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Abstract: How to recover weak signals (i.e., small nonzero regression co-
efficients) is a difficult task in high dimensional feature selection problems.
Both convex and nonconvex regularization methods fail to fully recover the
true model whenever there exist strong columnwise correlations in design
matrices or small nonzero coefficients below some threshold. To address
the two challenges, we propose a procedure, Perturbed LASSO (PLA),
that weakens correlations in the design matrix and strengthens signals by
adding random perturbations to the design matrix. Moreover, a quanti-
tative relationship between the selection accuracy and computing cost of
PLA is derived. We theoretically prove and demonstrate using simulations
that PLA substantially improves the chance of recovering weak signals and
outperforms comparable methods at a limited cost of computation.
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1. Introduction

To achieve high accuracy in feature selection performed by a regularization pro-
cedure, as proved in [10] and others, the informative (or useful) features whose
corresponding regression coefficients are nonzero must be well-separated from
the uninformative (or useless) features whose coefficients are zeros. However,
strong columnwise correlations in the design matrix and small nonzero regres-
sion coefficients make informative and uninformative features inseparable and
result in poor selection accuracy. Theoretically, it has been shown that the Least
Absolute Shrinkage and Selection Operator (LASSO) [8], a convex regularization
procedure, needs to meet the Irrepresentable condition [13] and the Beta-min
condition [4] to achieve high selection accuracy. The Irrepresentable condition
requires the true model comprising of all informative features be weakly corre-
lated with each uninformative feature, while the Beta-min Condition requires
all nonzero regression coefficients be sufficiently large versus some threshold.
Similar “weak correlation and strong signal” conditions on the design matrix
and the nonzero regression coefficients are needed for nonconvex regularization
procedures such as Minimax Concave Penalty (MCP) [9] and Multi-stage Con-
vex Relaxation (MCR) [10]. In summary, “weak correlation and strong signal”
are prerequisites for recovery of the true model for both convex and nonconvex
regularization procedures. However, they are unlikely to hold and hard to check
in practice [4]. In this article, we aim to develop a computationally feasible pro-
cedure that is able to recover the true model when there exist strong correlation
and/or weak signal.

Many efforts have been directed towards overcoming the Irrepresentable con-
dition and the Beta-min condition. They fall into two categories: decorrelation
and resampling. The elastic net [14] weakens columnwise correlation by utilizing
the squared second norm of penalty (i.e., the ridge penalty). Other studies show
that resampling often leads to higher selection accuracy [1]. Two representative
approaches are Stability Selection (SS) [7] and Bootstrapped Enhanced LASSO
(BoLASSO) [1].

In this work we develop a procedure, Perturbed LASSO (PLA), to improve
selection accuracy by combining the power of decorrelation and resampling.
The procedure PLA is implemented in two steps. First, we generate H pseudo-
samples from the original data by adding random perturbations to the design
matrix repeatedly and create a model subspace by applying LASSO with a set of
D predefined regularization parameters to each pseudo-sample; consequently, H
pseudo-samples produceH model subspaces and each model subspace consists of
D models. Thus, the union of the H subspaces include no more than DH unique
models. After the union model space is created, the next step is to perform model
selection based on the original data by an information criterion. As shown in
theory and numerical studies the random perturbation does not only weaken
correlation in the design matrix but also strengths the signal. As a consequence,
PLA overcomes both the Irrepresentable condition and the Beta-min condition.

As for the computing cost of PLA, we provide a quantitative relationship
between the number of perturbations H and the probability (lower bound) of
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selecting the true model, which we believe is a key contribution to the field. In a
nutshell, the increase in computation always improves selection accuracy while
smallish nonzero regression coefficients always necessitate heavy computation.
We run a series of simulations to demonstrate the gains of PLA in selection
accuracy against its computing cost and testify that PLA obtains substantially
higher selection accuracy than its competitors. Moreover, most these competi-
tors deal with the Irrepresentable condition, but our method addresses both the
Irrepresentable condition and the Beta-min condition.

In the past two decades the trade-off between goodness-of-fit and parsimony is
a central topic in literature on model selection. However, the trade-off between
computing cost and selection accuracy imposes great challenges and is worth
our inputs with the advent of high dimensional data era. This work explores the
second type of tradeoff from both theoretical and numerical perspectives.

The paper is organized as follows. In Section 2, we set up the problem. PLA
is proposed and its properties are studied in Section 3. In Sections 4 and 5, sim-
ulation results and a real data example are presented, respectively. Concluding
remarks are in Section 6. The proofs of the main results are in the Appendix.

2. Model setting

As is typical in high-dimensional regression analysis, throughout this article we
only consider linear models of the form

Y =

p∑
j=1

βjxj + ε, (2.1)

which includes a response variable Y and p deterministic features (x1, · · · , xp).
Here we use the standard notation

supp(β) = {j : βj �= 0} ‖β‖0 = | supp(β)| ‖β‖1 =

p∑
j=1

|βj |

for β = (β1, · · · , βp)
′. All nonempty subsets of (x1, ..., xp) constitute the model

space M and each element in M defines a model M with cardinality |M |.
Assume the data are generated by

Y =

p∑
j=1

β0
jxj + ε, (2.2)

where ε is distributed asN(0, σ2). Then we define the true modelM0 as the set of
informative or useful features whose regression coefficient β0

j �= 0. The other fea-
tures corresponding to zero coefficients are defined as uninformative or useless.
Let q = ‖β0‖0. Moreover, assume that the first q coefficients β0

1 = (β0
1 , · · · , β0

q )
′

are nonzero and all other (p − q) coefficients β0
2 = (β0

q+1, · · · , β0
p)

′ are zeros.

Thus, supp(β0) = {1, · · · , q}. Define β0
min = min(|β0

1 |, · · · , |β0
q |). The primary
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goal of model selection is to recover these nonzero coefficients or the informative
features (x1, · · · , xq). In this work we investigate feature selection in the context
of high dimensional data (p > n) and sparse true models (n/(log p) � q).

The original sample (X,Y) include an n × p feature matrix X and an n-
dimensional vector Y representing n independent observations on the response
variable Y . Let μ = E(Y) and ε = Y − μ. Across this article we only consider
the deterministic design. LetX1 be the submatrix spanned by the first q columns
of X and X2 be the submatrix by the remaining p− q columns. Let X[,j] denote
the j-th column of X and suppose ‖X[,j]‖22 = n (j = 1, ..., p). The p× p matrix
X′X can be expressed in a block-wise form,

X′X =

(
X′

1X1 X′
1X2

X′
2X1 X′

2X2

)
.

Suppose Σn
11 = n−1X′

1X1 → Σ11 elementwise as n → ∞ and the two q × q
matrices Σn

11 and Σ11 are both positive definite. The eigenvalues of Σn
11 and

Σ11 are 0 < Λn
1 ≤ · · · ≤ Λn

q < q and 0 < Λ1 ≤ · · · ≤ Λq < q, respectively.
Denote n−1X′

1X2 by Σn
12, which converges to Σ12 elementwise as n → ∞.

3. Proposed method

This paper focuses on the feature selection problem (i.e., recovery of nonzero
coefficients) by a regularization criterion in the form

β̂
pλ

= argmin
β

‖Y −Xβ‖22 + pλ(β), (3.1)

where ‖Y − Xβ‖2 is the Euclidean distance between Y and Xβ, and pλ(β)
works as a penalty of controlling model dimension. The family of regularization
criteria (3.1) include the L1 regularization method (i.e., LASSO) where pλ(β) =
λ‖β‖1 (λ > 0); the L0 regularization method (i.e., information criteria) where
pλ(β) = λ‖β‖0 (λ > 0); and other methods such as MCP and MCR, both of
which belong to nonconvex regularizations.

In this article, we are mainly interested in feature selection by LASSO,

β̂
LA,λ

= argmin
β

‖Y −Xβ‖22 + λ‖β‖1, (3.2)

in which the L1 penalty λ‖β‖1 imposes sparsity by shrinking some coefficients
to zero and the regularization parameter λ controls sparsity level in that a large
λ always leads to large bias and great sparsity. The set of features corresponding

to the nonzero entries in β̂
LA,λ

constitute the model selected by LASSO with
the regularization parameter λ. As a convex regularization criterion, LASSO
is more computationally efficient than nonconvex regularization criteria such
as MCP, which can achieve unbiased feature selection by solving a nonconvex
optimization problem.
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3.1. The Beta-min conditions of convex and nonconvex
regularizations

Both convex and nonconvex regularization criteria need to meet their own “weak
correlation and strong signal” conditions to achieve exact recovery of the true
model [10].

Concerning feature selection by LASSO, the “weak correlation and strong
signal” conditions refer to the Irrepresentable condition and the Beta-min con-
dition. In the language of [13] the Irrepresentable condition is

|X′
2X1(X

′
1X1)

−1 sign(β0
1)| <c 1− δ (3.3)

where δ is a scalar between 0 and 1, the left-hand expression is a (p− q) dimen-
sional vector and <c denotes that each element of a vector is less than a scalar.
The Irrepresentation condition (3.3) works for ruling out the strong correlation
in the design matrix. The Beta-min Condition for LASSO is formulated in [4]
as

min
1≤j≤q

|β0
j | ≥ Cσ

√
q log p

nφ2
0

(3.4)

where C is a generic constant and φ2
0 is the so-called compatibility constant

determined by the design matrix X. Consequently, small nonzero regression co-
efficients below the threshold Cσ

√
q log p/(nφ2

0) cannot be detected by LASSO
(in a consistent way). In [10], the LASSO-version Beta-min condition is pre-
sented as

min
1≤j≤q

|β0
j | ≥ C1σ

√
q log p

n
. (3.5)

where C1 corresponds to C/φ0 in (3.4).
As for MCP, the sparse Riesz condition (SRC), which is in consonance with

the Irrepresentable condition (3.3) of LASSO, is supposed and works for ruling
out strong columnwise correlation in the design matrix [9]. Under SRC, the
Beta-min condition for MCP requires that

min
1≤j≤q

|β0
j | ≥ C2σ

√
log p

n
, (3.6)

where C2 is a constant depending on X.
It is worth noting that the Beta-min condition of MCP (3.6) is independent

of q, and consequently, weaker than that of LASSO (3.4). As discussed in [9] and
[10], it is the bias of LASSO that causes the threshold value of LASSO to be “

√
q

times larger” than that of MCP in magnitude. We will confirm by simulations
in Section 4 that MCP does outperform LASSO in terms of detecting small
nonzero regression coefficients. Next, we develop a procedure based on LASSO
to overcome both the Beta-min condition and the Irrepresentable condition,
and this procedure outperforms MCP and other competing methods in terms
of selection accuracy across various settings.
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3.2. The algorithm: Perturbed LASSO (PLA)

As for any regularization procedures, strong correlation in the design matrix
and weak signal (i.e., small nonzero regression coefficients) are two formidable
hindrances to selection accuracy. An intuitive but effective approach of weak-
ening correlations is to create a perturbed design matrix Z by adding an n× p
random matrix composed of np iid random entries distributed as N(0, τ2) onto
X. Then the columnwise correlation of the perturbed design matrix reduces to
below 1/(1+τ2), and consequently, the Irrepresentable condition is overcome as
τ is large enough. Moreover, as shown in Section 3.3, the random perturbation
improves the chance of recovering weak signal through adding an amount to the
regression coefficients while the threshold is kept unchanged.

Given a set of pre-defined regularization parameters Λ = {λ1, · · · , λD}, the
above-described scheme is formalized in the following two-step procedure, which
we call Perturbed LASSO (PLA).

1. Inclusion: Get estimates β̂
LA,λ0

by applying LASSO with

λ0 = 2σ
√
2n log p (3.7)

[2] to the original sample (X,Y). Generate H independent n× p random
matrices Ξh’s (h = 1, · · · , H) and each of them is composed of np entries
identically and independently distributed as N(0, 1). Let

Zh = X+ τΞh (3.8)

Wh = Y + τΞhβ̂
LA,λ0

(3.9)

where τ is the perturbation size. Create a model subspace M̂PLA,Λ
h (h =

1, · · · , H) by applying LASSO to the perturbed sample (Zh,Wh) for each

λ ∈ Λ. Thus, we get a union model space, M̂PLA,Λ,H = ∪H
h=1M̂

PLA,Λ
h .

2. Selection: Perform model selection within M̂PLA,Λ,H by an information
criterion based on (X,Y).

In summary, PLA proceeds in two steps: 1) Create a model space M̂PLA,Λ,H

by repeating perturbations and a set of preselected penalty coefficients; 2) Per-
form model selection within this space by an information criterion. In this ar-
ticle, we adopt RICc, whose advantage over other information criteria has been
testified in [11]. The model subspace M̂PLA,Λ

h (h = 1, · · · , H) generated by

each perturbation includes D models and the union space M̂PLA,Λ,H includes
no more than DH unique models. Therefore, in the following simulations three
indices are adopted to assess the performance: the inclusion accuracy (P1) to

measure whether the true model is included by M̂PLA,Λ,H , the selection accu-
racy (P2) to measure whether the true model is ultimately selected and the size

(N) to measure the number of unique models in M̂PLA,Λ,H . Increasing D and
H will improve inclusion accuracy in the cost of computing load.
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Obviously, a large τ can remove correlation (almost) entirely, but an overly
large τ will blur the relationship between Y and (x1, · · · , xp). Hence, the pertur-
bation size τ needs to balance the above two ends. Next we conduct theoretical
analyses on our proposed method PLA and provide theoretical guidance on the
choice of the perturbation size τ and the perturbation number H.

3.3. Theory

For a perturbed sample (Zh,Wh) generated by (3.8) and (3.9), let θ̂
LA,λ

h =
argminθ(‖Wh−Zhθ‖22+λ‖θ‖1). Split the perturbed feature matrix Zh into two
submatrices Zh,1 and Zh,2, which are spanned by the first q and the remaining
(p− q) columns, respectively. Accordingly, the matrix Ξh is split into Ξh,1 and

Ξh,2. Using KKT condition [3] we derive four sufficient conditions for θ̂
LA,λ

h and
β0 to have the same sign, which are summarized in the following proposition.
Let ∗ denote the elementwise product of two vectors.

Proposition 3.1. If the following conditions hold for a scalar η ∈ (−∞,∞)
and a scalar δ ∈ (0, 1),

|Z′
h,2Zh,1(Z

′
h,1Zh,1)

−1 sign(β0
1)| ≤c 1− δ (p-Irrepresentable) (3.10)

|Z′
h,2Wh − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1Wh|

≤c 2
−1δλ (p-Exclusion) (3.11)

sign(β0
1) ∗ (Z′

h,1Zh,1)
−1(τΞ′

h,1ε) + |β0
1| >c η (p-Beta-min) (3.12)

sign(β0
1) ∗ (Z′

h,1Zh,1)
−1

(λ
2
sign(β0

1)−X′
1ε− τZ′

h,1Ξh(β̂
LA,λ0 − β0)

)
<c η (p-Inclusion) (3.13)

then θ̂
LA,λ

h and β0 have the same sign.

In the above proposition, Conditions (3.10) and (3.11) each consisting of
(p − q) inequalities function for excluding all uninformative features, whereas
Conditions (3.12) and (3.13) each consisting of q inequalities function for in-
cluding all informative features. The proof of Proposition 3.1 is deferred to
Appendix. To distinguish from (3.3) and (3.4), these four conditions are named
p-Irrepresentable, p-Exclusion, p-Beta-min and p-Inclusion conditions in order
where p- stands for perturbed. Here it is worth pointing out that Conditions

(3.12) and (3.13) are derived from θ̂
LA,λ

h,1 ∗β0
1 >c 0 instead of |θ̂

LA,λ

h,1 −β0
1| >c |β0

1|
[13], where the former is a sufficient and necessary condition for sign(θ̂

LA,λ

h,1 ) =

sign(β0
1), whereas the latter is a sufficient but unnecessary condition.

Next we briefly discuss how PLA overcomes the Irrepresentable condition and
the Beta-min condition. The columnwise correlation of Zh will decrease to zero
as τ goes up to ∞ such that all columns are uncorrelated and the Irrepresent
condition is met (in asymptotic sense). In more detail, each element of the left-
hand side of (3.10) is bounded by qτ−2 in probability (the proof is provided
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in Appendix: Lemmas 1 and 2). Thus, as the perturbation size τ >
√
q, the

Irrepresentable condition is satisfied (asymptotically).
The perturbed Beta-min condition (3.12) differs from the Beta-min condi-

tion (3.4) by the q-dimensional random vector sign(β0
1) ∗ τ(Z′

h,1Zh,1)
−1Ξ′

h,1ε
(referred to bh = (bh,1, · · · , bh,q)′ next) while η is the same. Compare the two
Beta-min conditions

min
1≤j≤q

(
|β0

j |
)

≥ η LASSO;

min
1≤j≤q

(
bh,j + |β0

j |
)

≥ η PLA

where bh,j is asymptotically distributed asN(0, σ2
bj
) with σbj is inversely propor-

tional to τ (more details are provided in the proof of Theorem 1). Consequently,
when the Beta-min condition (3.4) is violated (i.e., |β0

j | ≤ η for some j), the

random term bh,j will push |β0
j | above η, and a small τ is preferred. Theoret-

ically, no matter how small a nonzero regression coefficient, it can always be
recovered by performing perturbations many times (i.e., large H).

Let κ2
0 be the Restricted Eigenvalue constant as defined in Eq (16) of [2].

Concerning the inclusion consistency of PLA we have the following conclusion.

Theorem 1. Let η = 4σ
√
2q(log p)/(nκ2

0). Suppose τ ≥
√
8q3/4, then the prob-

ability that the true model M0 is in the union model subspace M̂PLA,Λ,H is
bounded below by

Pr(M0 ∈ M̂PLA,Λ,H) ≥ 1−
(
(1−

q∏
j=1

pj)
H + C0Φ

c(
√

2 log p)
)
, (3.14)

where pj = Φc
(
τ
√
n(η − |β0

j |)/σ
)
, Φc is the upper tail probability of standard

normal distributions and C0 is a generic constant.

Theorem 1 is about inclusion consistency, i.e., the probability that the true
model is included by the subspace M̂PLA,Λ,H goes to 1. The proof of Theorem
1 is delayed to the appendix.

There are several consequences of Theorems 1.

1. As indicated by Theorem 1 and discussed above, a large τ is desired for
overcoming the Irrepresentable condition, while a small τ is preferred for
overcoming the Beta-min condition. We adopt

τ0 =

√
n

2 log p
, (3.15)

which overcomes the Irrepresentable condition entirely under the sparsity
assumption, i.e., q 
 n/ log p.

2. The inclusion probability (lower bound) by PLA (3.14) decreases in (σ,
p and q) but increases in (n, κ2

0, |β0
1| and H). Hence, if there exist small

|β0
j |; j = 1, · · · , q, strong correlation in X (small κ2

0), large p and/or large
q, then a large H is needed to achieve high selection accuracy.
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3. In the context of “strong correlation and strong signal” where the Beta-
min condition (3.4) is met but the Irrepresentable condition (3.3) is not,
PLA can obtain 100% inclusion accuracy by one perturbation, while the
inclusion accuracy of LASSO is 0. This is to be testified by simulations in
Section 4.

The computing cost and selective performances of PLA will be examined by
simulations in Section 4 where we assume that the true model is linear, sparse
and included in the candidate model space. However, it is impractical to suppose
the existence of a sparse and linear true model in real data, and this will be
investigated in Section 5.

4. Simulations

For the data-generating processes, each row of the n×p design matrixX = (Xi,j)
is independently generated from N(0,Σp×p), where 0 denotes the p-dimensional
vector of 0’s and Σp×p = (ρ|j1−j2|) denotes a p × p covariance matrix with j1
and j2 (j1, j2 = 1, · · · , p) denoting the row and column indices, respectively.
Two values of ρ (0.6 and 0.9) are examined. The responses are generated from
the true model (2.2) with σ = 1. Among β0, q randomly selected coefficients
(β0

j1
, · · · , β0

jq
) (q = 9 or 12) are assigned nonzero values by the following rule:

β0
j1 = · · · = β0

jk
= 2α; β0

jk+1
= · · · = β0

jq = 2 (4.1)

where the shrinkage factor α = 0.6 or 0.3, and all other βj ’s are assigned 0.
Thus, the minimal nonzero regression coefficient β0

min = 2α. Four values of k (1,
3, 5, 7) are examined. As ρ and k increase and α decreases, the Beta-min and the
Irrepresentable conditions are more likely to be violated and the performances
of all procedures will deteriorate.

In all simulations, σ2 is assumed unknown and the penalty coefficients, Λ =
{λ1, · · · , λ100} that are the default candidates in the R package ncvreg are
utilized. For each setting, 100 replications (realizations of sample data) are
performed. In PLA and BoLASSO (BLA), H perturbations or bootstrappings
(H = 10 or 1000) are performed.

The following six procedures are compared.

• PLA-RICc: Create a union model space M̂PLA,Λ,H = ∪H
h=1M̂

PLA,Λ
h by

employing the procedure PLA introduced in Section 3.2. At each pertur-
bation, the model subspace M̂PLA,Λ

h is created by applying LASSO with
each λ ∈ Λ, as implemented by the R package ncvreg, to the perturbed
data (Zh,Wh). Perform model selection within M̂PLA,Λ,H that includes
no more than DH unique models by RICc based on the original data
(X,Y). The variance σ2 is estimated by Least Squares based on the model
selected by LASSO, in which the regularization parameter λ is tuned by
5-fold cross-validations from Λ.

• BLA-RICc: The model subspace M̂BLA,Λ,H is created by BoLASSO with
each λ ∈ Λ, as implemented by the package mht. In BoLASSO, the se-
lection frequency of each feature is calculated based on H bootstrapping
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samples and the threshold frequency is set at the default value 100%.
Then, RICc is employed to perform model selection within M̂BLA,Λ,H ,
which includes no more than D unique models. Different from PLA, the
size of M̂BLA,Λ,H does not increase with H.

• LAS-RICc: Apply LASSO with each λ ∈ Λ to the original data (X, Y)

to produce D = 100 models, which compose a model subspace M̂LA,Λ,
as implemented by the package ncvreg. Then, RICc is employed to per-
form model selection within M̂LA,Λ that includes no more than D unique
models.

• MCP-RICc: Apply MCP with each λ ∈ Λ to the original data (X, Y) to

produce D = 100 models, which compose a model subspace M̂MCP,Λ, as
implemented by the package ncvreg. Then, RICc is employed to perform
model selection within M̂MCP,Λ that includes no more than D unique
models.

• CV-LAS: Model selection is done in two steps: (1) tune the best λ from
Λ by 5-fold cross-validations; (2) apply LASSO with the tuned penalty to
(X, Y).

• CV-MCP: Model selection is done in two steps: (1) tune the best λ from
Λ by 5-fold cross-validations; (2) apply MCP with the tuned penalty to
(X, Y).

The first four procedures (PLA-RICc, BLA-RICc, LAS-RICc and MCP-RICc)
perform model selection in two steps (1) Inclusion: create a model subspace;
(2) Selection: model selection within the subspace by an information criterion.
Thus, their performances are assessed by inclusion accuracy (P1) that is the
proportion of replications where the method includes the true model M0, and
selection accuracy (P2) that is the proportion of replications where the method
selects the true model M0. Undoubtedly, P2 ≤ P1 for all procedures. Though
our ultimate goal is model selection, we want to emphasize that, rather than the
selection accuracy, the inclusion accuracy is more adequate for assessing whether
a procedure is able to overcome the Beta-min Condition because a misused
information criterion may result in misidentifying the true model. Therefore,
in the following table the inclusion accuracy is highlighted by bold fonts and
square brackets. Additionally, we report the size of model subspace (N) that
is the number of unique models, the system time consumed for creating model
subspace (T1) and the system time for model selection within the model subspace
(T2). Consequently, the sum of T1 and T2 measures the total computational time
of each procedure. The unit of T1 and T2 is second.

As a reference, we also examine the selective performance of LASSO and MCP
equipped with Cross-validations (CV-LAS and CV-MCP). Though 5-fold or 10-
fold CV is often adopted to tune the penalty level, neither of them can guarantee
that optimal λ is tuned [12]. Therefore, as LASSO or MCP misidentifies the true
model, it may be due to mistuning of the optimal penalty. Even worse, the bias
of LASSO often leads to the choice of an overly small λ, which causes overly large
false positives, and consequently, extremely low selection accuracy. Therefore,
we strongly recommend the strategy of “screen by LASSO (i.e., creating a model
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space by a set of regularization parameters Λ) and select by information criteria”
[11] to replace the more routine procedure “tune by CV and select by LASSO”,
and the latter is more computationally burdensome than the former as shown in
the following simulations. For CV-LAS and CV-MCP, only selection accuracy
(P ) and total computational time (T ) are reported.

The results are as follows:
As shown in Table 1 and Table 2, LAS-RICc beats CV-LAS in both com-

putational efficiency and selection accuracy across various settings. The same
pattern is observed between MCP-RICc and CV-MCP, though the gap is not
so big as LASSO.

It is worth noting that in the case of moderate correlation ρ = 0.6, the
inclusion accuracy (P1) of MCP-RICc does not change with q, but the inclusion
accuracy of LAS-RICc goes down greatly as q goes up from 9 to 12. This is
caused by a fact that the threshold in the Beta-min condition of LASSO (3.4)
increases with q, but the threshold of MCP (3.6) does not. However, in the
strong correlation case (ρ = 0.9), the performance of MCP-RICc worsens as the
true model size q increases from 9 to 12 because a large q brings up the chance of
violating the Irrepresentable condition or the sparse Riesz condition, especially
when strong correlations exist in X.

As shown in Table 1 and Table 2, in the nicest case where the columnwise
correlation is moderate (ρ = 0.6) and the nonzero coefficients are “sufficiently
large” (α = 0.6 such that β0

min = 1.2), the inclusion accuracy of LAS-RICc

is above 88% while all other two-step procedures (i.e., MCP-RICc, BLA-RICc

and PLA-RICc) achieve above 99% inclusion accuracy. However, all six proce-
dures’ performances deteriorate gradually as ρ and q increase and the nonzero
coefficients decrease in size, which cause the Irrepresentable condition and the
Beta-min condition less likely to hold. Overall, PLA with H = 1000 outperforms
all other competitors in all cases. In the worst case (q = 12, ρ = 0.9, qs = 7
and β0

min = 0.6), the inclusion accuracy (P1) of LAS-RICc and MCP-RICc are
0 and 11%, respectively. Our procedure PLA elevates the inclusion accuracy up
to 34% as H=10 and up to 61% as H = 1000. Another case worthy of attention
is that PLA achieves almost 100% inclusion and selection accuracy by perform-
ing only H = 10 perturbations when both signal and correlation are strong
(ρ = 0.9 and α = 0.6), whereas the inclusion accuracy of LASSO is below 5%.
This demonstrates the power of PLA on overcoming the Irrepresentale condi-
tion. This confirmed a conclusion implied by Theorem 1: the computing load is
mainly driven by small nonzero β0

j when the true model is sparse. In conclusion,
LASSO requires stronger Beta-min condition than MCP, and consequently, suf-
fers lower selection accuracy. However, PLA lowers the threshold down to 0 (as
H is large enough) and accomplishes higher selection accuracy than MCP.

Between the two resampling-based methods BoLASSO and PLA, a notable
difference is that the performance of PLA always improves with increasing H
that supports the conclusion of Theorem 1, but BoLASSO does not. In partic-
ular, when there exist some “small” coefficients (α = 0.3 such that β0

min = 0.6),
the inclusion accuracy of BoLASSO worsens as H goes up because a large H
increases the chance of misselecting relevant features in some perturbations.
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Table 1. Comparison of Inclusion Accuracy, Selection Accuracy and Computational Time

qs
CV-LAS CV-MCP LAS-RICc MCP-RICc BLA-RICc (H=10) BLA-RICc (H=1000) PLA-RICc (H=10) PLA-RICc (H=1000)
P T P T N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2

q = 9, ρ = 0.6, α = 0.6

1 0 7 0.65 6 30 [0.94] 0.69 0.94 0.08 23 [1] 0.61 1 0.05 14 [0.98] 17 0.98 0.03 8 [1] 1651 1 0.01 55 [1] 5 1 0.11 699 [1] 1284 1 1
3 0 7 0.63 7 31 [0.97] 0.71 0.97 0.09 24 [1] 0.67 1 0.06 15 [1] 18 1 0.03 9 [1] 1657 1 0.02 45 [1] 5 1 0.09 576 [1] 1323 1 1
5 0 8 0.66 8 34 [0.88] 0.81 0.88 0.1 25 [1] 0.75 1 0.06 17 [0.99] 19 0.99 0.04 9 [1] 1771 1 0.02 43 [1] 6 1 0.09 733 [1] 1446 1 1
7 0 7 0.69 8 35 [0.93] 0.72 0.93 0.11 27 [1] 0.76 1 0.07 18 [0.99] 17 0.99 0.04 9 [1] 1657 1 0.02 52 [1] 5 1 0.11 1058 [1] 1287 1 2

q = 9, ρ = 0.6, α = 0.3

1 0 7 0.52 6 30 [0.80] 0.68 0.79 0.08 22 [1] 0.63 0.99 0.05 13 [0.98] 18 0.97 0.03 7 [1] 1651 0.99 0.01 53 [1] 5 0.99 0.1 616 [1] 1296 0.99 1
3 0 7 0.23 7 31 [0.79] 0.69 0.79 0.09 24 [1] 0.69 1 0.06 14 [0.94] 18 0.94 0.03 8 [1] 1625 1 0.02 41 [1] 5 1 0.08 481 [1] 1299 1 0.9
5 0 8 0.15 8 34 [0.71] 0.76 0.71 0.1 26 [1] 0.79 1 0.07 16 [0.95] 19 0.95 0.03 9 [0.99] 1777 0.99 0.02 36 [1] 6 1 0.08 670 [1] 1406 1 1
7 0 7 0.06 9 36 [0.65] 0.72 0.65 0.11 28 [1] 0.8 1 0.07 19 [0.93] 18 0.93 0.04 10 [0.99] 1726 0.99 0.02 45 [1] 5 1 0.09 1020 [1] 1383 1 2

q = 9, ρ = 0.9, α = 0.6

1 0 26 0.3 7 32 [0.05] 2 0.05 0.08 19 [0.82] 0.67 0.82 0.04 13 [0.73] 21 0.73 0.03 9 [1] 1854 1 0.02 73 [1] 6 1 0.16 1784 [1] 1356 1 4
3 0 25 0.09 7 33 [0.08] 2 0.08 0.09 20 [0.76] 0.67 0.76 0.04 13 [0.74] 21 0.74 0.03 9 [0.99] 1822 0.99 0.02 63 [1] 6 0.99 0.14 1855 [1] 1333 0.99 4
5 0 26 0.12 8 35 [0.06] 2 0.06 0.1 22 [0.60] 0.75 0.6 0.05 14 [0.74] 21 0.74 0.03 9 [1] 1884 1 0.02 62 [1] 6 1 0.14 2175 [1] 1376 1 5
7 0 26 0.08 8 37 [0.08] 2 0.08 0.11 24 [0.53] 0.81 0.53 0.06 14 [0.76] 22 0.76 0.03 9 [0.96] 1838 0.96 0.02 77 [1] 6 1 0.17 2919 [1] 1355 1 6

q = 9, ρ = 0.9, α = 0.3

1 0 26 0.25 7 31 [0.05] 2 0.05 0.08 19 [0.79] 0.7 0.79 0.04 12 [0.69] 21 0.68 0.03 8 [0.49] 1813 0.48 0.01 75 [0.92] 6 0.9 0.16 1848 [0.98] 1337 0.94 4
3 0 26 0.12 7 34 [0.03] 2 0.03 0.09 20 [0.59] 0.71 0.59 0.05 13 [0.46] 22 0.46 0.03 8 [0.12] 1915 0.12 0.02 64 [0.69] 6 0.67 0.14 1843 [0.89] 1448 0.84 4
5 0 22 0.02 7 35 [0.03] 2 0 0.1 22 [0.32] 0.71 0.32 0.05 15 [0.35] 20 0.34 0.03 8 [0.01] 1815 0.01 0.01 61 [0.61] 5 0.57 0.13 2209 [0.79] 1305 0.71 5
7 0 22 0.01 8 37 [0.04] 2 0.04 0.11 24 [0.23] 0.81 0.23 0.06 16 [0.31] 21 0.3 0.03 9 [0.03] 1834 0.03 0.02 71 [0.59] 6 0.5 0.16 2794 [0.78] 1353 0.59 6

n = 250, p = 2000. The feature matrix is generated by N(0,Σ) with Σ = ρ|j1−j2|. Among the q nonzero β′
js, qs coefficients are assigned value 2α

and the remainings are assigned 2. The 1st column lists the value of qs. The other columns show the computational time of creating model subspace
(T1) and the time for model selection within this subspace by RICc (T2), the size of model subspace (N); the proportion of including the true
model by the model subspace (P1), and the proportion of selecting the true model by RICc(P2). As for PLA and BoLASSO, H = 10 or 1000

perturbations or bootstrappings are performed. The unit of T1 and T2 is second.



3
2
3
8

Y
.
Z
h
a
n
g

Table 2. Comparison of Inclusion Accuracy, Selection Accuracy and Computational Time

qs
CV-LAS CV-MCP LAS-RICc MCP-RICc BLA-RICc (H=10) BLA-RICc (H=1000) PLA-RICc (H=10) PLA-RICc (H=1000)
P T P T N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2 N P1 T1 P2 T2

q = 12, ρ = 0.6, α = 0.6

1 0 9 0.71 6 33 [0.64] 0.83 0.64 0.09 22 [1] 0.66 0.99 0.05 16 [0.92] 19 0.92 0.03 9 [1] 1779 0.99 0.02 90 [1] 6 1 0.2 2932 [1] 1431 0.99 6
3 0 8 0.61 6 34 [0.65] 0.78 0.65 0.1 23 [1] 0.62 1 0.06 17 [0.97] 18 0.97 0.03 11 [0.99] 1661 0.99 0.02 83 [1] 6 1 0.17 2104 [1] 1312 1 4
5 0 8 0.74 7 36 [0.68] 0.81 0.68 0.1 25 [1] 0.67 1 0.06 19 [0.97] 18 0.97 0.04 11 [1] 1639 1 0.02 84 [1] 6 1 0.18 2156 [1] 1318 1 4
7 0 9 0.69 7 37 [0.72] 0.83 0.72 0.11 26 [1] 0.68 0.98 0.07 19 [0.91] 19 0.9 0.04 11 [1] 1747 0.99 0.02 85 [1] 6 0.98 0.18 2348 [1] 1525 0.98 5

q = 12, ρ = 0.6, α = 0.3

1 0 9 0.46 7 33 [0.5] 0.83 0.5 0.09 22 [1] 0.68 0.98 0.05 16 [0.91] 19 0.9 0.03 9 [1] 1800 0.99 0.02 91 [1] 6 0.98 0.2 2921 [1] 1490 0.98 6
3 0 8 0.35 7 35 [0.39] 0.82 0.39 0.1 24 [1] 0.71 1 0.06 17 [0.89] 19 0.89 0.04 10 [0.96] 1755 0.96 0.02 80 [1] 6 1 0.17 1924 [1] 1443 1 4
5 0 8 0.14 8 35 [0.47] 0.8 0.47 0.1 25 [1] 0.75 1 0.06 18 [0.9] 19 0.9 0.04 11 [0.98] 1797 0.98 0.02 74 [1] 6 1 0.16 1852 [1] 1435 0.99 4
7 0 9 0.11 8 37 [0.28] 0.82 0.28 0.11 27 [0.99] 0.74 0.99 0.07 20 [0.79] 19 0.79 0.05 12 [0.97] 1818 0.96 0.03 76 [1] 6 0.99 0.17 2281 [1] 1462 0.99 5

q = 12, ρ = 0.9, α = 0.6

1 0 29 0.13 8 36 [0.01] 3 0.01 0.1 21 [0.67] 0.79 0.67 0.05 19 [0.6] 22 0.6 0.04 11 [1] 1858 1 0.02 125 [1] 6 1 0.28 5766 [1] 1353 1 13
3 0 29 0.11 8 37 [0.01] 3 0.01 0.1 22 [0.68] 0.73 0.68 0.05 19 [0.5] 22 0.5 0.04 12 [0.98] 1863 0.98 0.02 125 [1] 6 1 0.3 5519 [1] 1366 1 12
5 0 30 0.05 8 40 [0] 3 0 0.11 23 [0.46] 0.8 0.46 0.05 20 [0.67] 23 0.67 0.04 12 [0.95] 1920 0.95 0.02 127 [1] 6 1 0.3 5845 [1] 1408 1 14
7 0 29 0.03 8 40 [0.01] 3 0.01 0.11 24 [0.45] 0.79 0.45 0.05 20 [0.58] 22 0.58 0.04 12 [0.98] 1869 0.98 0.02 128 [1] 6 1 0.31 6172 [1] 1370 1 14

q = 12, ρ = 0.9, α = 0.3

1 0 28 0.14 8 36 [0] 3 0 0.1 22 [0.69] 0.75 0.69 0.05 18 [0.44] 22 0.44 0.04 10 [0.47] 1858 0.47 0.02 129 [0.86] 6 0.85 0.3 5846 [0.99] 1350 0.98 12
3 0 28 0.06 8 37 [0] 3 0 0.1 21 [0.51] 0.74 0.5 0.05 18 [0.34] 22 0.33 0.04 10 [0.03] 1866 0.03 0.02 122 [0.62] 6 0.58 0.29 5227 [0.89] 1334 0.78 11
5 0 28 0.01 8 39 [0.01] 3 0.01 0.11 23 [0.23] 0.81 0.23 0.05 19 [0.16] 22 0.15 0.04 10 [0.02] 1917 0.02 0.02 124 [0.38] 6 0.36 0.29 5773 [0.77] 1401 0.69 13
7 0 28 0 9 41 [0] 3 0 0.12 25 [0.11] 0.87 0.11 0.06 20 [0.16] 23 0.16 0.04 11 [0.01] 1971 0.01 0.02 126 [0.34] 6 0.31 0.31 6648 [0.61] 1461 0.52 16

n = 250, p = 2000. The feature matrix is generated by N(0,Σ) with Σ = ρ|j1−j2|. Among the q nonzero β′
js, qs coefficients are assigned value 2α

and the remainings are assigned 2. The 1st column lists the value of qs. The other columns show the computational time of creating model subspace
(T1) and the time for model selection within this subspace by RICc (T2), the size of model subspace (N); the proportion of including the true
model by the model subspace (P1), and the proportion of selecting the true model by RICc(P2). As for PLA and BoLASSO, H = 10 or 1000

perturbations or bootstrappings are performed. The unit of T1 and T2 is second.
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Overall, PLA achieves higher inclusion (P1) and selection accuracy (P2) than
BoLASSO while costing less computing time. Examining T1 and T2, it is clear
that the first step of BoLASSO and PLA accounts for most computing load. For
example, in the worst case (q = 12, ρ = 0.9, qs = 7 and β0

min = 0.6), the first
step of PLA used up 1461 seconds on creating a space including 6648 unique
models and the second step, model selection by RICc, only used up 16 seconds.

Additional simulation results of various (n, p, ρ, β0, Λ) further supporting the
robustness and flexibility of PLA are available upon request. Similar patterns
to the ones presented in this section are observed, further demonstrating the
success of our proposed method. The often sizable advantage of PLA over its
competitors, especially when there exist small regression coefficients and strong
correlation among features, makes PLA a powerful tool in high dimensional
variable selection.

We also examined the performance as perturbation partners with MCP, which
is referred to as “Perturbed MCP”, and the simulation results are available
upon request. As demonstrated by the simulation, Perturbed MCP improves the
inclusion and selection accuracy of MCP but not so substantial as Perturbed
LASSO. Furthermore, Perturbed LASSO outperforms Perturbed MCP across
all settings.

Due to constraints of computing resource, it is hard to recover overly small
regression coefficients, which may not contribute to prediction in the context
of “large p small n”. However, the harvest in selection and prediction is always
directly proportional to pay in computation as shown in the following real data
example.

5. Real data application

In this section we analyze the dataset, riboflavin that is about vitamin B2 pro-
duction and publicly available through the R package, hdi (www.r-project.org)
[5]. The data comprise of 71 observations on a single real-valued response vari-
able that is the logarithm of the B2 production rate, and p = 4088 features
measuring the logarithm of the expression level of 4088 genes.

First of all, we compare the predictive performances of the four two-step
procedures (PLA-RICc, BLA-RICc, LAS-RICc, MCP-RICc) studied in Section
4. In PLA-RICc and BLA-RICc, H = 1000 bootstrappings or perturbations are
performed. The comparison is done in three steps. First, the 71 observations
are divided into an evaluation set of size Ne (Ne = 2, · · · , 5) and an estimation
set of size n = 71 − Ne. Second, the four competitors each develop predictive
models from the estimation set, which are used to make predictions on the
evaluation set. Finally, we perform the above two steps 100 times, selecting the
evaluation sets at random each time, and get N = 100 average prediction errors
for each method. The average mean squared error (MSE) for each of the four
procedures are displayed in Table 3. From Table 3, PLA-RICc yields the best
overall predictive accuracy.

Next, we apply PLA-RICc to the whole sample and select six genes: ARGF at,
XHLB at, YDDK at, YEBC at, YOAB at and YXLD at. A similar analysis was
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Table 3

Comparison of Prediction Errors for Riboflavin Data

Ne LAS-RICc MCP-RICc BLA-RICc PLA-RICc

2 0.333(0.044) 0.211(0.032) 0.568(0.073) 0.205(0.036)
3 0.299(0.030) 0.228(0.030) 0.547(0.056) 0.198(0.018)
4 0.248(0.023) 0.223(0.024) 0.486(0.048) 0.211(0.030)
5 0.311(0.027) 0.238(0.026) 0.520(0.049) 0.225(0.022)

For each method, the table shows the average of mean square error (MSE) and standard
error (SE) (in parentheses). Note that the SEs reported are not the standard errors in the

i.i.d. case.

Table 4

Gene Selection for Riboflavin Data

Estimate Std. Error t value Pr(> |t|)
The linear regression analysis output based on the model selected by PLA-RICc.

Multiple R-squared: 0.8906, Adjusted R-squared: 0.8804
(Intercept) 14.44803 2.14293 6.742 0.0000000052614127
ARGF at -0.31695 0.04075 -7.778 0.0000000000792608
XHLB at 0.29052 0.05323 5.458 0.0000008343452216
YDDK at -0.29773 0.08510 -3.499 0.0008560000000000
YEBC at -0.83533 0.19959 -4.185 0.0000886548546881
YOAB at -1.22380 0.16385 -7.469 0.0000000002785447
YXLD at -0.37530 0.03865 -9.710 0.0000000000000332

The linear regression analysis output based on the model presented in [5].
Multiple R-squared: 0.6763, Adjusted R-squared: 0.6618

(Intercept) 16.32195 2.40206 6.795 0.000000003520
LYSC at -1.11713 0.31720 -3.522 0.000777000000
YOAB at -1.11722 0.25514 -4.379 0.000042885043
YXLD at -0.47970 0.06287 -7.630 0.000000000112

done by [5] using the R package hdi and three genes: LYSC at, YOAB at and
YXLD at are selected. The linear regression analysis based on the two models is
done in R and the output is presented in Table 4. As shown Table 4, PLA-RICc

recovered regression coefficients whole absolute values are below 0.4, while the
other approach only recovered coefficients whole absolute values are above 0.4.

6. Discussion

In high dimensional feature selection problems, strong correlation and weak
signal are the two main hindrances to exact recovery of informative features.
The method developed in this paper offers a solution by adding perturbations
to the design matrix. As confirmed by the simulation, PLA achieves substantial
advantage over other methods on selection accuracy. At the same time, our
method performs well in prediction when the true model has unknown form or
may be excluded from the candidate model space as demonstrated in the real
data example.

Another great difficulty in high dimensional feature selection problems is the
immense computing load caused by huge model space. However, literature has
focused on the tradeoff between parsimony and goodness-of-fit, while the trade-
off between selection accuracy and computing efficiency has been largely unex-
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plored. From a theoretical perspective, we investigate this tradeoff by establish-
ing a quantitative relationship between selection consistency and computation,
and provide some guidance on how to balance selection with computation. Fur-
ther investigation is necessary to generalize the proposed method to nonlinear
regression models.

Appendix A: Proof

Firstly, we prove some inequalities used in the proof of Proposition 3.1 and
Theorem 1.

A symmetric positive definite q × q matrix Σ11 can be decomposed as ([6]
p449) Σ11 =

∑q
k=1 ΛkAk, where A1, · · · ,Aq represent q × q symmetric and

idempotent matrices such that A′
k1
Ak2 = 0qq for k1 �= k2.

Let D11 =
∑q

k=1
Λk

(τ2+Λk)
Ak, then

(Σ11 + τ2Iq,q)
−1 =

1

τ2
(
Iq,q −D11

)
. (A.1)

Similarly, the matrix Σn
11 = X′

1X1/n can be decomposed as Σn
11 =

∑q
k=1 Λ

n
kA

n
k

where An
1 , · · · ,An

q represent q × q symmetric and idempotent matrices such

that (An
k2
)′An

k2
= 0qq for k1 �= k2. Let Dn

11 =
∑q

k=1
Λn

k

(τ2+Λn
k )
An

k and Rn
11 =

X′
1X1 + nτ2Iq,q, then(

E(Z′
1Z1)

)−1
= (Rn

11)
−1 =

1

nτ2
(
Iq,q −Dn

11

)
. (A.2)

Lemma 1. It holds that q
τ2 (1 − q

τ2 ) ≤ sign(β′
1)(Σ11 + τ2Iq,q)

−1 sign(β1) ≤ q
τ2

and 1
τ2 (1− q

τ2 ) ≤ 0′
(j)(Σ11 + τ2Iqq)

−10(j) ≤ 1
τ2 .

Let γ1 = (Σ11 + τ2Iq,q)
−1 sign(β1) and γ2 = (Σ11 + τ2Iq,q)

−10(j) where 0(j) is
q-dimensional vector of 0’s except the j-th entry being 1, then

q

τ4
(1− 2q

τ2
) ≤ ‖γ1‖22 ≤ q

τ4
and

1

τ4
(1− 2q

τ2
) ≤ ‖γ2‖22 ≤ 1

τ4
. (A.3)

The above conclusions continue to hold with Σ11 replaced by Σn
11.

Proof. First of all, we have

sign(β′
1)D11 sign(β1) ≤

q∑
k=1

Λk

(τ2 + Λ1)
sign(β′

1)Ak sign(β1)

≤ qΛq

(τ2 + Λ1)
≤ q2

τ2
;

sign(β′
1)D11 sign(β1) ≥

q∑
k=1

Λk

(τ2 + Λq)
sign(β′

1)Ak sign(β1)

≥ qΛ1

(τ2 + Λq)
≥ 0.
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Similarly,

0′
(j)D110(j) ≤

q∑
k=1

Λk

(τ2 + Λ1)
0′
(j)Ak0(j) ≤

Λq

(τ2 + Λ1)
≤ q

τ2
;

0′
(j)D110(j) ≥

q∑
k=1

Λk

(τ2 + Λq)
0′
(j)Ak0(j) ≥

Λ1

(τ2 + Λq)
≥ 0.

Thus,

q

τ2
(1− q

τ2
) ≤ q(τ2 − q + Λ1)

τ4
≤ q

τ2
(1− Λq

τ2 + Λ1
)

≤ sign(β′
1)(Σ11 + τ2Iq,q)

−1 sign(β1) ≤
q

τ2
τ2 + Λq − Λ1

τ2 + Λq
≤ q

τ2
;

1

τ2
(1− q

τ2
) ≤ (τ2 − q + Λ1)

τ4
≤ q

τ2
(1− Λq

τ2 + Λ1
)

≤ 0′
(j)(Σ11 + τ2Iq,q)

−10(j) ≤
1

τ2
τ2 + Λq − Λ1

τ2 + Λq
≤ 1

τ2
.

Furthermore,

sign(β′
1)(Σ11 + τ2Iq,q)

−2 sign(β1)

=
1

τ4
sign(β′

1)
(
(Iq,q −D11)− (D11 −D2

11)
)
sign(β1).

The following two inequalities hold,

sign(β′
1)(Σ11 + τ2Iq,q)

−2 sign(β1)

≤ q

τ4
− qΛ1

τ4(τ2 + Λq)
− qΛ1

τ2(τ2 + Λq)2
≤ q

τ4
;

sign(β′
1)(Σ11 + τ2Iq,q)

−2 sign(β1)

≥ q

τ4
− qΛq

τ4(τ2 + Λ1)
− qΛq

τ2(τ2 + Λ1)2
≥ q

τ4
τ2 − 2q + 2Λ1

τ2
.

Similarly,

τ2 − q + Λ1

τ4
≤ 1

τ2
τ2 + Λ1 − Λq

τ2 + Λ1
≤ 0′

(j)(Σ11 + τ2Iqq)
−10(j)

≤ 1

τ2
(1− Λ1

τ2 + Λq
) ≤ 1

τ2
;

1

τ4
τ2 − 2q + 2Λ1

τ2
≤ 0′

(j)(Σ11 + τ2Iqq)
−20(j)

≤ 1

τ4
(1− Λ1

τ2 + Λq
− τ2Λ1

(τ2 + Λq)2
) ≤ 1

τ4
.

This completes the proof.
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Lemma 2. Let Ξ be an n × p matrix comprising of np iid random entries
distributed as N(0, 1) and split Ξ into Ξ1 and Ξ2 which are two submatrices
spanned by the first q columns and the other p − q columns of Ξ, respectively.

Let Z1 = X1 + τΞ1 and Z2 = X2 + τΞ2. Let E
n
11 = (

Z′
1Z1

n )−1 − (
EZ′

1Z1

n )−1,

then as n → ∞,
√
n sign(β′

1)E
n
11 sign(β1) →D N(0, σ2

1) where 2q2

τ4 (1 − 2q
τ2 )

2 ≤
σ2
1 ≤ 2q2

τ4 + 4q3

τ6 ,
√
n0′

(j)E
n
110(j) →D N(0, σ2

2) where
2
τ4 (1− 2q

τ2 )
2 ≤ σ2

2 ≤ 2
τ4 + 4q

τ6

and
√
n0′

(j)E
n
11 sign(β1) →D N(0, σ2

3) where
q
τ4 (1− 2q

τ2 )
2 ≤ σ2

3 ≤ 2q
τ4 + 4q2

τ6 .

Proof. Obviously,

E(Z′
1Z1) = X′

1X1 + nτ2Iq,q (A.4)

Let Un = Z′
1Z1 −E(Z′

1Z1) = X′
1Ξ1 +Ξ′

1X1 +Ξ′
1Ξ1−nτ2Iq,q and by the for-

mula of inverse of sum of matrices [6],

(Z′
1Z1)

−1 − (EZ′
1Z1)

−1

= −(EZ′
1Z1)

−1(Iq,q +Un(EZ′
1Z1)

−1)−1Un(EZ′
1Z1)

−1. (A.5)

where (Iqq +Un(EZ′
1Z1)

−1)−1 →p Iq,q and n(EZ′
1Z1)

−1 → (Σ11 + τ2Iq,q)
−1

as n → ∞. Supposing −Un
√
n

→D U element-wise, then

n
√
n
(
(Z′

h,1Zh,1)
−1 − (EZ′

h,1Zh,1)
−1

)
→D (Σ11 + τ2Iq,q)

−1U(Σ11 + τ2Iq,q)
−1.

It follows that

V ar(γ′
1

Un

√
n
γ1) =

V ar(γ′
1(X1 +Ξ1)

′(X1 +Ξ1)γ1)

n

=
2tr(V2

1) + 4μ′
1V1μ1

n

where μ1 = E(X1 +Ξ1)γ1 = X1γ1 and V1 = V ar(Ξ1γ1) = τ2‖γ1‖22Inn. Not-
ing that

tr(V2
1)

n = τ4‖γ1‖42 and
μ′
1V1μ1

n = τ2‖γ1‖22γ′
1X

′
1X1γ1 where γ1‖γ1‖22 ≤

γ′
1X

′
1X1γ1 ≤ Λq‖γ1‖22, so

2q2

τ4
(1− 2q

τ2
+

2Λ1

τ2
)2 ≤ V ar(γ′

1

Un

√
n
γ1) ≤

2q2

τ4
+

4q3

τ6
. (A.6)

Similarly, V ar(γ′
2
Un
√
n
γ2) =

2tr(V2
2)+4μ′

2V2μ2

n , V2 = V ar(Ξ1γ2) = τ2‖γ2‖22Inn
where μ2 = X1γ2. Noting that

tr(V2
2)

n
= τ4‖γ2‖42

μ′
2V2μ2 = τ2‖γ2‖22γ′

2X
′
1X1γ2 ≤ qτ2‖γ2‖42,

so

2

τ4
(1− 2q

τ2
+

2Λ1

τ2
)2 ≤ V ar(γ′

2

Un

√
n
γ2) ≤

2

τ4
+

4q

τ6
. (A.7)
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Concerning V ar(γ′
2
Un
√
n
γ1), we have V ar(γ′

2
Un
√
n
γ1) = tr(V2

12) + tr(V2V1) +

μ′
1V2μ1 + μ′

2V1μ2 + 2μ′
1V12μ2 where V12 = E(Ξ1γ2γ

′
1Ξ

′
1) = τ2γ′

1γ2Inn.

Noting that
tr(V2

12)
n = τ4(γ′

1γ2)
2 ≤ τ4‖γ1‖22‖γ2‖22 ≤ q

τ4 ,
q
τ4 (1 − 2q

τ2 )
2 ≤

tr(V2V1)
n = τ4‖γ1‖22‖γ2‖22 ≤ q

τ4 ,
μ′
1V2μ1

n ≤ τ2‖γ2‖22‖μ1‖22 ≤ qτ2‖γ1‖22‖γ2‖22 ≤
q2

τ6 ,
μ′
2V1μ2

n ≤ q2

τ6 and μ1V12μ2

n = τ2γ′
1γ2μ

′
1μ2 ≤ qτ2‖γ1‖22‖γ2‖22 ≤ q2

τ6 , so

q

τ4
(1− 2q

τ2
+

2Λ1

τ2
)2 ≤ V ar(γ′

2

Un

√
n
γ1) ≤

2q

τ4
+

4q2

τ6
. (A.8)

This completes the proof.

Proof of Proposition 3.1

By KKT condition [3] we have the following conclusions:

(Z′
hWh − Z′

hZhθ̂
LA,λ

h )[j] =
λ

2
sign(θ̂LA,λ

h,j ) for j s.t. θ̂LA,λ
h,j �= 0 (A.9)

|(Z′
hWh − Z′

hZhθ̂
LA,λ

h )[j]| <
λ

2
for j s.t. θ̂LA,λ

h,j = 0 (A.10)

where [j] denotes the jth entry of a vector and θ̂LA,λ
h,j (1 ≤ j ≤ p) is the j-th

entry of θ̂
LA,λ

h .

Let θ̂
LA,λ

h,1 = (θ̂LA,λ
h,1 , · · · , θ̂LA,λ

h,q )′ and θ̂
LA,λ

h,2 = (θ̂LA,λ
h,q+1, · · · , θ̂

LA,λ
h,p )′. The fol-

lowing condition

sign(β0
1) ∗ θ̂

LA,λ

h,1 >c 0 (A.11)

is equivalent to sign(θ̂
LA,λ

h,1 ) = sign(β0
1), which indicates

θ̂
LA,λ

h,1 = (Z′
h,1Zh,1)

−1
(
Z′

h,1Wh − λ

2
sign(β0

1)
)
. (A.12)

Furthermore, as θ̂
LA,λ

h,1 satisfies (A.9), (A.11) is equivalent to

sign(β0
1) ∗ (Z′

h,1Zh,1)
−1

(
Z′

h,1Wh − λ

2
sign(β0

1)
)
>c 0, (A.13)

where

sign(β0
1) ∗ (Z′

h,1Zh,1)
−1(Z′

h,1Wh − λ

2
sign(β0

1))

= sign(β0
1) ∗ (Z′

h,1Zh,1)
−1

(
Z′

h,1(X1β
0
1 + ε+ τΞhβ̂

LA,λ0

)

−λ

2
sign(β0

1)
)

= sign(β0
1) ∗ (Z′

h,1Zh,1)
−1

(
Z′

h,1Zh,1β
0
1 − τZ′

h,1Ξhβ
0 +Z ′

h,1ε
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+τZ′
h,1Ξhβ̂

LA,λ0 − λ

2
sign(β0

1)
)

= |β0
1|+ sign(β0

1) ∗ (Z′
h,1Zh,1)

−1
(
Z′

h,1ε− λ

2
sign(β0

1)

+τZ′
h,1Ξh(β̂

LA,λ0 − β0)
)
.

Therefore, sign(θ̂
LA,λ

h,1 ) = sign(β0
1) is equivalent to

|β0
1|+ sign(β0

1) ∗ (Z′
h,1Zh,1)

−1
(
Z′

h,1ε

−λ

2
sign(β0

1) + τZ′
h,1Ξh(β̂

LA,λ0 − β0)
)
>c 0. (A.14)

Hence, for a scalar η the following two inequalities

|β0
1|+ sign(β0

1) ∗ τ(Z′
h,1Zh,1)

−1Ξ′
h,1ε >c η

sign(β0
1) ∗ (Z′

h,1Zh,1)
−1

(λ
2
sign(β0

1)−X′
1ε− τZ′

h,1Ξh(β̂
LA,λ0 − β0)

)
<c η

indicate sign(θ̂
LA,λ

h,1 ) = sign(β0
1).

Similarly, as (A.9) holds

Z′
h,2Wh − Z′

h,2Zh,1θ̂
LA,λ

h,1 = Z′
h,2Wh − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1Wh

+
λ

2
Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1 sign(β0
1).

Hence,

|Z′
h,2Wh − Z′

h,2Zh,1θ̂
LA,λ

h,1 | ≤ |Z′
h,2Wh − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1Wh|

+
λ

2
|Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1 sign(β0
1)|.

Supposing 1 > δ > 0, θ̂
LA,λ

h,2 =c 0 is implied by the following two inequalities:

|Z′
h,2Zh,1(Z

′
h,1Zh,1)

−1 sign(β0
1)| ≤c (1− δ)

|Z′
h,2Wh − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1Wh| ≤c 2−1δλ

. The proof is complete.

Proof of Theorem 1

First of all we derive the probability lower bounds of the Irrepresentable Con-
dition, Exclusion, Beta-min and Inclusion conditions. Suppose τ ≥

√
8q3/4 and

let

δ =
1

2
; λ = 2στ2

√
2nq log p

κ2
0

; η =
2λ

nτ2
= 4σ

√
2q log p

nκ2
0

.
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Step 1: Perturbed Irrepresentable Condition

Let Ah denote the Perturbed Irrepresentable Condition holding at the h-th
perturbation and Pr(Ah) ≥ Pr(A1h ∩A2h) where

Pr(A1h) = Pr
(
|Z′

h,2Zh,1(R
n
11)

−1 sign(β0
1)| ≤c

1− δ

2

)
Pr(A2h) = Pr

(
|Z′

h,2Zh,1((Z
′
h,1Zh,1)

−1 − (Rn
11)

−1) sign(β0
1)| ≤c

1− δ

2

)
.

Next, Pr(A1h) ≥ Pr
(
|X′

2X1(R
n
11)

−1 sign(β0
1)|+τ |Ξ′

h,2X1(R
n
11)

−1 sign(β0
1)|+

τ |X′
2Ξh,1(R

n
11)

−1 sign(β0
1)| + τ2|Ξ′

h,2Ξh,1(R
n
11)

−1 sign(β0
1)| ≤c (1 − δ)/2

)
. Let

X′
[,j] be j-th column of X (j = q + 1, · · · , p). Then,

|X′
[,j]X1(R

n
11)

−1 sign(β0
1)| ≤

q

τ2
.

Let ξh,j be the j-th column of Ξh, then E
(
τ2ξ′h,jΞh,1(R

n
11)

−1 sign(β0
1)

)
= 0

and V ar
(
τ2ξ′h,jΞh,1(R

n
11)

−1

sign(β0
1)

)
= nτ4 sign((β0

1)
′)(Rn

11)
−1Iq,q(R

n
11)

−1 sign(β0
1) ≤ q

n .
Similarly,

E(τξ′h,jX1(R
n
11)

−1 sign(β0
1)) = 0;

E(τX′
[,j]Ξh,1(R

n
11)

−1 sign(β0
1)) = 0

V ar(τξ′h,jX1(R
n
11)

−1 sign(β0
1))

= nτ2 sign((β0
1)

′)(Rn
11)

−1Σn
11(R

n
11)

−1 sign(β0
1) ≤

q2

nτ2
;

V ar(τX′
[,j]Ξh,1(R

n
11)

−1 sign(β0
1))

= nτ2 sign((β0
1)

′)(Rn
11)

−1Iq,q(R
n
11)

−1 sign(β0
1) ≤

q

nτ2
.

Therefore, Pr(Ac
2h) = o(Pr(Ac

1h)) and

Pr(Ac
1h) ≤ (p− q)Φc(

1/2− δ/2− q/τ2
√
q/
√
n

) = (p− q)Φc
( √

n

8
√
q
(
1

4
− q

τ2
)
)
. (A.15)

Step 2: Perturbed Exclusion Condition

Let Bh denote the Exclusion Condition holding at the h-perturbation. First,

Z′
h,2Wh − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1Wh

= (Z′
h,2 − Z′

h,2Zh,1(Z
′
h,1Zh,1)

−1Z′
h,1)(Zh,1β

0
1 + ε+ τΞh,1(β̂

LA,λ0

1 − β0
1)

+τΞh,2β̂
LA,λ0

2 )
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= (X′
2 + τΞ′

h,2 − Z′
h,2Zh,1(Z

′
h,1Zh,1)

−1Z′
h,1)(ε+ τΞh,1(β̂

LA,λ0

1 − β0
1)

+τΞh,2β̂
LA,λ0

2 )

= τ2Ξ′
h,2Ξh,2β̂

LA,λ0

2 +
(
X′

2 − Z′
h,2Zh,1(Z

′
h,1Zh,1)

−1Z′
h,1

)
(ε

+τΞh,1(β̂
LA,λ0

1 − β0
1) + τΞh,2β̂

LA,λ0

2 ) + τΞ′
h,2

(
ε+ τΞh,1(β̂

LA,λ0

1 − β0
1)

)
.

Then Pr(Bh) ≥ Pr(B1h ∩B2h) where

Pr(B1h) = Pr
(
τ2β̂

LA,λ0

2 − τ2X′
2X1(R

n
11)

−1(β̂
LA,λ0

1 − β0
1) ≤c λ/8

)
Pr(B2h) = Pr

(
Z′

h,2Wh − Z′
h,2Zh,1(Z

′
h,1Zh,1)

−1Z′
h,1Wh − τ2β̂

LA,λ0

2

+τ2X′
2X1(R

n
11)

−1(β̂
LA,λ0

1 − β0
1) ≤c λ/8

)
In Pr(B1h)

Pr(τ2β̂
LA,λ0

2 ≤c λ/16) ≥ Pr(τ2‖β̂
LA,λ0

2 ‖2 ≤ λ/16);

Pr(−τ2X′
2X1(R

n
11)

−1(β̂
LA,λ0

1 − β0
1) ≤c λ/16)

≥ Pr(τ2‖X′
2X1(R

n
11)

−1(β̂
LA,λ0

1 − β0
1)‖2 ≤ λ/16)

According to Theorem 2 of [2],

Pr
(
‖β̂

LA,λ0

2 ‖2 ≥
√

qσ2 log p

nκ2
0

)
≤ Φc(

√
2 log p);

Pr
(
τ2‖X′

2X1(R
n
11)

−1(β̂
LA,λ0

1 − β0
1)‖2 ≥

√
qσ2 log p

nκ2
0

)
≤ Φc(

√
2 log p).

Finally, Pr(Bc
2h) = o(Pr(Bc

1h)).

Step 3: Perturbed Beta-min Condition

Let Ch denote the Perturbed Beta-min Condition holding at the h-th per-
turbation. Consider |β0

1| + sign(β0
1) ∗ τ(Z′

h,1Zh,1)
−1Ξ′

h,1ε = |β0
1| + sign(β0

1) ∗
τ(Rn

11)
−1Ξ′

h,1ε+sign(β0
1)∗ τ

(
(Z′

h,1Zh,1)
−1− (Rn

11)
−1

)
Ξ′

h,1ε = |β0
1|+sign(β0

1)∗
1
nτ (Iq,q −Dn

11)Ξ
′
h,1ε+ sign(β0

1) ∗ τ
(
(Z′

h,1Zh,1)
−1 − (Rn

11)
−1

)
Ξ′

h,1ε. Thus,

Pr(Ch) ≥ Pr(C1h ∩ C2h) (A.16)

where

Pr(C1h) = Pr
(
|β0

1|+ sign(β0
1) ∗

1

nτ
Iq,qΞ

′
h,1ε >c η

)
Pr(C2h) = Pr

(
sign(β0

1) ∗
1

nτ
(−Dn

11)Ξ
′
h,1ε

+sign(β0
1) ∗ τ

(
(Z′

h,1Zh,1)
−1 − (Rn

11)
−1

)
Ξ′

h,1ε >c −
η

2

)
.
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Let ξ′h,j be the j-th column of Ξh, then Pr(C1h) =
∏q

j=1 p
0
j where p0j =

E
(
P (sign(β0

j )∗ξ′h,jε+nτ |β0
j | >c nτη|ε)

)
= EΦc

( τ
√
n

‖n−1ε‖2
(η−|β0

j |)
)
. As η > |β0

j |,
p0j = EΦc

( τ
√
n

‖n−1ε‖2
(η − |β0

j |)
)
≥ Φc

(
E[ τ

√
n

‖n−1ε‖2
](η − |β0

j |)
)
= Φc

( τ
√
n

σ (η − |β0
j |)

)
by Jensen’s Inequality. Furthermore, Pr(C2h) ≥ Pr(C21h ∩ C22h) where

Pr(C21h) ≥ Pr
(
sign(β0

1) ∗
1

nτ
(−Dn

11)Ξ
′
h,1ε ≤c

η

4

)
Pr(C22h) ≥ Pr

(
sign(β0

1) ∗ τ
(
(Rn

11)
−1 − (Z′

h,1Zh,1)
−1

)
Ξ′

h,1ε ≤c
η

4

)
.

As for Pr(Cc
21h), we establish

Pr(Cc
21h) ≤

q∑
j=1

Pr(0′
(j)D

n
11Ξ

′
h,1ε ≥ nτη

2
)

≤
q∑

j=1

E
(
Pr(0′

(j)D
n
11Ξ

′
h,1ε ≥ nτη

2
)|ε

)
.

Obviously, 0′
(j)D

n
11Ξ

′
h,1ε ∼ N(0, ‖ε‖220′

(j)(D
n
11)

20(j)) conditioning on ε where

0′
(j)(D

n
11)

20(j) ≤ q2/(τ2 + q)2 ≤ 1. In summary,

Pr(Cc
21h) = E

(
Pr(Cc

21h|ε)
)
≤ qE

(
Φc(

n
√
qη

‖ε‖2
)
)
≤ qΦc(q

√
2 log p)

and Pr(Cc
22h) = o

(
Pr(Cc

21h)
)
.

Step 4: Perturbed Inclusion Condition

Let Dh denote the Perturbed Inclusion Condition holding at the h-th perturba-
tion, then

Pr(Dh) = Pr(sign(β0
1) ∗ (Z′

h,1Zh,1)
−1(

λ

2
sign(β0

1)

−X′
1ε− τZ′

h,1Ξh(β̂
LA,λ0 − β0)) <c η).

Moreover, Pr(Dh) ≥ Pr(D1h ∩D2h ∩D3h) where

Pr(D1h) = Pr(sign(β0
1) ∗ (Rn

11)
−1

(λ
2
sign(β0

1)− nτ2(β̂
LA,λ0

1 − β0
1)

)
<c

η

2
)

Pr(D2h) = Pr(sign(β0
1) ∗ (Rn

11)
−1

(
−X′

1ε− τ(Z′
h,1Ξh,1 − nτIq,q)(β̂

LA,λ0

1

−β0
1)− τZ′

h,1Ξh,2β̂
LA,λ0

2

)
<c

η

4
)

Pr(D3h) = Pr(sign(β0
1) ∗

(
(Z′

h,1Zh,1)
−1 − (Rn

11)
−1

)
(
λ

2
sign(β0

1)

−X′
1ε− τZ′

h,1Ξh(β̂
LA,λ0 − β0)) <c

η

4
).
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Considering the j-th entry of sign(β0
1) ∗ (Rn

11)
−1 λ

2 sign(β0
1), we establish for

τ ≥ q3/4

|0′
(j)D

n
11

λ

2
sign(β0

1)| ≤
λ

2

q∑
j=1

√
qΛn

j

τ2 + Λn
j

≤ λ

2

q3/2

τ2
≤ λ

2
. (A.17)

Furthermore,

Pr(Dc
1h) ≤ Pr

(
‖β̂

LA,λ0

1 − β0
1‖2 +

λ

2τ2n
>

η

2
)

≤ Pr
(
‖β̂

LA,λ0

1 − β0
1‖2 >

η

4
) ≤ Φc(

√
2 log p).

Moreover, Pr(Dc
2h) = o(Pr(Dc

1h)) and Pr(Dc
3h) = o(Pr(Dc

1h)).

We have established the probability lower bounds of Pr(Ah), Pr(Bh), Pr(Ch)
and Pr(Dh) and need to derive the upper bound of Pr(∩H

h=1(A
c
h∪Bc

h∪Cc
h∪Dc

h)).
The following inequality holds,

Pr(∩H
h=1(A

c
h ∪Bc

h ∪ Cc
h ∪Dc

h)) ≤
Pr(Ac

h) + Pr(Bc
h) + Pr(∩H

h=1C
c
1h) + Pr(Cc

2h) + Pr(Dc
h)

where

Pr(Ac
h) + Pr(Bc

h) + Pr(Cc
2h) + Pr(Dc

h) ≤ C0Φ
c(

√
2 log p)

Pr(∩H
h=1C

c
1h) ≤

(
1−

q∏
j=1

pj
)H

.

This completes the proof.
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