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1. Introduction

Parameter estimation of stationary stochastic processes and random fields con-
stitutes a central topic in statistical inference from temporally or spatially cor-
related data. The maximum likelihood estimation method (MLE) is one of the
most popular estimation tools. The problem of parameter estimation of frac-
tionally integrated processes with seasonal components was addressed in [37].
To estimate the fractional parameters, they propose several log-periodogram
regression estimators with different bandwidths selected around or between the
seasonal frequencies. The same methodology was used in [34] for fractionally dif-
ferenced autoregressive-moving average processes in the stationary time series
context. Several contributions have also been made for the MLE of long memory
spatial processes (see, for example, [8]). For two-dimensional spatial data the
paper [12] introduced a spatial unilateral first-order autoregressive moving av-
erage (ARMA) model. To implement MLE they provided a proper treatment to
border cell values with a substantial effect in the estimation of the parameters.
Gaussian maximum likelihood estimation, in the context of ARMA models, was
applied in [44].
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Linear and non-linear functionals of the periodogram play a key role in the de-
sign of Minimum Contrast Estimation (MCE) techniques (see, for example, [42]).
Whittle estimation procedure was treated quite extensively in the literature (see
[27, 28, 36], for the case of random fields). Special attention has been paid to
minimum contrast parameter estimation of fractional, fractal and long-range
dependence stochastic models (see, for example, [18]). For instance, [43] applied
the minimum contrast parameter estimation to approximate the drift parame-
ter of the Ornstein-Uhlenbeck process, when the corresponding stochastic dif-
ferential equation is driven by the fractional Brownian motion. Consistency and
asymptotic normality of the Whittle maximum likelihood estimator for station-
ary seasonal autoregressive fractionally integrated moving-average (SARFIMA)
processes was proved in [26]. Maximization of the Whittle likelihood has also
been considered in the papers [17, 16, 32]. A continuous version of the Whittle
contrast functional, supplied with a specific weight function, was formulated in
[32], where the problem of parameter estimation of continuous stationary pro-
cesses was addressed, deriving the consistency and the asymptotic normality of
the formulated MCE. Modified Whittle estimation of multilateral models on a
lattice is considered in [39]. Estimation of the spectral density for aggregated
possibly strong-dependent Gaussian random fields, from an expansion in terms
of orthogonal Gegenbauer polynomials, was studied in [33]. These fields are con-
structed from accumulation of i.i.d. short memory fields, via an unknown mixing
density (to be estimated).

An alternative to Whittle family of linear functionals was proposed in [30]
(for generalizations, see also [2, 3, 4, 5, 6]). In particular, [2] derived consistency
and asymptotic normality of a class of MCEs based on Ibragimov functional for
fractional Riesz-Bessel motion (see [1]). This functional was considered in [22] for
MCE of long-range dependence spatial time series, constructed from fractional
difference operators associated with Gegenbauer polynomials. Consistency and
asymptotic normality results were derived as well. Minimum contrast estimators,
based on the nonlinear objective functions of the periodogram, have been studied
in [35] and [42].

In this paper we study Ibragimov minimum contrast estimators based on
tapered data. The case of Gaussian stationary random fields on Z

d is considered.
Note that benefits of tapering data have been widely reported in the liter-

ature. It is well known that tapering reduces leakage effects, especially when
spectral densities contain high peaks. Even more importantly, the use of tapers
leads to the bias reduction, which is a key issue in Spatial Statistics. Namely,
tapers can help to fight the so-called “edge effects”; see, e.g., [20, 28].

The main contributions of the paper are two-fold:
1) We state the theorems on consistency and asymptotic normality for Ibrag-

imov minimum contrast estimators for long-range dependent random fields in
such a form which was not presented in the previous papers devoted to Ibragi-
mov functional (see, e.g. [2, 3, 4]), namely, in the present paper: (i) conditions
are given in the form prescribing behavior of the spectral density and its deriva-
tives at the point of singularity, and (ii) exact conditions on tapers are given.
This makes the results very convenient to apply for particular models, the form
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of conditions gives the key to construct the weight function, which is incorpo-
rated into the Ibragimov functional in order to compensate singularities of the
spectral density.

2) For the case of long-range dependent Gaussian random fields, we state the
central limit theorem for spectral functionals (or quadratic forms) based on the
tapered data, which is of independent importance and also serves as the main
tool to derive the asymptotic properties of estimators in the present paper.

The numerical part contributes to investigations on convergence rates of min-
imum contrast estimators. It also demonstrates that the obtained theoretical
results can be further extended to other classes of fractional models.

For convenience of a reader, the statements of the main results are accom-
panied by discussion to clarify the conditions used and also some digressions
intended to comment the related results existing in the literature.

The paper is organized as follows.
In Section 2, we first explain the general methodology of minimum contrast

estimation, and introduce Ibragimov contrast functional based on tapered data.
Then, in subsections 2.4–2.5 we state our main results on consistency and asymp-
totic normality of the corresponding minimum contrast estimators. The condi-
tions cover the case of long-range dependent random fields, with a particular
model of spectral densities with singularities which factorize. We also formu-
late exact conditions on tapers, leading to an asymptotic normality result, with
standard normalizing factor, for dimensions d = 1, 2, 3.

In Section 3 we revise the results concerning the bias control in minimum
contrast estimation based on the Whittle functional: results in [27, 28] and in
[36], for the cases of for short- and long-range dependent Gaussian random fields
correspondingly.

Section 4 contains the proofs of the results from Section 2 on asymptotic
properties of our minimum contrast estimators.

The proofs are based on the central limit theorem for spectral functionals
JT (φ) =

∫
T
φ(λ)IhT (λ) dλ (with IhT (λ) being the periodogram based on tapered

data), which we state and prove in Appendix A. This theorem (Theorem A.2)
provides an extension of the classical result in [24] to the case of fields and
tapered data. Beyond its application here for derivation of asymptotic properties
of MCE, it is of separate interest itself.

Since the main part of the paper is devoted to the study of Ibragimov mini-
mum contrast estimators, we placed this central limit theorem with its derivation
and related observations in Appendix A, which can be considered, to some ex-
tend, as a self-contained part of the paper. With this structure of the paper, the
reader can choose to focus firstly on the statistical estimation results and their
applications and then consider in detail the central limit theorem for spectral
functionals based on tapered data.

Section 5 presents simulation studies to demonstrate performance of the es-
timations technique developed in the paper. Namely, in the simulation study
undertaken, we illustrate consistency and asymptotic normality of the plug-in
MCE considered, based on tapered periodogram, in the context of spatial Gaus-
sian fractional autoregressive processes, and spatial Gegenbauer random fields.
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2. Minimum contrast estimators based on the Ibragimov contrast
function and tapered data

2.1. General definition of minimum contrast estimators

We introduce the definition of minimum contrast estimators following [28], pp.
119–127, where these estimators have been studied for some classes of discrete-
time random fields.

Let a random field Y (t), t ∈ Z
d, be observed on a sequence LT of increasing

finite domains. We will suppose that LT is a hypercube: LT = [−T, T ]d = {t ∈
Z
d : −T ≤ ti ≤ T, i = 1, ..., d}.
Consider a parametric statistical model with a family of distributions Pθ,

θ ∈ Θ, where Θ is a compact subset of Rq, and the true parameter value θ0 ∈
intΘ, the interior of Θ. Denote P0 = Pθ0 .

We define:
1) a nonrandom real-valued function K(θ0;θ), θ ∈ Θ, to be called a contrast

function, such that K(θ0;θ) ≥ 0 and it has a unique minimum at θ = θ0.
2) a contrast field for a contrast function K(θ0;θ), which is a random field

UT (θ), T ∈ Z, θ ∈ Θ, related to observations Y (t), t ∈ LT , and such that the
following relation holds:

UT (θ)− UT (θ0) → K(θ0;θ) ∀θ ∈ Θ (2.1)

in P0-probability, as T → ∞.
Then the minimum contrast estimator θ̂T is defined as a minimum point of

the functional UT (θ), that is,

θ̂T = argmin
θ∈Θ

UT (θ).

Note that the usual way to realize the above definition in practice is to
construct, basing on observations, a function UT (θ) which converges in P0-
probability to some function U(θ) such that U(θ)− U(θ0) = K(θ0;θ).

In this paper we apply minimum contrast technique for parameter estimation
in the spectral domain. We consider a measurable stationary zero-mean real-
valued Gaussian random field Y (t), t ∈ Z

d. We suppose that the parametric
form of its spectral density is known: f(λ) = f(λ,θ), λ ∈ T = (−π, π]d, θ ∈ Θ,
with Θ ⊂ R

q, q ≥ 1, being a compact, and we are interested in estimation of θ0,
the true parameter value.

In the present paper we will study the so-called Ibragimov minimum contrast
estimators, where K(θ0;θ) has the form (2.7), the functions UT (θ) and U(θ)
are defined by (2.6) and (2.8) correspondingly (see Section 2.3 below). Another
example of minimum contrast estimators is provided by the well known Whittle
estimators, for which we present the expressions for contrast field and contrast
function in Section 3. We refer to [42] for some other examples of minimum con-
trast estimators and also to [28] where many useful general results for minimum
contrast method can be found.
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2.2. Data tapers and tapered periodograms

We will base our analysis on tapered data. The use of tapers leads to the bias
reduction, which is important when dealing with spatial data: tapers can help
to fight the so-called “edge effects”.

Consider the tapered values

{hT (t)Y (t) , t ∈ LT } ,

where hT (t) = h (t/T ) , t = (t(1), ..., t(d)) ∈ R
d, and the taper h (t) factorizes as

h (t) =
∏d

i=1 h̃
(
t(i)

)
, t(i) ∈ R, with h̃ (·) satisfying the assumption below.

H1. h̃ (t), t ∈ R, is a positive even function of bounded variation with bounded
support: h̃ (t) = 0 for |t| > 1.

Denote

H̃k,T (λ) =
T∑

t=−T

[h̃T (t)]
ke−iλt,

Hk,T (λ) =
∑
t∈LT

[hT (t)]
ke−i(λ,t) =

d∏
i=1

H̃k,T (λ
(i)), (2.2)

where h̃T (t) = h̃ (t/T ), λ = (λ1, ..., λd), and k is a positive integer number.
Note that evaluation of asymptotic behavior of spectral estimates is based on

the properties of functions H̃k,T (λ), which, in its own turn, is based on properties

of functions h̃ (t). For example, the assumption that h̃ (t) is of bounded variation
allows to write down useful upper bounds for H̃k,T (λ). In what follows we will
introduce some further assumptions on tapers.

Define the finite Fourier transform of tapered data {hT (t)Y (t) , t ∈ LT } :

dh
T
(λ) =

∑
t∈LT

hT (t)Y (t)e−i(λ,t), λ ∈ T,

and the tapered periodogram of the second order (provided that H2,T (0) 	= 0):

IhT (λ) =
1

(2π)d H2,T (0)
dh

T
(λ)dh

T
(−λ).

2.3. Ibragimov contrast function and estimators

We begin with the following assumptions concerning our parametric model to
be estimated.

B1. Let Y (t), t ∈ Z
d, be a real-valued measurable stationary Gaussian ran-

dom field with zero mean and a spectral density f(λ,θ), where λ ∈ T =
(−π, π]d, θ ∈ Θ ⊂ R

q, and Θ is a compact set. Assume that θ0 ∈ int(Θ),
where θ0 is the true value of the parameter vector θ.
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B2. If θ1 	= θ2 then f(λ,θ1) 	= f(λ,θ2) for almost all λ ∈ T with respect to
the Lebesgue measure.

We restrict our study to the fields with d ≤ 3. Note that the results on
consistency of estimators will hold for the general d ≥ 1, however, for asymptotic
normality we will impose the restriction d ≤ 3, since only for this dimensions
we are able to control the bias with the help of tapers.

Remark 2.1. In what follows, by differentiability with respect to θ, we mean
differentiability in the interior of Θ.

To define the Ibragimov functional, we will use a weight function satisfying
the next assumption.

B3. There exists a nonnegative function w(λ), λ ∈ T, such that

1. w(λ) is symmetric, i.e. w(λ) = w(−λ);

2. w(λ)f(λ,θ) ∈ L1 (T) for all θ ∈ Θ.

Under this condition, we set

σ2(θ) =

∫
T

f(λ,θ)w(λ) dλ (2.3)

and represent the spectral density in the form:

f(λ,θ) = σ2(θ)ψ(λ,θ). (2.4)

For the function ψ(λ,θ) we have∫
T

ψ(λ,θ)w(λ)dλ = 1, (2.5)

and we additionally suppose:

B4. The derivatives ∇θψ(λ,θ) exist and it is legitimate to differentiate under
the integral sign in equation (2.5), i.e.

∇θ

∫
T

ψ(λ,θ)w(λ) dλ =

∫
T

∇θψ(λ,θ)w(λ) dλ = 0.

We consider the following contrast field based on the tapered periodogram
defined above:

UT (θ) = −
∫
T

IhT (λ)w(λ) logψ(λ,θ) dλ (2.6)

and the minimum contrast estimator

θ̂T = argmin
θ∈Θ

UT (θ).

We also define the functions

K(θ0;θ) = −
∫
T

f(λ,θ0)w(λ) log
ψ(λ,θ)

ψ(λ,θ0)
dλ (2.7)
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and

U(θ) = −
∫
T

f(λ,θ0)w(λ) logψ(λ,θ) dλ. (2.8)

The minimum contrast property of the function K(θ0, θ) is stated in Theorem
2.1 below, as well as the conditions under which UT (θ) is the contarst field
related to K(θ0, θ).

Remark 2.2. The weight function w used in the contrast functional UT is
aimed to compensate for possible singularities of the spectral density. In some
cases, the weight function is not required, for example, when spectral density is
bounded.

2.4. Assumptions

We now formulate conditions needed to state the results on consistency and
asymptotic normality of Ibragimov estimators for Gaussian fields .

We will suppose that there exist functions αi : Θ → (0, 1), i = 1, ..., d, such
that the following conditions are satisfied (with the proper choice of a weight
function w(λ)). To simplify notations in formulation of the conditions below we
will omit the argument θ in functions αi(θ) and write them simply as αi.

B5. For all θ ∈ Θ f(λ,θ) = O(
∏d

i=1 |λi|−αi) as λi → 0, and f(λ,θ) is

bounded for δ ≤ |λ| ≤ π for all δ > 0; w(λ) logψ(λ,θ) = O(
∏d

i=1 |λi|αi)
as λi → 0.

B6. There exists a function υ(λ), λ ∈ T, such that

1. the function h(λ,θ) = υ(λ) logψ(λ,θ) is uniformly continuous in
T×Θ;

2. w(λ)/υ(λ) = O(
∏d

i=1 |λi|αi) as λi → 0.

B7. The function ψ(λ,θ) is twice differentiable in Θ and

1. w(λ) ∂2

∂θi∂θj
logψ(λ,θ) = O(

∏d
i=1 |λi|αi) as λi → 0 for all i, j, θ ∈ Θ;

2. w(λ) ∂
∂θi

logψ(λ,θ) = O(
∏d

i=1 |λi|αi) as λi → 0 for all i, θ ∈ Θ;

3. the second order derivatives ∂2

∂θi∂θj
logψ(λ,θ), i, j = 1, . . . , q are con-

tinuous in θ.

Remark 2.3. In conditions B5-B7 the behavior of the spectral density and
some of its derivatives is prescribed at the point of singularity. These conditions
appear quite naturally and are analogous, for example, to those which are used in
[23] for the case of Whittle estimators, with evident modifications since we use
another functional to construct estimators. It is clear from assumptions B6-B7
that the weight function w(λ) is constructed to compensate the singularity of the
spectral density.
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B8. The matrices S(θ) = (sij(θ))i,j=1,...,q and A(θ) = (aij(θ))i,j=1,...,q are
positive definite, where for i, j = 1, ..., q :

(sij(θ)) =

∫
T

f(λ,θ)w(λ)
∂2

∂θi∂θj
logψ(λ,θ) dλ

= σ2(θ)

∫
T

w(λ)
[ ∂2

∂θi∂θj
ψ(λ,θ)

− 1

ψ(λ,θ)

∂

∂θi
ψ(λ,θ)

∂

∂θj
ψ(λ,θ)

]
dλ,

(aij(θ)) = 2(2π)d
∫
T

f2(λ,θ)w2(λ)
∂

∂θi
logψ(λ,θ)

∂

∂θj
logψ(λ,θ) dλ

= 2(2π)d(σ2(θ))2
∫
T

w2(λ)
∂

∂θi
ψ(λ,θ)

∂

∂θj
ψ(λ,θ) dλ.

Remark 2.4. The last two conditions are used to achieve proper rate of con-
vergence of bias to 0.

H2. The taper h̃(t) is a Lipschitz-continuous function on [−1, 1] and h̃(−1) =
h̃(1) = 0.

B9. The spectral density f(λ,θ), the function w(λ) and the function ϕ(λ,θ) =
w(λ) ∂

∂θi
logψ(λ,θ) are such that one of the following conditions holds:

(i) ϕ is twice boundedly differentiable;

or

(ii) the convolution g(u) =
∫
T
f(λ)ϕ (λ+ u) dλ is twice boundedly dif-

ferentiable at zero.

Remark 2.5. One example of a long-range dependent random field for which all
the above conditions are satisfied (with the proper choice of the weight function
w(λ)), is the solution to the following equation: (1−B1)

d1(1−B2)
d2Y (t1, t2) =

ε(t1, t2), with ε(t1, t2) being a two-dimensional white noise and Bi being a back-
ward shift operator for i-th coordinate, i = 1, 2. This example of fractional spa-
tial autoregression, in more general form, is considered in detail in Section 5,
together with other two exaples, namely, the Gegenbauer random fields. Appro-
priate for these models weight functions w(λ) are presented. Note that the es-
timation of fields obeying the fractional spatial authoregressive model have been
considered in [16] (based on Whittle functional), however, only the consistency
of the estimators was stated therein. Within the approach of the present paper,
we are able to construct consistent and asymptotically normal estimates for this
model (see Section 5.1 below).

2.5. Theorems on consistency and asymptotic normality of the
estimators

Theorem 2.1. Let the conditions B1-B3, B5-B6, and H1 to hold. Then, the
function K(θ0;θ) defined by (2.7) is the contrast function for the contrast field
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UT (θ) defined by (2.6). Moreover, the minimum contrast estimator θ̂T

θ̂T = argmin
θ∈Θ

UT (θ) (2.9)

is a consistent estimator of the parameter vector θ. That is, there is a conver-
gence in P0 probability:

θ̂T
P0−→ θ0, as T −→ ∞.

The estimator σ̂2
T

P0−→ σ2(θ0), as T −→ ∞, where σ̂2
T is an estimator of the

parameter σ2(θ0) given by

σ̂2
T =

∫
T

IhT (λ)w(λ) dλ.

The proof will be given in Section 4.

Theorem 2.2. Let the conditions B1-B9 and H1-H2 to hold and d ≤ 3. Then
the minimum contrast estimator defined by (2.9) is asymptotically normal, that
is, as T −→ ∞

T d/2(θ̂T − θ0)
D−→ Nq(0, e(h)S

−1(θ0)A(θ0)S
−1(θ0)), (2.10)

where the entries of the matrices S(θ) = (sij(θ)) and A(θ) = (aij(θ)) are
defined in condition B8, e(h) is given by the formula

e(h) =
(∫

(h̃(t))4dt
(∫

(h̃(t))2dt
)−2 )d

, (2.11)

and Nq(·, ·), denotes the q-dimensional Gaussian law.

The proof will be given in Section 4.

Remark 2.6. In the discrete-time case the domain over which the field is ob-
served is usually taken to be LT = [1, T ]d. Our results remain valid for such a
domain as well, we just need to adjust the assumptions on a taper h̃(t). Namely,
assumption H1 must be modified as follows: h̃(t) is a positive measurable func-
tion of bounded variation with support on [0, 1] and h(0) = 0, h(1 − v) = h(v)
for 0 ≤ v ≤ 1

2 .

Remark 2.7. An example of a taper h̃(t) satisfying our assumptions is

h̃(t) =
1

2
(1 + cos(4πt)), t ∈ [−1, 1].

This is just a modification of the well known cosine bell (or the Tukey-Hanning
taper)

h̃(t) =
1

2
(1− cos(2πt)), t ∈ [0, 1],

suitable for the domain LT = [1, T ]d.
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Remark 2.8. To establish the consistency of a minimum contrast estimator
θ̂T , which corresponds to a functional UT (θ), the following standard reasonings
are used: one needs to check that the convergence (2.1) holds in probability, and
then, due to Theorem 3.4.1 [28], it is sufficient to prove that the convergence
(2.1) holds uniformly with respect to θ.

The standard approach to state the asymptotic normality of the estimator θ̂T

is to consider the relation:

∇θUT

(
θ̂T

)
= ∇θUT (θ0) +∇θ∇′

θUT (θ∗
T )

(
θ̂T − θ0

)
, |θ∗

T − θ0| <
∣∣∣θ̂T − θ0

∣∣∣ ,
and then evaluate the asymptotic behavior of ∇θUT (θ0) and ∇θ∇′

θUT (θ∗
T ).

Therefore, one needs the results on large sample properties of the empirical
spectral functionals of the form:

Jh
T (ϕ) =

∫
T

IhT (λ)ϕ (λ)w (λ) dλ,

where IhT (λ) is the periodogram based on tapered data. In particular, for deriva-
tion of the asymptotic normality results it is important to state the conditions
guaranteeing the proper rate of convergence of bias to zero, that is, the following
relation to hold:

T d/2

(
EJh

T (ϕ)−
∫
T

f (λ)ϕ (λ)w (λ) dλ

)
→ 0 as T → ∞. (2.12)

In the above Theorem 2.2 the conditions which help to control bias are H1-H2
and B9.

Remark 2.9. Note that the previous results on Ibragimov estimators (see, e.g.
[2], [3], [4], [7], [11]) were stated under the conditions of integrability of the
spectral density f(λ,θ) and function w(λ) logψ(λ,θ) (and integrability of some
derivatives of the latter function), and the condition for bias control (2.12) was
just imposed. We mention also that the investigation of bias for estimators of
spectral functionals, in non-parametric setting, was presented in [5], [40], [41].

In comparison with previous papers on Ibragimov estimators, in the present
paper we give all conditions for consistency and asymptotic normality in a dif-
ferent form, prescribing exactly the behavior of the spectral density f(λ,θ) , the
function w(λ) logψ(λ,θ) and some derivatives at the point of singularity; we
also give the corresponding conditions needed for the proper rate of convergence
of bias (that is for (2.12) to hold) in the exact form. The form of conditions
makes them very operational and easily applicable to concrete models of random
fields with singularities (as demonstrated with some examples in Section 5).

We mention that for the case of Whittle estimators for Gaussian random
fields with spectral densities possessing singularities of multiplicative form, the
results on consistency and asymptotic normality were obtained in [36], therein
the weight function w(λ) and taper are both related to the order of singularity of
the spectral density. We discuss the results from [36] in Section 3.2, and we also
describe in Section 3.1 conditions used in [28] for the case of weakly dependent
random fields.
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Remark 2.10. As follows from the results by Guyon (see, e.g., [28]) outlined in
the next section, to control bias for Ibragimov minimum contrast estimators in
the case of short-range dependent random fields the following conditions can be
used: the taper h̃(t) is in C2[−1, 1]; the spectral density f(λ,θ) and the function
ϕ(λ,θ) = w(λ) ∂

∂θi
logψ(λ,θ) belong to C2(T).

Remark 2.11. Concerning the condition B8. If instead of condition 3 in B7

we use the following condition 3′: the second order derivatives ∂2

∂θi∂θj
logψ(λ,θ),

i, j = 1, . . . , q are continuous in both (λ,θ), λ 	= 0, then one can use just non-
degenerate S(θ) in B8. Indeed, since the point θ0 is the point of maximum for
the functional −U(θ) =

∫
T
f(λ,θ0)w(λ) logψ(λ,θ) dλ, then under the above 3′

the matrix ∇θ∇′
θ(−UT (θ0)) have to be negatively semi-definite, and supposing

S(θ0) = ∇θ∇′
θ(UT (θ0)) to be nondegenerate, we conclude that ∇θ∇′

θ(−UT (θ0))
is negatively definite, and, therefore, S(θ0) = ∇θ∇′

θ(UT (θ0)) is positively defi-
nite. (See, for example, [31], comments after condition N8 therein).

3. On the Whittle estimators with tapered data

In this section we will give a brief review of some results from the literature on
the Whittle estimators based on tapered data, with a particular focus on the
conditions on tapers which help to control the bias of estimators.

Recall that the Whittle estimators can be defined as minimum contrast esti-
mators with the following contrast field:

UT (θ) =
1

2(2π)d

∫
T

(
log f (λ;θ) +

IT (λ)

f (λ;θ)

)
w (λ) dλ, θ ∈ Θ, (3.1)

and corresponding contrast function

K (θ0;θ) =
1

2(2π)d

∫
T

(
f (λ;θ0)

f (λ;θ)
− 1− log

f (λ;θ0)

f (λ;θ)

)
w (λ) dλ, θ0,θ ∈ Θ.

Note that here again the function w is aimed to compensate for possible singu-
larities of the spectral density and in some cases is not required.

3.1. Case of weakly dependent random fields: Results from [28]

Apparently, one of the first publications that addressed the problem of edge
effects was [27]: considering the usual parametric Whittle estimates for lattice
data, it found that such estimates had bias of order N−1/d, for fields observed
on a rectangle PN = {1, ..., n1}× ...×{1, ..., nd} in Zd, with N being

∏d
i=1 ni, or

of order n−1 if PN is a cube of edge n. That is, for d ≥ 2 the bias is of the same
order or a higher order as the standard deviation which is usually O(N−1/2).
One possible solution to the described edge effects problem is tapering the data
at the edges of the observation domain.
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We review the results by [27, 28]. There the domain LT is taken to be of the

form LT =
∏d

i=1[1, Ti], we simplify our exposition and consider the cube, that
is, all Ti = T and LT = [1, T ]d.

Instead of the observed data {Y (t), t ∈ LT }, one considers the tapered data
{hT (t)Y (t), t ∈ LT }, where the tapers are of the following form:

hT (t) = h

(
t− 1/2

T

)
=

d∏
i=1

h̃

(
ti − 1/2

T

)
,

and

h̃(u) =

⎧⎪⎪⎨⎪⎪⎩
g
(

2u
ρ

)
if 0 ≤ u ≤ 1

2ρ

1 if 1
2ρ ≤ u ≤ 1

2

h̃(1− u) if 1
2 ≤ u ≤ 1

where the function g : [0, 1] → [0, 1] is such that g(0) = 0, g(1) = 1, and it is
increasing and belonging to C2, and 0 ≤ ρ ≤ 1. (In such a way one obtains the
so-called g-taper which tapers 100(1− ρ)% of the edge values.)

We next formulate the results on bias control for tapered estimators stated
by Guyon (see, [28]).

Consider J(φ) =
∫
T
f(λ)φ(λ) dλ and the corresponing estimator based on

tapered data JT (φ) =
∫
T
IhT (λ)φ(λ) dλ.

Proposition 1. Let φ ∈ C(T) and assume that the taper h and the spectral
density f belong to C2. Then as T → ∞,

E [JT (φ)− J(φ)] = CT−2 (1 + o(1)) ,

where C is a constant.

Therefore, under the above conditions, if ρ is fixed the bias is of order T−2,
thus smaller than T−d/2, for d = 1, 2, 3. If ρ = ρT → 0, C behaves like ρ−1

T so

that the bias is like o
(
T−2+ 1

4

)
, which is still smaller than T−d/2. That is, for

d = 1, 2, 3,

lim
T→∞

E
[
T d/2(JT (φ)− J(φ))

]
= 0.

Moreover, if φ1, φ2 ∈ C(T), the taper h and the spectral density f belong to
C2, then for a Gaussian random field we have the following asymptotic behavior
of the covariance:

lim
T→∞

T dCov (JT (φ1), JT (φ2)) = 2(2π)d e(h)

∫
T

φ1(λ)φ2(λ)f
2(λ) dλ

where the taper factor e(h) is given by (2.11), e(h) ≥ 1 and e(h) = 1 if there is
no tapering. It it possible to choose ρT such that the taper factor will tend to 1.

Remark 3.1. In view of the above Proposition 1, in order to control the bias
for the Whittle estimator, the following conditions can be used:
the taper h̃(t) is in C2[−1, 1]; the spectral density f(λ,θ) is in C2(T) and the
function ∂

∂θi
f(λ,θ) is continuous with respect to (λ,θ).
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We also mention that the asymptotic normality of the Whittle estimators
was stated in [28] under some mixing assumptions.

3.2. Case of strongly dependent random fields: results from [36]

In the paper [36] the following two models of spectral densities with singularities
were considered:

A1 There exist functions αi : Θ → (0, 1), 1 ≤ i ≤ d, such that we have

f(λ,θ) = f0(λ,θ)
∏d

i=1 fi(λi,θ) where we assume for all δ > 0 that

fi(λi,θ) = O(|λi|−αi(θ)−δ
), |λi| → 0 for each i = 1, ..., d and f0(λ,θ)

is a positive twice continuously differentiable function of (λ,θ)
A2 In this case, we assume there exists a function α : Θ → (0, d), such that the

spectral density f(λ,θ) satisfies for all δ > 0 : f(λ,θ) = ‖λ‖−α(θ)+δ(1 +
o(1)) where the o(1) is uniform with respect to λ. (For more details,
see [36]).

The authors study the Whittle estimator θ̂T = argminθ∈Θ UT (θ) for both
models A1 and A2 using the tapered data {hT,ε(t)Y (t)}, the functional UT (θ)
is given by (3.1), where the function w(λ) (called by the authors smoothing or
regularizing function) depends on the shape of singularity. Under A1 w(λ) =∏d

i=1 wi(λi), wi(λi) = |λi|ν , or w(λ) = 1T(λ) (the indicator function on the
d-torus) under A2.

The taper function hT,ε(t) =
∏d

i=1 h̃ε

(
ti
T

)
, where h̃ε : [0, 1] → [0, 1] is of the

following form:

hε(u) =

⎧⎪⎨⎪⎩
u/ε if u ≤ ε

1 if ε ≤ u ≤ 1− ε

hε(1− u) if u > 1− ε

with ε = T−γ .
In the course of derivation of asymptotic normality for the Whittle esti-

mator the following result on bias was obtained for the functional JT (ϕ) =∫
T
IhT (λ)ϕ (λ) dλ taken as an estimator for J (ϕ) =

∫
T
f (λ)ϕ (λ) dλ with a par-

ticular ϕ(λ) = ϕi(λ, θ) = w(λ) ∂
∂θi

f−1(λ, θ).

Proposition 2. Assume A1 or A2, and let w(λ) =
∏d

i=1 wi(λi), under A1, or
w(λ) = 1T(λ), under A2. Suppose further that γ < (1 + v − d/2)/v, under A1,
or γ < 2− d/2 under A2. Then, as T → ∞

E[JT (ϕ)− J(ϕ)] = O(T−(1+κ(1−γ))),

where κ = ν under A1, or κ = 1 under A2, and, therefore, the bias is of order
o(T−d/2) if d ≤ 3.

Note that in the derivation of the above result, the form of ϕ (as needed
for a particular case of the Whittle functional) was essentially used. With this
function, and under conditions of Proposition 2, some regularity properties of
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convolution
∫
T
ϕ(λ−μ)f(λ) dλ were obtained, and used for bias evaluation, as

well as an interplay between a taper, and the function w(λ) under A1. Multi-
plicatives structure of the functions defining J(ϕ) was also essential under A1.

We also mention that asymptotic normality of the Whittle estimators was
stated in [36] under the assumption A1 using the CLT analogous to that of
[24], and, under the assumption A2, the CLT stated in [21] was used.

4. Proofs

The proofs are based on the results on asymptotic properties of the function-
als JT (ϕ) obtained via evaluation of their cumulants. These cumulants can be
represented in the form of some integrals involving spectral densities, weight
functions and Fejér type kernels. Although these kernels are different for non-
tapered and tapered cases, all technique for the proofs works similarly in both
cases (see more details in Appendix).

The main difference from the previous papers on Ibragimov estimators is
that here, using the tapers, we are able to formulate the exact conditions to
achieve proper rate of convergence of bias to state asymptotic normality. We
present here principal steps for the proofs and state Lemma 4.1, which gives the
possibility to control bias as needed for Theorem 2.2.

The main tool to obtain asymptotic normality of the estimators is Theo-
rem A.2 (see Appendix). This theorem gives sufficient conditions for asymptotic
normality of JT (ϕ). We will also need conditions for convergence in probability
of functionals JT (ϕ) which we discuss in the next remark.

Remark 4.1. To state the convergence in probability

JT (ϕ) =

∫
T

IhT (λ)ϕ (λ) dλ
P−→ J (ϕ) =

∫
T

f (λ)ϕ (λ) dλ, (4.1)

it is sufficient to show that:

(i)
∫
T
(EIhT (λ)− f(λ))ϕ (λ) dλ → 0 ;

(ii)
∫
T
(IhT (λ)− EIhT (λ))ϕ (λ) dλ

P→ 0.

Convergence (ii) will hold if V arJT (ϕ) = E(
∫
T
(IhT (λ)−EIhT (λ))ϕ (λ) dλ)2 → 0.

Therefore, for (4.1) to hold we can use conditions guaranteeing the convergence
(i) and convergence of the variance of the normalized functional T d/2(JT (ϕ)−
EJT (ϕ)) to a finite limit. In particular, convergence (4.1) holds under the con-
ditions on f(λ) and ϕ (λ) imposed in Theorem A.2.

Proof of Theorem 2.1. In view of Remark 4.1, taking into account the expres-
sion for UT (θ), we conclude that convergence

lim
T→∞

UT (θ)− UT (θ0)
P→ U(θ)− U(θ0) = K(θ0;θ)

holds under conditions B5.
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Moreover, under conditions B5 and B6, the above convergence holds uni-
formly with respect to θ ∈ Θ. Indeed, denoting by η (ε) the modulus of conti-
nuity of the function h(λ, θ), we can write:

sup {|UT (θ1)− UT (θ2)| , θ1, θ2 ∈ Θ, |θ1 − θ2| ≤ ε} ≤ η (ε)

∫
T

IhT (λ)
w (λ)

v (λ)
dλ,

and the integral in the r.h.s. is asymptotically bounded in probability under
conditions B5 and B6. Therefore, in view of Theorem 3.4.1 from Guyon [28],

we conclude that the estimator θ̂T is consistent: θ̂T
P0−→ θ0, as T → ∞.

Minimum contrast property for K(θ0;θ) follows from Jensen’s inequality:

−K(θ0;θ) =

∫
T

f(λ,θ0)w(λ) log
ψ(λ,θ)

ψ(λ,θ0)
dλ

= σ2(θ0)

∫
T

ψ(λ,θ0)w(λ) log
ψ(λ,θ)

ψ(λ,θ0)
dλ

≤ σ2(θ0) log

∫
T

w(λ)ψ(λ,θ)dλ = 0,

therefore, K(θ0;θ) ≥ 0, and, moreover, K(θ0;θ) > 0 if ψ(λ,θ0) 	≡ ψ(λ,θ) for
θ0 	= θ almost everywhere with respect to the Lebesgue measure.

Convergence

σ̂2
T =

∫
T

IhT (λ)w(λ) dλ
P0−→ σ2(θ0) =

∫
T

f(λ,θ0)w(λ) dλ (4.2)

can be stated with the use of the same arguments as those for convergence

UT (θ)
P0−→ U(θ), which was stated above. Namely, we can apply again our

observation form Remark 4.1, that is to state (4.2) we can use Theorem A.2.
One can see that under condition B5, w(λ) compensates the singularity of
f(λ,θ0), and therefore, the convergence (4.2) follows.

Proof of Theorem 2.2. Applying the mean value theorem, we have

∇θUT (θ̂T ) = ∇θUT (θ0) +∇θ∇′
θUT (θ

∗
T )(θ̂T − θ0),

where
∣∣θ∗

T − θ0

∣∣ < ∣∣θ̂T − θ0

∣∣ and
∇θUT (θ) = −

∫
T

IhT (λ)w(λ)∇θ logψ(λ,θ) dλ

=
{
−
∫
T

IhT (λ)w(λ)
∂

∂θi
logψ(λ,θ) dλ

}
i=1,...,q

,

∇θ∇′
θUT (θ) = −

∫
T

IhT (λ)w(λ)∇θ∇′
θ logψ(λ,θ) dλ

=
{
−
∫
T

IhT (λ)w(λ)
∂2

∂θi∂θj
logψ(λ,θ) dλ

}
i,j=1,...,q

.
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It follows from the definition of minimum contrast estimators that for T suffi-
ciently large

∇θUT (θ0) = −∇θ∇′
θUT (θ

∗
T )(θ̂T − θ0). (4.3)

So, we need to show that

(i) ∇θ∇′
θUT (θ) → S(θ0) in P0-probability,

(ii) T d/2∇θUT (θ0)
D→ Nq (0, e(h)A(θ0)),

where A(θ) and S(θ) are given in condition B8. Then, by Slutsky’s lemma,
relation (2.10) is a consequence of (4.3) and (i)–(ii).

Note that in view of B4∫
T

f(λ,θ0)w(λ)∇θ logψ(λ,θ0)dλ = 0,

therefore, ∇θUT (θ0) =
(
JT (ϕi) − J(ϕi)

)
i=1,...,q

, and convergence (ii) will hold

if we show that

T d/2
(
JT (ϕi)− EJT (ϕi)

)
i=1,...,q

D→ Nq (0, e(h)A(θ0)) (4.4)

and

T d/2
(
EJT (ϕi)− J(ϕi)

)
→ 0, i = 1, . . . , q, (4.5)

where ϕi(λ) = w(λ) ∂
∂θi

logψ(λ,θ0). Convergence (4.4) holds under conditions
B5 and B7(2) in view of Theorem A.2; convergence (i) holds under B5, B6,
B7(1), B7(3) in view of Remark 4.1 (and taking into account consistency

of θ̂T ). Convergence (4.5) will hold under conditions H1-H2 and B9 in view
of Lemma 4.1 stated below. Note that in the previous papers convergence (4.5)
was imposed as assumption (see, for example, [7, 10]).

Lemma 4.1. Let the taper h̃(t) satisfy the assumptions H1 and H2. Suppose
further that one of the following conditions holds:

(i) f is twice boundedly differentiable and ϕ ∈ L1 (T);
(ii) ϕ is twice boundedly differentiable;
(iii) the convolution g(u) =

∫
f(λ)ϕ (λ+ u) dλ is twice boundedly differen-

tiable at zero.

Then, as T → ∞,

EJT (ϕ)− J (ϕ) = O
(
T−2

)
. (4.6)

Proof. The analog of this lemma for the continuous-parameter fields was ob-
tained in [40], the results on bias evaluation for the spectral functionals of
higher-orders in continuous and discrete contexts were stated in [7, 10]. The
present proof uses ideas from these papers. With direct calculations, the bias of
JT (ϕ) can be represented as follows:

E [JT (ϕ)− J (ϕ)] =

∫ ∫
ϕ(λ)f (u) Φh

2,T (u− λ) dudλ
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−
∫

ϕ(λ)f(λ)dλ

=

∫ ∫
ϕ(λ) (f (λ+ u)−f(λ)) Φh

2,T (u) dudλ (4.7)

=

∫ ∫
f(λ) (ϕ (λ+ u)−ϕ(λ)) Φh

2,T (λ) dudλ (4.8)

=

∫
(g(u)− g(0)) Φh

2,T (u) du, (4.9)

where Φh
2,T (u) = [(2π)d H2,T (0)]

−1 |H1,T (u)|2 is an even function which in-
tegrates to 1 (more precisely, this is the kernel of Fejér type, see Appendix),
with H1,T (u) being given in (2.2) for k = 1, and we have denoted g(u) =∫
f(λ)ϕ (λ+ u) dλ.
Therefore, to evaluate the bias we need to analyze the asymptotic behavior

of the expressions (4.7)–(4.9). Here we can apply standard arguments if we
impose conditions of regularity on the functions f , ϕ, or, more generally, on
their convolution g.

Consider the expression (4.7) and conditions (i).
By Taylor’s theorem and assumption that f (λ) is twice boundedly differen-

tiable on T, ∣∣∣∣∣f (λ+ u)− f (λ)−
d∑

i=1

ui
∂f (λ)

∂λi

∣∣∣∣∣ ≤ const ·
d∑

i=1

|ui|2 .

Consider the expression

d∑
i=1

∫
T

ϕ (λ)
∂f (λ)

∂λi

∫
T

ui
|H1,T (u)|2

(2π)
d
H2,T (0)

du dλ

=
d∑

i=1

∫
T

ϕ (λ)
∂f (λ)

∂λi

∫
T

ui

∏d
i=1

∣∣∣H̃1,T (ui)
∣∣∣2

(2π)
d
H2,T (0)

du dλ . (4.10)

Since
∣∣∣H̃1,T (ui)

∣∣∣2 · (2πH̃2,T (0))−1 is a kernel of Fejér type and integrates to 1

(see, for example, [19]), the inner integrals in (4.10) reduce to the expressions∫ π

−π

ui

∣∣H̃1,T (ui)
∣∣2

2πH̃2,T (0)
dui ,

which is equal to zero since
∣∣H̃1,T (ui)

∣∣2 is an even function. Therefore, (4.10) is
equal to zero and

|EJT (ϕ)− J (ϕ)| ≤ const ·
d∑

i=1

∫
T

|ϕ (λ)|
∫
T

|ui|2
d∏

i=1

∣∣∣H̃1,T (ui)
∣∣∣2

2π H̃2,T (0)
du dλ. (4.11)
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The inner integrals in (4.11) reduce to the expressions∫ π

−π

|ui|2
∣∣H̃1,T (ui)

∣∣2
2πH̃2,T (0)

dui .

We note that

H̃2,T (0) ∼ T

∫
h̃2(t)dt (4.12)

as T → ∞, since H̃2,T (0) supplied with the factor 1
T gives, in fact, the partial

sum for the integral appearing in the r.h.s. of (4.12).
Next, as in Brillinger [15] we can write:

H̃1,T (u) =
∑
t

h̃ (t/T ) e−iut = −
∑
t

Δt(u)
(
h̃ ((t+ 1)/T )− h̃ (t/T )

)
, (4.13)

where Δt(u) has the form of a product of (sin(u/2))−1 with some bounded with
respect to T and u function, Δ0(u) ≡ 1. For more details we refer, e.g., to [15]
(see the proof of Corollary 7.2.1), [19]. Now, taking into account that the taper
function h̃(t) is Lipschitz-continuous, we can write the following estimate:∫ π

−π

u2
∣∣∣H̃1,T (u)

∣∣∣2 du ≤ const
∑
t

∣∣∣h̃ ((t+ 1)/T )− h̃ (t/T )
∣∣∣2 ≤ const

1

T
. (4.14)

Similar arguments are used also in [38] (see the proof of Theorem 3 and formula
(3.21) therein).

Therefore, each term at the right-hand side of (4.11) is bounded by const·T−2,
which gives the asymptotics (4.6) under the condition (i). Analogously we can
deduce (4.6) from the expressions (4.8) or (4.9) applying the conditions (ii) or
(iii) respectively.

5. Numerical examples

This section illustrates the obtained results and numerically investigates prop-
erties of the considered minimum contrast estimators. Numerical results fully
support the theoretical findings. First, we consider the family of spatial frac-
tional autoregressive processes introduced in [16]. The simulation studies also
suggest that similar results are valid for Gegenbauer random fields, see [22], and
the approach is applicable to more general models.

In the following examples we use random field models with spectral densities
of the form

f(λ, θ) =
σ2
ε

(2π)2
|1− 2u1e

−iλ1 + e−2iλ1 |−2d1 |1− 2u2e
−iλ2 + e−2iλ2 |−2d2

|φ(exp(−iλ1), exp(−iλ2), α, β)|2
, (5.1)

where φ(z1, z2, α, β) = (1− αz1)(1− βz2).
In Example 1 the values of parameters u1 and u2 are known and equal u1 =

u2 = 1. In example 3 α = β = 0 and φ(z1, z2, 0, 0) ≡ 1. Example 2 considers the
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general case when singularities are located outside of the origin and we suppose
again α = β = 0.

We show that in all cases the minimum contrast approach gives very good
convergence rates and asymptotic normality.

In all examples below we assume that random fields Y (t) are observed on
the grid {(t1, t2) : t1, t2 = 1, ..., T}. Thus we use the observation window from
Remark 2.6. Note that in our case T = [−π, π].

We chose the taper of the form hT (t1, t2) = h̃ (t1/T ) h̃ (t2/T ) , with h̃(t) =
1
2 (1− cos(2πt)), t ∈ [0, 1], and w(λ) = w(λ1, λ2) = |λ1|2a1 |λ2|2a2 , ai > 1/2, i =
1, 2. Then, w(λ), λ = (λ1, λ2) ∈ [−π, π]2 is a function satisfying AssumptionB3.
The taper h(·) also satisfies the conditions in Remark 2.6.

5.1. Spatial fractional autoregressive processes

First we start with the family of spatial fractional autoregressive processes in-
troduced in [16].

Let Yt, t = (t1, t2) ∈ Z
2, be the spatial process satisfying the following

fractional autoregressive model:

φ(B1, B2, α, β)∇d1
1 ∇d2

2 Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z
2, (5.2)

where di ∈ (−1/2, 1/2), i = 1, 2, φ(B1, B2, α, β)Yt1,t2 = Yt1,t2 − αYt1−1,t2 −
βYt1,t2−1 + αβYt1−1,t2−1, and ∇d1

1 ∇d2
2 = (1−B1)

d1(1−B2)
d2 , with Bi denot-

ing the backward-shift operator for the coordinate ti, i = 1, 2, i.e., B1Yt1,t2 =
Yt1−1,t2 , and B2Yt1,t2 = Yt1,t2−1.

The spectral density of the process defined by (5.2) is given by

fY (λ) =
σ2

4π2

|1− exp(−iλ1)|−2d1 |1− exp(−iλ2)|−2d2

|φ(exp(−iλ1), exp(−iλ2), α, β)|2
, λ = (λ1, λ2) ∈ [−π, π]2,

see [16].

Assume that the values of the parameters α and β are known, or they have
been estimated before. Then we are interested to estimate the parameter vector
(d1, d2) ∈ (0, 1/2)2. It means that θ = (θ1, θ2) = (d1, d2) and θ ∈ Θ = (0, 1/2)2.

By direct calculations it is easy to check that all conditions for consistency
and asymptotic normality of the estimator θ̂T are fulfilled. In particular, for
condition B6 we can use the function v(λ) = v(λ1, λ2) = |λ1|2β |λ2|2β , β ∈
(0, 1/2). To check the positive definiteness of matrices S(θ) and A(θ) (as required
in condition B8), we can argue analogously to the very detailed consideration
in [22] (see verification of condition A8 therein). As the matter of fact, the
character of singularities in both models, here, and in [22] is the same, with the
only difference that here we have singularity of the spectral density at the origin
(0, 0), and, in [22], singularity can be shifted from the origin to some another
point.
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So, we have consistency of the estimator and also asymptotic normality

T d/2(θ̂T − θ0)
D−→ Nq(0, e(h)S

−1(θ0)A(θ0)S
−1(θ0)), (5.3)

where for the chosen taper we have e(h) ≈ 3.78. The elements of the matri-
ces S(θ) and A(θ) are calculated in the explicit form, quite similarly to the
corresponding calculations in [22], see Appendix B.

Now we provide numerical results for the spatial fractional autoregressive
model (5.2). 100 realizations of Yt1,t2 were generated, for each T in the increasing
sample size sequence T = 10, 30, 50, 70, 90, 110, 130, 150. The following values
of parameters were used in simulations: d1 = 0.2, d2 = 0.3, α = 0.1, β = 0.2,
and σ2

ε = 1.

The operator (1−B1)
d1(1−B2)

d2 in (5.2) was expanded in a double power se-
ries with respect to each Bi, i = 1, 2. Realizations of Y were approximated using
the truncated sums with powers not exceeding 30 for each Bi. The periodogram
IhT was computed with hT (t1, t2) and ω(λ1, λ2) given above.

The minimizing arguments θ̂T of the functional UT (θ) in (2.6) were found
numerically for each simulation.

For each T Table 1 shows estimated values d̂1 and d̂2 of the parameters
and the mean square errors (MSE) of d̂1 and d̂2. For each value of T Figure 1

produces a boxplot of estimated values d̂1 and d̂2 based on 100 realizations.
It is clear that the estimated values are centered at the true values d1 = 0.2
and d2 = 0.3. Moreover, Figure 1 and Table 1 demonstrate that θ̂T = (d̂1, d̂2)
converges to θ0 = (0.2, 0.3) as T increases.

Normal Q-Q plots of d̂1 and d̂2 were built for large values of T to verify
asymptotic normality of the estimators. Figure 2 demonstrates that the empir-
ical distributions of d̂1 and d̂2 match the theoretical normal distributions.

For each T 100 simulated values were used to estimate P0(|θ̂T − θ0| < ε).

The plot of the sample probabilities P0(|θ̂T − θ0| < ε) in Figure 3 confirms

convergence of θ̂T = (d̂1, d̂2) to θ0 = (0.2, 0.3) in probability.

Finally, we investigated asymptotic properties of σ̂T . Similarly to the above
cases, for each T we built boxplots and plotted sample probabilities for 100 sim-
ulations. Figures 4 and 5 support convergence in probability P0(|σ̂2

T − σ2(θ)| <
ε) → 1, when T increases.

Table 1

Mean, standard deviation and MSE of d̂1 and d̂2.

T d̂1 d̂2 MSE of d̂1 MSE of d̂2
10 0.227 (0.122) 0.403 (0.141) 0.02 0. 02
30 0.219 (0.054) 0.361 (0.072) 0.003 0.01
50 0.206 (0.034) 0.346 (0.054) 0.0012 0.03
70 0.199 (0.027) 0.326 (0.034) 0.001 0.0012
90 0.205 (0.029) 0.314 (0.025) 0.001 0.001
110 0.199 (0.026) 0.311 (0.022) 0.001 0.001
130 0.197 (0.027) 0.310 (0.025) 0.001 0.001
150 0.199 (0.022) 0.307 (0.022) 0.0005 0.001
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Fig 1. Boxplots of sampled values of d̂1 and
d̂2.

Fig 2. Normal Q-Q plots of d̂1 and d̂2.

Fig 3. Sampled probabilities P0(|θ̂T−θ0| < ε). Fig 4. Boxplots of sampled values of σ̂2
T .

Fig 5. Sampled probabilities P0(|σ̂2
T − σ2(θ)| < ε).
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5.2. Spatial Gegenbauer random fields: singularities at non-zero
locations

This section illustrates that the proposed minimum contrast estimation tech-
nique works even for the case of Gegenbauer random fields, see [22].

Let Yt1,t2 be a discrete random field satisfying

Δd1
u1
Δd2

u2
Yt1,t2 = (I − 2u1B1 +B2

1)
d1(I − 2u2B2 +B2

2)
d2Yt1,t2 = εt1,t2 ,

where εt1,t2 , (t1, t2) ∈ Z
2, is a zero-mean white noise field with the common

variance E[ε2t1,t2 ] = σ2
ε , where, for j = 1, 2,

Δdj
uj

= (I − 2ujBj +B2
j )

dj

= (1− 2 cos νjBj +B2
j )

dj

= [(1− exp(iνj)Bj)(1− exp(−iνj)Bj)]
dj .

As before Bj , j = 1, 2, denotes the backward-shift operator for each spatial
coordinate and u = cos ν, i.e. ν = arccos(u).

There exists the following representation of a spatial stationary Gegenbauer
random field, see [22],

Yt1,t2 =

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)εt1−n1,t2−n2 , (5.4)

where di 	= 0, and |ui| ≤ 1, i = 1, 2.

The Gegenbauer polynomial C
(d)
n (u) is given by

C(d)
n (u) =

[n/2]∑
k=0

(−1)k
(2u)n−2kΓ(d− k + n)

k!(n− 2k)!Γ(d)
.

The spectral density f of the spatial Gegenbauer random field is defined as

f(λ,θ) =
σ2
ε

(2π)2
|1− 2u1e

−iλ1 + e−2iλ1 |−2d1 |1− 2u2e
−iλ2 + e−2iλ2 |−2d2

=
σ2
ε

(2π)2
|2 cos(λ1)− 2u1|−2d1 |2 cos(λ2)− 2u2|−2d2 .

We generated 200 replications of random field given in (5.4), for the increasing
sequence of sample sizes T = 10, 30, 50, 70, 90, 110, using the parameter values
d1 = 0.2, d2 =0.3, u1 = 0.4, u2 = 0.3, and σ2

ε = 1.
Analogously to the example in section 5.1 realizations of Yt1,t2 were approxi-

mated by the truncated sums with 100 terms in (5.4). The periodogram IhT was

computed with hT (t1, t2) = h̃(t1/T )h̃(t2/T ), h̃(t) =
1
2 (1 − cos(2πt)), t ∈ [0, 1].

We used the weight function ω(λ1, λ2) = |2 cos(λ1)− 2u1|2|2 cos(λ2)− 2u2|2.
The analysis, plots and explanations below are analogous to the example

in section 5.1. The minimizing arguments θ̂T of the functional UT (θ) in (2.6)
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Table 2

Mean, standard deviation and MSE of d̂1 and d̂2.

T d̂1 d̂2 MSE of d̂1 MSE of d̂2
10 0.264 (0.186) 0.334 (0.181) 0.04 0. 035
30 0.220 (0.115) 0.346 (0.130) 0.013 0.02
50 0.208 (0.078) 0.314 (0.085) 0.01 0.01
70 0.205 (0.063) 0.313 (0.085) 0.004 0.005
90 0.204 (0.063) 0.298 (0.064) 0.003 0.003
110 0.193 (0.059) 0.304 (0.060) 0.003 0.003

were found numerically for each simulation. Figure 6 and Table 2 demonstrate
that θ̂T converges to θ0 as T increases. The plot of the sample probabilities
P0(|θ̂T − θ0| < ε) in Figure 8 also confirms convergence in probability. The

normal Q-Q plots of d̂1 and d̂2 in Figure 7 match with the theoretical normal
distributions. Table 2 shows MSEs of d̂1 and d̂2, computed for different T values.
Figures 10 and 9 support convergence in probability P0(|σ̂2

T − σ2(θ)| < ε) → 1
when T increases.

Similar results were also obtained using the weight function ω(λ1, λ2) =
(|λ1| − arccos(u1))

2(|λ2| − arccos(u2))
2.

Fig 6. Boxplots of sampled values of d̂1 and
d̂2.

Fig 7. The Normal Q-Q plots of d̂1 and d̂2.

Fig 8. Sampled probabilities P0(|θ̂T − θ0| <
ε).

Fig 9. Boxplots of sampled values of σ̂2
T .
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Fig 10. Sampled probabilities P0(|σ̂2
T − σ2(θ)| < ε).

5.3. Spatial Gegenbauer random fields: singularities at the origin

Finally in the third example we consider the case of spectral densities with
singularities at the origin and the degenerated φ(B1, B2, α, β) = I, i.e. α = β =
0. The method shows very good performance in this case as well.

In this example we also used random fields Y satisfying (5.4). Their realisa-
tions were simulated for the parameter values ui = 1, i = 1, 2, σ2

ε = 1, d1 = 0.2
and d2 = 0.3. Realizations of Y were simulated using the truncated sums
with 100 terms in (5.4). The periodogram IhT was computed with hT (t1, t2) =

h̃(t1/T )h̃(t2/T ), h̃(t) =
1
2 (1− cos(2πt)), t ∈ [0, 1]. We used the weight function

ω(λ1, λ2) = (|λ1| − arccos(u1))
2(|λ2| − arccos(u2))

2 = |λ1|2|λ2|2. Similar results
were also obtained for ω(λ1, λ2) = |2 cos(λ1)− 2u1|2|2 cos(λ2)− 2u2|2.

The analysis, plots and explanations below are analogous to the example in
section 5.1. The minimizing arguments θ̂T of functional UT (θ) in (2.6) were

found numerically for each simulation. Figure 11 and Table 3 show that θ̂T

converges to θT as T increases.

The Normal Q-Q plots of d̂1 and d̂2 in Figure 12 match with the theoretical
normal distributions. The plot of the sample probabilities P0(|θ̂T − θ0| < ε) in

Figure 13 also confirms convergence in probability. Table 3 shows MSEs of d̂1
and d̂2, computed for different T values. Figures 14 and 15 support convergence
in probability P0(|σ̂2

T − σ2(θ)| < ε) → 1, when T increases.

Table 3

Mean, standard deviation and MSE of d̂1 and d̂2.

T d̂1 d̂2 MSE of d̂1 MSE of d̂2
10 0.284 (0.211) 0.361 (0.184) 0.04 0. 034
30 0.219 (0.141) 0.356 (0.130) 0.02 0.02
50 0.218 (0.105) 0.323 (0.102) 0.01 0.01
70 0.203 (0.092) 0.301 (0.098) 0.01 0.01
90 0.206 (0.091) 0.304 (0.089) 0.01 0.01
110 0.190 (0.096) 0.299 (0.082) 0.01 0.01
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Fig 11. Boxplots of sampled values of d̂1 and
d̂2 with ui = 1, i = 1, 2.

Fig 12. Normal Q-Q plots of d̂1 and d̂2 with
ui = 1, i = 1, 2.

Fig 13. Sampled probabilities P0(|θ̂T −θ0| <
ε). Fig 14. Boxplots of sampled values of σ̂2

T .

Fig 15. Sampled probabilities P0(|σ̂2
T − σ2(θ)| < ε).



3358 H. M. Alomari et al.

Appendix A: Central limit theorems for spectral functionals (or
quadratics forms) of Gaussian random fields, from
tapered data

One of the classical approaches to derive central limit theorem for spectral
functionals JT (ϕ) =

∫
T
IT (λ)ϕ (λ) dλ consists of calculating and evaluating

their cumulants. We present here some details of this approach, and the cor-
responding results for the case of Gaussian fields, and tapered data, as needed
for consideration in the present paper. To state CLT for the normalized func-
tional J̃T (ϕ) = T d/2(JT (ϕ) − EJT (ϕ)) it is enough to provide conditions for
convergence to the finite limit of the second order cumulant of J̃T (ϕ), and for
convergence to zero of all cumulants of higher orders.

Note Throughout this section we will omit the superscript ’h’ and write sim-
ply IT (λ) to denote the tapered periodogram and JT (ϕ) to denote the cor-
responding spectral functional. Only Proposition A.1. here below concerns the
non-tapered case.

The cumulant of the general k-th order can be represented in the form:

ck(J̃T (ϕ))

= T kd/22k−1(k − 1)![(2π)dH2,T (0)]
−k

∫
λ1,...,λ2k∈T2k

f(λ1)ϕ(λ2)

× f(λ3)ϕ(λ4)...f(λ2k−1)ϕ(λ2k)H1,T (λ2 − λ1)H1,T (λ3 − λ2)...

×H1,T (λ2k − λ2k−1)H1,T (λ1 − λ2k)dλ1 . . . dλ2k

= T kd/22k−1(k − 1)![(2π)dH2,T (0)]
−k

∫
u1,...,u2k−1∈T2k−1

∫
λ∈T

f(λ)ϕ(λ+ u1)

× f(λ+ u1 + u2)ϕ(λ+ u1 + u2 + u3) . . . ϕ

(
λ+

2k−1∑
i=1

ui

)

×
2k−1∏
i=1

H1,T (ui)H1,T

(
−

2k−1∑
i=1

ui

)
dλdu1 . . . du2k−1,

where Hk,T (λ) =
∑

t∈LT
hk
T (t)e

−i(λ,t), and hT (t) = h(t/T ). Details of calcula-
tions of the cumulants of spectral functionals can be found, for example, in [2],
[10], [14] for the nontapered case, and in [3], [19], [20] for the tapered case. The
calculations are based on the so-called product formula for cumulants which
gives the expression for cumulants of products of random variables in terms
of cumulants of the individual variables, the mentioned formula reduces to a
particular simple form in the Gaussian case.

Note that the functions

Φh
k,T (λ1, ...,λk−1) :=

1

(2π)
d(k−1)

Hk,T (0)

k−1∏
j=1

H1,T (λj)H1,T

⎛⎝−
k−1∑
j=1

λj

⎞⎠
(A.1)
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are multidimensional kernels of Fejér type over Tk−1, or approximate identities
for convolution.

In the non-tapered case, when h(t) ≡ 1, this was shown in [13, 14]. In the
case under consideration, when the taper factorizes (as defined in Section 2.2),
and the domain of observation is a cube LT = [−T, T ]d, this fact follows as a
straightforward generalization of the corresponding result by [19] for dimension
d = 1.

The kernel property of Φh
k,T (λ1, ...,λk−1) implies

lim
T→∞

∫
Tk−1

G (u1 − v1, ...,uk−1 − vk−1) Φ
h
k,T (u1, ...,uk−1) du1...duk−1

= G (v1, ...,vk−1) , (A.2)

provided that the function G is bounded and continuous at the point
(v1, ...,vk−1).

We have, in particular,

V ar(J̃T (ϕ))

= 2T d (2π)
d
H4,T (0)[H2,T (0)]

−2

∫
u1,u2,u3∈T3

∫
λ∈T

f(λ)ϕ(λ+ u1) (A.3)

× f(λ+ u1 + u2)ϕ(λ+ u1 + u2 + u3) Φ
h
4,T (u1,u2,u3) dλdu1du2du3.

= 2T d (2π)
d
H4,T (0)[H2,T (0)]

−2

∫
(λ1,λ2,λ3,λ4)∈T4

f(λ1)ϕ(λ2)f(λ3)ϕ(λ4)

× Φh
4,T (λ2 − λ1,λ3 − λ2,λ4 − λ3)dλ1dλ2dλ3dλ4.

Asymptotic analysis of expressions for cumulants, based on the property (A.2),
allows to state the following asymptotic normality result for the functional
JT (ϕ) = Jh

T (ϕ) =
∫
T
IhT (λ)ϕ (λ) dλ in the case of tapered data.

Theorem A.1. Let X(t), t ∈ Z
d , be a zero-mean Gaussian random field with

spectral density f(λ) ∈ Lp and ϕ(λ) ∈ Lq , where 1
p + 1

q ≤ 1
2 . Then

T d/2(JT (ϕ)− EJT (ϕ))
D−→ N(0, σ2) as T → ∞, (A.4)

where

σ2 = 2(2π)de(h)

∫
T

f2(λ)ϕ2(λ)dλ, (A.5)

where e(h) is defined in (2.11).

The convergence of the variance (A.3) to σ2 can be obtained by the following
arguments:

(i) Under the integrability conditions imposed in the theorem on f and
ϕ, the inner integral over λ in expression (A.3) is a bounded and continu-
ous function of (u1,u2,u3), say G(u1,u2,u3), therefore, the overall integral in
(A.3) can be written as

∫
G(u1,u2,u3)Φ

h
4,T (u1,u2,u3)du1du2du3; then, due
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to the kernel property (A.2), the limit of this integral is equal to G(0,0,0) =∫
T
f2(λ)ϕ2(λ)dλ;

(ii) The normalizing factor T dH4,T (0)[H2,T (0)]
−2 converges to e(h) due to

the asymptotic behavior Hk,T (0) ∼ T d
(∫

h̃k(t)dt
)d

as T → ∞.

Following the same arguments as in [10, 11], the integrability conditions on
f and ϕ imply also convergence to zero of all cumulants of orders k ≥ 3. Note
that, under the assumptions considered on the taper function, the following

estimates for the norms of Hk,T (λ) hold: ‖Hk,T (λ)‖p ≤ CT d(1− 1
p ), p > 1, which

is a consequence of Lemma 1 by [19], and which can be used on the place of
analogous estimates in the non-tapered case. Therefore all the proofs can be
preserved.

From Theorem A.1 and Lemma 4.1 (see Section 4), we can deduce the fol-
lowing corollary.

Corollary 1. Let the conditions of Theorem A.1 and Lemma 4.1 be satisfied.
Then

T d/2(JT (ϕ)− J (ϕ))
D−→ N(0, σ2) as T → ∞, (A.6)

where σ2 is given by (A.5).

Note that the recent paper by [25] (Section 4.2.1) presents a collection of
classical sufficient conditions for CLT, for quadratic forms QT = 2πTJT (ϕ), in
the case of Gaussian processes in discrete and continuous time.

Theorem A.1 is a generalization of the statements (C) of Theorem 4.7 in [25]
(see also [9]) to the case of fields (in Zd) and for tapered data.

For the case of Gaussian processes with discrete time, and spectral densities
with possible singularities, the following results were obtained in [24] (without
tapering, that is, h(t) ≡ 1). We formulate these results here in terms of JT (ϕ).

Proposition A.1. Let X(t), t ∈ Z, be a zero-mean Gaussian process with
spectral density f(λ) .

I. Suppose that the following conditions hold:

(i) The sets of discontinuities of functions f(λ) and ϕ(λ) have Lebesgue
measure zero, and these functions are bounded on the interval [δ, π]
for all δ > 0;

(ii) There exist α < 1 and β < 1 such that for α+ β < 1/2, and for each
δ > 0, f(λ) = O(|λ|−α−δ) and ϕ(λ) = O(|λ|−β−δ) as λ → 0.

Then

T 1/2(JT (ϕ)− EJT (ϕ))
D−→ N(0, σ2) as T → ∞, (A.7)

where σ2 = 4π
∫ π

−π
ϕ2(λ)f2(λ)dλ.

II. If there exist α < 1 and β < 1 such that α + β < 1/2, and f(λ) =
|λ|−αL1(λ) and ϕ(λ) = |λ|−βL2(λ) as λ → 0, where L1 and L2 are slowly
varying functions at zero, then Assumption (ii) holds.
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We present here an extension of Proposition A.1. for the case of Gaussian
fields and tapered periodogram in the following form.

Theorem A.2. Let X(t), t ∈ Z
d, be a zero-mean Gaussian random field with

spectral density f(λ) such that for some 0 < αi < 1, i = 1, .., d, f(λ) =

O(
∏d

i=1 |λi|−αi) as λi → 0, and ϕ(λ) = O(
∏d

i=1 |λi|αi) as λi → 0. The sets
of discontinuities of functions f(λ) and ϕ(λ) have Lebesgue measure zero, and
these functions are bounded for δ ≤ |λ| ≤ π for all δ > 0. Then

T d/2(JT (ϕ)− EJT (ϕ))
D−→ N(0, σ2) as T → ∞, (A.8)

where σ2 is the same as in Theorem A.1

From Theorem A.2 and Lemma 4.1 (see Section 4) we can deduce the follow-
ing corollary.

Corollary 2. Let the conditions of Theorem A.2 and Lemma 4.1 be satisfied.
Then

T d/2(JT (ϕ)− J (ϕ))
D→ N(0, σ2) as T → ∞, (A.9)

where σ2 is given by (A.5).

Remark A.1. Proposition A.1 is stated for the functions f(λ) and ϕ(λ) which
have singularities at the point λ = 0. However, it can be shown (see, [25]) that
the choice λ = 0 is not essential and Proposition A.1 holds if the singularity
is located at any other point λ0 ∈ [−π, π] . The analogous observation is true
for the result stated for the case of random fields (with multiplicative form of
singularities) in Theorem A.2. In fact, Theorem A.2 remains valid if, instead
of the origin (λi = 0, i = 1, ..., d), the singularity of the form prescribed in the
theorem takes place at any other point.

Proof of Theorem A.2. For the proof we use an idea from the paper [29]. Con-
sider firstly the case d = 1. Introduce the filtered process

Y (t) = ∇α/2X(t),

where ∇ = 1 − B, B is the backward shift operator (BX(t) = X(t − 1)), and

∇α/2 = (1−B)α/2 :=
∑∞

j=0 C
α/2
j (−B)j . Then the process Y (t) has the spectral

density fY (λ) = (2 sin |λ2 |)αfX (λ) , since Y (t) is obtained from X(t) using the

filter with transfer function D(iλ) = (1− eiλ)α/2 and |D(iλ)|2 = (2 sin | 12λ|)α.
Let ψ(λ) = ϕ(λ)/(2 sin | 12λ|)α and consider the functional

J̃Y
T (ψ) =

∫ π

−π

ψ(λ)IYT (λ)dλ− E

∫ π

−π

ψ(λ)IYT (λ)dλ,

where IYT (λ) = 1
2πH2,T (0) |

∑
t∈LT

hT (t)e
iλtY (t)|2 is the tapered periodogram

which corresponds to {Y (t), t ∈ LT }.
Since spectral density fY (λ) of the process Y (t) and function ψ(λ) satisfy

conditions of Theorem A.1, for the functional J̃Y
T (ψ) we have the convergence

as T → ∞
T 1/2J̃Y

T (ψ)
D→ N(0, σ2), (A.10)
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where

σ2 = 4πe(h)

∫ π

−π

ψ2(λ)f2
Y (λ)dλ = 4πe(h)

∫ π

−π

ϕ2(λ)f2
X(λ)dλ. (A.11)

Therefore, in order to prove the statement of the theorem, it is sufficient to show
that

lim
T→∞

TE|J̃X
T (ϕ)− J̃Y

T (ψ)|2 = 0, (A.12)

where

J̃X
T (ϕ) =

∫ π

−π

ϕ(λ)IXT (λ)dλ− E

∫ π

−π

ϕ(λ)IXT (λ)dλ.

Consider

TE|J̃X
T (ϕ)−J̃Y

T (ψ)|2 = TE|J̃X
T (ϕ)|2+TE|J̃Y

T (ψ)|2−2TEJ̃X
T (ϕ)J̃Y

T (ψ). (A.13)

For the functional which corresponds to the process Y (t) we readily have the
convergence TE|J̃Y

T (ψ)|2 → σ2 as T → ∞.
We will show that under the conditions of the theorem TE|J̃X

T (ϕ)|2 and
TEJ̃X

T (ϕ)J̃Y
T (ψ) also tend to σ2 as T → ∞, and, therefore convergence (A.12)

holds.
Using (A.3) we can write:

TE|J̃X
T (ϕ)|2 = 4πTH4,T (0)[H2,T (0)]

−2

∫
[−π,π]4

fX(λ1)ϕ(λ2)fX(λ3)ϕ(λ4)

× Φh
4,T (λ2 − λ1, λ3 − λ2, λ4 − λ3)dλ1dλ2dλ3dλ4. (A.14)

TE|J̃Y
T (ψ)|2 = 4πTH4,T (0)[H2,T (0)]

−2

∫
[−π,π]4

fY (λ1)ψ(λ2)fY (λ3)ψ(λ4)

× Φh
4,T (λ2 − λ1, λ3 − λ2, λ4 − λ3)dλ1dλ2dλ3dλ4. (A.15)

TE|J̃X
T (ϕ)J̃Y

T (ψ)| = 4πTH4,T (0)[H2,T (0)]
−2 (A.16)

×
∫
[−π,π]4

fXY (λ1)ϕ(λ2)fXY (λ3)ψ(λ4)

× Φh
4,T (λ2 − λ1, λ3 − λ2, λ4 − λ3)dλ1dλ2dλ3dλ4,

where by fXY we have denoted cross spectral density of processes X(t) and
Y (t).

Since Y (t) is obtained from X(t) with the use of filter with transfer function

D(iλ), then fXY (λ) = D(−iλ)fX(λ), or fXY (λ) = D(−iλ) fY (λ)
|D(iλ)|2 , recall also

that ϕ(λ) = ψ(λ)|D(iλ)|2, fX(λ) = fY (λ)
|D(iλ)|2 .

If we define the measure μT on [−π, π]4 by

μT (E) =

∫
E

Φh
4,T (λ2 − λ1, λ3 − λ2, λ4 − λ3)dλ1dλ2dλ3dλ4, for E ⊂ [−π, π]4
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then μT converges weakly to the measure μ which is concentrated on the di-
agonal D = {y1 = y2 = y3 = y4} and satisfies: μ({y : a ≤ y1 = y2 = y3 =
y4 ≤ b}) = b− a. For non-tapered case this was shown in [24]. The result holds
for the tapered case as well under the conditions on taper introduced. This can
be shown by the same arguments as in [24], namely, by considering the Fourier
coefficients of measures μ and μT . Convergence of Fourier coefficients of μT to
those of μ can be deduced from the kernel property (A.2).

Next we note that the following estimate holds for H1,T : |H1,T (λ)| ≤ const ·
lT (λ), where lT (u) denotes 2π-periodic extension of the function l∗T (u), which
is defined as: l∗T (u) = T for |u| ≤ 1

T , and l∗T (u) = 1
|u| for 1

T < |u| ≤ π. From

this point convergence of (A.14), (A.15), (A.16) to σ2 defined by (A.11) can be
obtained following the corresponding lines of the proof in [24], more precisely,
we do not need their arguments in full generality, but just use those arguments
for the second order cumulant, and parts a) of their Propositions 6.1 and 6.2
work in our case.

The proof for the case d = 1 can be directly extended for d > 1 in the
case under consideration, when the singularities of spectral density factorize as
described in the formulation of theorem, and for the taper which factorizes, so
that the integrals can be split as d-tuple of integrals, which appear when d = 1,
and, therefore, corresponding reasonings can be preserved. Note that the filtered
field is introduced as

Y (t) = Y (t1, ..., td) = ∇α1/2
1 ...∇αd/2

d X(t)

=

∞∑
k1=0

...

∞∑
kd=0

d∏
i=1

C
αi/2
ki

X(t1 − k1, ..., td − kd),

and has the spectral density

fY (λ1, ..., λd) =

(
d∏

i=1

∣∣∣∣2 sin λ

2

∣∣∣∣αi
)
fX (λ1, ..., λd) .

Appendix B: Expression for the elements of S(θ) and A(θ)

The following expressions are relevant for the example considered in Section 5.1.
Specifically, to write down the expression for the elements of the matrices S(θ)
and A(θ), we will use the following derivatives:

∂

∂θi
f(λ,θ) = −2 log

∣∣∣∣2 sin λi

2

∣∣∣∣ f(λ,θ),
∂

∂θi
σ2(θ) = −2

∫
[−π,π]2

log

∣∣∣∣2 sin λi

2

∣∣∣∣w(λ)f(λ,θ)dλ.
We obtain, see pages 671 and 672 in [22],

sij = 3

∫
[−π,π]2

w(λ)

σ2(θ)

[
∂

∂θj
σ2(θ)

] [
∂

∂θi
f(λ,θ)

]
dλ
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−
∫
[−π,π]2

w(λ)

f(λ,θ)

[
∂

∂θi
σ2(θ)

] [
∂

∂θi
f(λ,θ)

]
dλ

=
3

σ2(θ)

[
∂

∂θj
σ2(θ)

] [
∂

∂θi
σ2(θ)

]
− 4

∫
[−π,π]2

log

∣∣∣∣2 sin λi

2

∣∣∣∣ log ∣∣∣∣2 sin λj

2

∣∣∣∣w(λ)f(λ,θ)dλ,
and

aij = 8π2σ4(θ)

∫
[−π,π]2

w2(λ)
∂

∂θi
ψ(λ,θ)

∂

∂θj
ψ(λ,θ)dλ

= 8π2

∫
[−π,π]2

w2(λ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

)
×
([

∂

∂θj
f(λ,θ)

]
σ2(θ)−

[
∂

∂θj
σ2(θ)

]
f(λ,θ)

)
dλ.

Therefore, we can write aij = S1 − S2(i, j)− S2(j, i) + S3, where

S1 = 32π2σ4(θ)

∫
[−π,π]2

log

∣∣∣∣2 sin λi

2

∣∣∣∣ log ∣∣∣∣2 sin λj

2

∣∣∣∣w2(λ)f2(λ,θ)dλ,

S2(i, j) = 16π2σ2(θ)

[
∂

∂θj
σ2(θ)

] ∫
[−π,π]2

log

∣∣∣∣2 sin λi

2

∣∣∣∣w2(λ)f2(λ,θ)dλ,

S3 = 8π2

[
∂

∂θi
σ2(θ)

] [
∂

∂θj
σ2(θ)

] ∫
[−π,π]2

w2(λ)f2(λ,θ)dλ.
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