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Abstract: This paper considers a nonparametric functional autoregres-
sion model of order one. Existing contributions addressing the problem
of functional time series prediction have focused on the linear model and
literatures are rather lacking in the context of nonlinear functional time
series. In our nonparametric setting, we define the functional version of
kernel estimator for the autoregressive operator and develop its asymptotic
theory under the assumption of a strong mixing condition on the sample.
The results are general in the sense that high-order autoregression can be
naturally written as a first-order AR model. In addition, a component-wise
bootstrap procedure is proposed that can be used for estimating the distri-
bution of the kernel estimation and its asymptotic validity is theoretically
justified. The bootstrap procedure is implemented to construct prediction
regions that achieve good coverage rate. A supporting simulation study is
presented in the end to illustrate the theoretical advances in the paper.
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1. Introduction

Popularized by the pioneering works of Ramsay and Silverman (1997) [29],
(2002) [30], Functional Data Analysis (FDA) has emerged as a promising field
of statistical research in the past decade. When functional data objects being
collected sequentially over time that exhibit forms of dependence, such data
are known as functional time series. The typical situation in which functional
time series arise is when long continuous records of temporal sequence are seg-
mented into curves over natural consecutive time intervals. Examples include
daily price curves of financial transactions, daily electricity consumptions and
daily patterns of environmental data. The primary goal of functional time series
analysis is to provide reliable guesses for the future realizations. In this paper,
we focus our attention on a first-order nonparametric functional autoregression–
FAR(1) model which is defined by the recursion:

Xn+1 = Ψ(Xn) + En+1, (1.1)

where the observations Xn and the error terms En are functions, and no linearity
restrictions are imposed on the functional operator Ψ. Precise definitions and
details of the model are stated in Section 2. Existing contributions have largely
focused on the functional linear autoregression while the research addressing
the nonlinear model is scarce. We approach this problem by merging the ideas
in nonparametric time series and functional regression analysis, extending the
theoretical study to the nonparametric model of functional autoregression.

The research pertains to the FAR model can trace back to Bosq (2000) [4], in
which the theory of linear processes in functional space was first developed. One
of the major contribution of that book was the study of linear autoregressive
processes in the Hilbert space. Under the assumption that the functional opera-
tor Ψ in (1.1) is linear, Bosq has derived a one-step ahead predictor Ψ̂ based on
a functional form of the Yule-Walker equation, which has been regarded as the
classical benchmark in FAR(1) prediction. Since then, there has been abundant
literatures on the study of the linear functional processes. We refer the readers
Antoniadis and Sapatinas (2003) [2], Antoniadis et al. (2006) [1], Bosq (2007)
[5], Kargin and Onatski (2008) [18], Gabrys et al. (2010) [14] and Horváth and
Kokoszka (2011) [17], among other contributions. Bosq’s predictor in [4] has a
rather complicated form which makes it unrealistic to implement in practice.
Aue et al. (2015) [3] proposed an alternative method of predicting linear FAR(1)
process utilizing functional principal component analysis (FPCA). The method
appears to be much more widely applicable under the idea that the dimension
reduction with FPCA should lead to a vector-valued time series of FPC scores
that can be predicted by existing multivariate methodologies. Hörmann et al.
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(2015) [15] proposed a dynamic version of functional principal component anal-
ysis to address the problem of dimension reduction for functional time series.
More recently, Klepsch et al. (2017) [20] used a similar dimension reduction
technique to model the FARMA process with an application to traffic data.
See also Klepsch and Klüppelberg (2017) [19] in which an innovation algorithm
was proposed to obtain the best linear predictor of a functional moving average
(FMA) process.

On the other hand, kernel methods have been a powerful tool when dealing
with nonparametric models. Numerous early references have investigated its
implementations in nonparametric univariate autoregression. To mention some,
asymptotic study of the kernel smoother was presented in Robinson (1983) [32],
and Masry (1996) [22]. The bootstrap procedures for this model and its validity
were provided in Franke et al. (2002) [12]. Pan and Politis (2016) [25] developed
a coherent methodology for the construction of bootstrap prediction intervals,
which can be successfully applied to the nonlinear univariate autoregression
models. Those results can be naturally extended to multivariate time series, but
that is not the case for functional time series due to the infinite dimensional
nature of functional data.

Nonparametric statistical methods for functional data analysis were estab-
lished in Ferraty and Vieu (2006) [11]. The nonparametric functional regression
model, i.e. Y = r(X )+ ε, has been extensively studied since then. Ferraty et al.
(2007) [10] concentrated on the situation where the response variable Y is scalar
and X takes values in some functional space. Asymptotic properties concerning
the kernel estimator r̂(·) of the regressor r(·) have been investigated and the
validity of its bootstrap approximation was proved in Ferraty et al. (2010) [8].
The results have been extended to the model with double functional setting (i.e.
both Y and X are functionals); see Ferraty et al. (2012) [9]. Masry (2005) [23]
and Delsol (2009) [6] investigated the same model taking into account dependent
functional data.

Motivated by the prior works aforementioned, this paper investigates the
kernel estimator for nonparametric functional autoregression. We show the con-
sistency of the estimator under the assumption of a strong mixing condition
on the sample. The proof of its consistency involves a functional central limit
theorem for dependent sequence in a triangular array setting. In addition, we
propose a bootstrapping procedure in this functional dependent framework that
can be used for estimating the distribution of the projection of the kernel es-
timation. The bootstrap prediction regions are constructed as a measurement
of accuracy for the functional prediction. A regression bootstrap scheme is im-
plemented in the procedure which provides a simplification for the bootstrap
method in the autoregression case. Franke et al. (2002) [12] first applied the
regression-type bootstrap in univariate nonlinear autoregression for inference of
the kernel estimator, and Neumann and Kreiss (1998) [24] considered to what
extent regression-type bootstrap procedures can be successfully applied as long
as nonparametric estimators and tests for conditional mean in nonparametric
autoregressions are considered. It was mentioned in Kreiss and Lahiri (2012)
[21] that the regression-type bootstrap is also valid for the Yule-Walker esti-
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mates for coefficients in a parametric AR(p) model, but it might not lead to
asymptotically valid results for more general statistics.

The rest of the paper is organized as follows. In Section 2, the detailed math-
ematical background of the model is provided and the functional version kernel
estimator of the autoregressive operator is defined. Some notations and nec-
essary assumptions are stated in Section 3. Section 4 provides the asymptotic
results of the proposed estimator. A componentwise bootstrap scheme is intro-
duced and its validity is shown in Section 5. A simulated study is given in Section
6 while Section 7 presents the approach to construct the bootstrap prediction
region. All proofs are gathered in Appendix (Section 8).

2. The FAR(1) model

Let {Xn} be a stationary and α-mixing functional sequence in some separable
Hilbert space H with the usual definition of α-mixing coefficients introduced by
Rosenblatt (1956) [33]. H is endowed with inner product 〈·, ·〉 and corresponding
norm || · || (i.e. ||g||2 = 〈g, g〉), and with orthonormal basis {ek : k = 1, · · · ,∞}.
A semi-metric d(·, ·) is also defined on H to measure the proximity between two
elements in H. The semi-metric structure d will be the key tool for controlling
the good behavior of the estimators whereas some separable Hilbert structure
is necessary for studying the operator Ψ component by component. See more
details on the two-topology framework in Ferraty et al. (2012) [9].

We consider the following FAR(1) model

Xi+1 = Ψ(Xi) + Ei+1, i = 1, 2, . . . , (2.1)

where Ψ is the autoregressive operator mapping functions from H to H, and the
innovations Ei’s are independent and identically distributed (i.i.d.) H-valued
random variables satisfy E(Ei+1|Xi) = 0 and E(||Ei+1||2|Xi) = σ2

E(Xi) < ∞.
Assume here that the model is homoscedastic, that is, σE(Xi) ≡ σE . The op-
erator Ψ is not constrained to be linear; this is a Nonparametric Functional
Autoregression model.

Remark 2.1. Because of the generality of the notation, a higher-order au-
toregression, say FAR(2), in which Xi+1 depends on Xi and Xi−1, can still be
written as FAR(1) by redefining the X and Ψ; e.g. in the FAR(2) case, one may
let Yi = (Xi,Xi−1) with an obvious choice for the FAR(1) operator relating Yi+1

to Yi only.

Estimation of Ψ is given by the functional version of Nadaraya-Watson esti-
mator of time series

Ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

, (2.2)
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where χ is a fixed element in H, K is a kernel function and h is a bandwidth
sequence tending to zero as n tends to infinity. The way of choosing a semi-
metric d(·, ·) was discussed in Ferraty and Vieu (2006) [11]. For a fixed k ∈ Z

+,
applying 〈·, ek〉 on both sides of the Eq. (2.1) yields

〈Xi+1, ek〉 = 〈Ψ(Xi) + Ei+1, ek〉
= 〈Ψ(Xi), ek〉+ 〈Ei+1, ek〉 i = 1, 2, . . .

Let Xn,k, εn,k be the jth component of the functional Xn and En respectively,
i.e. Xn,k = 〈Xn, ek〉, εn,k = 〈En, ek〉. Also, define the functional ψk from H to R

such that

ψk(·) = 〈Ψ(·), ek〉. (2.3)

When k is fixed, we will drop the index k for the simplicity of notations, us-
ing {Xn} and {εn} to denote the sequences {Xn,k} and {εn,k}, respectively.
Similarly, ψ can be used in place of ψk. For a fixed k, we obtain

Xi+1 = ψ(Xi) + εi+1 i = 1, 2, . . . (2.4)

Eq. (2.4) can be treated as an auxiliary functional autoregressive model with
scalar response. The scalar innovations εi’s are i.i.d. random variables satisfy
E(εi+1|Xi) = 0 and E(ε2i+1|Xi) = σ2

ε < ∞. Again, the operator ψ in (2.4) is not
constrained to be linear. Accordingly, its kernel estimation is given by

ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

, (2.5)

and the two estimators, Ψ̂h and ψ̂h, are connected in the following way

ψ̂h(χ) = 〈Ψ̂h(χ), ek〉. (2.6)

Consistency of both ψ̂h(χ) and Ψ̂h(χ) will be addressed in Section 4. While
it is more of the interest to study the estimator Ψ̂h(χ), the need for model

(2.4) and the estimator ψ̂h(χ) will be seen in Section 5 where a componentwise
bootstrap approximation is proposed.

3. Assumptions and notations

In the sequel, χ is a fixed element and X is a random element of the functional
space H. For k = 1, 2, . . . , let ϕχ,k be a real-valued function defined as

ϕχ,k(s) = E[ψ(X )− ψ(χ)|d(X , χ) = s]

= E[〈Ψ(X )−Ψ(χ), ek〉|d(X , χ) = s].
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Again, for the simplicity of notations, we drop the index k to use ϕχ in place
of ϕχ,k when k is fixed. Let F be the distribution of the random variable d(X , χ),

Fχ(t) = P (d(X , χ) ≤ t),

which is usually called the small ball probability function in functional data
analysis. Also define for s ∈ [0, 1],

τhχ(s) =
Fχ(hs)

Fχ(h)
= P (d(X , χ) ≤ hs|d(X , χ) ≤ h).

Technical aspects of the functions ϕχ, Fχ and τhχ have been discussed in
Ferraty et al.(2007) [10]. The following assumptions are needed:

(A1) ψ is continuous in a neighborhood of χ with respect to the semi-metric d,
and Fχ(0) = 0.

(A2) ϕχ(0) = 0 and ϕ′
χ(0) exists.

(A3) h → 0 and nFχ(h) → ∞, as n → ∞.

(A4) The kernel functionK is supported on [0, 1] and has a continuous derivative
with K ′(s) ≤ 0, and K(1) > 0.

(A5) For s ∈ [0, 1], lim
h↓0

τhχ(s) = τ0χ(s).

(A1)-(A5) are the standard assumptions inherited from those introduced in
the independent case in the setting of nonparametric functional regression. For
our autoregressive model, additional assumptions (A6)-(A10) below are neces-
sary:

(A6) ∃ p > 2, E(|εi|p|X ) < ∞.

(A7) max(E(|Xi+1Xj+1||Xi,Xj), E(|Xi+1||Xi,Xj)) < ∞ ∀i, j ∈ Z.

(A8) {Xn} is α-mixing process with mixing coefficients α(n) ≤ Cn−a.

(A9) ∃ ν > 0, such that Θ(h) = O(Fχ(h)
1+ν), with a >

(1 + ν)p− 2

ν(p− 2)
,

where p and a are defined in (A6) and (A8) respectively, and

Θ(s) := max{maxi �=jP (d(Xi, χ) ≤ s, d(Xj , χ) ≤ s), F 2
χ(s)}.

(A10) ∃ γ > 0 such that nFχ(h)
1+γ → ∞ and a > max

{
4

γ
,

p

p− 2
+

2(p− 1)

γ(p− 2)

}

where p and a are defined in (A6) and (A8), respectively.

Remark 3.1. Delsol (2009) [6] considered a functional regression model with
functional variables under dependence. (A6)-(A10) are inherited from the ad-
ditional assumptions Delsol made to control the dependence between variables.
These assumptions enable us to obtain asymptotic results of the estimator in
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our autoregressive model, which has a formal resemblance to the analogous re-
gression model. In particular, (A8)-(A10) is a set of conditions on the mixing
coefficients, and (A8) is the so-called arithmetically α-mixing condition which
is typically satisfied in the case of an autoregressive model. From a theoreti-
cal point of view, a more general set of conditions on the mixing coefficients
((H1)-(H2) in Delsol (2009) [6]) is available, see the details therein.

The semi-metric d will act on the asymptotic behavior of the estimator
through ϕχ, Fχ and τhχ, and the following quantities:

M0 = K(1)−
∫ 1

0

(sK(s))′τ0χ(s)ds,

M1 = K(1)−
∫ 1

0

K ′(s)τ0χ(s)ds,

M2 = K2(1)−
∫ 1

0

(K2)′(s)τ0χ(s)ds.

4. Asymptotic study

4.1. Consistency of estimator ψ̂h(χ)

First, we have the following point-wise asymptotic results for the estimator
ψ̂h(χ):

Theorem 4.1. Assume (A1)-(A6), then

E[ψ̂h(χ)]− ψ(χ) = ϕ′
χ(0)

M0

M1
h+O(

1

nFχ(h)
) + o(h), (4.1)

Theorem 4.2. Assume (A1)-(A10), then

V ar(ψ̂h(χ)) =
σ2
ε

M2
1

M2

nFχ(h)
+ o(

1

nFχ(h)
). (4.2)

Theorem 4.1 and 4.2 can be obtained following Lemma 8.1 and 8.2, and
along the similar lines of the proof of Theorem 1 in Ferraty et al. (2007) [10].
See details of the proof in Appendix. Combining 4.1 and 4.2, we immediately
obtain the following corollary:

Corollary 4.1. Assume (A1)-(A10), then

ψ̂h(χ)
p→ ψ(χ). (4.3)

The pointwise asymptotic normality is given in Theorem 4.3 below:

Theorem 4.3. Assume (A1)-(A10), then√
nF̂χ(h)

(
ψ̂h(χ)− ψ(χ)−Bn

) M1√
σ2
εM2

d→ N(0, 1), (4.4)
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where Bn = hϕχ
′(0)M0/M1, and F̂χ(h) is the empirical estimation of Fχ(h) :

F̂χ(h) =
#(i : d(Xi, χ) ≤ h)

n
.

Proof. See Appendix.

The bias term can be ignored under the following additional assumption:

(A11) limn→∞h
√

nFχ(h) = 0.

Corollary 4.2. Assume (A1)-(A11), then√
nFχ(h)

(
ψ̂h(χ)− ψ(χ)

) M1√
σ2
εM2

d→ N(0, 1). (4.5)

4.2. Consistency of estimator Ψ̂h(χ)

Corollary 4.1, together with Eq. (2.6), implies the following componentwise con-
sistency of Ψ̂h:

〈Ψ̂h(χ)−Ψ(χ), ek〉
p→ 0, k = 1, . . . ,∞ (4.6)

However, (4.6) does not guarantee the consistency of the estimator Ψ̂h in
an infinite-dimensional space. A more general consistency result is desired. We
consider the following regularity conditions:

(C1) For each k ≥ 1, ψk is continuous in a neighborhood of χ with respect to
semi-metric d, and Fχ(0) = 0.

(C2) For some β > 0, all 0 ≤ s ≤ β and all k ≥ 1, ϕχ,k(0) = 0, ϕ′
χ,k(s) exists,

and ϕ′
χ,k(s) is Hölder continuous of order 0 < α ≤ 1 at 0, i.e. there exists a

0 < Lk < ∞ such that |ϕ′
χ,k(s) − ϕ′

χ,k(0)| ≤ Lks
α for all 0 ≤ s ≤ β. Moreover,∑∞

k=1 L
2
k < ∞ and

∑∞
k=0 ϕ

′
χ,k(0) < ∞.

(C3) The bandwidth h satisfies h → 0, nFχ(h) → ∞, and (nFχ(h))
1/2h1+α =

o(1).

With additional assumptions on the mixing coefficients and moments, we are
able to prove the following limit result for Ψ̂h(χ).

Theorem 4.4. For some fixed χ ∈ H, assume ∃ δ′ > δ > 0 such that

(i) 2+δ
2+δ′ +

(1−δ)(2+δ)
2 ≤ 1,

(ii) E||Xi −Ψ(χ)||2+δ′ < ∞,

(iii)
∑

n α(n)
δ

2+δ < ∞,

where α(·) is the mixing coefficient of the functional sequence {Xt, t ∈ N}. Also
assume (A4), (C1)-(C3). Then

Ψ̂h(χ) = Ψ(χ)− Bn +Op(
1√

nFχ(h)1+δ
) (4.7)
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where

Bn = h
M0

M1

∞∑
k=1

ϕ′
χ,k(0)ek.

Remark 4.1. To prove Theorem 4.4, we need a functional central limit theorem
for dependent sequence in a triangular array setting such as Theorem 2.3 in
Politis and Romano (1994) [28]. See Appendix for details of the proof. The
assumptions (i)-(iii) show a tradeoff between the moment assumptions and the
mixing conditions. The conditions on mixing coefficients can be less stringent
if higher moments are assumed. The parameter δ′ controls the moment while δ
controls the mixing condition and they can be chosen under the constraint (i),
for example, δ = 0.5 and δ′ = 5.

5. Bootstrap approximation

Ferraty et al. (2010, 2012) [8, 9] have employed both naive and wild bootstrap to
approximate the asymptotic distribution of the kernel estimators for nonpara-
metric functional regressions. Their first result showed the validity of bootstrap
when the explanatory variable is functional and the response is real. To extend
the bootstrap approach to the double functional setting, i.e. when both vari-
ables are functional, they introduced the notion of “componentwise bootstrap”,
in which the idea is to show that the bootstrap approximation has good the-
oretical behaviors when functionals are projected to a fixed basis element ek.
Here we take advantage of the auxiliary univariate model in (2.4), extending
this componentwise bootstrap idea to the functional autoregression.

First, we propose a bootstrap procedure to approximate the distribution of
ψ̂h(χ)− ψ(χ) under the AR model (2.4), which consists of the following steps:

Algorithm 5.1.

1. For i = 1, . . . , n, define ε̂i,b = Xi+1−ψ̂b(Xi), where b is a second smoothing
parameter.

2. Draw n i.i.d. random variables ε∗1, . . . , ε
∗
n from the empirical distribution

of (ε̂1,b − ¯̂εb, . . . , ε̂n,b − ¯̂εb) where ¯̂εb = n−1
∑n

i=1 ε̂i,b.

3. For i = 1, . . . , n− 1, let X∗
i+1 = ψ̂b(Xi) + ε∗i+1.

4. Define

ψ̂∗
hb(χ) =

n−1∑
i=1

X∗
i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (5.1)

Remark 5.1. From a theoretical point of view, the second smoothing parameter
b has to be asymptotically larger than h (see condition (D5)), so over-smoothing
is needed to make the bootstrap procedure work, as is the case in the functional
regression. However, the two bandwidths have to be fixed in practice and a
cross-validation procedure is used to determine the bandwidths in the simulation
study in Section 6.
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Remark 5.2. It is also worth being noted that instead of generating a real
bootstrap sequence, here we are actually generating a scatter plot. Every boot-
strap point X∗

i+1 is generated by the prior true point Xi—see step 3 above—and
the desired estimation in the bootstrap world comes from fitting the pairs (X∗

i+1,
Xi). This is so called regression bootstrap scheme, introduced in Franke et al.
(2002) [12] as one of the three bootstrap schemes proposed for the scalar-valued
nonlinear autoregression. The main reason we use the regression bootstrap
scheme here is in the fact that when conditioning on the sample {X1, . . . ,Xn},
it eliminates the random element in the denominator of ψ̂∗

hb(χ)—see Eq. (5.1)—
which makes the proof of Theorem 5.1 proceed (see details in appendix). The
regression-type bootstrap is considered as an important simplification for the
bootstrap method in autoregression. We refer the readers Neumann and Kreiss
(1998) [24] for its applications in nonparametric autoregressions, and Kreiss and
Lahiri (2012) [21] for its extensions in parametric time series models.

Theorem 5.1. If conditions of Theorem 4.3 hold, as well as assumptions (D1)-
(D7) in Appendix, we have

sup
y∈R

∣∣∣∣P ∗
(√

nFχ(h){ψ̂∗
hb(χ)− ψ̂b(χ)} ≤ y

)

− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)∣∣∣∣ a.s.→ 0,

(5.2)

where P ∗ denotes probability conditioned on the sample {X1, . . . ,Xn}.

Theorem 5.1 shows the validity of the bootstrap procedure for ψ̂h. Then, the
bootstrap procedure for Ψ̂h is proposed as follows:

Algorithm 5.2.

1. For i = 1, . . . , n, define Êi,b = Xi+1−Ψ̂b(Xi), where b is a second smoothing
parameter.

2. Draw n i.i.d. random variables E∗
1 , . . . , E∗

n from the empirical distribution

of (Ê1,b − ¯̂Eb, . . . , Ên,b − ¯̂Eb) where ¯̂Eb = n−1
∑n

i=1 Êi,b.
3. For i = 1, . . . , n− 1, let X ∗

i+1 = Ψ̂b(Xi) + E∗
i+1.

4. Define

Ψ̂∗
hb(χ) =

n−1∑
i=1

X ∗
i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (5.3)

Theorem 5.2. For any η ∈ H with ||η|| = 1 and any bandwidth h and b, let
Ψ̂η,h(χ) = 〈Ψ̂h(χ), η〉, Ψ̂∗

η,hb(χ) = 〈Ψ̂∗
hb(χ), η〉 and Ψη(χ) = 〈Ψ(χ), η〉. If, in

addition to conditions of Theorem 4.3, (D1)-(D7) in Appendix hold, we have
for every χ

sup
y∈R

∣∣∣∣P ∗
(√

nFχ(h){Ψ̂∗
η,hb(χ)− Ψ̂η,b(χ)} ≤ y

)
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− P

(√
nFχ(h){Ψ̂η,h(χ)−Ψη(χ)} ≤ y

)∣∣∣∣ a.s.→ 0,

(5.4)

where P ∗ denotes probability conditioned on the sample {X1, . . . ,Xn}.

Proof. Choosing a basis with e1 = η, this theorem is a direct consequence of
Theorem 5.1.

6. Simulations

In this section, the theoretical results of the previous sections are illustrated
through a simulation study. First we provide the details of the process of simu-
lating a FAR(1) series. We use a linear functional series here since its stationarity
can be guaranteed by existing theories. The performances of the kernel estima-
tion and the behaviors of the bootstrap procedure will be shown through the
experiments performed on the simulated data.

Data Generating Process. The simulated realization of a linear FAR(1) se-
ries has been discussed in Didericksen (2012) [7]. Curves in the series are as-
sumed to be elements of the Hilbert space L2[0, 1]. The linear operator Ψ(X ) =∫ 1

0
ψ(s, t)X (s)ds is acted on the functions Xi’s, thereby the series are generated

according to the model

Xn+1(t) =

∫ 1

0

ψ(t, s)Xn(s)ds+ En+1(t). (6.1)

We use the kernel

ψ(s, t) = C · s1{s ≤ t},

such that (6.1) becomes

Xn+1(t) = C

∫ t

0

sXn(s)ds+ En+1(t), (6.2)

Here, C is a normalizing constant to be chosen such that ||Ψ|| < 1, which ensures
the existence of a stationary causal solution to FAR(1) model; see Bosq (2000)
[4]. We pick C = 3, such that ||Ψ|| = 0.5.

We use the Brownian bridge process as the error process E(t) (see Didericksen
(2012) [7]), which is defined by

E(t) = W (t)− tW (t), (6.3)

where W (·) is the standard Wiener process

W

(
k

K

)
=

1√
K

k∑
j=1

Zj , k = 0, 1, . . . ,K,
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Fig 1. 5 Curves X101,X102, ...,X105 from the sample.

where Zk’s are standard independent normal and Z0 = 0. The interval [0, 1] is
equally partitioned such that 0 = t1 < t2 < · · · < t99 < tp = 1 with p = 100.
We choose the initial curve X1 = cos(t) for t ∈ [0, 1], and build the series
X1, . . . ,X250 according to the following scheme for j = 1, . . . , 100:

X1(tj) = cos(tj),

Xi(tj) = 3

∫ tj

0

sXi−1(s)ds+ Ei(tj), i = 2, . . . , 250.

Figure 1 displays the curves X101,X102, ...,X105. The last panel is the five
curves combined. Out of the 250 curves we generate, the first 200 are used as
the learning sample (i.e. {Xi}i=1,...,200), and the last 50 make up the testing
sample (i.e. {Xi}i=201,...,250). The learning sample allows us to compute the ker-
nel estimator while the testing sample will be accessed to assess the performance
of the estimator and the behavior of bootstrap approximation.

Computing Kernel Estimator. With the simulated data, we use the learning
sample to compute the kernel estimator by Eq. (2.2). The kernel function is cho-
sen to be K(u) = 1.5(1−u2)1[0,1](u), while the bandwidth h is selected through
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Fig 2. Kernel estimations Ψ̂h(χ) (dashed lines); true operator Ψ(χ) (solid lines).

a cross-validation procedure. A projection-based semi-metric is considered:

d(χ1, χ2) =

√√√√ J∑
k=1

〈χ1 − χ2, vk,n〉2,

where vk,n, k = 1, . . . , J are orthonormal eigenfunctions associated with the
largest J eigenvalues of the empirical covariance operator of the learning sample:

C(·) = 1

200

200∑
i=1

〈Xi, ·〉Xi.

Figure 2 compares the kernel estimation (i.e.Ψ̂h(χ)) with the true operator
(i.e.Ψ(χ)) at χ = X201,X202,X203,X204, which shows the quality of the kernel
estimation (the relatively higher volatility of panel 1 and 4 is due to the scaling
difference of y axis).

Bootstrap Approximation. To illustrate Theorem 5.2, we compare, for k =
1, 2, 3, 4, the density function of the componentwise bootstrapped error f∗

k,χ

〈Ψ̂∗
hb(χ)− Ψ̂b(χ), vk,n〉,

with the density function of the component wise true error f true
k,χ

〈Ψ̂h(χ)−Ψ(χ), vk,n〉.
To estimate f∗

k,χ, we use the bootstrap procedure as described in Section 5:
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1. compute Ψ̂b(χ) over the learning sample X1, . . . ,X200,
2. repeat 200 times the bootstrap algorithm introduced in the previous section
to obtain

Ψ̂∗1
hb(χ), . . . , Ψ̂

∗200
hb (χ),

3. estimate the density f∗
k,χ over the 200 values

〈Ψ̂∗1
hb(χ)− Ψ̂b(χ), vk,n〉, . . . , 〈Ψ̂∗200

hb (χ)− Ψ̂b(χ), vk,n〉.

The Monte-Carlo scheme is used to estimate f true
k,χ :

1. build 200 samples {X s
1 , . . . ,X s

200}s=1,...,200,

2. for the sth sample {X s
1 , . . . ,X s

200}, compute Ψ̂s
h to obtain

Ψ̂1
h(χ), . . . , Ψ̂

200
h (χ),

3. estimate the density f true
k,χ over the 200 values

〈Ψ̂1
h(χ)−Ψ(χ), vk,n〉, . . . , 〈Ψ̂200

h (χ)−Ψ(χ), vk,n〉.

The bandwidth h = hCV is selected through a cross-validation procedure
and we set b = h, which was the same setting used in the context of functional
regression in Ferraty et al. (2010) [8]. They have studied the influence of both
bandwidths on the behavior of the bootstrap procedure by varying b and h
around hCV . Their simulation showed the bootstrap works well for any combi-
nation of b and h, which leads to the conclusion that bootstrap results are not
sensitive to the bandwidth choice.

Figure 3 presents the comparisons between the estimated f∗
k,χ and the es-

timated f true
k,χ for the first four components, at the curves χ = X201, . . . ,X205.

The density estimation is performed with Gaussian kernel and the bandwidth
being chosen three times the rule-of-thumb bandwidth estimator (1.06σ̂n−1/5)
where σ̂ is the sample standard deviation.

7. Bootstrap prediction regions

7.1. Construction of bootstrap prediction regions

Politis (2013) [26] constructed bootstrap prediction intervals in regression based
on a bootstrap approximation to the distribution of the error in prediction—also
called a ‘predictive root’. This method was later extended to autoregression by
Pan and Politis (2016) [25] who constructed bootstrap prediction intervals in
the setting of a (univariate) nonparametric autoregression. Given a valid resam-
pling procedure as developed in Section 5, we are able to construct bootstrap
prediction regions in the functional autoregression model in the spirit of Pan
and Politis (2016) [25]. Two bootstrap ideas, forward and backward, were con-
sidered in Pan and Politis (2016) [25] for the construction of prediction intervals
with conditional validity. It is unrealistic, however, to generate the bootstrap
pseudo-data backward in the functional setting. Therefore, we restrict to for-
ward bootstrap scheme in our functional model.
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Fig 3. Solid line: true error, dashed line: bootstrap error.

Algorithm 7.1. Bootstrap with fitted residual

1. Construct the Nadaraya-Watson kernel estimator Ψ̂h(·) by

Ψ̂h(χ) =

n−1∑
i=1

Xi+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (7.1)

2. Compute the fitted residuals: Êi,b = Xi − Ψ̂b(Xi−1) for i = 1, . . . , n − 1,
where b is a second smoothing parameter.

3. Center the residuals: r̂i,b = Êi,b − (n− 1)−1
∑n−1

i=1 Êi,b
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(a) Let the empirical distribution of ri,b be denoted by F̂n, and draw boot-

strap pseudo-residuals E∗
1 , . . . , E∗

n i.i.d. from F̂n.

(b) Use regression bootstrap scheme to generate the pseudo-data:

X ∗
i+1 = Ψ̂b(Xi) + E∗

i+1 for i = 1, . . . , n− 1

(c) Re-estimate Ψ by

Ψ̂∗
hb(χ) =

n−1∑
i=1

X ∗
i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

. (7.2)

(d) Calculate the bootstrap predictor

X̂ ∗
n+1 = Ψ̂∗

hb(Xn)

and the future bootstrap observation

X ∗
n+1 = Ψ̂b(Xn) + E∗

n+1

where E∗
n+1 is also drawn from F̂n.

(e) Compute ||X ∗
n+1 − X̂ ∗

n+1||, where || · || is a norm of the practitioner’s
choice; note that difference choices for the norm will lead to prediction
regions of different shape.

4. Repeat steps (a)-(e) in the above B times. The B bootstrap replicates
||X ∗

n+1−X̂ ∗
n+1|| are collected in the form of an empirical distribution whose

β-quantile is denoted q(β).
5. Finally, the (1 − β)100% bootstrap predictive region for Xn+1 consists of

all χ such that
||χ− Ψ̂h(Xn)|| ≤ q(β).

Analogously to Pan and Politis (2016) [25], we also consider using predictive,
as opposed to fitted, residuals for the bootstrap. We define the predictive resid-

uals as Ê(t)
t,b = Xt − X̂ (t)

t where X̂ (t)
t is calculated from the delete-Xt data set,

i.e. the available data for the scatterplot of Xk vs. Xk−1 over which the fitting
takes place excludes the single point that corresponds to k = t. The forward
bootstrap with predictive residuals is similar to Algorithm 7.1 except for Step
2.

Algorithm 7.2. Bootstrap with predictive residuals

1. Same as step 1 of Algorithm 7.1.
2. Use the delete-Xt dataset to compute the delete-one kernel estimator

Ψ̂
(t)
b (χ) =

n−1∑
i=1,i �=t

Xi+1K(b−1d(Xi, χ))

n−1∑
i=1,i �=t

K(b−1d(Xi, χ))

, for t = 1, . . . , n− 1. (7.3)
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Then compute the predictive residuals: Ê(t)
t,b = Xt − Ψ̂

(t)
b (Xt−1) for t =

1, . . . , n− 1, where b is a second smoothing parameter.

3-5. Replace Êt,b by Ê(t)
t,b in Algorithm 7.1; the remaining steps are the same.

Remark 7.1. Recall that prediction intervals are asymptotically valid (in a
conditional sense) when the probability of coverage of the future value Xn+1

conditional on the observed data X1, . . ., Xn gets close to the nominal one as
n increases. The prediction regions constructed in Algorithm 7.1 and 7.2 would
indeed be asymptotically valid if the predictive root Xn+1−X̂n+1 and the boot-
strap predictive root X ∗

n+1 − X̂ ∗
n+1 have the same distribution asymptotically.

For the predictive root, we have

Xn+1 − X̂n+1 = Ψ(Xn)− Ψ̂h(Xn) + En+1 = A+ En+1,

where En+1 is independent of the estimation error A. Similarly, the bootstrap
predictive root can be written as

X ∗
n+1 − X̂ ∗

n+1 = Ψ̂b(Xn)− Ψ̂∗
hb(Xn) + E∗

n+1 = A∗ + E∗
n+1,

where E∗
n+1 is independent of A∗. Consequently, the prediction regions of Algo-

rithm 7.1 and 7.2 would be asymptotically valid provided that the distribution
of the true errors E1, . . . , En is captured in the limit by the empirical distribution
of the residuals (fitted or predictive).

Corollary 7.1. Assume the conditions of Theorem 4.4 and 5.2 as well as as-

sumptions strong enough to ensure that ||Ê1,b|| d→ ||E1|| as n → ∞ where || · ||
is the norm appearing in Algorithm 7.1 and

d→ denotes convergence in distribu-
tion. Then, the prediction region of Algorithm 7.1 is asymptotically valid. If in

addition ||Ê(1)
1,b ||

d→ ||E1||, then the prediction region of Algorithm 7.2 is asymp-
totically valid as well.

Remark 7.2. The proof of the corollary is immediate since, under the condi-

tions of Theorem 4.4 and 5.2, we have both A
p→ 0 and A∗ p→ 0. Note that the

condition ||Ê1,b|| d→ ||E1|| would follow if F̂n, the empirical distribution of the
residuals, were shown to converge weakly to the distribution of the true errors as
shown e.g. by Franke and Nyarige (2016) [13] in the case of a linear operator Ψ.
However, the importance of Corollary 7.1 is limited: as discussed in Politis (2015)
[27]—asymptotic validity of prediction regions does not tell the whole story since
the variability of estimation—which is asymptotically negligible—does not en-
ter the picture. A prediction region will have good finite sample coverage only
if the method employed is able to capture the variability of estimation error;
that is why Algorithms 7.1 and 7.2 employ the bootstrap for prediction intervals
instead of just relying on the empirical quantiles of F̂n. Indeed, by construction,
our model-based bootstrap procedure is capable of approximating the distribu-
tion of the re-scaled estimation error

√
nFχ(h)A by that of

√
nFχ(h)A

∗ due to
Theorem 5.2. Hence, our bootstrap prediction regions should have good finite
sample coverage which is something that can not be captured by the property
of asymptotic validity.
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As mentioned in the introduction, Aue et al. (2015) [3] proposed a method
of predicting FAR(1) using functional principal component analysis (FPCA). In
addition, they proposed an algorithm for computing the prediction regions to
assess the prediction accuracy. That is the only existing method we could find
on the construction of prediction regions for functional time series. In the next
subsection, we are going to compare it with the algorithm we proposed.

7.2. Monte Carlo studies

In this subsection, we use the Monte Carlo simulations to evaluate the quality
of the bootstrap prediction regions with both fitted and predictive residuals.
Simulations are performed on the model from the previous section; see Eq. (6.2).
500 ‘true’ datasets each with sample size n are generated and n varies from 100
to 400. For the ith true dataset, we use one of the bootstrap methods to create
B = 1000 bootstrap sample paths (step 4 of the algorithms), and construct the
prediction region.

To assess the corresponding coverage level (CV R) of the constructed region,
we also generate 1000 one-step ahead predictions Yn+1,j = Ψ̂i(Xn,i) for j =

1, 2, ...1000 where Ψ̂i is the estimate from the ith ‘true’ dataset, Xn,i is the ith
dataset’s last data and Ej is randomly drawn from the error process (6.3). Then
the empirical coverage level from the ith dataset is given by

CV Ri =
1

1000

1000∑
j=1

1
{
||Yn+1,j − Ψ̂b(Xn)|| < qi(β)

}

where 1(·) is the indicator function and β is the nominal coverage level. The
coverage level for bootstrap methods is calculated by the average {CV Ri} over
the 500 ‘true’ datasets, i.e.

CV R =
1

500

500∑
i=1

CV Ri.

Note that the last observation Xn,i is different for each dataset; hence the cov-
erage CV R represents an unconditional coverage probability.

Prediction regions are constructed with nominal coverage levels of 95% and
90%. Five different norms in the functional space are selected to measure the
proximity between functions. The first three are the common lp norms in the
functional space:

• l1: ||f ||1 =
∫ 1

0
|f(t)|dt

• l2: ||f ||2 = (
∫ 1

0
|f(t)|2dt)1/2

• l∞: ||f ||∞ = supt∈[0,1]|f(t)|.
We also consider two pointwise measures:

• 1st coordinate: ||x− y||coordinate = |x(0)− y(0)|
• 1st component: ||x− y||component = |〈x− y, v1,n〉|
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Table 1

Comparison between empirical coverage rate and nominal coverage rate using (a) fitted
residuals and (b) predictive residuals.

fitted residuals nominal coverage 95% nominal coverage 90%
n 100 200 400 100 200 400
l1 0.956 0.955 0.953 0.914 0.910 0.907
l2 0.956 0.955 0.953 0.914 0.910 0.908
l∞ 0.959 0.957 0.956 0.918 0.913 0.910
1st coordinate 0.953 0.954 0.953 0.907 0.908 0.904
1st component 0.954 0.955 0.955 0.907 0.909 0.908

(a) Fitted residuals

predictive residuals nominal coverage 95% nominal coverage 90%
n 100 200 400 100 200 400
l1 0.957 0.955 0.955 0.913 0.910 0.911
l2 0.957 0.956 0.956 0.914 0.911 0.911
l∞ 0.960 0.959 0.958 0.918 0.915 0.916
1st coordinate 0.956 0.954 0.955 0.911 0.908 0.909
1st component 0.956 0.957 0.956 0.912 0.913 0.910

(b) Predictive residuals

Table 2

Empirical coverage rate compared to the nominal coverage rate 95%.

n 100 200 400
p = 2 0.859 0.923 0.948
p = 3 0.874 0.928 0.945
p = 4 0.881 0.931 0.951

where x and y are functions in L2[0, 1] and e1 is the eigenfunction associated
with the largest eigenvalue of the sample covariance operator. Table 1 presents
the empirical coverage rate of the prediction region we construct. The results are
promising as the empirical coverage rates pretty well match the nominal coverage
rate even with quite small sample size. As expected, when using predictive
residuals, the coverage rate is a bit higher compared to fitted residuals.

For the comparison purpose, we apply the algorithm of Aue et al. (2015)
[3] on the functional data we generate. Table 2 presents the coverage rate of
their constructed prediction region. The value of p represents the number of
components to be kept in the prediction algorithm; see Aue et al. (2015) [3] for
more details. The experiment is also done on three different sample size, 100,
200 and 400. As is shown in the table, their prediction regions fail to achieve the
ideal coverage rate when sample size is small–see the case n = 100–and results
get better when sample size grows. This phenomenon is not surprising, and
explainable. Recall that there are two constituents in the expression of predictive
root Xn+1 − X̂n+1, the estimation error A and the true error E . The bootstrap
predictive root in our algorithm is capable of capturing the distribution of both
errors by A∗ and E∗. However, the method of Aue et al. (2015) [3] does not
attempt to capture the variability of estimation error and thus, as expected,
it yields coverages less than nominal (undercoverage). Coverage rate improves
under larger sample size since the estimation error diminishes as n grows. As
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a conclusion, we can say that the prediction regions constructed through our
bootstrap procedure can achieve better finite sample coverage.

8. Appendix: Proofs

Throughout this section, given some random variable U , PU stands for the
probability measure induced by U . Since the stationarity of the sequence {Xn},
we assume Xi

′s are identically distributed as X . Also, the pairs (Xi+1,Xi) have
the same joint distribution. So are the functions of them. The kernel estimator
ψ̂h will be decomposed as follows:

ψ̂h(χ) =
ĝ1(χ)

f̂(χ)
,

where

ĝ1(χ) =
1

nFχ(h)

n∑
i=1

Xi+1K

(
d(Xi, χ)

h

)

and

f̂(χ) =
1

nFχ(h)

n∑
i=1

K

(
d(Xi, χ)

h

)
.

Similarly, the estimator Ψ̂h can be decomposed as:

Ψ̂h(χ) =
ĝ2(χ)

f̂(χ)
,

where

ĝ2(χ) =
1

nFχ(h)

n∑
i=1

Xi+1K

(
d(Xi, χ)

h

)
.

8.1. Proof of Theorem 4.1, 4.2 and 4.3

To prove these theorems, we need the following lemmas:

Lemma 8.1.

E[f̂(χ)] → K(1)−
∫ 1

0

K ′(s)τ0χ(s)ds = M1, (8.1)

E[ĝ1(χ)] → ψ(χ)

(
K(1)−

∫ 1

0

K ′(s)τ0χ(s)ds

)
= ψ(χ)M1. (8.2)

Proof. For the first assertion, we have

E(f̂(χ)) =
1

Fχ(h)
E

(
K

(
d(X , χ)

h

))
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=
1

Fχ(h)

∫
K(t)dP d(X ,χ)/h(t)

=
1

Fχ(h)

(
K(1)Fχ(h)−

∫ 1

0

K
′
(s)Fχ(hs)ds

)

= K(1)−
∫ 1

0

K
′
(s)

Fχ(hs)

Fχ(h)
ds

→ K(1)−
∫ 1

0

K ′(s)τ0χ(s)ds = M1,

the third line coming from Eq. (14) in Ferraty et al. (2007) [10] and the fifth line
follows from the uniform boundedness of the integrand. The second assertion is
proved as follows:

E(ĝ1(χ)) =
1

Fχ(h)
E

(
Xi+1K

(
d(Xi, χ)

h

))

=
1

Fχ(h)
E

(
E(Xi+1|Xi)K

(
d(Xi, χ)

h

))

=
1

Fχ(h)
E

(
ψ(Xi)K

(
d(Xi, χ)

h

))

=
1

Fχ(h)
E

(
ψ(X )K

(
d(X , χ)

h

))

=
1

Fχ(h)
E

(
(ψ(χ) + o(1))K

(
d(X , χ)

h

))
→ ψ(χ)M1

where the fifth line follows from the continuity of ψ with respect to the semi-
metric d.

Lemma 8.2. Under the assumption (A1)-(A8), we have

V ar(f̂(χ)) =
M2

nFχ(h)
(1 + o(1)), (8.3)

V ar(ĝ1(χ)) = (σ2
ε + ψ2(χ))

M2

nFχ(h)
(1 + o(1)), (8.4)

Cov(f̂(χ), ĝ1(χ)) = ψ(χ)
M2

nFχ(h)
(1 + o(1)). (8.5)

Proof. Since the functional sequence {Xn} is stationary and strong mixing, the n
pairs (Xi, Xi+1)i=1,··· ,n are identically distributed and the sequence (Xi, Xi+1)i
is also strong mixing. Then the results follows directly from Lemma 2.5 in Delsol
(2009) [6].

Proof of Theorem 4.1. For the proof of Eq. (4.1), we write the following decom-
position:

E(ψ̂(χ)) =
E(ĝ1(χ))

E(f̂(χ))
+

A1

(E(f̂(χ)))2
+

A2

(E(f̂(χ)))2
, (8.6)
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with

A1 = E(ĝ1(χ)(E(f̂(χ))− f̂(χ))) (8.7)

and

A2 = E((f̂(χ)− E(f̂(χ)))2ψ̂h(χ)). (8.8)

The last two terms on the right-hand side of Eq. (8.6) are negligible since
we have A1 = O((nFχ(h)

−1)) and A2 = O((nFχ(h)
−1)), both are direct conse-

quences of Lemma 8.1 and 8.2 (see proof of Lemma 7.5 in Raña et al. (2016)
[31]). For the first term on the right-hand side of (8.6), we calculate

E(ĝ1(χ))

E(f̂(χ))
− ψ(χ) =

E
(
(Xi+1 − ψ(χ))K

(
d(Xi,χ)

h

))
E
(
K
(

d(Xi,χ)
h

)) , (8.9)

which follows from the stationarity of the sequence {Xn}. Assume Xi ∼ X for
i = 1, · · · ,∞, then we can write the numerator in (8.9) as follows

E

(
(Xi+1 − ψ(χ))K

(
d(Xi, χ)

h

))
= E

(
(ψ̂(Xi)− ψ(χ))K

(
d(Xi, χ)

h

))

= E

(
(ψ̂(X )− ψ(χ))K

(
d(X , χ)

h

))

= E

(
ϕχ(d(X , χ))K

(
d(X , χ)

h

))

=

∫
ϕχ(t)K(

t

h
)dP d(X ,χ)(t)

=

∫
ϕχ(ht)K(t)dP d(X ,χ)/h(t)

= hϕχ
′(0)

∫
tK(t)dP d(X ,χ)/h(t) + o(h),

here PU stands for the probability measure induced by U , and the last line comes
form the first order Taylor’s expansion for ϕ around 0. For the denominator in
(8.9), we have

E

(
K

(
d(Xi, χ)

h

))
=

∫
K(t)dP d(X ,χ)/h(t).

Consequently,
E(ĝ1(χ))

E(f̂(χ))
− ψ(χ) = hϕχ

′(0)I + o(h), (8.10)

where

I =

∫
tK(t)dP d(X ,χ)/h(t)∫
K(t)dP d(X ,χ)/h(t)

.
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By Lemma 2 in Ferraty et al. (2007) [10], I → M0/M1 as n → +∞. Finally,
combining (8.6) and (8.10), we obtain

E[ψ̂h(χ)]− ψ(χ) = ϕ′
χ(0)

M0

M1
h+O(

1

nFχ(h)
) + o(h),

which completes the proof.

Proof of Theorem 4.2. We use the following decomposition:

V ar(ψ̂h(χ)) =
V ar(ĝ1(χ))

(E(f̂(χ)))2
− 4

E(ĝ1(χ)Cov(ĝ1(χ), f̂(χ)))

(E(f̂(χ)))3

+ 3V ar(f̂(χ))
(E(ĝ1(χ)))

2

(E(f̂(χ)))4
+ o(

1

nFχ(h)
).

(8.11)

Then Theorem 4.2 follows from this decomposition together with Lemma 8.1
and 8.2.

Proof of Theorem 4.3. Since the sequence (Xi, Xi+1)i is stationary and strong
mixing, this theorem is the same as that obtained in Delsol (2009) [6].

8.2. Proof of Theorem 4.4

Proof. Consider the expression√
nFχ(h)1+δ

[
Ψ̂h(χ)−Ψ(χ)− Bn

]
. (8.12)

Following similar arguments as in the proof of Theorem 4.1 in Ferraty et al.
(2012) [9], we have that the above expression has the same asymptotic distri-
bution as√

nFχ(h)1+δ

M1

[
ĝ2(χ)− Eĝ2(χ)− (f̂(χ)− Ef̂(χ))Ψ(χ)

]

=
1

M1

√
nFχ(h)1−δ

n∑
i=1

[
Xi+1K

(
d(Xi, χ)

h

)
− E

{
Ψ(X )K

(
d(X , χ)

h

)}

− Ψ(χ)K

(
d(Xi, χ)

h

)
+Ψ(χ)E

{
K

(
d(X , χ)

h

)}]

=
1√
n

n∑
i=1

(Zn,i − EZn,i),

where for 1 ≤ i ≤ n,

Zn,i =
1

M1

√
Fχ(h)1−δ

[
Xi+1K

(
d(Xi, χ)

h

)
−Ψ(χ)K

(
d(Xi, χ)

h

)]
.
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By assumption (i), we can apply Hölder’s inequality to obtain

E||Zn,i||2+δ

=
1

M2+δ
1 Fχ(h)

(1−δ)(2+δ)
2

E

(
||Xi+1 −Ψ(χ)||2+δ

{
K

(
d(Xi, χ)

h

)}2+δ
)

≤ 1

M2+δ
1 Fχ(h)

(1−δ)(2+δ)
2

(
E||Xi+1 −Ψ(χ)||2+δ′

) 2+δ
2+δ′

×
{
E

[
K

(
d(Xi, χ)

h

)] 2
1−δ

} (1−δ)(2+δ)
2

.

In the above expression,
(
E||Xi+1 −Ψ(χ)||2+δ′

) 2+δ
2+δ′

is finite because of assump-

tion (ii). For the last item, we note that

K
2

1−δ (t) = K
2

1−δ (1)−
∫ 1

t

(K
2

1−δ (s))′ds.

Applying Fubini’s Theorem, we obtain

E

[
K

(
d(Xi, χ)

h

)] 2
1−δ

=

∫ 1

0

K
2

1−δ (t)dP d(X ,χ)/h(t)

= K
2

1−δ (1)Fχ(h)−
∫ 1

0

(∫ 1

t

(K
2

1−δ (s))′ds

)
dP d(X ,χ)/h(t)

= K
2

1−δ (1)Fχ(h)−
∫ 1

0

(K
2

1−δ (s))′Fχ(hs)ds

= Fχ(h)

(
K

2
1−δ (1)−

∫ 1

0

(K
2

1−δ (s))′τhχ(s)ds

)
.

As the factor of Fχ(h) converges to M 2
1−δ

for h → 0 where

M 2
1−δ

= K
2

1−δ (1)−
∫ 1

0

(K
2

1−δ (s))′τ0χ(s)ds

is a constant depending on K(·), the right-hand side is bounded by CFχ(h) for
a suitable C and all small enough h.

Now we have, E||Zn,i||2+δ ≤ C < ∞ for all n. Combining this with assump-
tion (iii), it follows from Theorem 2.3(i) in Politis and Romano (1994) [28] that
1√
n

∑n
i=1(Zn,i −EZn,i) converge weakly to a Gaussian measure with mean 0 in

H. Hence, (8.12) converges weakly to the same measure and

Ψ̂h(χ) = Ψ(χ)− Bn +Op(
1√

nFχ(h)1+δ
). (8.13)
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8.3. Proof of Theorem 5.1

Let us first state some additional assumptions needed:

(D1) For some β > 0, all 0 ≤ s ≤ β and all χ1 in a neighborhood of χ with
respect to the semi-metric d, ϕχ1(0) = 0, ϕ′

χ1
(s) exists, ϕ′

χ1
(0) �= 0, and ϕ′

χ1
(s)

is uniformly Hölder continuous of order 0 < α ≤ 1 at 0, i.e. there exists a
constant 0 < L < ∞ such that

|ϕ′
χ1
(s)− ϕ′

χ1
(0)| ≤ Lsα, for all 0 ≤ s ≤ β,

uniformly in χ1 in a neighborhood of χ.

(D2) For all χ1 ∈ H, Fχ1(0) = 0 and Fχ1(t)/Fχ(t) is Hölder continuous of order
α in χ1, uniformly in t in a neighborhood of 0 (with α defined in (D1)), i.e. for
some β > 0, there exists a constant 0 < M < ∞ such that

|(Fχ1(t)− Fχ2(t))/Fχ(t)| ≤ Md(χ1, χ2)
α, for all χ1, χ2 ∈ H,

uniformly for all 0 < t ≤ β.

(D3) For all χ1 ∈ H and all 0 ≤ s ≤ 1, τ0χ1(s) exists, supχ1∈H, 0≤s≤1|τhχ1(s) −
τ0χ1(s)| = o(1), M0χ > 0, M2χ > 0, infd(χ1,χ)<εM1χ1 > 0 for some ε > 0, and
Mkχ1 is Hölder continuous of order α for k = 0, 1, 2, (with α defined in (D1)),
i.e. for k = 0, 1, 2, there exists a 0 < Nk < ∞ such that

|Mkχ1 −Mkχ2 | ≤ Nkd(χ1, χ2)
α, for all χ1, χ2 ∈ H.

(Here the quantities Mk, k = 0, 1, 2 are indexed with an additional index χ,
which is necessary to the above continuity conditions of Mk as a function of χ.)

(D4) E(|Xi+1||Xi = ·) is continuous in a neighborhood of χ with respect to the
semi-metric d, and supd(χ1,χ)<εE(|Xi+1|m|Xi = χ1) < ∞ for some ε > 0 and all
m ≥ 1.

(D5) b → 0, h/b → 0, h(nFχ(h))
1/2 = O(1), n1/pFχ(h)

1/2log(n) = o(1),
b1+α(nFχ(h))

1/2 = o(1), Fχ(b + h)/Fχ(b) → 1, [Fχ(h)/Fχ(b)]log(n) = o(1),
Fχ(b)

−1h/b = O(1), and bhα−1 = O(1) (with p and α defined in (A6) and (D1),
respectively).

(D6) For each n, there exist rn ≥ 1, ln > 0 and curves t1n, . . . , trnn such that
B(χ, h) ⊂ ∪rn

k=1B(tkn, ln), with rn = O(nb/h) and ln = o(b(nFχ(h))
−1/2), where

B(χ, t) = {χ ∈ H : d(χ1, χ) ≤ t} is the ball in H with center χ and radius t.

(D7) a > 4.5 (with a defined in (A8)).

Note that (D1)-(D3) are regularity conditions related to the smoothness of the
functions ψ, ϕχ, Fχ and τ0χ, which have been used in the context of bootstrap
in functional regression. Assumption (D7), along with n1/pFχ(h)

1/2log(n) =
o(1) and Fχ(b)

−1h/b = O(1) in (D5) are additional assumptions made in the
dependent case in Raña et al. (2016) [31] which facilitates the proof of Lemma
8.4. See more details on these assumptions in Ferraty et al. (2007) [10], (2010)
[8].



Kernel estimates of nonparametric functional autoregression 2901

Proof. The expression between the absolute values of (5.2) can be decomposed
as

P ∗
(√

nFχ(h){ψ̂∗
hb(χ)− ψ̂b(χ)} ≤ y

)
− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)
= T1(y) + T2(y) + T3(y)

where

T1(y) = P ∗
(√

nFχ(h){ψ̂∗
hb(χ)− ψ̂b(χ)} ≤ y

)

− Φ

⎛
⎝y −

√
nFχ(h){E∗ψ̂∗

hb(χ)− ψ̂b(χ)}√
nFχ(h)var∗(ψ̂∗

hb(χ))

⎞
⎠ ,

T2(y) = Φ

⎛
⎝y −

√
nFχ(h){E∗ψ̂∗

hb(χ)− ψ̂b(χ)}√
nFχ(h)var∗(ψ̂∗

hb(χ))

⎞
⎠

− Φ

⎛
⎝y −

√
nFχ(h){Eψ̂h(χ)− ψ(χ)}√
nFχ(h)var(ψ̂h(χ))

⎞
⎠

and

T3(y) = Φ

⎛
⎝y −

√
nFχ(h){Eψ̂h(χ)− ψ(χ)}√
nFχ(h)var(ψ̂h(χ))

⎞
⎠

− P

(√
nFχ(h){ψ̂h(χ)− ψ(χ)} ≤ y

)
.

By the asymptotic normality of ψ̂h given in Theorem 4.3, we have T3(y) → 0.

The a.s. convergence to 0 of T1(y) is given by the asymptotic normality of ψ̂∗
hb

conditioning on Xi, i = 1, ..., n, which is proved below.
We decompose ψ̂∗

hb as follows

ψ̂∗
hb(χ) =

n−1∑
i=1

X∗
i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

=
ĝ∗(χ)

f̂(χ)
,

where

ĝ∗(χ) =
1

nFχ(h)

n−1∑
i=1

X∗
i+1K(h−1d(Xi, χ)),

f̂(χ) =
1

nFχ(h)

n−1∑
i=1

K(h−1d(Xi, χ)).
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Then we have

ĝ∗(χ) =
1

nFχ(h)

n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ)),

E∗(ĝ∗(χ)) =
1

nFχ(h)

n−1∑
i=1

(ψ̂b(Xi) + E∗ε∗i+1)K(h−1d(Xi, χ)).

Therefore,

ψ̂∗
hb(χ)− E∗(ψ̂∗

hb(χ))√
var∗(ψ̂∗

hb(χ))
=

ĝ∗(χ)

f̂(χ)
− E∗( ĝ

∗(χ)

f̂(χ)
)√

var∗( ĝ
∗(χ)

f̂(χ)
)

=
ĝ∗(χ)− E∗(ĝ∗(χ))√

var∗(ĝ∗(χ))

=
ĥ∗(χ)− E∗(ĥ∗(χ))√

var∗(ĥ∗(χ))

where

ĥ∗(χ) =
1

nFχ(h)

n−1∑
i=1

ε∗i+1K(h−1d(Xi, χ)).

ĥ∗(χ) is a sum of a mixing sequence and its asymptotic normality follows from
the similar arguments in the proof of Theorem 3 in Delsol (2009) [6].

A special case is when K(·) = 1[0,1](·), under which

ĥ∗(χ) =
1

#{i : d(Xi, χ) ≤ h}
∑

i:d(Xi,χ)≤h

ε∗i+1,

so that ĥ∗(χ) is a sum of independent random variable given Xi, i = 1, . . . , n.
and the asymptotic normality follows directly.

It remains to consider T2(y), and its a.s convergence to 0 follows from Lemma
8.3 and 8.4 that follow:

Lemma 8.3. Assume (A1), (A4) and (D1)-(D5). Then

var∗[ψ̂∗
hb(χ)]

var[ψ̂h(χ)]
→ 1 a.s.

Proof. Define σ̂2
ε = n−1

∑n
i=1(ε̂i,b − ¯̂εb)

2. Then

var∗[ψ̂∗
hb(χ)] = var∗

⎡
⎢⎢⎣

n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

⎤
⎥⎥⎦
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= var∗

⎡
⎢⎢⎣

n−1∑
i=1

ε∗i+1K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

⎤
⎥⎥⎦

=

n−1∑
i=1

K2(h−1d(Xi, χ))var
∗(ε∗i+1)(

n−1∑
i=1

K(h−1d(Xi, χ))

)2

=
σ̂2
ε

f̂(χ)2
(nFχ(h))

−2
n−1∑
i=1

K2(h−1d(Xi, χ))

=
σ2
ε

E[f̂(χ)]2
(nF 2

χ(h))
−1 · E[K2(h−1d(Xi, χ))] · (1 + o(1))

=
σ2
ε

M2
1

M2

nFχ(h)
(1 + o(1))

= var[ψ̂h(χ)] + o((nFχ(h))
−1).

Since var[ψ̂h(χ)] = O((nFχ(h))
−1) by Theorem 4.2, the result follows by divid-

ing var[ψ̂h(χ)] on both sides.

Lemma 8.4. Assume (A1)-(A11) and (D1)-(D7). Then√
nFχ(h){E∗[ψ̂∗

hb(χ)]− ψ̂b(χ)− E[ψ̂h(χ)] + ψ(χ)} a.s.→ 0.

Proof. Write

E∗[ψ̂∗
hb(χ)]− ψ̂b(χ)

= E∗

⎡
⎢⎢⎣

n−1∑
i=1

(ψ̂b(Xi) + ε∗i+1)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

⎤
⎥⎥⎦− ψ̂b(χ)

=

n−1∑
i=1

ψ̂b(Xi)K(h−1d(Xi, χ))

n−1∑
i=1

K(h−1d(Xi, χ))

− ψ̂b(χ)

=
(nFχ(h))

−1

f̂h(χ)

n−1∑
i=1

{ψ̂b(Xi)− ψ̂b(χ)}K(h−1d(Xi, χ))

=
(nFχ(h))

−1

f̂h(χ)

n−1∑
i=1

{ψ̂b(Xi)− ψ̂b(χ)− E[ψ̂b(Xi)] + E[ψ̂b(χ)]}K(h−1d(Xi, χ))

+
(nFχ(h))

−1

f̂h(χ)

n−1∑
i=1

{E[ψ̂b(Xi)]− E[ψ̂b(χ)]− ψ(Xi) + ψ(χ)}K(h−1d(Xi, χ))
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+
(nFχ(h))

−1

f̂h(χ)

n−1∑
i=1

{ψ(Xi)− ψ(χ)}K(h−1d(Xi, χ))

= U1 + U2 + U3

Using our Lemma 8.2 instead of Theorem 1 in Ferraty et al. (2007) [10], we can
follow the lines of the proof of Lemma 5 in Ferraty et al. (2010) [8] to obtain U1 =
o((nFχ(h))

−1/2) a.s. We can also obtain U2 = o((nFχ(h))
−1/2) a.s. by following

the lines of the proof of (8.11) in Raña et al. (2016) [31], which is the extension
of the Lemma 6 in Ferraty et al. (2010) [8] to the dependent data case. Finally,

it is easy to see from Theorem 4.3 that U3 = E[ψ̂h(χ)]−ψ(χ)+o((nFχ(h))
−1/2),

which completes the proof of the lemma.
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