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Abstract: Respondent-Driven Sampling is a popular technique for sam-
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as a Markov process indexed by a tree. Our main results show that the Volz-
Heckathorn estimator is asymptotically normal below a critical threshold.
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1. Introduction

Classical sampling requires a sampling frame, a list of individuals in the target
population with a method to contact each individual (e.g. a phone number).
For many populations, constructing a sampling frame is infeasible. Network
driven sampling enables researchers to access populations of people, webpages,
and proteins that are otherwise difficult to reach. These techniques go by many
names: web crawling, Respondent-Driven Sampling, breadth-first search, snow-
ball sampling, co-immunoprecipitation, and chromatin immunoprecipitation. In
each application, the only way to reach the population of interest is by asking
participants to refer friends.

Respondent-Driven Sampling (RDS) serves as a motivating example for this
paper. The Centers for Disease Control, the World Health Organization, and
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the Joint United Nations Programme on HIV/AIDS have invested in RDS to
reach marginalized and hard-to-reach populations [6, 1]. Each individual i in
the population has a corresponding feature yi (e.g. yi ∈ {0, 1} and yi = 1 if
i is HIV+). Using only the sampled individuals, we wish to make inferences
about the average value of yi across the entire population, denoted as μ (e.g.
the proportion of the population that is HIV+). Extensive previous statistical
research has proposed various estimators of μ which are approximately unbiased
based upon various types of models for an RDS sample [16, 17, 4]. We note
that in the papers cited above (except [4]), RDS is assumed to sample with
replacement. Previous research has also explored the variance of these estimators
[5, 13]. This paper studies the asymptotic distribution of statistics related to
these estimators.

Results on asymptotic distributions for RDS are useful for two obvious rea-
sons. First, they allow us to construct asymptotic confidence intervals for μ.
Second, they provide essential tools to test various statistical hypotheses. The
only central limit theorem considered in the RDS literature studied the case
when the tree indexed process reduces to a Markov chain [5]; this presumes
that each individual refers exactly one person. Previous research suggests that
the number of referrals from each individual is fundamental in determining the
variance of common estimators [13]. This paper establishes two central limit
theorems in settings which allow for multiple referrals.

The main results apply to both the sample average and the Volz-Heckathorn
estimator, which is an approximation of the inverse probability weighted esti-
mator (cf Remark 1). Because the inverse probability weighted (IPW) estimator
and its extensions are asymptotically unbiased, these estimators are often pre-
ferred to the sample average.

2. Notation

Following [5] and [13], the results below model the network sampling mechanism
as a tree indexed Markov process on a graph. There are many assumptions in
this model which are incorrect in practice. However, like the i.i.d assumption,
it allows for tractable calculations. In the simulations, we show that the theory
derived from this model provides a good approximation for a more realistic
sampling model. [12] studies the sensitivities of the estimators to this model.

Let G = (V,E) be a finite, undirected, and simple graph with vertex set V =
{1, ..., N} and edge set E. V contains the individuals in the population and E
describes how they are related to one another. As discussed in the introduction,
y : V → R is a fixed real-valued function on the state space V ; these are the
node features that are measured on the sampled nodes. The target of RDS is to
estimate μ = N−1

∑N
i=1 y(i).

If each sampled node referred exactly one friend, then the Markov sampling
procedure would be a Markov chain. Several classical central limit theorems exist
for this model; see [8] for a review. The results herein allow for each sampled
node to refer more than one node. This is a Markov process indexed not by
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a chain, but rather by a tree. Denote the referral tree as T. Where the node
set of G indexes the population, the node set of T indexes the samples. That
is, we observe a subset of the individuals in G with the sample {Xτ}τ∈T ⊂ V .
An edge (σ, τ) in the referral tree denotes that sampled individual Xσ referred
individual Xτ into the sample. Mathematically, T is a rooted tree–a connected
graph with n nodes, no cycles, and a vertex 0 which indexes the seed node. To
simplify notation, σ ∈ T is used synonymously with σ belonging to the vertex
set of T.

For each non-root node τ ∈ T, denote p(τ) ∈ T as the parent of τ (i.e. the
node one step closer to the root). This paper presumes that {Xτ}τ∈T is a tree-
indexed random walk on G, which was a model introduced by [2]. This model
generalizes a Markov chain on G; each transition Xp(τ) → Xτ is an independent
and identically distributed Markov transition with some transition matrix P
that is defined below. Following [2], we will call this process a (T, P )-walk on
G. Unless stated otherwise, it will be presumed throughout that the root node
of the random walk X0 is initialized from the equilibrium distribution π of P .
It follows that Xσ has distribution π for all σ ∈ T.

Unless stated otherwise, this paper presumes throughout that the transition
matrix P is constructed from a weighted graph G. Let wij be the weight of the
edge (i, j) ∈ E; if (i, j) �∈ E, define wij = 0. If the graph is unweighted, then
let wij = 1 for all (i, j) ∈ E. Define the degree of node i as deg(i) =

∑
j wij .

If the graph is unweighted, then deg(i) is the number of connections to node i.
Throughout this paper, the graph is undirected. So, wij = wji for all pairs i, j.
Given that {Xp(τ) = i}, the probability of {Xτ = j} is proportional to wij ;

Pij = P
(
Xτ = j|Xp(τ) = i

)
=

wij

deg(i)
. (2.1)

We use the term simple random walk for the Markov chain constructed on
the unweighted graph (i.e. wi,j ∈ {0, 1} for all i, j). The simple random walk
presumes that each participant selects a friend uniformly and independently at
random from their list of friends.

[10] serves as this paper’s key reference for Markov processes. Following the

notation in that text, define Eπ(y) =
∑N

i=1 πiy(i) and varπ(y) = Eπ(y−Eπ(y))
2

for the function y. In order to estimate μ, we observe y(Xτ ) for all τ ∈ T.
Because G is undirected, P is reversible and has stationary distribution π with
πi ∝ deg(i) for all i ∈ G; this fact is helpful for creating an asymptotically
unbiased estimator for μ, particularly under the simple random walk assumption
[17].

Remark 1. In general, the quantity of interest μ = N−1
∑N

i=1 y(i) is not equal
to Eπ(y). As such, the sample average of y(Xτ )’s is a biased estimator for μ.
With inverse probability weighting, define a new function y′(i) = y(i)(Nπi)

−1

and the respective estimator

μ̂IPW =
1

n

∑
σ∈T

y′(Xσ) =
1

n

∑
σ∈T

y(Xσ)

NπXσ

,



4874 X. Li and K. Rohe

where n = |T| is the sample size. Then, Eπ(μ̂IPW ) = Eπ(y
′) = μ. As such, the

sample average of the y′(Xτ )’s is an unbiased estimator of μ. Unfortunately, the
values πi are unknown. In practice, RDS participants are asked various questions
to measure how many friends they have in G. Under the simple random walk
assumption, πi is proportional to the number of friends of i. Therefore the Volz-
Heckathorn estimator

μ̂V H =
∑
σ∈T

y(Xσ)/deg(Xσ)∑
τ∈T

1/deg(Xτ )

is in essence a Hájek estimator based upon deg(i) [17]. Under the simple random
walk assumption, this estimator provides an asymptotically unbiased estimator
of μ.

For each node τ ∈ T, let |τ | be the distance of the node from the root; this
is also called the “wave” of τ . For every pair of node σ, τ ∈ T, define d(σ, τ)
to be the distance between σ and τ on T (as a graph). For each non-leaf node
σ ∈ T, let η(σ) be the number of offspring of σ. A tree is said to be an m-
tree of height h if η(σ) = m for all σ ∈ T with |σ| < h and η(σ) = 0 for all
|σ| = h. Here, both m and h are a natural numbers (i.e. m,h ∈ N). T is said to
be Galton-Watson if η(σ) are i.i.d random variables in N. While the theorems
below only study 2-trees; the computational experiments in Section 5 suggest
that the conclusions of the analytical results are highly robust to replacing the
2-tree with a Galton-Watson tree.

There are two primary concerns about the model and estimator used in the
main results below. First, the Markov model allows for resampling. Second, the
results below only apply to m-trees, not more general trees. The simulations
in Section 5 suggest that the analytic results continue to hold under a more
realistic setting that addresses both of these concerns.

3. Main results

Let T be an m-tree and λ2 be the second largest eigenvalue of P . The variance
of μ̂IPW decays at the standard rate if and only if m < λ−2

2 [13]. In other words,
if m > λ−2

2 , then

var

(
1√

|σ ∈ T : |σ| ≤ h|
∑

σ∈T:|σ|≤h

y(Xσ)

)
→ ∞

as h → ∞. As such, using the traditional scaling, no central limit theorem holds
above the critical threshold. Because of this, the theorems focus on the case
m < λ−2

2 . When m > λ−2
2 , the simulations in Section 5 suggest that the central

limit theorem does not hold for any scaling.
Theorem 1 is a central limit theorem for an estimator constructed from the

tree-indexed Markov chain. The theorem holds for any function y, any reversible
transition matrix with second largest eigenvalue satisfying |λ2| �= 1, and any
m < λ−2

2 .
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Theorem 1. Suppose that P is a reversible transition matrix with respect to the
equilibrium distribution π, and that the eigenvalues of P are 1 = λ1 > |λ2| ≥
... ≥ |λN |. Without loss of generality, suppose that Eπ(y) = 0. Define

Yi =
1√
mi

∑
τ∈T:|τ |=i

y(Xτ ).

If T is an m-tree with m < λ−2
2 , then

1√
h

h∑
i=1

Yi → N(0, σ2
0)

in distribution, where σ2
0 = varπ((

√
mP − I)−1y)− varπ(P (

√
mP − I)−1y).

The sequence of random variables considered in Theorem 1 are not exactly
sample averages, but a reweighted form of sample average. Samples in the same
wave are equally weighted, while samples from different waves are not. The
following theorem provides a theoretical guarantee on the distribution of sample
average for a specific class of transition matrix and node feature. For a vector
x, one of the conditions uses the notation ‖x‖∞ = maxi xi.

Theorem 2. Let T be a 2−tree. Without loss of generality, suppose that Eπ(y) =
0. Define μ̂h = 1√

2
h

∑
σ∈T,|σ|≤h y(Xσ). Suppose that

(c1) E(μ̂2k+1
h ) = 0 for all h, k ∈ N;

(c2) for any function f on V satisfying Eπf = 0, ||Pf ||∞ ≤ |λ2|||f ||∞;
(c3) |λ2| < 1√

2
;

then
μ̂h → N(0, σ2

0)

in distribution for some σ2
0.

Remark 2. Condition (c1) is a technical condition on the symmetry of μ̂h

that is necessary in the proof. The following proposition provides a sufficient
condition for (c1).

Proposition 1. Suppose that y is symmetric, i.e. for any i ∈ V there exists j
such that y(j) = −y(i). If p(u, v) = P (y(Xσ) = v|y(Xp(σ)) = u) is well-defined
and p(u, v) = p(−u,−v) for all u, v ∈ y(V ), then condition (c1) is satisfied.

Proof. Under the conditions of the proposition, the distribution of μ̂h is sym-
metric with respect to 0. Thus E(μ̂2k+1

h ) = 0 for all h, k ∈ N.

Conditions (c2)–(c3) can be substituted by the following condition (c2’):
(c2’) There exists c < 1√

2
such that for any function f on V satisfying Eπf =

0, ||Pf ||∞ ≤ c||f ||∞.
Condition (c2’) is weaker than (c2) and (c3) combined, but is stronger than

(c3) alone. To see this, let f be the eigenfunction of the second eigenvalue, and
it follows that |λ2| < 1√

2
. It can be easily seen that one necessary condition for

(c2’) is that
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∑
j

|Pij − πj | <
1√
2

for all i ∈ V . In other words, all the rows of P must be close to π. As previously
discussed, condition (c3) is actually a necessary condition for the central limit
theorem [13], in the sense that the variance of μ̂h tends to infinity if |λ2| ≥ 1√

2
.

For clarity in the exposition of the theorem and the proof, we have only proved
the theorem for the 2-tree. Results for more general m−tree can be proved with
a similar technique.

3.1. Extension to the Volz-Heckathorn estimator

When P is restricted to be the transition matrix of the simple random walk
on G, the following corollary shows that Theorem 2 can be extended to the
Volz-Heckathorn estimator [17].

Denote d̄ = 1
N

∑
i∈V deg(i) as the average node degree. Following Remark

1, the IPW estimator contains 1/(Nπi) which is equal to d̄/deg(i). The Volz-
Heckathorn estimator first estimates d̄ with the harmonic mean of the observed
degrees. Because this harmonic mean converges to d̄ in probability, the following
corollary applies Slutsky’s Theorem to give a central limit theorem for the Volz-
Heckathorn estimator.

Corollary 1. Let T be a 2-tree. Suppose in particular that P is the tran-
sition matrix of the simple random walk on G. Define a new node feature
y′(i) = y(i)/deg(i). Without loss of generality, suppose that Eπy

′ = 0 (this
is not equivalent to Eπy = 0). Define

μ̂h,V H = μ̂h
ˆ̄d =

1√
2h

∑
σ∈T,|σ|≤h

y′(Xσ)
ˆ̄d,

where
ˆ̄d =

2h+1 − 1∑
σ∈T,|σ|≤h 1/deg(Xτ )

.

If the new node feature y′ and the transition matrix P satisfy conditions (c1)–
(c3) in Theorem 2, then

μ̂h,V H → N(0, σ2
0,V H)

in distribution for some σ2
0,V H .

3.2. Illustrating the conditions with a blockmodel

Consider G as coming from a blockmodel with two blocks [11]. Previously, [5]
studied RDS with this model. It serves as an approximation to the Stochastic
Blockmodel. In particular, suppose that each node i = 1, . . . , N is assigned to a
block with z(i) ∈ {1, 2}. Suppose that each block contains N/2 nodes. For
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B =

(
p 1− p

1− p p

)
, with p ∈ (0, 1),

suppose that every pair i, j has wi,j = Bz(i),z(j) ∈ (0, 1). Thus, under the con-
struction of P in Equation (2.1),

Pij = (N/2)−1Bz(i),z(j).

Further suppose that if z(i) = z(j), then yi = yj . Condition (c1) is satisfied if
yi = −yj is satisfied for i, j with z(i) �= z(j).

Given the structural equivalence of nodes within the same block, it is sufficient
to study the conditions (c2) and (c3) with a Markov chain where the state space
is reduced to the block labels {1, 2} and the transition matrix is P = B ∈ R2×2.
See Section C in the Appendix for a further discussion of this fact.

Notice that λ2 = (p− r)/(p+ r) is the second eigenvalue of both P and P.
So, if

1

2
< p <

1

2
+

1

2
√
2
,

then conditions (c2) and (c3) are satisfied.
This example can be expanded to study a blockmodel with 2K blocks, where

each block contains N/(2K) nodes. For u, v ∈ 1, . . . , 2K, define the blockmodel
with B ∈ R2K ,

Ba,b = pI(a = b) + rI(a �= b) for a, b ∈ {1, . . . , 2K}.

Suppose that the outcome yi depends only on the block label, i.e. yi = Yz(i) for
some vector Y ∈ R2K . For u ∈ 1, . . . ,K, suppose that Y2u = −Y2u−1 Then,
P ∈ R2K can be defined with p̃ = p/(p+ r(K − 1)) as

Pa,b = p̃I(a = b) +
1− p̃

2K − 1
I(a �= b), for a, b ∈ {1, . . . , 2K},

Then, conditions (c1), (c2), and (c3) hold if

1

2K
< p̃ <

1

2K
+

1

2
√
2
.

4. Estimating the variance

For some node feature ỹ (e.g. HIV status y or the y′ in Remark 1 that leads to
the IPW estimator), let μ̃ denote the sample average. Denote σ2

μ̃ as V arT,P (μ̃),
where the subscript T, P denotes that the data is collected via a (T, P )-walk on
G. This subsection studies a simple plug-in estimator for σ2

μ̃.

The following function is essential to expressing σ2
μ̃ [13].

Definition 1. Select two nodes I, J uniformly at random from the tree T. Define
the random variable D = d(I, J) to be the graph distance in T between I and J .
Define G as the probability generating function for D,

G(z) = E(zD).
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In practice, T is observed. So, the function G can be computed. In many
studies there are multiple seed nodes. In these cases, we suggest computing
d(I, J) on a tree which has an artificial root node that connects to all of the
seeds; this root node could be imagined as an individual that is responsible for
finding the seed nodes. In this tree, two different seed nodes would be distance
2 apart.

Denote the autocorrelation at lag 1 of ỹ(Xτ ) as

R =
Cov(ỹ(Xp(τ)), ỹ(Xτ ))

varπ(ỹ)
.

Both Cov(ỹ(Xp(τ)), ỹ(Xτ )) and varπ can be estimated with plug-in quantities.
Because the data has been sampled proportional to π, the plug-in quantity for
varπ should not explicitly adjust for π. Namely, we have

̂varπ(ỹ) =
1

n

∑
τ∈T

(ỹ(Xτ )− μ̂V H)2,

and the estimation for Cov(ỹ(Xp(τ)), ỹ(Xτ )) is

̂Cov(ỹ(Xp(τ)), ỹ(Xτ )) =
1

n− 1

∑
τ∈T\0

(ỹ(Xp(τ))− μ̂V H)(ỹ(Xτ )− μ̂V H),

where {T \ 0} contains all nodes except the root node 0 (because p(0) does not
exist). Using these plug-in quantities, define R̂. Then, the estimator is

σ̂2
μ̃ = G(R̂) ̂varπ(ỹ).

A popular bootstrap technique for estimating σ̂2
μ̃ resamples y(Xτ ) as a Markov

process (i.e. in addition to Xτ being a Markov process, the bootstrap procedure
also assumes that y(Xτ ) is Markov) [15]. This model is akin to the blockmodel
with two blocks in Section 3.2. The following assumption is weaker than this
assumption:

Assumption 1. ỹ(i) = μ + σf(i), where μ, σ ∈ R and f : V → R is an
eigenfunction of P with varπ(f) = 1.

Proposition 2. Under Assumption 1,

σ2
μ̃ = G(R)varπ(ỹ).

While Assumption 1 is weaker than the previous assumption in [15], the
next proposition highlights the danger of this assumption. It uses a different
assumption which is a rather weak assumption.

Assumption 2. G is convex on [λmin, 1], where λmin is the smallest eigenvalue
of P .

Because G is a probability generating function, it is always convex on [0, 1].
As such, we only need to be worried about negative values. Recall that the
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central limit theorems above only hold when |λmin| < 1/
√
2 ≈ .7 (the smallest

possible value for λmin is −1). Some simulated trees given in the appendix
suggest that if G is not convex, it often fails in the neighborhood of −1. As
such, the assumption that |λmin| < 1/

√
2 ≈ .7 is likely to imply Assumption

2. In practice, one observes the referral tree T. Thus, one can compute the
second derivative of G. Eigenvalues of P close to negative one arise in antithetic
sampling, where adjacent samples are dissimilar. For example, if the population
in G was heterosexuals and edges in G represent sexual contacts, then men
would only refer women and vice versa. In this case, λmin would be exactly −1.
While easily imagined, such settings are not current practice for RDS. As such,
large an negative values are uncommon; λmin is likely close to zero.

The following proposition follows from an application of Jensen’s inequality.
A proof is given in Appendix D.

Proposition 3. Under Assumption 2,

σ2
μ̃ ≥ G(R)varπ(ỹ).

Because Assumption 2 is not very restrictive, the inequality in Proposition 3
highlights the danger in breaking Assumption 1 (and thus the Markov model in
[15]); breaking Assumption 1 leads to σ̂2

μ̃ underestimating the variance.

5. Numerical results

In this section, we illustrate the theoretical results on simulated data. The simu-
lations are performed on networks simulated from the Stochastic Blockmodel [7].
The four colors in Figure 1 correspond to four different networks, from four dif-
ferent parameterizations of the model. Each of the four networks has N = 5, 000
nodes, equally balanced between group zero and group one. The probability of
a connection between two nodes in different blocks is r and the probability of
connection between two nodes in the same block is p. To control the eigenvalues
of the 5000 × 5000 transition matrix, consider the transition matrix between
classes given by P = E(D)−1E(A). The second eigenvalue of P is [14]

λ2(P) =
p− r

p+ r
,

where expectations are under the Stochastic Blockmodel. In our simulation,
the second eigenvalue of the actual transition matrix is typically very close to
λ2(P). We take p + r = 0.01 in all four Stochastic Blockmodels so that the
average degree is about 25. As such, λ2(P) is actually controlled by p− r.

For each of the four networks, we carry out four different sampling designs.
Let T be either a 2−tree or a Galton-Watson tree with E(η(σ)) = 2. For the
Galton-Watson tree, the distribution of η(σ) is uniform on {1, 2, 3}. For each
T, we consider both with replacement sampling (i.e. the (T, P )-walk on G) and
without replacement sampling (i.e. referrals are sampled uniformly from the
friends that have not yet been sampled). Note that the conditions of Theorem
2 may be violated when either the Galton-Watson tree or without-replacement
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sampling is used. We take the first 8 waves of T as our sample. As such, the
sample size is roughly N/10. For each social network and sampling design, we
repeat the sampling process 2000 times and compute μ̂ = 1

n

∑n
i=1 y(Xi) for

each sample. The Quantile-Quantile (Q-Q) plot of μ̂ is shown in the left panel
of Figure 1; note that the Q-Q plot centers and scales each distribution to
have mean zero and standard deviation one. In addition, we repeat the above
simulation for the Volz-Heckathorn estimator, and the Q-Q plot of μ̂V H is shown
in the right panel of Figure 1.

Fig 1. Q-Q plots of the sample average (left panel) and the Volz-Heckathorn estimator (right
panel) for different social network and sampling designs. For each scenario, we draw 2000
network driven samples of size ≈ 500 from a network containing 5,000 nodes. Here the
threshold for λ2 is 1/

√
2 ≈ 0.707. For the two settings with λ2 < 1/

√
2, the distributions

appear normal. However, for the two settings with λ2 > 1/
√
2, the distributions do not

appear normal. Across all values of λ2, there is no apparent difference between the four
different designs (i.e. replacement sampling vs without replacement sampling and 2-tree vs
Galton-Watson tree).

It is clear from Figure 1 that there are two patterns of distribution: when
λ2 < 1/

√
m ≈ 0.7, i.e. λ2=0.5 or 0.6, the Q-Q plots of μ̂ and μ̂V H approximately

lie on the line y = x for all sampling design; when λ2 > 1/
√
m ≈ 0.7, i.e. λ2=0.8

or 0.9, the Q-Q plot of μ̂ and μ̂V H departs from the line y = x. Taken together,
Figure 1 suggests that the distribution of μ̂ and μ̂V H converges to Gaussian
distribution if and only if m < λ−2

2 . In fact, when m > λ−2
2 , the distribution of

the estimators has two modes. The relationship between the expectation of the
offspring distribution and the second eigenvalue of the social network determines
the asymptotic distribution of RDS estimators, regardless of the node feature,
the particular structure of the tree or the way we handle replacement.

6. Discussion

A recent review of the RDS literature counted over 460 studies which used
RDS [18]. Many of these studies seek to estimate the prevalence of HIV or
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other infectious diseases; for these studies, a point estimate of the prevalence
is insufficient. These studies have used confidence intervals constructed from
bootstrap procedures and from estimates of the standard error. These standard
error intervals implicitly rely on a central limit theorem and this paper provides
a partial justification for such techniques, so long asm ≤ 1/λ2

2. Figure 1 suggests
that if m is larger than 1/λ2

2, then the simple estimators (μ̂ and μ̂V H) are no
longer normally distributed.

The theorems in this paper do not apply to general trees, only to m-trees. If
T is a Galton-Watson tree with E(η(σ)) < λ−2

2 , then the simulations support
the following conjecture:

1√
n

∑
σ∈T

(y(Xσ)− Eπ(y)) → N(0, σ2),

where σ2 can be computed from the results in [13]. To prove this result requires
a more careful study of the structure of {Xσ}σ∈T. We leave this problem to
future investigation.

Appendix A: Proof of Theorem 1

In the appendix, we give a proof of the theorems and propositions in the pa-
per. First, we give an outline of the proof of our main theorem. Consider the
martingale ∑

h

E(Yh|Fh−1)− Yh,

where {Fh} is a filtration to be defined later. Using the Markov property and the
estimation of var(Yh), we show that the martingale difference sequence satisfies
the condition of the martingale central limit theorem. In this section, P will be
a reversible transition matrix with eigenvalues 1 = λ1 ≥ |λ2| ≥ ... ≥ |λN | and
corresponding eigenfunctions f1, ..., fN satisfying

∑
k fi(k)fj(k)πk = δij for any

i, j. We refer to [10] for the existence of such eigen-decomposition. Unless stated
otherwise, expectations are calculated with respect to the tree indexed random
walk on the graph.

We begin with some lemmas.

Lemma 1. (Lemma 12.2 in [10]) Let P be a reversible Markov transition matrix
on the nodes in G with respect to the stationary distribution π. The eigenvectors
of P , denoted as f1, . . . , fN , are real-valued functions of the nodes i ∈ G and
orthonormal with respect to the inner product

〈fa, fb〉π =
∑
i∈G

fa(i)fb(i)πi. (A.1)

If λ is an eigenvalue of P , then |λ| ≤ 1. The eigenfunction f1 corresponding to
the eigenvalue 1 is taken to be the constant vector 1. If X(0), . . . , X(t) represent
t steps of a Markov chain with transition matrix P , then the probability of a
transition from i ∈ G to j ∈ G in t steps can be written as
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P (X(t) = j|X(0) = i) = P t
ij = πj + πj

N∑
�=2

λt
�f�(i)f�(j). (A.2)

Lemma 2. For any nodes σ, τ in T,

cov(y(Xσ), y(Xτ )) =

N∑
l=2

λ
d(σ,τ)
� 〈y, f�〉2π,

where 〈y, f�〉π =
∑N

i=1 y(i)f�(i)πi.

Proof. From the reversibility of the Markov chain and Lemma 1, we have

P (Xσ = j|Xτ = i) = P
d(σ,τ)
ij = πj + πj

N∑
l=2

λ
d(σ,τ)
� f�(i)f�(j).

Therefore,

cov(y(Xσ), y(Xτ )) =
∑
i,j

y(i)y(j)πiP (Xσ = j|Xτ = i)− (
∑
i

πiyi)
2

=
∑
i,j

y(i)y(j)πiπj

N∑
l=2

λ
d(σ,τ)
� f�(i)f�(j)

=

N∑
l=2

λ
d(σ,τ)
� 〈y, f�〉2π,

and the lemma is proved.
The next lemma gives the expression of var(Yh).

Lemma 3 (Variance of Yh). Suppose that |λ2| > 0. Then as h → ∞,

var(Yh) =

⎧⎨
⎩

O(1) if m < λ−2
2 ,

O(h) if m = λ−2
2 ,

O((mλ2
2)

h) if m > λ−2
2 .

Proof. For k = 0, 1, ..., h, denote by shk the number of ordered pairs (σ, τ) such
that |σ| = |τ | = h and d(σ, τ) = 2k. Then sh0 = mh, and

shk = mh−km(m− 1)(mk−1)2 = mh+k −mh+k−1

for k ≥ 1. By Lemma 2,

var(Yh) =
1

mh

h∑
k=0

(shk

N∑
l=2

λ2k
� 〈y, f�〉2π)

=

N∑
l=2

(〈y, f�〉2π(1 +
h∑

k=0

mk−1(m− 1)λ2k
� ))
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≤
N∑
l=2

(〈y, f�〉2π
h∑

k=0

(mλ2
2)

k).

Thus

var(Yh) =

⎧⎨
⎩

O(1) if m < λ−2
2 ,

O(h) if m = λ−2
2 ,

O((mλ2
2)

h) if m > λ−2
2 .

Corollary 2. For any function y on the state space, 1√
mh

Yh → 0 in probability.

Proof. It follows from Lemma 3 that

var(
1√
mh

Yh) = O(λ2h
2 ) → 0.

The next lemma is a convergence argument which we will use in the proof of
Theorem 1.

Lemma 4 (Slutsky’s lemma). If Xh → X in distribution and Yh → 0 in
probability, then Xh + Yh → X in distribution.

The following theorem from [3] is essential to the proof of our main theorem.

Theorem 3 (Martingale central limit theorem). Suppose that {Zh}h≥1 is
adapted to the filtration {Fh}h≥1 and that E(Zh+1|Fh) = 0 for all h ≥ 1.

Let Sh =
∑h

i=1 Zi and Vh =
∑h

i=1 E(Z2
i |Fi−1). If

(1) Vh/h → σ2 > 0 in probability and

(2) h−1
∑h

i=1 E(Z2
i 1{|Zi|>ε

√
h}) → 0 for every ε > 0,

then Sh/
√
h → N(0, σ2) in distribution.

Now we are ready to prove our main theorems.

Proof of Theorem 1. Define Yh in the same way as Theorem 1. Without loss
of generality, suppose that Eπ(y) = 0. Since m < λ−2

2 ,
√
mP − I is invertible.

Let y′ = (
√
mP − I)−1y. Then y′ is also a function on the state space. We will

first argue on the new node feature y′ and then convert back to y. Define

Y ′
h =

1√
mh

∑
τ∈T:|τ |=h

y′(Xτ ).

Let zhk =
∑

σ:|σ|=h 1{Xσ=k} for h ≥ 0 and k = 1, ..., N . Define zh = {zh1, ...,
zhN}, and

Fh = σ(Xτ : |τ | ≤ h)

for h ≥ 1. It is obvious that {Yh}h≥1 is adapted to the filtration {Fh}h≥1. Let

Zh = E(Y ′
h|Fh−1)− Y ′

h.

Then {Zh,Fh}h≥1 is a martingale difference sequence. We will verify that
{Zh,Fh}h≥1 satisfies (1) and (2) in Theorem 3.
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We have

Zh = mzh−1Py′/
√
mh − Y ′

h =
zTh−1(

√
mP )y′√

mh−1
− zTh y

′
√
mh

.

For any σ ∈ T, denote by p(σ) the parent node of σ. Zh can also be expressed
as

Zh =
∑

σ:|σ|=h

E(
y′(Xσ)√

mh
|Fh−1)−

y′(Xσ)√
mh

=
∑

σ:|σ|=h

1p(σ)Py′ − y′(Xσ)√
mh

=
∑

σ:|σ|=h

Wσ,

where 1p(σ) is the 1×N vector with 1p(σ),i = 1 if Xp(σ) = i and 0 otherwise.
For any σ with |σ| = h, we have

E(Wσ|Fh−1) = 0

and

E(W 2
σ |Fh−1) =

V arpi(y
′)

mh

for i = Xp(σ), where pi is the ith row of the transition matrix P and V arpi(y
′) =∑

j pij(y(j)−
∑

j pijy(j))
2. From the definition of tree indexed Markov process,

if |σ| = |τ | = h, then Wσ,Wτ are independent given {Xσ : |σ| = h − 1}. Using
E(Wσ|Fh−1) = 0, we have

E(Z2
h|Fh−1) =

∑
σ:|σ|=h

E(W 2
σ |Fh−1) =

N∑
i=1

zhi
mh

V arpi(y
′).

From Corollary 2, var( zhi

mh ) = O(λ2h
2 ) → 0 for every i. Thus var(E(Z2

h|Fh−1)) =

O(λ2h
2 ) → 0(h → ∞) and

∑h
i=1 var(E(Z2

i |Fi−1)) converges. It follows from the
definition of Vh and the Cauchy-Schwarz inequality that

lim
h→∞

var(Vh/h) = lim
h→∞

var(
1

h

h∑
i=1

E(Z2
i |Fi−1))

≤ lim
h→∞

1

h

h∑
i=1

var(E(Z2
i |Fi−1)) = 0.

Therefore
Vh/h → σ2

in probability, where

σ2 = E(E(Z2
h|Fh−1))=

N∑
i=1

πiV arpi(y
′) =

N∑
i=1

πi(

N∑
j=1

pijy
′(j)2 − (

N∑
j=1

pijy
′(j))2)
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= varπ(y
′)− varπ(Py′),

and condition (1) in Theorem 3 is satisfied.

Similarly, we have

E(Z4
h|Fh−1) =

∑
σ:|σ|=h

E(W 4
σ |Fh−1) +

∑
σ,τ :|σ|=|τ |=h

E(W 2
σW

2
τ |Fh−1)

≤ C0

mh
+ C1

mh(mh − 1)

m2h
≤ C,

where C0, C1, C are constants. Thus E(Z4
h) ≤ C for any h, and

h−1
h∑

i=1

E(Z2
i 1{|Zi|>ε

√
h}) ≤ h−1

h∑
i=1

E(Z2
i

Z2
i

ε2h
) =

1

ε2h2

h∑
i=1

E(Z4
i ) ≤

C

h
→ 0.

Condition (2) is also satisfied. From Theorem 3, we have

1√
h

h∑
i=1

Zi =
1√
h

h∑
i=1

(
zTi−1(

√
mP )y′√

mi−1
− zTi y

′
√
mi

) → N(0, σ2)

in distribution. If m < λ−2
2 , then from Lemma 3,

zT
h (

√
mP )y′

√
mh−1

→ 0 in probability.

From Lemma 4 and the definition of y′,

1√
h

h∑
i=1

zTi (
√
mP − I)y′√
mi

=
1√
h

h∑
i=1

Yi → N(0, σ2)

in distribution, where σ2 = varπ(y
′) − varπ(Py′) = varπ((

√
mP − I)−1y) −

varπ(P (
√
mP − I)−1y). The proof is now complete.

Appendix B: Proof of Theorem 2 and Corollary 1

We provide a proof of the central limit theorem using the moment method. It
involves a careful study of all the moments of μ̂h. The following proposition is
essential to our proof.

Proposition 4. (Moment continuity theorem) Let Xh be a sequence of uni-
formly subgaussian real random variables, and let X be another subgaussian
random variable. Then the following statements are equivalent:

(1)EXk
h → EXk for all k

(2)Xh → X in distribution

Following this proposition, we can break our proof into two parts. We will
first prove that all the moments of μ̂h converge to the moments of some normal
distribution. Then we will verify that μ̂h is a uniformly subgaussian sequence.
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B.1. Proof of moments convergence

Let Xr be the root of the 2-tree. Define

γk,h(i) = E[μ̂k
h|Xr = i],

and
γk,h = E[μ̂k

h].

Let ρ =
√
2|λ2| < 1. We prove that there exist γk, k ≥ 1 such that |γk,h(i)−γk| =

O(ρh) for all k, i, h and that γk = E(ξk) for ξ ∼ N(0, γ2). Our key observation is
that the left and right subtree can be seen as i.i.d copies of the whole tree given
the left and right child of the seed, which makes it possible to build a relationship
between γk,h(i) and γk,h−1(i). Only condition (c3) is needed throughout the
proof.

We need the following Lemma.

Lemma 5. Let {ah} be a sequence satisfying

ah = ch(cah−1 + C + dh),

where |1 − ch| = O(ρh), |dh| = O(ρh), C is a constant and c < ρ < 1. Then
|ah − C/(1− c)| = O(ρh).

Proof. Without loss of generality, suppose that ch �= 0 and C = 0. Since |1 −
ch| = O(ρh) and |dh| = O(ρh), there exists M such that

∏h
k=1 |ck| ≤ M and

|dh| ≤ Mρh for all h. Therefore,

|ah| ≤
h∑

k=0

ch−kdk

h∏
i=h−k

|ci| ≤
M2

ρ− c
ρh,

and the lemma is proved.

We use an induction on k. First, we will prove that γ1 = 0. In fact, from
Lemma 1,

E(y(Xσ)|Xr = i) =

N∑
j=1

y(j)P
|σ|
ij = O(|λ2||σ|).

Therefore

E(μ̂h|Xr = i) =
1

√
2
h

h∑
k=1

2kO(|λ2|k) = O(ρh)

for all i, and |γ1,h(i)− γ1| = O(ρh) for γ1 = 0.
Now we move from k − 1 to k. Without loss of generality, suppose that

γ2,h(i) > 1 for all h, i (or we can multiply y with a large constant). It follows
that γ2k,h(i) ≥ (γ2,h(i))

k > 1 for all k. We can decompose γk,h(i) into

γk,h(i) = E[μ̂k
h|Xr = i]− E[(

1
√
2
h

∑
σ∈T,0<|σ|≤h

Xσ)
k|Xr = i]
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+ E[(
1

√
2
h

∑
σ∈T,0<|σ|≤h

Xσ)
k|Xr = i] (B.1)

:= I1 + I2.

If k is even, then we know that

|I1| =|E[μ̂k
h|Xr = i]− E[(μ̂h − i(s)√

2h
)k|Xr = i]|

=

k∑
m=1

(
k

m

)
(−i

√
2
−h

)mE[μ̂k−m
h |Xr = i]

≤
k∑

m=1

(
k

m

)
(|i|

√
2
−h

)m(E[μ̂k
h|Xr = i])

k−m
k

≤
k∑

m=1

(
k

m

)
(|i|

√
2
−h

)m(E[μ̂k
h|Xr = i])

≤[(1 +M
√
2
−h

)k − 1]E[μ̂k
h|Xr = i],

(B.2)

where the first inequality follows from Jensen’s inequality and the second in-
equality follows from our assumption that γ2k,h(i) > 1 for all k. Likewise, if k
is odd, then we have

|I1| =E[μ̂k
h|Xr = i]− E[(μ̂h − i√

2h
)k|Xr = i]

≤[(1 +M
√
2
−h

)k − 1]E[μ̂k−1
h |Xr = i].

(B.3)

Since k is fixed, E[μ̂k−1
h |Xr = i] is bounded from our assumption on γk−1,h(i),

and (1 +M
√
2
−h

)k − 1 = O(
√
2
−h

) = O(ρh). Hence,

|I1| ≤ [(1 +M
√
2
−h

)k − 1]E[μ̂k−1
h |Xr = i] = O(ρh).

Let Xlc and Xrc be the left and right child of the root and Tl and Tr the left
and right subtree, and we have

E[(μ̂h − i√
2h

)k|Xr = i]

=E((
1√
2
(

1
√
2
h−1

∑
σ∈Tr,|σ|≤h

Xσ +
1

√
2
h−1

∑
σ∈Tl,|σ|≤h

Xσ))
k|Xr = i)

=
∑
u,v

piupivE((
1√
2
(

1
√
2
h−1

∑
σ∈Tr,|σ|≤h

Xσ

+
1

√
2
h−1

∑
σ∈Tl,|σ|≤h

Xσ))
k|Xr = i,Xlc = u,Xrc = v)
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=
∑
u,v

piupivE((
1√
2
(

1
√
2
h−1

∑
σ∈Tr,|σ|≤h

Xσ

+
1

√
2
h−1

∑
σ∈Tl,|σ|≤h

Xσ))
k|Xlc = u,Xrc = v)

=
∑
u,v

piupiv
1

√
2
k
(γk,h−1(u) + γk,h−1(v)) + S1

=
1

√
2
k−2

∑
u

piuγk,h−1(u) + S1, (B.4)

where

S1 =

k−1∑
m=1

1
√
2
k

(
k

m

)∑
u,v

piupivγm,h−1(u)γk−m,h−1(v).

If k = 2, Equation B.2 and B.4 reduce to

γk,h(i) =
∑
u

piuγk,h−1(u) + δh(i),

where

δh(i) =
y(i)2

2h
− 2y(i)

√
2
h
γ1,h(i) + (

∑
u

piuγ1,h(u))
2 = O(ρh).

Write νh = {γ2
h}′ and δh = {δh}′. For n ≥ 2,

νh = Pνh−1 + δh.

Thus by setting δ1 = 0 we have νh = Phν1 +
∑h

k=1 P
kδh−k, and it is not

hard to verify that all the components of νh (i.e., every γk,h(i)) converge to
γ2 = πtν1 +

∑∞
h=1 π

tδh with rate ρh.

Now suppose that k > 2. Since k is fixed, there are a fixed number of terms
in S1 as h goes to infinity. Since |γl,h(i)−γl| = O(ρh) for all i ∈ S and l < k−1,
we have

|S1 −
k−1∑
m=1

1
√
2
k

(
k

m

)
γmγk−m| = O(ρh).

Thus,

I2 =
1

√
2
k−2

∑
u

piuγk,h−1(u) +

k−1∑
m=1

1
√
2
k

(
k

m

)
γmγk−m +O(ρh). (B.5)

Combining Equations B.2, B.3 and B.5 we arrive at the final equation for
γk,h(i):

γk,h(i) = ck,hI2
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= ck,h(
1

√
2
k−2

∑
u

piuγk,h−1(u) +

k−1∑
m=1

1
√
2
k

(
k

m

)
γmγk−m +O(ρh)),

(B.6)

where ck,h = 1 if k is odd and ck,h = 1 + O(ρh) ∈ [2 − (1 + M
√
2
−h

)k, (1 +

M
√
2
−h

)k] if k is even. Since 1√
2
k−2 < ρ and

∏h
i=1 ck,h converges, we conclude

from Lemma 5 that
|γk,h(i)− γk| = O(ρh),

where γk =
∑k−1

m=1
1√
2
k

(
k
m

)
γmγk−m/(1− 1√

2
k−2 ).

We proved that |γk,h(i)− γk| = O(ρh) for all k, i, h. Let h tend to infinity in
Equation (B.5), we have

γk =
1

√
2
k−2

γk +

k−1∑
m=1

1
√
2
k

(
k

m

)
γmγk−m. (B.7)

Now suppose that ξ1 ∼ N(0, γ2) and γ̃k = Eξk1 . Let ξ2 be an i.i.d copy of ξ1.
Then

γ̃k = Eξk1 = E(
ξ1 + ξ2√

2
)k =

1
√
2
k−2

γ̃k +

k−1∑
m=1

1
√
2
k

(
k

m

)
γ̃mγ̃k−m.

Hence {γ̃k}, k ∈ N also follows Equation (B.7). Since γ1 = γ̃1 = 0 and γ2 = γ̃2,
we have γk = γ̃k for every k, and the argument is proved.

B.2. Proof of uniform sub-gaussianity

To prove that μ̂h are uniformly sub-gaussian for all h, we need to show that
there exists some θ such that

γ2�,h(i) ≤ θ2�γ2�

for all �.
Let c1 be a large constant to be defined later and ch+1 = (1+M(2λ′

2)
−h)(1+

(
√
2λ′

2)
h)ch, where λ

′
2 = max{|λ2|, 2/3} andM = ||y||∞. Let s�,h = ||γ�,h(i)||∞ =

maxi |γ�,h(i)|. Since 0 <
√
2λ′

2 < 1 < 2λ′
2, ch+1 > ch and θ = limh→∞ ch exists.

Thus it suffices to prove that

s2�,h ≤ c2�h γ2� (B.8)

and
s2�−1,h ≤ c2�−1

h (
√
2λ′

2)
hγ2� (B.9)

for all � and h.
Again we use an induction on �. Since γ1,h(i) = O(|λ2|h), we can choose c1

large enough such that the inequalities in Equations B.8 and B.9 hold for all
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(h, �) with h = 1 or � = 1. Suppose that Equations B.8 and B.9 are verified for
all � ≤ k. We will prove that they are also true for � = k + 1.

By condition (c1) and (c2), we know that

||
∑
u

piuγ2k+1,h(u)||∞ ≤ λ2||γ2k+1,h(i)||∞ = λ2s2k+1,h.

From our assumption of induction we have

s2k+1,h ≤ [(1 +M
√
2
−h

)2k+1 − 1]c2kh−1γ2k + c2k+1
h−1

(|
√
2λ′

2|)h√
2
2k+2

(

(
2k + 1

0

)
γ2k+2

+

k∑
m=1

(

(
2k + 1

2m− 1

)
+

(
2k + 1

2m

)
)γ2k+2−2mγ2m +

(
2k + 1

2k + 1

)
γ2k+2)

= [(1 +M
√
2
−h

)2k+1 − 1]c2kh−1γ2k + c2k+1
h−1

(|
√
2λ′

2|)h√
2
2k+2

(

(
2k + 2

0

)
γ2k+2 +

k∑
m=1

(
2k + 2

2m

)
γ2k+2−2mγ2m + γ2k+2)

= [(1 +M
√
2
−h

)2k+1 − 1]c2kh−1γ2k + c2k+1
h−1 (|

√
2λ′

2|)hγ2k+2

≤ ([(1 +M
√
2
−h

)2k+1 − 1](|
√
2λ′

2|)−h + 1)c2k+1
h−1 (|

√
2λ′

2|)hγ2k+2

≤ (1 +M(2λ′
2)

−h)2k+1c2k+1
h−1 (|

√
2λ′

2|)hγ2k+2

≤ c2k+1
h (|

√
2λ′

2|)hγ2k+2,
(B.10)

and Equation (B.9) is true for 2k + 1.
Now we move from 2k + 1 to 2k + 2. Recall that

γ2k+2,h(i) =c2k+2,h

2k+2∑
m=0

1
√
2
2k+2

(
2k + 2

m

)∑
u,v

piupivγm,h−1(u)γ2k+2−m,h−1(v)

≤(1 +M2−h)2k+2
2k+2∑
m=0

1
√
2
2k+2

(
2k + 2

m

)
sm,h−1s2k+2−m,h−1.

Thus,

s2k+2,h ≤ (1 +M2−h)2k+2(

2k+2∑
m=0

1
√
2
2k+2

(
2k + 2

m

)
sm,h−1s2k+2−m,h−1).

Let

I1 =

k+1∑
m=0

1
√
2
2k+2

(
2k + 2

2m

)
s2m,h−1s2k+2−2m,h−1

and

I2 =

k∑
m=0

1
√
2
2k+2

(
2k + 2

2m+ 1

)
s2m+1,h−1s2k+1−2m,h−1.
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Then s2k+2,h ≤ (1 +M2−h)2k+2(I1 + I2).

We have

I1 ≤
k+1∑
m=0

1
√
2
2k+2

(
2k + 2

2m

)
c2mh−1γ2mc2k+2−2m

h−1 γ2k+2−2m

= c2k+2
h−1

k+1∑
m=0

1
√
2
2k+2

(
2k + 2

2m

)
γ2mγ2k+2−2m

= c2k+2
h−1 γ2k+2,

(B.11)

where the last equality follows from Equation (B.7). On the other hand

I2 ≤
k∑

m=0

1
√
2
2k+2

(
2k + 2

2m+ 1

)
c2m+1
h−1 (

√
2λ′

2)
h−1

× γ2m+2c
2k+1−2m
h−1 (

√
2λ′

2)
h−1γ2k+2−2m

= c2k+2
h−1 (

√
2λ′

2)
2(h−1)

k∑
m=0

1
√
2
2k+2

(
2k + 2

2m+ 1

)
γ2m+2γ2k+2−2m.

(B.12)

It can be directly verified that for all m,

(
2k + 2

2m+ 1

)
γ2m+2γ2k+2−2m ≤ 2(k + 1)

(
k

m

)
γ2k+2.

Thus,

I2 ≤ c2k+2
h−1 (

√
2λ′

2)
h−1

k∑
m=0

1
√
2
2k+2

2(k + 1)

(
k

m

)
γ2k+2

= c2k+2
h−1 (

√
2λ′

2)
2(h−1)(k + 1)γ2k+2

≤ c2k+2
h−1 (

√
2λ′

2)
h2kγ2k+2.

(B.13)

Combining Equation (B.11) and B.13, we have

I1 + I2 ≤ c2k+2
h−1 γ2k+2(1 + 2k ∗ (

√
2λ′

2)
h)

≤ c2k+2
h−1 γ2k+2(1 + (

√
2λ′

2)
h)2k+2.

(B.14)

Therefore,

sh,2k+2 ≤ c2k+2,h(I1 + I2)

≤ c2k+2
h−1 (1 +M2−h)2k+2(1 + (

√
2λ′

2)
h)2k+2γ2k+2

≤ c2k+2
h γ2k+2,

(B.15)

and the theorem is proved.
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B.3. Proof of Corollary 1

By Theorem 2 and Slutsky’s lemma, it suffices to prove that ˆ̄d → d̄ in probability.
Let D = max1≤i≤Ndeg(Xi). For any σ ∈ T, Eπ

1
deg(Xσ)

= 1
d̄
. Thus E 1

ˆ̄d
= 1

d̄
,

and it follows from Theorem 2 that ˆ̄d → d̄ in probability. Since ˆ̄d, d̄ ≤ D, we

have P (| ˆ̄d− d̄| > ε) ≤ P (| 1ˆ̄d − 1
d̄
| > ε/D2) → 0 for all ε > 0, and the corollary is

proved.

Appendix C: Reducing the state space of the Markov chain

This section justifies the simplification in Section 3.2. Recall that P ∈ RN×N is
a Markov transition matrix on N nodes, where each node i is assigned to one
of two classes z(i) ∈ {1, 2}, and

Pij = (N/2)−1Bz(i),z(j).

Let Xt ∈ {1, . . . , N} for t ∈ 0, 1, . . . be a Markov chain with transition matrix
P that is initialized from the stationary distribution.

One can construct a Markov chain {Zt}t on the block labels {1, 2} that is
equal in distribution to {z(Xt)}t. Define Zt ∈ {1, 2} for t = 0, 1, . . . as a Markov
chain with transition matrix P = B and initialize Z0 from the stationary
distribution of P. For a, b ∈ {1, 2} and any t ≥ 0,

P (Zt = a, Zt+1 = b) = P (Zt = a)P (Zt+1 = b|Zt = a)

= (1/2)Pa,b

=
∑
i,j

1{z(i) = a, z(j) = b}πiPi,j

=
∑
i,j

1{z(i) = a, z(j) = b}P (Xt = i,Xt+1 = j)

= P (z(Xt) = a, z(Xt+1) = b).

Induction shows that {Zt}t is equal in distribution to {z(Xt)}t.

Appendix D: Proofs of Propositions 2 and 3

Before the proofs, some more notation is necessary. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λN |
denote the eigenvalues of P . Denote the f1, . . . , fN : V → R as the corresponding
eigenfunctions of P .

First, a lemma from [10].

Lemma 6.
N∑
�=2

〈ỹ, f�〉2π
varπ(y)

= 1.

The following is a proof of Lemma 6 from [10].
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Proof of Lemma 6.

varπ(ỹ) = Eπ(ỹ
2)− (Eπ ỹ)

2 =

N∑
j=1

〈ỹ, fj〉2π − (Eπ ỹ)
2 =

N∑
j=2

〈ỹ, fj〉2π.

The following is a proof of Proposition 3.

Proof of Proposition 3. From Theorem 1 in [13],

σ2
μ̃ =

N∑
�=2

〈ỹ, f�〉2πG(λ�) = varπ(ỹ)
N∑
�=2

〈ỹ, f�〉2π
varπ(ỹ)

G(λ�). (D.1)

From Lemma 6, this is a convex combination of G(λ2), . . . ,G(λN ). Applying
Jensen’s inequality yields

σ2
μ̃ = varπ(ỹ)

N∑
�=2

〈ỹ, f�〉2π
varπ(ỹ)

G(λ�) ≥ varπ(ỹ)G

(
N∑
�=2

〈ỹ, f�〉2π
varπ(y)

λ�

)
. (D.2)

Moreover, from Proposition 1 in [9],

∑N
�=2〈ỹ, f�〉2πλ�

varπ(y)
=

Cov(ỹ(Xp(τ)), ỹ(Xτ ))

varπ(y)
= R.

Thus,

σ2
μ̃ ≥ G(R)varπ(ỹ)

The proof of Proposition 2 is similar.

Proof of Proposition 2. In the case when ỹ(i) = μ+ σf(i), this implies that

ỹ = μf1 + σfj . By the orthonormality of the eigenvectors,
〈ỹ,f�〉2π
varπ(ỹ)

= 1{j = �}
for � > 1. As such, the inequality in equation (D.2) holds with equality.

Proposition 3 presumes that G is convex. Figure 2 plots G for twenty different
Galton-Watson trees with offspring distribution p(0) = .1, p(1) = .1, p(2) = .3,
p(3) = .5. This offspring distribution has expected value 2.2. The construction
of each tree was stopped when it reached 5000 nodes; if it failed to reach 5000
nodes, then the process was started over. In these simulations and in others not
shown, G is often convex. When it is not convex, the second derivative of G(z) is
positive when z is away from −1. This simulation was selected because it shows
that even when the trees are sampled from the same distribution, even when
there is nothing strange about the offspring distribution (e.g. all moments are
finite), even when it is a very big tree, even under all of these nice conditions,
some of the trees have a convex G and some of the trees have a non-convex G.
Similar results hold when the trees have 500 nodes; the only thing that changes
is that the red regions extend slightly further away from −1.
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Fig 2. Each line corresponds to a function G for a random Galton-Watson tree. Some of the
curves are not convex; the regions of these functions which have a negative second deriva-
tive are highlighted in red. While some of the black lines appear to have a negative second
derivative, they do not; this illusion is due to the log transformation on the vertical axis.
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