

(
1− dα1(s)

β1(s) + α1{s}

)

where
∏

[0,t] denotes the product integral, an operator commonly used in the
survival analysis literature. For any partition k1 = z0 < z1 < · · · < zm = k2, if
lm = maxi=1,...,m |zi−zi−1|, the product integral for a function f : [k1, k2] → R

+

is defined as

∏
[k1,k2]

{1 + f(z)dz} := lim
lm→0

m∏
i=1

{1 + f(zj)− f(zj−1)} ,

where the limit is taken over all partitions of the interval [k1, k2] with lm ap-
proaching zero, for k1 < k2 both in R

+. See Gill and Johansen (1990) for a
survey of applications of product integrals to survival analysis. We can com-
pute, in analogy with the discrete case,

E[X1] =

∫ +∞

0

P(X1 > t)dt =

∫ +∞

0

∏
[0,t]

(
1− dα1(s)

β1(s)

)
dt =: μ1

and, similarly,

E[Y1] =

∫ +∞

0

∏
[0,t]

(
1− dα2(s)

β2(s)

)
dt =: μ2

assuming, without loss of generality, that μ1 ≤ μ2.
For the stage k ∈ {1, 2, . . . , n}, from the results in Section 2.3,

P(Xk ≤ t|xk−1) = 1− exp

{
−
∫ t

0

dα1(s)

β1(s) +Nxk−1
{s}+Mxk−1

(s)

}

·
(
1− Nxk−1

{t}
β1(t) +Nxk−1

{s}+Mxk−1
(t)

)

= 1−
∏
[0,t]

(
1−

dα1
xk−1

(s)

β1
xk−1

(s) + α1
xk−1

{s}

)

and, partitioning xk−1 = [xexact
k−1 ,xcens

k−1 ] for respectively exact and censored ob-
servations, the posterior mean is

E[Xk|xk−1] = P(Xk /∈ xexact
k−1 |xk−1) ·

∫ +∞

0

P(Xk > t|X /∈ xexact,xk−1)dt+
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P(Xk ∈ xexact
k−1 |xk−1) ·

∑
x∈xexact

k−1

xP(Xk = x|Xk ∈ xexact
k−1 ,xk−1)

= P(Xk /∈ xexact
k−1 |xk−1)

·
∫ +∞

0

∏
[0,t]

(
1−

dα1
xcens
k−1

(s)

β1
xcens
k−1

(s) + α1
xcens
k−1

{s}

)
dt+

P(Xk ∈ xexact
k−1 |xk−1)

∑
x∈xexact

k−1

xP(Xk = x|X ∈ xexact
k−1 ,xk−1)

=: μ1
xk−1

5.2. Monotonicity of the expected advantage

The function Δ({α1, β1}, {α2, β2};An) can be expressed as in (10). In the fol-
lowing propositions in the present and next subsections we will study its prop-
erties of monotonicity and continuity, with the aim of proving in Section 5.4
the existence of break-even observations of stay-with-a-winner and stay-with-a-
winner/switch-on-a-loser strategies.

Proposition 5.1. For all α1, β1 and α2, β2 such that − ∂
∂tβ

1(t) ≥ ∂
∂tα

1(t),
t ∈ R

+, and for all nonincreasing discount sequences An,

Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
is nondecreasing in x, for all x ∈ R

+.

Proof. By induction, for n = 1, and x censored to the right,

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= a1(μ

1
x − μ2)

= a1

⎛
⎝∫ +∞

0

∏
[0,t]

(
1− dα1

x(s)

β1
x(s) +Nx{s}

)
dt− μ2

⎞
⎠ .

We first show that μ1
x is nondecreasing in x, for x being censored to the right.

Notice that μ1
x can be written as

μ1
x =

∫ +∞

0

exp

{
−
∫ t

0

dα1(s)

β1
x(s) +Nx(s)

}
(
1− Nx{t}

β1
x(s) +Nx{s}

)
dt

=

∫ x

0

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+

∫ +∞

x

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
dt.

The integrand in μ1
x as a function of t has a discontinuity point when t = x, but

its value at this point is ignored since it does not contribute to the evaluation of
μ1
x. Take now any x∗ > x, and separate the cases t ≤ x, t ∈ (x, x∗) and t ≥ x∗:
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• When t ≤ x, the integrands in μ1
x and μ1

x∗ are the same.
• When t ≥ x∗, the integrand in μ1

x is

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
,

whilst the integral in μ1
x∗ is

exp

{
−
(∫ x∗

0

dα1(s)

β1(s) + 1
+

∫ t

x∗

dα1(s)

β1(s)

)}
,

with the integrand in μ1
x∗ always greater than or equal to the one in μ1

x.
• Finally, when t ∈ (x, x∗), the integrands in μ1

x and μ1
x∗ are, respectively,

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}

and

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
,

proving that μ1
x∗ ≥ μ1

x and that the statement is true for n = 1. On the other
hand, when x is not censored

μ1
x = P(X2 	= x|x)μ1 + P(X2 = x|x)x

=

(
1− exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
1

β1(x) + 1

)
μ1

+ exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
x

β1(x) + 1
,

and μ1
x∗ ≥ μ1

x for all x∗ > x, if and only if P(X2 = x|x), the probability of
X2 from arm 1 at stage 2 being equal to the previous exact observation, is
nondecreasing in x. This condition is equivalent to − ∂

∂tβ
1(t) ≥ ∂

∂tα
1(t), for

t ∈ R
+, as required in the proposition.

By induction, assuming the monotonicity property for n = m− 1, with some
natural number m > 1, the proof is completed along the lines of Proposi-
tion 4.1.

Remark 5.2. As in the discrete case, monotonicity of the posterior mean is
recovered under a condition on the parameters of the beta-Stacy process. The
condition β1(t) ≤ β1(t+1)+α1{t+1}, t ∈ N, in Proposition 4.1 for the discrete
beta-Stacy process, finds its continuous analogue − ∂

∂tβ
1(t) ≥ ∂

∂tα
1(t), t ∈ R

+,
in Proposition 5.1. As with the beta-Stacy bandit problem, the special cases of
Dirichlet and simple homogeneous processes are included, and they correspond,
respectively, to − ∂

∂tβ
1(t) = ∂

∂tα
1(t) and to ∂

∂tβ
1(t) = 0.
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5.3. Continuity of the expected advantage

Proposition 5.3. For all α1, β1 and α2, β2 and all nonincreasing discount se-
quences An, the expected advantage Δ

(
{α1

x, β
1
x}, {α2, β2};An

)
is a continuous

function of x, for x ∈ R
+ censored to the right.

Proof. It is enough to show that, for any increasing or decreasing sequence {x}
converging to x0 ∈ R

+,

Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
→ Δ

(
{α1

x0
, β1

x0
}, {α2, β2};An

)
.

We provide the proof only for an increasing sequence {x}, since the decreasing
sequence case is similar. By induction, first fix n = 1, so that

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= a1(μ

1
x − μ2).

The continuity in x is shown through the continuity of μ1
x. Taking any increasing

sequence converging to x0, then

lim
x→x0

μ1
x = lim

x→x0

(∫ x

0

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+

∫ +∞

x

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
dt

)

=

∫ x0

0

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+ exp

{
−
∫ x0

0

dα1(s)

β1(s) + 1

}
· lim
x→x0

∫ +∞

x

exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt,

where the last equality is justified by the continuity in x of∫ x

0

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt and exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
.

To finally see that μ1
x is continuous, we need to prove the continuity in x of the

function

H(x) :=

∫ +∞

x

exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt.

Note that the functionH is a parameterized Riemann integral, whose integration
extremes are also dependent on the parameter. H is given by the composition
of two functions:

H2(h, x) :=

∫ +∞

h

exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt

and h(x) = x. The latter is obviously continuous. For the continuity of H2, note
that ∣∣∣∣exp

{
−
∫ t

x

dα1(s)

β1(s)

}∣∣∣∣ ≤ 1,
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and we can apply the dominated convergence theorem to the sequence of func-
tions in x

exp

{
−
∫ t

x

dα1(s)

β1(s)

}

for any given value of h ∈ R
+. Then

lim
x→x0

H2(h, x) = lim
x→x0

∫ +∞

h

exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt

=

∫ +∞

h

exp

{
−
∫ t

x0

dα1(s)

β1(s)

}
dt = H2(h, x0).

Assume now that the statement is true for n = m−1, and some natural number
m > 1. By (12),

Δ({α1
x, β

1
x}, {α2, β2};Am) = (a1 − a2)(μ

1
x − μ2)

+ E

[
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)
]

+ E
[
Δ−({α1

x, β
1
x}, {α2

Y2
, β2

Y2
};A1

m)
]
.

The first term (a1 − a2)(μ
1
x − μ2) on the right hand side is continuous in x

(from the continuity of μ1
x). For the second term, note that

Δ+({α1
[x,X2]

, β1
[x,X2]

}, {α2, β2};A1
m)

is a nondecreasing sequence in x (by Proposition 5.1), bounded below by 0 (by
its definition) and convergent to Δ+({α1

[x0,X2]
, β1

[x0,X2]
}, {α2, β2};A1

m) (by the

induction hypothesis). We can then apply the monotone convergence theorem:

lim
x→x0

E

[
Δ+({α1

[x,X2]
, β1

[x,X2]
}, {α2, β2};A1

m)
]

= E

[
lim

x→x0

Δ+({α1
[x,X2]

, β1
[x,X2]

}, {α2, β2};A1
m)

]

= E

[
Δ+({α1

[x0,X2]
, β1

[x0,X2]
}, {α2, β2};A1

m)
]

For the third term, notice that, for y ∈ R
+,

Δ({α1
x, β

1
x}, {α2

y, β
2
y};A1

m) = −Δ({α2
y, β

2
y}, {α1

x, β
1
x};A1

m).

Furthermore, Δ+({α2
y, β

2
y}, {α1

x, β
1
x};A1

m) converges to

Δ+({α2
y, β

2
y}, {α1

x0
, β1

x0
};A1

m)

as x converges (by the induction hypothesis), and it is bounded above by∣∣Δ+({α2
y, β

2
y}, {α1

x=0, β
1
x=0};A1

m)
∣∣ .
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By the dominated convergence theorem,

lim
x→x0

E
[
Δ−({α1

x, β
1
x}, {α2

Y2
, β2

Y2
};A1

m)
]

= − lim
x→x0

E
[
Δ+({α2

Y2
, β2

Y2
}, {α1

x, β
1
x};A1

m)
]

= −E

[
lim

x→x0

Δ+({α2
Y2
, β2

Y2
}, {α1

x, β
1
x};A1

m)

]
= E

[
Δ−({α1

x0
, β1

x0
}, {α2

Y2
, β2

Y2
};A1

m)
]
,

proving continuity for the generic bandit horizon n.

5.4. Existence of break-even points

Proposition 5.4. For all α1, β1 and α2, β2 as in Proposition 5.1, for all x ∈ R
+

and all nonincreasing discount sequences An,

Δ
(
{α1

x=0, β
1
x=0}, {α2, β2};An

)
= inf

x
Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
.

Furthermore, if
∫∞
0

dα1(t)/(β1(t) + 1) < ∞, then

lim
x→+∞

Δ
(
{α1

x, β
1
x}, {α2, β2};An

)
= ∞.

Proof. The case for x = 0 is an immediate consequence of Proposition 5.1. To
study the case where x diverges, we proceed by induction. Note that for n = 1,
Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= a1(μ

1
x − μ2) and

lim
x→+∞

μ1
x =

∫ +∞

0

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

≥ exp

{
−
∫ +∞

0

dα1(s)

β1(s) + 1

}∫ +∞

0

1dt = +∞,

where the last equality is true since
∫∞
0

dα1(t)/(β1(t) + 1) < ∞ is equivalent to

exp

{
−
∫ +∞

0

dα1(s)

β1(s) + 1

}
> 0.

This proves that limx→+∞ Δ
(
{α1

x, β
1
x}, {α2, β2};A1

)
= ∞. The rest of the proof

follows the same lines as the proof of Proposition 4.3.

Remark 5.5. Coherently with the conditions required in Proposition 4.3 for
the discrete beta-Stacy bandit problem, in the above proposition the additional
condition

∫∞
0

dα1(t)/(β1(t) + 1) < ∞ is a sufficient condition. Note that the

beta-Stacy process is defined such that
∫∞
0

dα1(t)/β1(t) = ∞. These two im-
proper integrals should have a different asymptotic behavior, a condition that
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is verified when, from the limit comparison test for integrals, the limit of the
ratio of the two integrands is different from 1, that is when

lim
t→∞

(
1 +

1

β1(t)

)
	= 1.

For finite β1, this is satisfied, and, as expected, includes the special cases of the
simple homogeneous process and the Dirichlet process. In short, the additional
constraint rules out cases of exploding β1. Usually, β1 is fixed such that β1(t) =
M · F0[t,∞), converging to 0 as t diverges (see Walker and Muliere 1997).

Theorem 5.6. For all α1, β1, α2, β2 as in Proposition 5.4, for all nonin-
creasing discount sequences An and n > 1, there exists a break-even point
b
(
{α1, β1}, {α2, β2};An

)
∈ R

+ such that

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
≥ Δ

(
{α1, β1}, {α2, β2};An

)
if x ≥ b

(
{α1, β1}, {α2, β2};An

)
and

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
< Δ

(
{α1, β1}, {α2, β2};An

)
if x < b

(
{α1, β1}, {α2, β2};An

)
.

Proof. From Propositions 5.1 and 5.3, Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
is nondecreas-

ing in x and continuous (the latter only for x censored), starting from a value
lower than

Δ
(
{α1, β1}, {α2, β2};An

)
and growing to infinity (Proposition 5.4). Then the point b({α1, β1}, {α2, β2};
An) exists and satisfies the properties of the theorem.

Theorem 5.7. For all α1, β1, α2, β2 as in Proposition 5.4, for all nonincreasing
discount sequences An and n > 1, if condition (15) holds, there exists a break-
even point d

(
{α1, β1}, {α2, β2};An

)
∈ R

+ such that

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
≥ 0 if x ≥ d

(
{α1, β1}, {α2, β2};An

)
and

Δ
(
{α1

x, β
1
x}, {α2, β2};A1

n

)
< 0 if x < d

(
{α1, β1}, {α2, β2};An

)
.

Proof. As in Theorem 5.6, there exists a point d
(
{α1, β1}, {α2, β2};An

)
satis-

fying the properties.

Remark 5.8. For Theorems 5.6 and 5.7, Remark 4.7 is still valid, on the suf-
ficiency of an additional boundary condition (in Theorem 5.7, but not in 5.6)
for finding break-even points in bandit problems with base measures having
bounded supports.
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6. Applications

6.1. Discrete beta-Stacy bandit examples

Consider the discrete beta-Stacy two-armed bandit problem, with M i = αi(N),
i = 1, 2 be the total masses of the measures α1 and α2. A higher value of M i is
interpreted as a stronger prior knowledge of the beta-Stacy process related to
arm i. We observe censored to the right observations, fix the bandit horizon to
n = 3 and the discount sequence is A3 = (1, 0.9, 0.8). Choosing higher values for
n is feasible and to higher values correspond higher processing times. Denoting

by X
(l)
k (respectively Y

(l)
k ) the l-th sampled extraction from arm 1 (arm 2) at

stage k, we first sample X
(l)
1 and Y

(l)
1 from the two arms, for l = 1, . . . , T with

T = 100. Then for each X
(l)
1 we sample T times X2 from the first arm, and for

each Y
(l)
1 we sample T times Y2 from the second arm. Sampling from prior and

posterior beta-Stacy processes is done, respectively, with Algorithm A and B in
Al Labadi and Zarepour (2013). See also De Blasi (2007) for an alternative way
of simulating from the beta-Stacy process.

6.1.1. Discrete numerical example 1

Fix, for all t ∈ N\{0}, α1{t} = 0.1M1 ·0.9t−1 and β1(t) = M1 ·0.9t for the first
arm, and α2{t} = 0.08M2 · 0.92t−1 and β2(t) = M2 · 0.92t and for the second
arm. For t = 0, i = 1, 2, αi{t} = βi(t) = 0, and for all t /∈ N, i = 1, 2, αi{t} = 0
and βi(t) = βi(
t�), where 
t� is the largest integer lower or equal to t. Note
that μ1 < μ2 a priori and that different values of M1 and M2 do not affect the
prior means, μ1 and μ2, but only the posterior means, since

μ1 =

∞∑
t=1

t−1∏
j=0

β1{j}
α1{j}+ β1(j)

=

∞∑
t=1

t−1∏
j=0

M1 · 0.9j
0.1M1 · 0.9j−1 +M1 · 0.9j =

∞∑
t=1

0.9t = 9,

and similar calculations show that μ2 = 11.5. The assumption of Proposition 4.1
is satisfied, since for all t ∈ N\{0} we have β1(t) = β1(t+1)+α1{t+1} = M1·0.9t
and β2(t) = β2(t + 1) + α2{t + 1} = M2 · 0.92t, for t = 0 and i = 1, 2 we have
βi(t) = 0 < M i = βi(t + 1) + αi{t + 1}, and for t /∈ N and i = 1, 2 we have
βi(t) = βi(t+ 1) + αi{t+ 1} = 0.

For each scenario, we evaluate μ1
x1
, μ1

x2
, μ2

y1
and μ2

y2
; we then evaluate

Δ
(
{α1, β1}, {α2, β2};A3

)
, reported in Table 1 for different values of M1 and

M2. There is a tendency for Δ
(
{α1, β1}, {α2, β2};A3

)
to increase in M2 and

decrease in M1, holding everything else constant. This result is coherent with
the exploitation-exploration trade-off mentioned in the Introduction, and sug-
gests that the less is known about the arm, the more appealing is to select the
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Table 1

Estimated Δ
(
{α1, β1}, {α2, β2};A3

)
, with parameters as specified in Section 6.1.1, and for

different values of M i = αi(N), i = 1, 2.

M2

M1 0.1 1 5 10 100
0.1 −11.0406 0.4198 10.4029 12.1847 11.9691
1 −19.6250 −9.4420 1.2262 3.0780 5.5041
5 −21.7856 −13.2648 −5.3174 −3.6489 −1.8068
10 −21.8101 −13.6430 −6.1519 −4.3691 −2.6009
100 −22.1149 −13.2984 −6.0458 −4.5251 −2.7353

arm, since more information can be gained from its exploration: when M1 in-
creases, more weight is given to the prior belief of arm 1, that is then considered
better known, with consequent higher tendency of exploring arm 2, as reflected
in the lower expected advantage of arm 1 over arm 2. A specular reasoning on
M2 leads to a higher expected advantage of arm 1 over arm 2 as M2 increases.
Furthermore, as both M1 and M2 increase, prior information on both arms
assumes more relevance, relative to the observation coming from the observa-
tion of the arms, up to the case where Δ

(
{α1, β1}, {α2, β2};A3

)
approaches

μ1 − μ2 = −2.5 (the prior mean difference), with no impact of the observations
on the choice of the arms to observe. When Δ

(
{α1, β1}, {α2, β2};A3

)
is posi-

tive, the optimal arm is the first one, and viceversa when is negative. Most of the
times, the difference in the prior means makes the second arm the optimal one,
except in cases with M1 << M2: these are situations where the higher prior
uncertainty (lower M1) of the first arm, relative to the higher prior confidence
in the second arm (larger M2), makes the first arm preferable to be explored,
even if a priori arm 2 is believed to be better.

6.1.2. Discrete numerical example 2

The beta-Stacy parameters in the two-armed bandit problem are fixed, for i =
1, 2 and t ∈ N, as

αi{t} = M i 1

2hi + 1
1{ci−hi,...,ci+hi}(t), (16)

βi(t) = M i

(
hi + ci − t

2hi + 1
1{ci−hi,...,ci+hi}(t) + 1[0,ci−hi)(t)

)
, (17)

where ci, hi ∈ N and hi < ci. For all t /∈ N, i = 1, 2, αi{t} = 0 and βi(t) =
βi(
t�). Note that, for i = 1, 2,

μi =

ci+hi∑
t=1

t−1∏
j=ci−hi

βi{j}
αi{j}+ βi(j)

= ci − hi − 1 +

ci+hi∑
t=ci−hi

hi + ci − t+ 1

2hi + 1
= ci,

and therefore we can fix the prior means through c1 and c2. The assumption of
Proposition 4.1 is satisfied, since for i = 1, 2 and t ≤ ci−hi− 1 we have βi(t) =
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Fig 1. Estimated Δ
(
{α1, β1}, {α2, β2};A3

)
, with parameters as specified in equations (16)

and (17), for different variability around the base measure (M2) and different base measure
variability (h2) of the beta-Stacy process from the second arm. The prior means are both equal
to μ1 = μ2 = 20, and M1 = h1 = 1.

βi(t+1)+αi{t+1} = M i, for t ≥ ci+hi we have βi(t) = βi(t+1)+αi{t+1} = 0,
and for t ∈ {ci − hi, . . . , ci + hi − 1}, we have βi(t) = βi(t + 1) + αi{t + 1} =
M i(hi + ci − t)/(2hi + 1).

The parameter hi is positively related to the variability of the base measure
of the beta-Stacy process related to arm i, whilst M i is negatively related to the
variability around the base measure. We fix μ1 = μ2 = 20, and M1 = h1 = 1,
to see how the expected advantage of arm 1 over the other arm is affected by a
change in h2 and in M2. In this way we set up an experiment in which we can
isolate the effect on the expected advantage of arm 1 of a change in the prior
variability of the beta-Stacy base measure related to arm 2 (a change in h2)
from the effect of a change in the prior belief in the base measure (a change in
M2). The prior means are fixed equal to avoid the results being affected by a
dominant prior mean. For instance, holding fixed M2, an increase in h2 leaves
unaltered the prior mean of arm 2, but the support of α2 is more spread, with
a consequent increase in the variability of responses from arm 2 and a more
convenient exploration of arm 2.

In Figure 1 we report the value of Δ
(
{α1, β1}, {α2, β2};A3

)
for different h2

and M2. The dotted line, corresponding to the case h1 − h2 = 0, shows how
a lower variability (higher M2) around the base measure of arm 2, makes this
arm less interesting to explore, in favor of arm 1. The same effect is caused by
a change in the variability of the base measure of arm 2: for h2 − h1 < 0 and
for M1 = M2 = 1, arm 1 is preferred, up to a Δ

(
{α1, β1}, {α2, β2};A3

)
≈ 6

for h2 − h1 = −10. Viceversa, higher positive values of h2 − h1 correspond to
higher preference for arm 2. Furthermore, in the considered setting the effect of a
change in M2 seems to dominate when it becomes very large: as we increase M2,
the distances among the scenarios with different h2 decrease and concentrate on
positive expected advantages of the first arm over the second one.
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6.2. Continuous beta-Stacy bandit numerical example

We adopt in the two-armed bandit problem the beta-Stacy process suggested by
the numerical example in Ferguson and Phadia (1979) and Walker and Muliere
(1997): for the first arm we choose dα1(t) = exp(−t/10)/10dt and β1(t) =
exp(−t/10), whist for the second arm dα2(t) = exp(−t/12)/12dt and β2(t) =
exp(−t/12), for t ∈ R

+. Note that μ1 < μ2 a priori since

μ1 =

∫ ∞

0

exp

{
−
∫ t

0

dα1(s)

β1(s)

}
dt =

∫ ∞

0

exp

{
−
∫ t

0

e−s/10

10e−s/10

}
dt = 10,

and similar calculations show that μ2 = 12. The assumption in Proposition 5.1
is satisfied, since for all t ∈ R

+, − ∂
∂tβ

1(t) = ∂
∂tα

1(t) = exp{−t/10}/10 and

− ∂
∂tβ

2(t) = ∂
∂tα

2(t) = exp{−t/12}/12. All the rest is fixed as in the previous

examples. Denoting by X
(l)
k (respectively Y

(l)
k ) the l-th sampled extraction from

arm 1 (arm 2) at stage k, we sample X
(l)
1 and Y

(l)
1 from the two arms, for

l = 1, . . . , T and T = 150. Then for each X
(l)
1 we sample T times X2 from the

first arm, and for each Y
(l)
1 we sample T times Y2 from the second arm, using

Algorithms A and B in Al Labadi and Zarepour (2013). In the top-left plot
of Figure 2, two randomly extracted prior distributions for the two arms are
reported.

For each scenario, we evaluate μ1
x1
, μ1

x2
, μ2

y1
, μ2

y2
; Δ

(
{α1, β1}, {α2, β2};A3

)
is then evaluated and Δ

(
{α1

x, β
1
x}, {α2, β2};A1

3

)
, for x ∈ R

+. In the top-right
plot of Figure 2 we show the expected advantage of arm 1 over arm 2 as
a function of the observed x at stage 1, x from arm 1 and exact. Mono-
tonicity in x of Δ

(
{α1

x, β
1
x}, {α2, β2};A1

3

)
is numerically verified. Note also

that condition (15) is satisfied, so that the two break-even points exist. In
particular, the break-even observation for the stay-with-a-winner strategy is
b
(
{α1, β1}, {α2, β2};A3

)
= 15.27, whilst for the stay-with-a-winner/switch-on-

a-loser strategy is d
(
{α1, β1}, {α2, β2};A3

)
= 18.89. The strategies can be

completely determined. For instance, arm 2 is optimally selected at stage 1
by both stay-with-a-winner and stay-with-a-winner/switch-on-a-loser strategies,
since Δ

(
{α1, β1}, {α2, β2};A3

)
< 0. If an exact observation from arm 2 is ex-

tracted equal, say, to y1 = 4, the stay-with-a-winner strategy chooses arm 1 at
stage 2 since Δ

(
{α1, β1}, {α2

y1
, β2

y1
};A1

3

)
= −1.60, greater than

Δ
(
{α1, β1}, {α2, β2};A3

)
= −2.47.

Since Δ
(
{α1, β1}, {α2

y1
, β2

y1
};A1

3

)
< 0, at stage 2 arm 1 would not be chosen

by the stay-with-a-winner/switch-on-a-loser strategy, but it will choose again
the optimal arm 2. Following the stay-with-a-winner strategy, suppose now a
censored observation from arm 1 equal, say, to x2 = 15.5 is observed, for which
Δ
(
{α1

x2
, β1

x2
}, {α2

y1
, β2

y1
};A2

3

)
= −1, greater than Δ

(
{α1, β1}, {α2

y1
, β2

y1
};A1

3

)
.

Therefore in the third stage the observation of arm 1 is again dictated by the
stay-with-a-winner strategy.
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Fig 2. Top-left: Two distributions sampled from the beta-Stacy process of Walker and Muliere
(1997), with algorithm A in Al Labadi and Zarepour (2013). The solid line is from arm 1, the
dashed one from arm 2, with parameters as specified in Section 6.2. Top-right: in circles we
report Δ

(
{α1

x, β
1
x}, {α2, β2};A1

3

)
, the dashed horizontal line is Δ

(
{α1, β1}, {α2, β2};A3

)
.

The horizontal line at 0 is also highlighted with a dotted line. The intersections determine
the break-even observations of the two strategies outlined in the text. Bottom-left: in circles
Δ
(
{α1

x, β
1
x}, {α2, β2};A1

3

)
for the beta-Stacy bandit problem. With the asterisks we represent

the corresponding quantity for the Dirichlet bandit that ignores the censorship. The horizontal
line at 0 is also highlighted with a dotted line. Bottom-right: Error probability of the stay-
with-a winner strategy implied by the Dirichlet bandit problem, when censorship is ignored,
as function of the first right-censored observation from arm 1.

In the bottom-left plot of Figure 2 we report Δ
(
{α1

x, β
1
x}, {α2, β2};A1

3

)
when

x ∈ R
+ is right-censored, and the expected advantage of arm 1 if the data were

incorrectly supposed to be exact. In other words, we compare the beta-Stacy
bandit problem with the corresponding Dirichlet bandit problem that ignores
the censorship, to quantify the difference between the two and highlight the
relevance of properly accounting for right-censored data. There is a range of
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values from 9.12 to 16.48 at which the Dirichlet bandit problem would take
the wrong strategy, since Δ

(
{α1

x, β
1
x}, {α2, β2};A1

3

)
would be of opposite sign,

relative to the corresponding beta-Stacy quantity. The break-even point for the
Dirichlet bandit is too low, since it judges the observations to be exact and
therefore does not account for the increased chance of observing higher values
in future stages. If we repeat the experiment 150 times for each value of x from
1 to 30, we can compute the probability the Dirichlet bandit being in error in
the choice of the optimal arm, after the observation of x from arm 1 at stage 1.
This probability is reported in the bottom-right plot of Figure 2.

7. Conclusions and further directions

We have studied Bayesian nonparametric bandit problems with right-censored
data, where two independent arms are generated by beta-Stacy processes (Walker
and Muliere 1997). The proposed framework extends the one-armed and two-
armed Dirichlet bandit problem of Clayton and Berry (1985) and Chattopad-
hyay (1994) since the beta-Stacy process reduces to the Dirichlet process for a
special choice of the process parameters and in the absence of censored obser-
vations. We have shown some properties of the expected advantage of the first
arm over the second arm, and, under non-restrictive constraints on the process
parameters, the existence of stay-with-a-winner and stay-with-a-winner/switch-
on-a-loser break-even points that partially characterize optimal strategies.

7.1. Relation to delayed responses

A stream of literature close to the proposed setting is that on bandit problems
with delayed responses: new subjects arrive in the bandit problem and optimal
assigment to arms has to be performed before having observed the responses of
past subjects. Delayed bandits have been first proposed by Eick (1985, 1988a) for
the one-armed and two-armed bandit and by Eick (1988b) for the multi-armed
bandit problem. Among later significant developements, Hardwick, Oehmke and
Stout (2001, 2006) proposed the two-armed Bernoulli bandit problem with sub-
jects arriving according to a Poisson process and exponential responses; Wang
(2000) studied boundary and monotonicity properties of the break-even point
and finite-stage optimal stopping of the Eick (1988a) bandit problem; the one-
armed Eick (1988a) with continuous stages was introduced by Wang and Bickis
(2003); Caro and Yoo (2010) proved that discrete-stage bandit problems with
stationary random delays satisfy the indexability criterion (Whittle 1988) as
long as the delayed responses do not cross over; a computationally efficient
approximation to the solution of a multi-armed bandit problem with delayed
responsed was implemented in Guha, Munagala and Pál (2013).

The relation between censored and delayed responses lays in the fact that past
responses not yet observed in delayed bandits are typically treated as censored
observations. But there is a significant difference that prevents the approach of
the present paper fitting into the framework of delayed responses: in delayed
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bandits the censored observations are potentially exact observations with exact
value not yet realized, whilst in our setting a censored observation will never
become exact. In the patients’ treatment example, the censored observation in
the delayed bandit is the survival time returned at the current stage by a treated
patient not died yet, and this piece of data will become exact at the stage at
which the patient will die. On the contrary, we are not able to treat delayed
responses since the time index of the beta-Stacy process driving the generation
of the response is detached from the stage index of the bandit problem: the new
bandit stage begins (the new subject arrives) only when past responses (exact
or censored) are given. The extension of our setting to the case with delayed
responses is an interesting research question beyond the scope of the present
paper, but similarities between the two approaches give first suggestions on how
this extension can be performed: from Walker and Muliere (1997), the beta-
Stacy process can be expressed in a product form that resembles and extends
the geometric distribution of the delayed responses in Eick (1985, 1988a).

7.2. Multi and one-armed bandits

The extension to multi-armed contextual bandits (Langford and Zhang 2008)
can be implemented by introducing dependence of the arm parameters on ex-
ternal regressors, or introducing dependence between Bayesian nonparametric
arms through partial exchangeability (de Finetti 1938, 1959), for instance with
the mixture of Dirichlet processes of Antoniak (1974), the Bivariate Dirich-
let process of Walker and Muliere (2003) or the Bivariate beta-Stacy process
of Muliere, Bulla and Walker (2007). In this direction, Battiston, Favaro and
Teh (2016) adopt hierarchical Poisson-Dirichlet processes in multi-armed bandit
problems. The introduction of dependence between the arms also suggests the
extension to restless bandit problems, in which the parameters of the beta-Stacy
process of one arm are updated even if no response from that arm is observed,
but as a consequence of the observation of a response from a dependent arm.

We highlight that in the setting of the current paper the parameters asso-
ciated to the beta-Stacy process of arm i, i = 1, 2, are updated according to
the rules given in Section 2.3 only when a new response is observed from arm
i, ruling out from the present setting restless bandits (Whittle 1988). This fea-
ture, together with the independence of the two arms, makes the current setting
(and the one with a generic number of arms) a classic bandit problem that, in
the special case of a discount sequence that is geometric at least up to a con-
stant of proportionality and common to all arms, is solvable in priciple by a
Gittins index policy (Gittins 1979). The feasibility of the Gittins index calcu-
lation associated to each beta-Stacy arm is not trivial and is object of current
investigation from the authors in the aim of generalizing the proposed setting to
a multi-armed framework. We conjecture that one of the methods surveyed in
Chakravorty and Mahajan (2014) could be adopted, but an effort is needed to
derive the transition probability matrix corresponding to the Markovian update
of the bandit process.
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On the other hand, the present framework is reduced to a one-arm beta-
Stacy bandit problem if we let the total measure M2 := α2(R+) diverge to +∞.
The value of M2 gives indication on the strength of the prior belief in the base
measure of the beta-Stacy process associated to arm 2. The extreme case of
an infinite M2 means de facto a sure knowledge of the distribution driving the
generation of the responses from arm 2. The result would be an arm 1 whose
responses are driven by a beta-Stacy process whose parameters are updated
according to the specified rules as new observations from arm 1 are collected;
and an arm 2 with known distribution equal to the mean distribution of the
beta-Stacy process of arm 2, whose parameters are never updated, regardless
of the responses observed from arm 2. All subsequent results would remain the
same, with the exception that the mean response of arm 2, affecting the expected
bandit payoff, would not change from stage to stage, but it would remain fixed
to its prior value.

7.3. Other directions of investigation

Our framework can be further extended to different bandit problems. First,
the common formulation of the Bernoulli bandit can be replicated through the
choice of Bernoulli base measures, centered on success probabilities that are
learnt as observations are collected. Second, semi-uniform strategies with greedy
behaviour can be addressed: epsilon-greedy and epsilon-first strategies (Watkins
1989; Sutton and Barto 1998) that dedicate a proportion of phases to, respec-
tively, random and purely exploratory phases, can be derived by randomizing the
reinforcement learning mechanism of the arms’ parameters (Muliere, Paganoni
and Secchi 2006); epsilon-decreasing and VBDE strategies (Cesa-Bianchi and
Fisher 1998; Tokic 2010) would require a beta-Stacy parameter update mech-
anism dependent on the number of steps or on the values extracted from the
arms. Third, the sequential nature of the Bayesian framework and the flexibility
of nonparametric priors permit to handle more general cases of non-stationary
bandit problems (Garivier and Moulines 2008), where the underlying base mea-
sure of the beta-Stacy processes can change after some stage.

Appendix

Following the notation introduced in Section 3.2,

W ({α1, β1}, {α2, β2};An)

= max
{
W 1({α1, β1}, {α2, β2};An),W

2({α1, β1}, {α2, β2};An)
}
,

Δ({α1, β1}, {α2, β2};An)

= W 1({α1, β1}, {α2, β2};An)−W 2({α1, β1}, {α2, β2};An),

W 1({α1, β1}, {α2, β2};An)

= W ({α1, β1}, {α2, β2};An) + Δ−({α1, β1}, {α2, β2};An),
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W 2({α1, β1}, {α2, β2};An)

= W ({α1, β1}, {α2, β2};An)−Δ+({α1, β1}, {α2, β2};An).

Therefore,

W 1({α1, β1}, {α2, β2};An)

= a1μ
1 + E

[
W ({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

= a1μ
1 + E

[
W 2({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

+ E
[
Δ+({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]
,

W 2({α1, β1}, {α2, β2};An)

= a1μ
2 + E

[
W ({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]

= a1μ
2 + E

[
W 1({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]

− E
[
Δ−({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]
,

and

Δ({α1, β1}, {α2, β2};An)

= W 1({α1, β1}, {α2, β2};An)−W 2({α1, β1}, {α2, β2};An)

= a1μ
1 + E

[
W 2({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

− a1μ
2 − E

[
W 1({α1, β1}, {α2

Y2
, β2

Y2
};A1

n)
]

+ E
[
Δ+({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

+ E
[
Δ−({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]
.

Using arguments similar to those in Berry and Fristedt (1985) and Chattopad-
hyay (1994),

a1μ
1 + E

[
W 2({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

is the expected payoff of first selecting arm 1, followed by arm 2 and then
continuing optimally. Similarly,

a1μ
2 + E

[
W 1({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]

is the expected payoff of selecting arm 2 first and arm 1 second and then con-
tinuing optimally. Subtracting the second payoff from the first one we obtain
(a1 − a2)(μ

1 − μ2). From this fact,

Δ({α1, β1}, {α2, β2};An) = (a1 − a2)(μ
1 − μ2)

+ E
[
Δ+({α1

X1
, β1

X1
}, {α2, β2};A1

n)
]

+ E
[
Δ−({α1, β1}, {α2

Y1
, β2

Y1
};A1

n)
]
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