
Electronic Journal of Statistics
Vol. 11 (2017) 2707–2740
ISSN: 1935-7524
DOI: 10.1214/17-EJS1299

Asymptotic properties of

quasi-maximum likelihood estimators in

observation-driven time series models∗

Randal Douc

Department CITI, CNRS UMR 5157, Telecom Sudparis
Evry, France

e-mail: randal.douc@telecom-sudparis.eu

Konstantinos Fokianos

Department of Mathematics & Statistics, University of Cyprus
PO BOX 20537, Nicosia, Cyprus

e-mail: fokianos@ucy.ac.cy

and

Eric Moulines

Department LTCI, CNRS UMR 5141, Telecom Paristech
Paris, France

e-mail: eric.moulines@polytechnique.edu

Abstract: We study a general class of quasi-maximum likelihood estima-
tors for observation-driven time series models. Our main focus is on models
related to the exponential family of distributions like Poisson based models
for count time series or duration models. However, the proposed approach
is more general and covers a variety of time series models including the
ordinary GARCH model which has been studied extensively in the liter-
ature. We provide general conditions under which quasi-maximum likeli-
hood estimators can be analyzed for this class of time series models and
we prove that these estimators are consistent and asymptotically normally
distributed regardless of the true data generating process. We illustrate
our results using classical examples of quasi-maximum likelihood estima-
tion including standard GARCH models, duration models, Poisson type
autoregressions and ARMA models with GARCH errors. Our contribution
unifies the existing theory and gives conditions for proving consistency and
asymptotic normality in a variety of situations.

MSC 2010 subject classifications: Primary 62M10, 60J05; secondary
62M05.

Keywords and phrases: Asymptotic normality, consistency, count time
series, duration models, GARCHmodels, Kullback-Leibler divergence, max-
imum likelihood, stationarity.

Received April 2016.

∗We would like to thank the Editor, Associate Editor and a reviewer for several useful
comments.

2707

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1299
mailto:randal.douc@telecom-sudparis.eu
mailto:fokianos@ucy.ac.cy
mailto:eric.moulines@polytechnique.edu 


2708 R. Douc et al.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708
2 Examples of observation-driven models . . . . . . . . . . . . . . . . . 2710
3 General misspecified models . . . . . . . . . . . . . . . . . . . . . . . 2715
4 Quasi-maximum likelihood estimation . . . . . . . . . . . . . . . . . 2722

4.1 Consistency of the QMLE . . . . . . . . . . . . . . . . . . . . . 2722
4.2 Asymptotic normality of the QMLE for simplified

observation-driven models . . . . . . . . . . . . . . . . . . . . . 2727
4.3 Asymptotic normality of the QMLE for general

observation-driven models . . . . . . . . . . . . . . . . . . . . . 2729
5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731
6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732
A Consistency of max-estimators using stationary approximations . . . 2733
B Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734
C Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2737

1. Introduction

The aim of this work is to offer a systematic and unified way of studying quasi-
maximum likelihood inference for a large class of time series models which are
called observation-driven models. The terminology was introduced by [9] to sig-
nify their main ingredient; the evolution of the observations relies on a hidden
process which in turn is driven by some model based dynamics. Observation-
driven models can be employed for modeling various types of data including
high-frequency financial tick data, epidemiological data, environmental and cli-
mate data, to mention only a few of their applications. Their wide applicability
is based on the fact that they can accommodate various dependence struc-
tures met in practice. Some well-known examples are the GARCH models [6],
ARMA-GARCH models (for more see [21] and [42] and the references therein)
and duration models. Furthermore, count time series and binary time series
models have close connections with the aforementioned models and they are
actually covered by the framework we study, see [17].

The success of the observation-driven models stems from the fact that they
are based on generalized linear methodology, see [35] and [30]. The combination
of likelihood based inference and generalized linear models provide a systematic
framework for the analysis of quantitative as well as qualitative time series
data. Indeed, estimation, goodness of fit tests, diagnostics and prediction are
implemented in a straightforward manner because computations can be carried
out using a number of existing software packages. Furthermore, both positive
and negative association can be taken into account by a suitable choice of model
parametrization.

Observation-driven models are defined as follows. Suppose that (X, dX) and
(Y, dY) are two Polish spaces equipped with their Borel sigma-fields X and Y .
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Let (Θ, dΘ) and (Φ, dΦ) be two compact metric spaces. Consider {Qφ , φ ∈ Φ} a
family of Markov kernels on (X×Y)×Y indexed by φ ∈ Φ. Assume in addition
that for all (φ, x, y) ∈ Φ × X × Y, Qφ(x, y; ·) is dominated by some σ-finite
measure μ on (Y,Y) and denote by qφ(x, y; ·) its Radon-Nikodym derivative,
that is

qφ(x, y; y′) =
dQφ(x, y; ·)

dμ
(y′) .

Assume further that
{
(x, y, y′) �→ fθ

y,y′(x) : θ ∈ Θ
}

is a family of measurable

functions from (X × Y2,X ⊗ Y⊗2) to (X,X ). We denote by (Y0, . . . , Yn) the
observed data and we define observation-driven models as follows:

Definition 1.1 (Generalized Observation-Driven model). We say that the pro-
cess {(Xt, Yt) , t ∈ N} on ((X× Y)N, (X ⊗Y)⊗N) is a (generalized) observation-
driven time series model if for all A ∈ Y ,

P
θ
[
Yt ∈ A

∣∣ Ft−1

]
= Qϕ(θ)(Xt−1, Yt−1;A) =

∫
A

qϕ(θ)(Xt−1, Yt−1; y)μ(dy) ,

Xt = fθ
Yt−1:t

(Xt−1) , (1.1)

where Ft = σ(Y0:t, X0:t), ys:t = (ys, . . . , yt) for s ≤ t, and ϕ : Θ → Φ is a
measurable function from Θ to Φ.

The dependence graph between the various random variables, appearing in
equation (1.1), is illustrated in Figure 1. It can be noted that the response Yt

depends on Yt−1 and Xt−1 through the kernel Qϕ(θ).

Fig 1. The dependence graph of a generalized observation-driven model.

Theoretical study of the properties of these models has been given a great
deal of attention in the literature. It is beyond our intention to give a systematic
review in this direction. Our primary aim is to study the properties of the
Quasi Maximum Likelihood Estimators (QMLE) for estimating the unknown
parameter θ. The QMLE is a standard methodology for inference in the class
of models introduced by (1.1). Indeed, as described below, Example 2.1 refers
to the standard GARCH(1,1) model which is routinely fitted by employing a
Gaussian likelihood regardless of the assumed error distributions. Several other
examples will be discussed throughout this work, including ARMA-GARCH
examples; see Example 2.5.
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As a remark, we note that the idea of quasi-likelihood inference was originated
by [43] in the context of generalized linear models for independent data, and
it was further developed in [30]. It should be noted that the quasi-likelihood is
a special case of the methodology of estimating functions; see for example the
texts by [23] and [25]. This contribution offers verifiable conditions for obtaining
consistent and asymptotically normally distributed quasi-maximum likelihood
based estimators for the parameter vector (1.1) even in the case where the kernel
Q is misspecified. More precisely, our main results are the following:

• Theorems 3.1 and 4.1 which show strong consistency of the QMLE. In
particular, assumption (A5) is instrumental on showing the general con-
sistency result toward a set of a parameters given by Theorem 3.1. This
fact implies (see Theorem 4.1) the classical strong consistency result to-
ward the “true parameter”. The main assumption (A5) is verified for
several classes of models.

• Theorems 4.2 and 4.3 show asymptotic normality of QMLE; the corre-
sponding assumptions are quite natural and have been extensively used in
this context. Once again, assumption (A5) is fundamental for linking the
martingale methodology to the Taylor expansion of the log-likelihood.

The paper is organized as follows: Section 2 discusses examples of observation-
driven models and shows their wide applicability. Section 3 sets up the general
notation that is used throughout this work and discusses convergence of the
QMLE under model misspecification. Section 4 shows that the asymptotic dis-
tribution of the QMLE is normal and discusses conditions under which this fact
holds true. All results are applied to the examples of observation-driven mod-
els presented in Section 2. Section 5 gives an empirical illustration while the
Appendices contain the proofs of our results.

2. Examples of observation-driven models

In classical state-space models, also referred as parameter-driven models, the
observations {Yt , t ∈ N} are modelled hierarchically given a hidden process
{Xt , t ∈ N} which has its own (most often Markovian) dynamic structure, see
[28] or [12], for instance. In the Bayesian setting, the process {Xt , t ∈ N} may
be thought as the dynamical parameter and the distribution of observations is
specified conditionally on this parameter. Well-known examples include linear
state-space models [28], [44], or hidden Markov models.

Suppose that {Yt , t ∈ N} denotes the observed time series and let {Xt , t ∈
N} be an unobserved process. The dichotomy between observation-driven models
and parameter-driven models was suggested by [9] who classified these processes
according to whether their dynamics are driven by the observed data themselves
or by an unobserved process (see also [10]); parameter-driven models are dis-
cussed in [44], or [28] and [12] for instance. The generalized observation-driven
model, introduced by Definition 1.1, is linked now to several standard examples
by identifying suitably the observations and the corresponding latent process.
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Example 2.1. Recall the standard GARCH model ([6])

Yt = σt−1εt , σ2
t = d+ aσ2

t−1 + bY 2
t , (2.1)

where b > 0 and {εt , t ∈ N
∗} is a sequence of i.i.d. standard normal random

variables. In this example, the latent process Xt is the volatility process σ2
t and

the conditional distribution of Yt given Y0, . . . , Yt−1, X0 is Gaussian with zero
mean and time changing variance Xt. The latent process {Xt , t ∈ N} can be
recovered by back substitution of the second equation of (2.1):

Xt = σ2
t = d

1− at

1− a
+ atX0 + b

t−1∑
i=0

aiY 2
t−i ,

for some starting value X0. The last display shows that the hidden volatility
process is determined by the initial value X0 and the past observations; this is
precisely the reason why model (2.1) belongs to the class of observation-driven
models.

There are several challenging problems associated with the model specification
(2.1). In this paper, we will give conditions for obtaining asymptotically normally
distributed maximum likelihood based estimators for the parameter vector (d, a, b)
when the distribution of {εt , t ∈ N} is misspecified. For GARCH models, such
questions have been addressed by numerous authors including [29], [4], [20], [26],
[33], [2], among others. The general framework developed is based on a different
point of view which unifies these works.

The model of Example 2.1 can be extended further by replacing the second
equation of (2.1) by a non-linear model, such as σ2

t = fθ
Yt
(σ2

t−1). Again by
repeated substitution, we can express Xt as a function of X0 and Y0, . . . , Yt−1,
that is Xt = σ2

t = fθ
Yt

◦ · · · ◦ fθ
Y0
(σ2

0). Smooth transition autoregressive models,
such as σ2

t = f(σ2
t−1) + h(Yt) (see [41] and [42]), are examples of non-linear

specification of the volatility process.
Considering (2.1), the conditional density of Yt given Xt−1 = x is given by

y �→ q(x, y) = 1√
x
g(y/

√
x) where g is the density of εt. Then Xt = σ2

t is updated

according to σ2
t = fθ

Yt
(σ2

t−1) where

fθ
y (x) = d+ ax+ by2 , θ = (d, a, b) .

More generally, let us define the simplified observation-driven model as fol-
lows.

Definition 2.1 (Simplified Observation-Driven model). We say that the process
{(Xt, Yt) , t ∈ N} on ((X× Y)N, (X ⊗Y)⊗N) is a (simplified) observation-driven
time series model if for all A ∈ Y ,

P
[
Yt ∈ A

∣∣ Ft−1

]
= Q(Xt−1, A) =

∫
A

q(Xt−1, y)μ(dy) ,

Xt = fθ
Yt
(Xt−1) , (2.2)
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where Ft = σ(Y0:t, X0:t}, ys:t = (ys, . . . , yt) for s ≤ t. Recall that Q is a Markov
kernel defined on X × Y and dominated by some measure μ on (Y,Y) with
associated transition density q(x, y) = dQ(x, ·)/dμ(y) and (x, y) �→ fθ

y (x) is a
measurable function from X× Y to X, which is parameterized by θ ∈ Θ.

Remark 2.1. Shifting the time index of the observations by setting Zt = Yt−1

for t ≥ 1, we obtain

P
[
Zt ∈ A

∣∣ σ(X0:t, Z0:t−1)
]
= Q(Xt, A) =

∫
A

q(Xt, y)μ(dy) ,

Xt+1 = fθ
Zt
(Xt) .

This expression of the transition among variables corresponds to the classical
conventions used in the existing time series literature. Nevertheless, the advan-
tage of shifting the time index in (2.2) is that Definition 2.1 clearly generalizes
to Definition 1.1, which covers many examples used in practice.

Example 2.2. A popular class of models that describe time intervals between
consecutive observations is that of duration models, see [14]. These models have
been found quite useful in financial applications; in particular they have been ap-
plied to the analysis and modeling of duration dynamics between trades, as they
fit adequately with intraday market activity, see [24], for instance. To be spe-
cific, suppose that Yt denotes the duration between two consecutive observations.
Then, a duration model is specified by

Yt = ψt−1εt , ψt = d+ aψt−1 + bYt , (2.3)

where b > 0 and {εt , t ∈ N
∗} is a sequence of i.i.d. nonnegative random

variables with mean one. Various models fall within the above framework. For
specifying the distribution of εt’s, we can employ the exponential distribution
with mean one, or alternatively, the Gamma distribution, suitably rescaled to
have mean one. Note that model (2.3) is similar to the GARCH models discussed
in Example 2.1. The unobserved process Xt is given by ψt which is equal to the
conditional mean of Yt given its past. This is quite analogous to GARCH(1,1)
where the volatility σ2

t is the expected value of Y 2
t given its past. The recursion

(2.3) can be rewritten as an observation-driven transition (2.2) by setting Xt =
ψt and

q(x, y) =
1

x
g(y/x) , fθ

y (x) = d+ ax+ by ,

where g is the density of εt and θ = (d, a, b).
For estimating the parameter vector θ, [13] has suggested the use of QMLE by

assuming that {εt , t ∈ N} is a sequence of i.i.d. exponential random variables
with mean one. This work includes this specification and gives conditions for
obtaining asymptotically normally distributed estimators in the case of model
(2.3).

Example 2.3. Assume that we observe a binary time series {Yt , t ∈ N
∗}.

Let λt = ln(pt/(1 − pt)) where pt = P(Yt+1 = 1 | Ft) and let us consider the
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following observation-driven model

Yt = 1{Ut ≤ pt−1} , λt = d+ aλt−1 + bYt , (2.4)

where b > 0, 1{·} is the indicator function and {Ut , t ∈ N
∗} is a sequence of

i.i.d. standard uniform random variables. (2.4) introduces an observation-driven
model for binary time series where the hidden process Xt is equal to λt; see [38],
[34]. Recall that for a Bernoulli random variable with success probability p the
canonical link is given by the inverse logistic cdf, that is ln p/(1−p). The logistic
model has been widely used in numerous applications. An alternative model is
given by the probit link which is defined by means of πt = Φ−1(pt), where Φ(·) is
the cdf of the standard normal random variable. For the complete specification
of the probit model, we replace λt by πt in the second equation of (2.4); see [46],
[39] and [27] among others. More generally, we can consider observation-driven
models for binary time series by letting Xt = F−1(pt), where F (·) is the cdf of
continuous random variable.

Example 2.4. Several models have been proposed for the analysis of count time
series; see [40], [10], [16], [18] and [19], among others. The linear model for the
analysis of count time series is based on the specification

Yt = Nt(λt−1) , λt = d+ aλt−1 + bYt , (2.5)

where b > 0, {Nt , t ∈ N
∗} is an i.i.d. sequence of Poisson processes with rate

one and {λt , t ∈ N
∗} denotes a mean process. In other words, Yt is equal to

the number of events, say Nt(λt−1), of Nt(·) in the time interval [0, λt−1]. Ob-
viously, the hidden process Xt is equal to λt which, in turn, is related linearly
to its past values and Yt−1. It turns out that model (2.5) cannot accommodate
negative correlation among consecutive observations and, perhaps more impor-
tantly, cannot include time-dependent covariates in a straightforward manner.
Based on these issues, [19] suggested a log-linear model of the form

Yt = Nt(exp(νt−1)) , νt = d+ aνt−1 + b ln(1 + Yt) . (2.6)

The transformation of the observed process Yt to the process ln(1 + Yt) avoids
the issue of zeroes in the data. Note that for this example, the hidden process Xt

is νt which is equal to lnλt, in virtue of (2.5). This is an example of a canoni-
cal link model because the canonical parameter of the Poisson distribution with
mean λ is ν = lnλ. Regardless of which model is applied for data analysis, the
same remarks made in Example 2.1 are true. In this case we will need to ex-
amine the behavior of Maximum Likelihood Estimator (MLE) when the Poisson
assumption is not necessarily true for both of the above models. More generally,
[8] suggest the use of mixed Poisson models for modeling count time series data,
that is (2.5) is replaced by

Yt = Nt(Ztλt−1) , λt = d+ aλt−1 + bYt , (2.7)

where the notation is as before. The sequence {Zt , t ∈ N
∗} consists of i.i.d.

positive random variables with mean one and it is assumed to be independent of
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{Nt , t ∈ N
∗}. Similarly, we can define a log-linear model following (2.6); details

are omitted. For the case of a mixed Poisson process, a likelihood function is not
available in general, except for some special cases. For instance, we can obtain
a negative binomial distributed time series when the sequence {Zt , t ∈ N

∗} con-
sists of i.i.d. Gamma random variables with mean one. However, in general it
is not possible to obtain a closed-form expression of the likelihood function. The
QMLE approach resolves elegantly this problem by utilizing suitably mean and
variance specifications; for more see [35] and [30] in the context of generalized
linear models.

The next model we discuss is not a simplified observation-driven model but it
can still be covered by our work; in fact this model is a generalized observation-
driven time series; see Section 3, for more.

Example 2.5. An AR(1) model with GARCH(1,1) errors (see [20], for in-
stance) is specified by the following equations

Yt = αYt−1 + εt , εt = σt−1ηt , σ2
t = d+ aσ2

t−1 + bε2t , (2.8)

where {ηt , t ∈ Z} is an i.i.d. sequence of standard normal random variables.
As in the preceding example, the hidden process Xt = σ2

t is a function of the
initial value σ2

0 and the past observations

σ2
t = d

1− at

1− a
+ atσ2

0 + b

t−1∑
i=0

ai
(
Yt−i − αYt−i−1

)2

,

for some initial value σ2
0; thus (2.8) belongs to the general class of observation-

driven models. The notable difference between (2.1) and (2.8) is that for the
former, the distribution of Yt given σ2

t does not depend on any additional pa-
rameters other than those appearing in the specification of the GARCH model.
In contrast, for model (2.8), the distribution of Yt given σ2

t and Yt−1 depends on
the parameter α through the mean of the assumed Gaussian error distribution.
More generally (see [32] among others) consider the following class of models

Yt = m(Yt−1;α) + εt , εt = σt−1ηt , σ2
t = fλ

Yt−1:t
(σ2

t−1) , (2.9)

where m(Yt−1;α) represents the conditional mean (which depends on an un-
known parameter α) and the volatility process is modeled by a non-linear model
as discussed above. In this example, the complete model depends on the unknown
parameter vector θ = (α, λ), whereas the distribution of Yt given σ2

t and Yt−1

depends only on the parameter φ(θ) = α. Remarks made for (2.8) still hold for
the case of (2.9). This contribution covers also this class of observation-driven
models (recall Definition 1.1) and examines the consequences of misspecifying
the likelihood function.

The above presentation shows the wide applicability of observation-driven
models in various scientific fields. Notably, these models can take into account
both qualitative and quantitative data in a unified manner. We proceed to study
the asymptotic behavior of the QMLE in the next section.
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3. General misspecified models

Two models are under consideration in this work: the generalized and the simpli-
fied observation-driven time series (see Definitions 1.1 and 2.1, respectively). The
dependence graph between the various random variables that appear in these
definitions are shown in Figure 2. The case of the simplified model is obviously
a particular case of the general model. However, we specify the assumptions
required for studying the QMLE in the simplified models framework to avoid
confusions and to compare our results with those obtained in the literature.

Fig 2. Simplified observation-driven model (left) and general observation-driven model
(right).

Example 2.5 (Continued). An example of generalized observation-driven
time series model is given by the AR(1)-GARCH model (and its respective non-
linear counterpart of (2.9)) discussed in Example 2.5. The conditional distri-
bution of the response Yt for both cases –for this example it can be assumed
to be Gaussian– depends on the autoregressive parameter α and on the hidden
process σ2

t . For the model described in (2.8), it can be easily checked that (1.1)
is satisfied with Xt = σ2

t and

qα(x, y0; y1) =
1√
x
g

(
y1 − αy0√

x

)
, fθ

y0:1
(x) = d+ ax + b(y1 − αy0)

2, (3.1)

where g(·) is the density of εt and θ = (α, d, a, b).

For a generalized observation-driven model, the distribution of (Y1, . . . , Yn)
given X0 = x and Y0 = y0 has a density with respect to the product measure
μ⊗n. It is given by

y1:n �→
n∏

t=1

qϕ(θ)(fθ〈y0:t−1〉(x), yt−1; yt) , (3.2)

where we have set for all t ≥ 1 and all y0:t ∈ Yt+1,

fθ〈y0:t〉 = fθ
yt−1:t

◦ fθ
yt−2:t−1

◦ · · · ◦ fθ
y0:1

,

with the convention fθ〈y0〉(x) = x. Note that for all t ≥ 0, Xt is a deterministic
function of Y0:t and X0, i.e.,

Xt = fθ〈Y0:t〉(X0) = fθ
Yt−1:t

◦ fθ
Yt−2:t−1

◦ · · · ◦ fθ
Y0:1

(X0) . (3.3)
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Now, fix a point x of X. In this section, we focus on the asymptotic properties of
θ̂n,x, the conditional Maximum Likelihood Estimator (MLE) of the parameter θ
based on the observations (Y0, . . . , Yn) and associated to the parametric family
of likelihood functions given in (3.2). In other words, we consider

θ̂n,x ∈ argmaxθ∈ΘL
θ
n,x〈Y0:n〉 , (3.4)

where

Lθn,x〈y0:n〉 := n−1 ln

(
n∏

t=1

qϕ(θ)(fθ〈y0:t−1〉(x), yt−1; yt)

)
. (3.5)

We are especially interested in the case of misspecified models. To be pre-
cise, we do not assume that the distribution of the observations belongs to the
set of distributions where the maximization occurs. In particular, the sequence
{Yt , t ∈ Z} does not necessarily correspond to the observation process associ-
ated to the recursion (3.3), see [3], [22] and [15]. However, regardless the true
data generating process, Theorem 3.1 below shows that the MLE converges to
the set of values that minimize the Kullback-Leibler distance between the im-
posed model and the true model. Before stating the results, some assumptions
are needed.

(A1) {Yt, t ∈ Z} is a strict-sense stationary and ergodic stochastic process.

Under (A1), we denote by P the distribution of {Yt, t ∈ Z} on (YZ,YZ) and by
E the corresponding expectation.

(A2) The functions (x, θ) �→ qϕ(θ)(x, y; y′) where (y, y′) ∈ Y2 are fixed and θ �→
fθ
y,y′(x) where (x, y, y′) ∈ X× Y2 are fixed, are continuous.

(A3) There exists a family of P-a.s. finite random variables

{
fθ〈Y−∞:t〉 : (θ, t) ∈ Θ× Z

}
such that for all x ∈ X,

(i) the following limit holds P-a.s.,

lim
m→∞

sup
θ∈Θ

dX(f
θ〈Y−m:0〉(x), fθ〈Y−∞:0〉) = 0 ,

(ii) the following limit holds P-a.s.,

lim
t→∞

sup
θ∈Θ

|Δθ(fθ〈Y1:t−1〉(x), fθ〈Y−∞:t−1〉, Yt−1, Yt)| = 0 ,

where Δθ(x, x′, y, y′) = ln qϕ(θ)(x, y; y′)− ln qϕ(θ)(x′, y; y′).

(iii) E

[
sup
θ∈Θ

(
ln qϕ(θ)(fθ〈Y−∞:−1〉, Y−1;Y0)

)
+

]
< ∞ .
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For all (θ, t) ∈ Θ× N, we set the following notation:

̄θ〈Y−∞:t〉 := ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt−1;Yt) . (3.6)

The above assumptions are standard and they are introduced here for fa-
cilitating the proof of consistency. Note that under (A2), the mapping θ �→
Lθn,x〈Y0:n〉 is a continuous function on the compact set Θ and thus, the MLE

θ̂n,x obtained by (3.4) is well-defined. Furthermore, under (A3)-(i) we obtain,
regardless of the initial value of X−m = x, that X0 (and thus Xt) can be approx-
imated by a quantity involving the infinite past of the observations. Assumption
(A3)-(ii) allows the conditional log-likelihood function to be approximated by a
stationary sequence. Furthermore, (A3)-(iii) calls for a well-defined maximiza-
tion problem. Verification of assumption (A3) is usually done by introducing
the limit, as m tends to infinity, of fθ〈Y−m:0〉(x) for all fixed (θ, x) ∈ Θ×X and
by showing that this limit does not depend on x. We can therefore denote it by
fθ〈Y−∞:0〉.

The following theorem establishes the consistency of the sequence of estima-
tors {θ̂n,x , n ∈ N} defined by (3.4) in misspecified models. The proof follows
the lines of [11] but the arguments should be adapted to take into account that
the kernel density qφ here depends on the parameter.

Theorem 3.1. Suppose that assumptions (A1)–(A3) hold true. Then, for all
x ∈ X,

lim
n→∞

dΘ(θ̂n,x,Θ�) = 0 , P-a.s.,

where Θ� := argmaxθ∈ΘE[̄
θ〈Y−∞:1〉] and ̄θ〈Y−∞:1〉 is defined by (3.6).

Proof. The proof directly follows from Theorem A.1 provided that

(a) E[supθ∈Θ(̄
θ〈Y−∞:0〉)+] < ∞,

(b) P-a.s., the function θ �→ ̄θ〈Y−∞:0〉 is upper-semicontinuous,
(c) limn→∞ supθ∈Θ |Lθn,x〈Y1:n〉 − L̄θn〈Y−∞:n〉| = 0, P-a.s., where

L̄θn〈Y−∞:n〉 = n−1
n∑

k=1

̄θ〈Y−∞:k〉 .

However, (a) follows from (A3)-(iii), (b) follows by combining (A2) with (A3)-
(i) since a uniform limit of continuous functions is continuous and (c) is deduced
by (A3)-(ii) and the definitions of Lθn,x〈Y1:n〉 and L̄θn〈Y−∞:n〉. The proof is com-
pleted.

Remark 3.1. Note that, since the model is misspecified, the assumptions of
Theorem 3.1 do not imply that for any θ ∈ Θ, there exists a stationary and
ergodic solution to the observation-driven model specified by (Qϕ(θ), fθ) (this
is not required on our assumptions). Such a property is not always easy to es-
tablish but there exists vast literature discussing the conditions under which it
holds true. The required condition for {Yt} to be stationary and ergodic, de-
pends, in general, upon the model under consideration. For instance, consider
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the GARCH(1,1) model discussed in Example 2.1 with {εt , t ∈ Z} being an iid
sequence of non-degenerate random variables with E[ln+ ε2t ] < ∞ and d > 0. If
−∞ ≤ γ := E[ln(a + bε2t )] < 0, then there exists a strict-sense stationary and
ergodic process {Yt, t ∈ Z} obtained from (2.1) with the associated parameter
vector θ = (d, a, b); see [7] and [21, Ch.2] for further references.

Example 2.1 (Continued). Assume that the observations {Yt , t ∈ Z} form
a strict-sense stationary and ergodic process so that (A1) is satisfied. Moreover
suppose that E[ln+ Y0] < ∞. We fit to the observations a GARCH(1, 1) model
of the form (2.1) but with errors {εt , t ∈ Z} following the Generalized Error
Distribution (GED) with density

gν(z) =
ν exp

(
−1

2

∣∣∣ zc ∣∣∣ν)
c2(ν+1)/νΓ( 1ν )

, z ∈ R, (3.7)

where ν > 0 and c is a constant which is chosen such that the distribution
has zero mean and variance one (see [36]). The parameter ν characterizes the
thickness of the tail. When ν = 2, we obtain the standard normal distribution
while for ν > 2 (respectively ν < 2) the distribution has thinner (respectively
thicker) tails than the normal distribution. The GED distribution is usually
employed for GARCH modeling of heavy-tail returns; see the recent work by [15]
among others. In this example, we assume that ν is known and the parameter
vector is θ = (d, a, b) ∈ Θ which is a compact subset of{

(d, a, b) : d > 0, a ≥ 0, b > 0, E[ln(a+ bε2t )] < 0
}

. (3.8)

Note that the above display implies that a < 1. Following Remark 3.1, we can
also note that under these constraints, there exist stationary and ergodic versions
of the process {Yt, t ∈ Z} in this parametric family.

We now show that (A2) and (A3) hold. Set Xt = σ2
t . Recall that the recur-

sions given by (2.1) define a simplified and therefore a generalized observation-
driven model (1.1) where we have set, with a slight abuse of notation,

qϕ(θ)(x, y; y′) = q(x, y′) = (1/
√
x)gν(y

′/
√
x) ,

fθ
y,y′(x) = fθ

y′(x) = d+ ax+ b(y′)2 .

These equations imply clearly that (A2) holds. We now turn to (A3). Given an
initial value of σ2

0, which will be specified below, the conditional log-likelihood
defined in (3.5) may be expressed as

Lθn,σ2
0
〈Y1:n〉 = n−1

n∑
t=1

(
− lnσt−1 + ln gν(Yt/σt−1)

)
, (3.9)

where σ2
t are computed recursively using (2.1). Note that, since fy,y′(x) = fy′(x)

in this particular model, the conditional log-likelihood in (3.9) does not depend
on the first observation Y0 (contrary to the general expression given in (3.5)) and
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we therefore write Lθ
n,σ2

0
〈Y1:n〉 instead of Lθ

n,σ2
0
〈Y0:n〉. For a given value of θ, the

unconditional variance (corresponding to the stationary value of the variance)
is usually a sensible choice for the unknown initial value

σ2
0 =

d

1− a− b
.

Nevertheless, in what follows, we consider that the initialization is fixed to an
arbitrary value σ2

0 = x. For any integer m, we have

fθ〈Y−m:0〉(x) = am+1x+

m∑
j=0

aj(d+ bY 2
−j) .

Since Θ is a compact subset of (3.8), there exist (a∗, a
∗, b∗, b

∗) ∈ (0, 1)2×(0,∞)2

and d∗, d
∗ > 0 such that, for all θ = (d, a, b) ∈ Θ,

a∗ ≤ a ≤ a∗ , b∗ ≤ b ≤ b∗ , d∗ ≤ d ≤ d∗ .

Let β ∈ (1, (a∗)−1/2) and note that, since E[ln+(Y0)] < ∞,

∞∑
t=−∞

P(|Yt| > β|t|) ≤
∞∑

t=−∞
P(ln+ |Y0|/ lnβ > |t|)

≤ 2(E[ln+ |Y0|/ lnβ] + 1) < ∞ ,

so that there exists a P-a.s. finite random variable M such that |Yt| ≤ Mβ|t| for
all t ∈ Z. This implies that P-a.s.,

∞∑
j=0

(a∗)j(d∗ + b∗Y 2
t−j) ≤

d∗

1− a∗
+

2b∗M2

1− a∗β2
< ∞ ,

and we can define

fθ〈Y−∞:t〉 =
∞∑
j=0

aj(d+ bY 2
t−j) .

With these definitions, we get

sup
θ∈Θ

|fθ〈Y−m:0〉(x)− fθ〈Y−∞:0〉| ≤ (a∗)m+1x+

∞∑
j=m+1

(a∗)j(d∗ + b∗Y 2
−j)

≤ (a∗)m+1x+
d∗(a∗)m+1

1− a∗
+

b∗M2(a∗β2)m+1

1− a∗β2

P-a.s.−→ 0 ,

as m → ∞, showing therefore (A3)-(i). Similarly, we obtain that

∣∣∣ln qϕ(θ)(fθ〈Y1:t−1〉(x), Yt)− ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt)
∣∣∣

≤ 1

2

∣∣ln fθ〈Y1:t−1〉(x)− ln fθ〈Y−∞:t−1〉
∣∣
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+
|Yt|ν

2cν

∣∣∣∣∣
(

1

fθ〈Y1:t−1〉(x)

)ν/2

−
(

1

fθ〈Y−∞:t−1〉

)ν/2
∣∣∣∣∣ .

For any z1, z2 > 0, | ln(z1)−ln(z2)| ≤ |z1−z2|/(z1∧z2). Moreover, fθ〈Y1:t−1〉(x)∧
fθ〈Y−∞:t−1〉 > d∗ and the mean value theorem implies that there exists a con-
stant γ > 0 such that

sup
θ∈Θ

∣∣∣ln qϕ(θ)(fθ〈Y1:t−1〉(x), Yt)− ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt)
∣∣∣

≤ γ(|Yt|ν + 1)

⎛
⎝(a∗)t−1x+

∞∑
j=t−1

(a∗)j(d∗ + b∗Y 2
t−1−j)

⎞
⎠ .

Thus,

sup
θ∈Θ

∣∣∣ln qϕ(θ)(fθ〈Y1:t−1〉(x), Yt)− ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt)
∣∣∣

≤ γ(Mνβνt + 1)

(
(a∗)t−1x+

∞∑

=0

(a∗)t−1+
(d∗ + b∗M2β2
)

)
P-a.s.−→ 0 ,

as t goes to infinity. This shows (A3)-(ii). The proof of (A3)-(iii) is along the
same lines. Theorem 3.1 then applies and proves the consistency of the estima-
tors {θ̂n,x}.

Example 2.2 (Continued). Assume, as before, that the observations {Yt , t ∈
Z} is a strict-sense stationary and ergodic process such that E[ln+ Y0] < ∞.
Consider fitting a duration model of the form (2.3) to the observations where
the error sequence follows the exponential distribution with mean one, vis.

g(z) = exp(−z) , z > 0 .

Other positive distributions for the sequence {εt , t ∈ Z} can be employed; for
example the Gamma density suitably normalized to have mean one. However,
we discuss the simple case of the exponential distribution for illustrating the
verification of the required assumptions. As before, let θ = (d, a, b) ∈ Θ which is
assumed to be a compact subset of

{(d, a, b) : d > 0, a > 0, b > 0, a+ b < 1} .

Following Remark 3.1, we can also note that with these constraints, there exists
a strictly stationary and ergodic process {Yt , t ∈ Z} in this parametric family
and under some additional assumptions, we can obtain moments of any order
for the stationary process (see [31] for more details).

By letting Xt = ψt, (2.3) defines an observation-driven model with

qϕ(θ)(x, y; y′) = q(x, y′) = (1/x)g(y′/x) ,
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fθ
y,y′(x) = fθ

y′(x) = d+ ax+ by′ .

Since g(·) is equal to the exponential density, the conditional log-likelihood may
be expressed as

Lθn,ψ0
〈Y1:n〉 = n−1

n∑
t=1

(
− lnψt−1 −

yt
ψt−1

)
,

where ψt are computed recursively using (2.3) given Y0 and ψ0. As before, a
typical choice of the initialisation is the stationary mean of the process

ψ0 =
d

1− a− b
,

but in what follows, we consider that the initialization is fixed to an arbitrary
value ψ0 = x. Working as before and with the same notation, we obtain that

sup
θ∈Θ

|fθ〈Y−m:0〉(x)− fθ〈Y−∞:0〉| ≤ (a∗)m+1x+

∞∑
j=m+1

(a∗)j(d∗ + b∗Y−j)
P-a.s.−→ 0 ,

as m → ∞, showing therefore (A3)-(i). Similarly, we obtain that∣∣∣ ln qϕ(θ)(fθ〈Y1:t−1〉(x), Yt)− ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt)
∣∣∣

≤
∣∣ln fθ〈Y1:t−1〉(x), Yt)− ln fθ〈Y−∞:t−1〉, Yt)

∣∣
+ Yt

∣∣∣∣ 1

fθ〈Y1:t−1〉(x)
− 1

fθ〈Y−∞:t−1〉

∣∣∣∣ .
As in the previous example, we can show that (A3)-(ii) holds true. The proof of

(A3)-(iii) is along the same lines and therefore Theorem 3.1 shows that {θ̂n,x}
are consistent.

We note that Examples 2.3 and 2.4 can be analyzed in a similar way and
therefore we omit details.

We now turn to Example 2.5. As previously noted, (2.8) can be put in the
framework of observation-driven time series model using (3.1). Hence the as-
sumptions of Theorem 3.1 can be easily checked. Nevertheless, we next focus on
the general formulation (2.9) which has been studied by [32] and see how their
results are interpreted in our context.

Example 2.5 (Continued). Consider now (2.9) and suppose again that
the observations are realizations of a strict-sense stationary and ergodic process
{Yt , t ∈ Z}. However, we fit an observation driven model using a Gaussian
assumption for the error term {ηt , t ∈ Z}. Suppose that θ ∈ Θ which is assumed
to be compact. Given initial values Y0 and σ2

0, we obtain the Gaussian quasi-
loglikelihood

Lθn,σ2
0
〈Y1:n〉 =

n∑
t=1

(
−1

2
lnσ2

t−1 −
1

2σ2
t−1

(yt −m(yt−1, α))
2
)
.
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Under some additional assumptions, see C1-C3 in [32, Proposition 1], we obtain
that

sup
θ∈Θ

|fθ〈Y−m:0〉(x)− fθ〈Y−∞:0〉| P-a.s.−→ 0 ,

as m → ∞. Assuming further that σ2
t is bounded away from 0, we obtain the

consistency of the estimators {θ̂n,x}.

4. Quasi-maximum likelihood estimation

When a model has been correctly specified, that is when there exists a parameter
θ� ∈ Θ such that the data are generated according to this specific process,
Theorem 3.1 implies consistency of the MLE to θ� provided that the set Θ� is
reduced to the singleton {θ�}.

An important subclass of misspecified models corresponds to the case where
the observation process is assumed to follow the following recursions

P
[
Yt ∈ A

∣∣ Ft−1

]
= Q�(Xt−1, Yt−1;A) =

∫
A

q�(Xt−1, Yt−1; y)μ(dy) ,

Xt = fθ�

Yt−1:t
(Xt−1) , t ∈ Z , (4.1)

for any A ∈ Y , where θ� is supposed to be in Θo, the interior of Θ, but

q� /∈ {qϕ(θ) : θ ∈ Θ} .

Since q� �= qϕ(θ) for any θ, this special case of data generating process falls
within the misspecified models framework. Equivalently, we assume that there
exists a true parameter θ� such that the second equation of the above display
has been correctly specified but the corresponding chosen density q� is not equal
to the true density associated to the data generating process. This is a stan-
dard assumption and has been widely used in practice; for instance parametric
inference for GARCH models is most often based on Gaussian log-likelihood.

For this misspecification case, the MLE {θ̂n,x} defined by (3.4) are called
QMLE. Note that θ� is not anymore the true value of the parameter in the sense
that the distribution of the observation process is not characterized only by θ�.
Nevertheless, and perhaps surprisingly, it can be shown that, under additional
assumptions, the QMLE {θ̂n,x} are consistent and asymptotically normal with
respect to the parameter θ�. From now on, we assume for simplicity that X ⊂ R

and we initially study the consistency property of the QMLE.

4.1. Consistency of the QMLE

Recall that the parameter θ� which appears in the recursion (4.1) satisfies the
following assumption:

(A4) The parameter θ� is assumed to be in Θo, the interior of Θ.
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The main assumption which links the densities q� and qφ is the following:

(A5) For all (x�, y) ∈ X× Y, the function ψx�,y defined on the set Φ× X by

ψx�,y(φ, x) :=

∫
Q�(x�, y; dy′) ln qφ(x, y; y′) , (4.2)

has a unique maximum (φ, x) = (ϕ(θ�), x�).

The previous assumption corresponds to an identification condition and is
quite analogous to the assumption A3(b) made by [45]. The following theorem

shows the consistency of QMLE {θ̂n,x}; its proof is given in the Appendix.

Theorem 4.1. Assume that assumptions (A1), (A2), (A3), (A4) and (A5)
hold true. Moreover, assume that fθ〈Y−∞:0〉 = fθ�〈Y−∞:0〉, P-a.s. implies that
θ = θ�. Then, for all x ∈ X,

lim
n→∞

θ̂n,x = θ� , P-a.s.

We now illustrate this result by considering several standard examples of time
series models. We first consider the class of simplified Observation-Driven models
as described in Definition 2.1. This special class of models is characterized by the
fact that qφ(x, y; y′) does not depend on y nor on φ and that fθ

y,y′(x) does not
depend on y. Equivalently and with a slight abuse of notation, we assume that

qφ(x, y; y′) = q(x, y′) ,

fθ
y,y′(x) = fθ

y′(x) . (4.3)

If (4.3) holds then (4.2) reduces to

ψx�,y(φ, x) = ψx�(x) =

∫
Q�(x�, dy′) ln q(x, y′) ,

and assumption (A5) is then replaced by the following condition:

(A6) For all x� ∈ X,

argmaxx∈X

∫
Q�(x�, dy) ln q(x, y) = {x�} .

It is worth noting that in the particular case where Qϕ(θ) = Q does not de-
pend on θ and is equal to Q�, we deal with a well-specified model. Since the
Kullback-Leibler divergence is nonnegative, we obtain∫

Q�(x�, dy) ln q�(x, y) ≤
∫

Q�(x�, dy) ln q�(x�, y) ,

and, provided that x �→ Q(x, ·) is a one-to-one mapping, the equality holds if
and only if x = x�. Thus, in well-specified models, (A6) is most often satisfied.
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Example 2.1 (Continued). Assume as before that the observations {Yt , t ∈
Z} is a strict-sense stationary ergodic process associated to

P
[
Yt ∈ A

∣∣ Ft−1

]
= Q�(σ2

t−1, A) , for any A ∈ Y , (4.4)

σ2
t = fθ�

Yt
(σ2

t−1) , t ∈ Z ,

where σ2
t is bounded from below. The last display generalizes (2.1) by allowing

the volatility process to be a non-linear function of its past values and past values
of Yt. To obtain strict stationarity and ergodicity for model (4.4) it suffices to
assume conditions like those reported by [2], for instance. We now assume that
(4.4) corresponds to the true data generating process. However, we fit to the
observations the following observation-driven model with normal innovations,

Yt = σt−1εt , σ2
t = fθ

Yt
(σ2

t−1) , (t, θ) ∈ N×Θ , (4.5)

where {εt , t ∈ N}) is an iid sequence of standard normal random variables. This
is a misspecified model; in fact, this approach amounts to using the Gaussian
log-likelihood as a quasi log-likelihood function to estimate the parameter θ. By
setting Xt = σ2

t , we observe that (4.5) corresponds to the case of a simplified
observation-driven model given by (4.3) where q(x, ·) is the density of a centered
normal distribution of variance x. We examine under which conditions assump-
tion (A6) holds true so that a consistent QMLE θ̂n,x for θ can be obtained.

For example, when fθ
Yt
(σ2

t−1) = d + aσ2
t−1 + bY 2

t , for d, b > 0, this model
corresponds to the GARCH(1, 1) model with normal innovations discussed in
Example 2.1. However, we do not assume any specific expression of fθ

Yt
in what

follows. Now, consider the function

x �→
∫

Q�(x�, dy) ln q(x, y) =

∫
Q�(x�, dy)

(
− y2

2x
− 1

2
ln(2πx)

)

=

(
−
∫
Q�(x�, dy)y2

2x
− 1

2
ln(2πx)

)
.

By straightforward algebra, we note that this function is maximized at the point∫
Q�(x�, dy)y2. We conclude that assumption (A6) is satisfied provided that the

condition ∫
Q�(x�, dy)y2 = x�

holds true. Plugging this equality into (4.4), we obtain that the observations
{Yt , t ∈ Z} is a strict-sense stationary ergodic process associated to

Yt|Ft−1 ∼ σt−1ε
�
t

σ2
t = fθ�

Yt
(σ2

t−1) , t ∈ Z ,

where {ε�t , t ∈ Z} is an i.i.d. sequence of random variables with potentially
any unknown distribution, provided that E[(ε�t )

2] = 1. This is a standard iden-
tifiability assumption for GARCH models which implies that Var[Yt | Y0:t−1] =
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(1− E
2[ε�t ])σ

2
t . In particular, we note that E[ε�t ] = 0 is not required for proving

consistency.
For another example within the GARCH models framework, consider again

that the true data generating process is given by (4.4), but we fit model (4.5)
with errors {εt , t ∈ N

∗} following the Laplace distribution with density

g1(z) =
1

2
exp(−|z|) , z ∈ R .

Then, working along the previous lines, we derive E[|ε�t |] = 1 as the necessary
condition for obtaining consistency of the QMLE. More generally, considering
that the error term follows the GED (3.7), we obtain that E[|ε�t |ν ] = 1 is the
necessary condition for proving consistency of the QMLE; see also [21, Sec. 9.2].

Example 4.1. This example generalizes Examples 2.2 and 2.4 to the general
framework of exponential family models for time series. Let us assume that the
observations {Yt , t ∈ Z} is a strict-sense stationary ergodic process associated to

P
[
Yt ∈ A

∣∣ Ft−1

]
= Q�(Xt−1, A) =

∫
A

q�(Xt−1, y)μ(dy) , for any A ∈ Y ,

Xt = fθ�

Yt
(Xt−1) , t ∈ Z .

We fit to the observations the following observation-driven model

P
[
Yt ∈ A

∣∣ Ft−1

]
= Q(Xt−1, A) , for any A ∈ Y ,

Xt = fθ
Yt
(Xt−1) , (t, θ) ∈ Z×Θ,

where Q(x, ·) is assumed to belong to the natural exponential family distribu-
tions. To be specific, we assume that for all (x, y) ∈ X× Y,

q(x, y) = exp(yx− α(x))h(y),

for some twice differentiable function α : X → R (which is the cumulant of Q)
and some measurable function h : Y → R

+. We investigate conditions under
which assumption (A6) holds true. By noting that∫

Q(x, dy)
∂2 ln q(x, y)

∂x2
≤ 0 ,

it can be readily checked that α” ≥ 0 so that α is convex. Therefore, the function

x �→
∫

Q�(x�, dy) ln q(x, y) =

∫
Q�(x�, dy) (yx− α(x) + lnh(y))

= x

∫
Q�(x�, dy)y − α(x)

+

∫
Q�(x�, dy) lnh(y) ,
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is concave. The point at which this function achieves its maximum is reduced
to a singleton {x̃}, which can be obtained by cancellation of the derivatives with
respect to x. We obtain that

∫
Q�(x�, dy)y−α′(x̃) = 0. Finally, (A6) is satisfied

provided that the condition ∫
Q�(x�, dy)y = α′(x�) (4.6)

holds. Because, for the natural exponential family, the function α(·) corresponds
to the cumulant generating function, its first derivative is equal to the mean of
Yt given the past Ft−1. Therefore, the above condition states that the mean func-
tion has to be correctly specified regardless of the true data generating process.
This fact has been noticed by several authors in the context of longitudinal data
analysis (see [47], for example) and in time series modeling; see [48]. However,
we show that the right mean specification is a necessary condition for obtaining
a consistent QMLE.

An immediate application of the above fact yields consistency results for du-
ration and count time series models. For instance, recall models (2.5) and (2.6).
Then we obtain

q(x, y) = exp(yx− exp(x))/y!,

so that α(x) = exp(x) which is the mean of Q(x, ·) under this parametrization.
Thus, (4.6) yields

∫
Q�(x�, dy)y = exp(x�) which implies the following. Suppose

that {Yt , t ∈ Z} is any count time series with mean λt (respectively exp(νt)).
Then, the QMLE will be consistent for θ�, provided that the second equations of
(2.5) ( respectively (2.6)) has been correctly specified. In particular, recall (2.7)
for the mixed Poisson count time series models. Then, to obtain a consistent
QMLE for θ�, it suffices to assume that E[Zt] = 1 and the second equation has
been correctly specified. Related work on QMLE for count time series models
has been recently reported by [1]. These authors established strong consistency
of QMLE for count time series models using conditions that imply (A1)–(A3)
and (A6) provided that the mean process λt > d. The last condition is trivially
satisfied for the case of linear model (2.5). For the case of log-linear model (2.6),
this condition can be verified using the results of [19] and [11]. Furthermore [1]
establishes asymptotic normality of the QMLE by imposing regularity conditions
on the score function and information matrix. Those conditions imply Assump-
tion (A8) which points to the conclusions of Theorems 4.2 and 4.3.

In addition, we mention that similar findings are discovered for the simple du-
ration model (2.3). In this case, a consistent QMLE for θ� is obtained assuming
that E[εt] = 1.

Example 2.5 (Continued). Recall the autoregressive model with GARCH
noise; for properties of the QMLE for general ARMA-GARCH(p,q) models, see
the work by [20] and for the more general model (2.9) see [32]. For ease of
presentation, we focus on (2.8).

Assume that the observations {Yt , t ∈ Z} is a strict-sense stationary ergodic
process associated to

Yt+1 = α�Yt + e�t , e�t =
√
Xtη

�
t , Xt = d� + a�Xt−1 + b�(e�t−1)

2,
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where {η�t , t ∈ N} is a sequence of i.i.d. random variables with unknown
distribution satisfying

E[η�t ] = 0 , E[{η�t }2] = 1 .

Therefore, E [Yt+1 | Ft] = α�Yt and Var(Yt+1|Ft) = Xt. We fit to the data the
following model

Yt+1 = αYt + et , et =
√
Xtηt , Xt = d+ aXt−1 + be2t−1,

where b > 0 and {ηt , t ∈ N} is a sequence of i.i.d. standard normal random
variables. As noted in (3.1), this model falls into the class of general observation-
driven model because it can be rewritten as

Yt+1 = αYt +
√

Xtηt ∼ N(αYt, Xt) = Qϕ(θ)(Xt, Yt; ·),
Xt+1 = d+ aXt + b(Yt+1 − αYt)

2 = fθ
Yt:t+1

(Xt) ,

where θ = (α, d, a, b), ϕ(θ) = α and |α| < 1. Then, the kernel Qa has a density

qa(x, y; y′) = exp

(
− (y′ − αy)2

2x
− 1

2
ln(2πx)

)
.

Now, fix some y ∈ Y and let ψy be the function

ψy(α, x) :=
∫
Q�(x�, y; dy′) ln qα(x, y; y′)

= −
∫
Q�(x�, y; dy′)(y′ − αy)2

2x
− 1

2
ln(2πx).

First note that for all x ∈ X,

argmaxα∈(0,1)ψy(α, x) =

{∫
Q�(x�, y; dy′)y′

/
y

}
= {α�} = {ϕ(θ�)},

which does not depend on x ∈ X. Then, replacing α by α� and maximizing with
respect to x, we obtain

argmaxx∈Xψy(α
�, x) =

{∫
Q�(x�, y; dy′)(y′ − α�y)2

}
= {x�}.

Because the global maximum of ψ(α, x) is attained at only one point, namely
(ϕ(θ�), x�), assumption (A5) is satisfied.

4.2. Asymptotic normality of the QMLE for simplified
observation-driven models

In this section, we present the asymptotic normality of the QMLE θ̂n,x for sim-
plified observation-driven models. We choose to start with this class of models,
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as defined by (4.3), in order to avoid technicalities and burdensome notation.
However, in the next section we develop rigourously all the steps for proving
asymptotic normality of the QMLE for general observation-driven models.

We assume that the parameter set Θ is a subset of RnΘ . Suppose that for all
y ∈ Y, the function x �→ q(x, y) is twice differentiable. For all twice differentiable
functions f : Θ → R and all y ∈ Y, define the following quantities:

χθ(f, y) := ∇θf(θ)
∂ ln q

∂x
(f(θ), y) , (4.7)

κθ(f, x, y) := ∇2
θf(θ)

∂ ln q

∂x
(f(θ), y) +∇θf(θ)∇θf(θ)

′ ∂
2 ln q

∂x2
(f(θ), y) . (4.8)

These functions appear naturally when differentiating the log-likelihood function
θ �→ ln q(f(θ), y) with respect to θ. By straightforward algebra we obtain the
score function and the Hessian matrix, respectively, as

∇θ ln q(f(θ), y) = χθ(f, y) ,

∇2
θ ln q(f(θ), y) = κθ(f, y) .

To prove asymptotic normality, we need the following additional assumptions
which are quite standard for maximum likelihood type asymptotics in the frame-
work of time series. More precisely, it is assumed that the score function and
the information matrix of the data can be approximated by the infinite past
of the process. In addition, all of these quantities are assumed to exist and in
particular the Fisher information matrix is not singular. In what follows, the
notation f•〈Y1:t−1〉(x) stands for the function

f•〈Y1:t−1〉(x) : θ �→ fθ〈Y1:t−1〉(x) .

Similarly, f•〈Y−∞:t−1〉 stands for the function f•〈Y−∞:t−1〉 : θ �→ fθ〈Y−∞:t−1〉 .
(A7) For all y ∈ Y, the function x �→ q(x, y) is twice continuously differentiable.

Moreover, there exist ρ > 0 and a family of P-a.s. finite random variables{
fθ〈Y−∞:t〉 : (θ, t) ∈ Θ× Z

}
such that fθ�〈Y−∞:0〉 is in the interior of X, the function θ �→ fθ〈Y−∞:0〉
is, P-a.s., twice continuously differentiable on some ball B(θ�, ρ) and for all
x ∈ X,

(i) P-a.s. ,

lim
t→∞

‖χθ�

(f•〈Y1:t−1〉(x), Yt)− χθ�

(f•〈Y−∞:t−1〉, Yt)‖ = 0 ,

where ‖ · ‖ is any norm on R
nΘ ,

(ii) P-a.s. ,

lim
t→∞

sup
θ∈B(θ�,ρ)

‖κθ(f•〈Y1:t−1〉(x), Yt)− κθ(f•〈Y−∞:t−1〉, Yt)‖ = 0 ,

where by abuse of notation, we use again ‖ · ‖ to denote any norm on
the set of nΘ × nΘ-matrices with real entries,
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(iii)

E

[
‖χθ�

(f•〈Y−∞:0〉, Y1)‖2
]
< ∞ ,

E
[

sup
θ∈B(θ�,ρ)

‖κθ(f•〈Y−∞:0〉, Y1)‖
]
< ∞ .

Moreover, the matrix J (θ�) defined by

J (θ�) :=E

[
(∇θf

θ�〈Y−∞:0〉)(∇θf
θ�〈Y−∞:0〉)′

∂2 ln q

∂x2
(fθ�〈Y−∞:0〉, Y1)

]
(4.9)

is nonsingular.

Theorem 4.2. Assume (A1), (A4), (A5) and (A7) and suppose that θ̂n,x
P−→

θ�. Then, √
n(θ̂n,x − θ�)

D
=⇒ N(0,J (θ�)−1I(θ�)J (θ�)−1) ,

where J (θ�) is defined in (4.9) and I(θ�) is defined by

I(θ�) := E

[
(∇θf

θ�〈Y−∞:0〉)(∇θf
θ�〈Y−∞:0〉)′

(
∂ ln q

∂x
(∇θf

θ�〈Y−∞:0〉, Y1)

)2
]

.

The proof of Theorem 4.2 follows directly from Theorem 4.3 stated in the
next section. We now turn to the case of the asymptotic normality for the
QMLE in general observation-driven models.

4.3. Asymptotic normality of the QMLE for general
observation-driven models

Obtaining the asymptotic normality of the QMLE for the general observation-
driven model proceeds along the previous steps. We will state the main result
in this section. For simplicity, assume that Φ ⊂ R and therefore, the function
θ �→ ϕ(θ) takes values on R. If for all y, y′ ∈ Y, (x, φ) �→ qφ(x, y; y′) is twice
continuously differentiable, we can define χ and κ similarly to (4.7) and (4.8).
To be specific, for all twice continuously differentiable functions f, ϕ : Θ → R

and all (y, y′) ∈ Y2, define

χθ(f, y, y′) := ∇θf(θ)
∂ ln qϕ(θ)(f(θ), y; y′)

∂x
+∇θϕ(θ)

∂ ln qϕ(θ)(f(θ), y; y′)

∂φ
,

(4.10)

κθ
1(f, y, y

′) := ∇2
θf(θ)

∂ ln qϕ(θ)(f(θ), y; y′)

∂x
+∇2

θϕ(θ)
∂ ln qϕ(θ)(f(θ), y; y′)

∂φ
.

(4.11)

κθ
2(f, y, y

′) := ∇θf(θ)∇θf(θ)
′ ∂

2 ln qϕ(θ)(f(θ), y; y′)

∂x2
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+ (∇θf(θ)∇θϕ(θ)
′ +∇θϕ(θ)∇θf(θ)

′)
∂2 ln qϕ(θ)(f(θ), y; y′)

∂φ∂x

+∇θϕ(θ)∇θϕ(θ)
′ ∂

2 ln qϕ(θ)(f(θ), y; y′)

∂φ2
. (4.12)

Moreover, we set

κθ(f, y, y′) = κθ
1(f, y, y

′) + κθ
2(f, y, y

′) . (4.13)

As before, these functions correspond to the derivatives of the log–likelihood
function

θ �→ ln qϕ(θ)(f(θ), y; y′) ,

where the function θ �→ (ϕ(θ), f(θ)) is twice continuously differentiable. It can
be readily checked that

∇θ ln q
ϕ(θ)(f(θ), y; y′) = χθ(f, y, y′) ,

∇2
θ ln q

ϕ(θ)(f(θ), y; y′) = κθ(f, y, y′) = κθ
1(f, y, y

′) + κθ
2(f, y, y

′) .

For studying the asymptotic normality of the QMLE, assumption (A7) is
replaced by the following:

(A8) For all y, y′ ∈ Y, the functions (x, φ) �→ qφ(x, y; y′) and θ �→ ϕ(θ) are twice
continuously differentiable and ϕ(θ�) is in the interior of Φ. Moreover, there
exist ρ > 0 and a family of P-a.s. finite random variables{

fθ〈Y−∞:t〉 : (θ, t) ∈ Θ× Z
}

such that fθ�〈Y−∞:0〉 is in the interior of X, the function θ �→ fθ〈Y−∞:0〉
is, P-a.s., twice continuously differentiable on some ball B(θ�, ρ), and for all
x ∈ X,

(i) P-a.s. ,

lim
t→∞

‖χθ�

(f•〈Y1:t−1〉(x), Yt−1, Yt)− χθ�

(f•〈Y−∞:t−1〉, Yt−1, Yt)‖ = 0,

where ‖ · ‖ is any norm on R
nΘ ,

(ii) P-a.s. ,

sup
θ∈B(θ�,ρ)

‖κθ(f•〈Y1:t−1〉(x), Yt−1, Yt)− κθ(f•〈Y−∞:t−1〉, Yt−1, Yt)‖,

tends to 0, as t → ∞, where we use again ‖ · ‖ to denote any norm on
the set of nΘ × nΘ-matrices with real entries,

(iii)

E

[
‖χθ�

(f•〈Y−∞:0〉, Y0, Y1)‖2
]
< ∞ ,
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E

[
sup

θ∈B(θ�,ρ)

‖κθ(f•〈Y−∞:0〉, Y0, Y1)‖
]
< ∞ .

Moreover, the matrix J (θ�) defined by

J (θ�) := E

[
κθ�

2 (f•〈Y−∞:0〉, Y0, Y1)
]

(4.14)

is nonsingular.

Theorem 4.3. Assume (A1), (A4), (A5) and (A8) and suppose that θ̂n,x
P−→

θ�. Then, √
n(θ̂n,x − θ�)

D
=⇒ N(0,J (θ�)−1I(θ�)J (θ�)−1) ,

where J (θ�) is defined in (4.14) and I(θ�) is defined by

I(θ�) := E

[
χθ�

(f•〈Y−∞:0〉, Y0, Y1)χ
θ�

(f•〈Y−∞:0〉, Y0, Y1)
′
]
. (4.15)

The proof is postponed to the Appendix C.

5. Application

We verify empirically the asymptotic normality of the QMLE. Consider a count
time series {Yt} whose true distribution conditional on the past is the geometric
distribution with mean process λt; in other words set

P[Yt = y | Ft−1] =
1

λt + 1

( λt

λt + 1

)y

, y = 0, 1, 2 . . .

Recall the notation of Equation 2.4 and suppose that the mean process {λt} is
defined either by a linear model of the form (2.5) or by a log-linear model of the
form (2.6). In this case, the true log–likelihood function is given by

L�θn,x〈y0:n〉 =
1

n

n∑
t=1

(
yt lnλt(θ)− (yt + 1) ln(1 + λt(θ))

)
.

However, in practice the true distribution is generally unknown and therefore
we choose to use the Poisson distribution as the response distribution. It is easy
to check in this case that the “working” likelihood takes on the form

Lθn,x〈y0:n〉 =
1

n

n∑
t=1

(
yt lnλt(θ)− λt(θ)

)
.

Therefore, the score equations for model (2.5) (equivalently model (2.6)) are
given by

χθ(f, y) =
1

n

n∑
t=1

( yt
λt(θ)

− 1
)∂λt(θ)

∂θ
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=
1

n

n∑
t=1

(
yt − exp(νt(θ))

)∂νt(θ)
∂θ

,

where the vector of derivatives ∂λt(θ)/∂θ and ∂λt(θ)/∂θ can be calculated by
recursion.

Table 5 summarizes results of a limited simulation study, where data are gen-
erated according to the geometric distribution with linear or log-linear model
specification, but with the Poisson distribution is being fitted instead. All results
are based on 1000 simulations. Consider the upper panel of the table which cor-
responds to results obtained after fitting the linear model. In fact, the Table re-
ports the estimates of the parameters obtained by averaging out the results from
all simulations. The first two rows correspond to the mean and standard error
of the simulated QMLE. In all cases, we see that these estimators approach the
true values quite satisfactory. The next three rows show some summary statis-
tics of the sampling distribution of the standardized MLE. In particular, the
row p-values, correspond to the p-values obtained from a Kolmogorov-Smirnov
test statistic (for testing normality) for the standardized MLE obtained by the
simulation. In all cases, we note that the asserted asymptotic normality is quite
adequate. The second panel of Table 5 reports results for the log-linear model.
We note again that we have quite satisfactory approximation to the true value
of the parameter and the normality of the estimators is achieved.

Linear Model

d = 0.50, a = 0.20, b = 0.40 d = 0.20, a = 0.20, b = 0.50

Estimator 0.5140 0.1966 0.4907 0.2051 0.1949 0.4883
SE 0.0790 0.0660 0.0559 0.0321 0.0667 0.0601

Skewness 0.3625 -0.0409 0.2545 0.3327 0.2004 0.0955
Kurtosis 3.3638 3.0360 3.3467 3.4318 2.9884 3.4862
p-value 0.1262 0.9900 0.8785 0.3862 0.2985 0.1802

Loglinear Model

d = 0.50, a = 0.20, b = 0.40 d = 0.10, a = −0.20, b = 0.40

Estimator 0.5196 0.1852 0.3972 0.1011 -0.2121 0.3991
SE 0.1149 0.1007 0.0467 0.0818 0.1660 0.0645

Skewness 0.2909 -0.0345 0.0705 0.1634 0.3704 0.0047
Kurtosis 3.1565 2.9257 2.9621 2.9676 3.5348 3.1178
p-value 0.3684 0.3359 0.9451 0.8016 0.5215 0.8512

Table 1

Results of 1000 simulations obtained after fitting a linear (2.5) and log-linear model
(2.6) to a count time series of 1000 observations. Data are generated according to the
geometric distribution with mean λt but with the Poisson model being fitted instead.

6. Outlook

We have studied a rich class of time series models that have been found quite
useful in diverse applications. As the list of references shows, several studies
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addressed the problem of estimation and inference for observation-driven models
by QMLE methodology. This work unifies the existing literature in a coherent
and simple way. Furthermore, the methodology can be extended to the case of
multivariate data. For instance, consider the so-called vector GARCH model
[21, Sec. 11.2.2] which is given by

Yt = Σ
1/2
t−1εt , vech(Σt) = d+Avech(Σt−1) +Bvech(Yt−1Y

′

t−1) ,

where εt is an i.i.d. sequence of m-dimensional standard normal random vari-
ables, Σt is a m×m positive definite matrix and the notation vech denotes the
half-vectorization of an m × m square matrix C; in other words if C = (cij),

then vech(C) = (c11, c21, ..., cm1, c22, ..., cm2, ..., cmm)
′
. Additionally, the vec-

tor d is m(m + 1)/2-dimensional and the matrices A and B are of dimension
m(m+1)

2 ×m(m+1)
2 . Comparing the last display with (2.1) we note that the hidden

process Xt is equal to Σt and the conditional density of Yt given Xt−1 = x is
given by y �→ q(x, y) = (2π)−m/2|x|−1/2 exp(−1

2y
′
x−1y). Similar models can be

developed for other classes of processes. The proposed framework advances the
theoretical background for both univariate and multivariate observation-driven
models and lists easily verifiable conditions for studying the QMLE.

Appendix A: Consistency of max-estimators using stationary
approximations

Let X be a Polish space equipped with its Borel sigma-field X . Assume that
(XZ, B̃,P, S) is a measure-preserving ergodic dynamical system, where S : XZ →
XZ denotes the shift operator defined by: for all x = (xt)t∈Z, S(x) = y where
y = (yt)t∈Z and yt = xt+1. Denote by E the expectation operator associated to
P.

Let (̄θ , θ ∈ Θ) be a family of measurable functions ̄θ : XZ → R, indexed by

θ ∈ Θ where (Θ, d) is a compact metric space and denote L̄θn := n−1
∑n−1

k=0 ̄
θ ◦

Sk. Moreover, consider (Lθn , n ∈ N
∗, θ ∈ Θ) a family of upper-semicontinuous

functions Lθn : XZ → R indexed by n ∈ N
∗ and θ ∈ Θ. Consider the following

assumptions:

(C1) E
(
supθ∈Θ ̄θ+

)
< ∞,

(C2) P-a.s., the function θ �→ ̄θ is upper-semicontinuous,

(C3) limn→∞ supθ∈Θ |Lθn − L̄θn| = 0 , P-a.s.

Let
{
θ̄n : n ∈ N

∗} ⊂ Θ and
{
θ̂n : n ∈ N

∗
}
⊂ Θ such that for all n ≥ 1,

θ̄n ∈ argmaxθ∈ΘL̄
θ
n , θ̂n ∈ argmaxθ∈ΘL

θ
n .

Assumptions (C1-2) are quite standard and can be adapted directly from [37]
(which treated the case of independent sequence {Xn , n ∈ N}). The statement
of the following theorem and the associated proof can be found in [11, Theorem
33].
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Theorem A.1. Assume (C1-2).

(i) Then, limn→∞ d(θ̄n,Θ�) = 0, P-a.s., where Θ� := argmaxθ∈ΘE(̄
θ).

(ii) Assume in addition that (C3) holds. Then, limn→∞ d(θ̂n,Θ�) = 0 , P-a.s.
Moreover,

lim
n→∞

Lθ̂nn = sup
θ∈Θ

E(̄θ) , P-a.s.

for all θ ∈ Θ, lim
n→∞

Lθn = E(̄θ) , P-a.s.

Appendix B: Proof of Theorem 4.1

According to Theorem 3.1, we only need to prove that Θ� is reduced to the
singleton {θ�}. By definition of ̄θ〈Y−∞:1〉 given in (3.6), we have under (A5)
that for all θ ∈ Θ,

E[̄θ〈Y−∞:1〉]

= E

[
E

[
ln qϕ(θ)(fθ〈Y−∞:0〉, Y0;Y1)

∣∣∣Ys , s ≤ 0
]]

= E

[∫
Q�(fθ�〈Y−∞:0〉, Y0; dy) ln q

ϕ(θ)(fθ〈Y−∞:0〉, Y0; y)

]

≤ E

[∫
Q�(fθ�〈Y−∞:0〉, Y0; dy) ln q

ϕ(θ�)(fθ�〈Y−∞:0〉, Y0; y)

]
= E[̄θ

�〈Y−∞:1〉] . (B-1)

Moreover, (4.2) also implies that if the equality holds in (B-1), then fθ〈Y−∞:0〉 =
fθ�〈Y−∞:0〉, P-a.s. which in turn implies that θ = θ�. Thus, Θ� = {θ�} and the
proof follows.

Appendix C: Proof of Theorem 4.3

For proving Theorem 4.3 we will use the following technical lemmas which es-
tablish the asymptotic behavior of the score function and the Hessian matrix.

Lemma C.1. Assume (A1), (A4), (A5) and (A8). Then,

n−1/2
n∑

t=1

∇θ ln q
ϕ(θ�)(fθ�〈Y−∞:t−1〉, Yt−1;Yt)

D
=⇒ N(0, I(θ�)) ,

where I(θ�) is defined in (4.15).

Proof. Let F be the filtration F = (Fn)n∈N where Fn = σ(Ys , s ≤ n) and let

Mn :=

n∑
t=1

∇θ ln q
ϕ(θ�)(fθ�〈Y−∞:t−1〉, Yt−1;Yt)
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=

n∑
t=1

χθ�

(f•〈Y−∞:t−1〉, Yt−1, Yt) .

Note that according to (A8)-(iii), E(‖Mn‖2) < ∞. Moreover, note that under
(A5), the function ψx�,y defined in (4.2) attains its maximum on (ϕ(θ�), x�)
and thus, for all (x�, y) ∈ X× Y,

∂ψx�,y

∂φ
(ϕ(θ�), x�) = 0 =

∂ψx�,y

∂x
(ϕ(θ�), x�) .

This implies

E
θ�

[
∇θ ln q

ϕ(θ�)(fθ�〈Y−∞:t−1〉, Yt−1;Yt)
∣∣∣Ft−1

]
= ∇θf

θ�〈Y−∞:t−1〉∫
Q�(fθ�〈Y−∞:t−1〉, Yt−1; dy)

∂ ln qϕ(θ�)(fθ�〈Y−∞:t−1〉, Yt−1; y)

∂x

+∇θϕ(θ
�)∫

Q�(fθ�〈Y−∞:t−1〉, Yt−1; dy)
∂ ln qϕ(θ�)(fθ�〈Y−∞:t−1〉, Yt−1; y)

∂φ

= 0 ,

where the last equality follows from (4.2). Finally, {Mt , t ≥ 1} is an ergodic
(see (A1)) and square integrable F-martingale with stationary increments. The
proof follows by applying the results of [5].

Lemma C.2. Assume (A4), (A5) and (A8). Let {θn , n ∈ N} be a sequence

of random vectors such that θn
P−→ θ�. Then, for all i, j ∈ {1, . . . , d},

n−1
n∑

t=1

∂2 ln qϕ(θn)(fθn〈Y−∞:t−1〉, Yt−1;Yt)

∂θi∂θj

P−→ E

[
∂2 ln qϕ(θ�)(fθ�〈Y−∞:0〉, Y0;Y1)

∂θi∂θj

]
.

Moreover,

J (θ�) =

(
E

[
∂2 ln qϕ(θ�)(fθ�〈Y−∞:0〉, Y0;Y1)

∂θi∂θj

])
1≤i,j≤d

. (C-1)

Proof. Denote

At(θ) =
∂2 ln qϕ(θ)(fθ〈Y−∞:t−1〉, Yt)

∂θi∂θj
.

By the Birkhoff ergodic theorem we have that

n−1
n∑

t=1

At(θ
�)

P−→ E[A1(θ
�)] .
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Hence, we only need to show that

n−1
n∑

t=1

|At(θ
�)−At(θn)| P−→ 0 . (C-2)

Let ε > 0 and choose 0 < η < ρ such that

E

(
sup

θ∈B(θ�,η)

|A1(θ
�)−A1(θ)|

)
< ε . (C-3)

The existence of such η follows from the P-a.s. continuity of θ �→ At(θ) under
(A8) and by the Lebesgue convergence theorem under (A8)-(iii). We then have

lim sup
n→∞

P

(
n−1

n∑
t=1

|At(θ
�)−At(θn)| ≥ ε , θn ∈ B(θ�, η)

)

≤ lim sup
n→∞

P

(
n−1

n∑
t=1

sup
θ∈B(θ�,η)

|At(θ
�)−At(θ)| ≥ ε

)
= 0 ,

where the last equality follows from (C-3) and the Birkhoff ergodic theorem.

Moreover, since θ̂n
P−→ θ�, limn→∞ P(θn �∈ B(θ�, η)) = 0 so that finally,

lim
n→∞

P

(
n−1

n∑
t=1

|At(θ
�)−At(θn)| ≥ ε

)
= 0 .

Thus, equation (C-2) holds and the proof follows. It remains to show (C-1).
Since under (A5),

E

[
κθ�

1 (f•〈Y−∞:0〉, Y0, Y1)
]

=E

[
∇2

θf
θ�〈Y−∞:0〉

∂ ln qϕ(θ�)

∂x
(∇θf

θ�〈Y−∞:0〉, Y0;Y1)

]

+E

[
∇2

θϕ(θ
�)
∂ ln qϕ(θ�)

∂φ
(∇θf

θ�〈Y−∞:0〉, Y0;Y1)

]
=0,

we have, using (4.13),

J (θ�) = E

[
κθ�

(f•〈Y−∞:0〉, Y0, Y1)
]

=

[
E

(
∂2 ln qϕ(θ�)(fθ�〈Y−∞:0〉, Y0;Y1)

∂θi∂θj

)]
1≤i,j≤d

.

Proof of Theorem 4.3. A Taylor expansion of the score function at θ = θ� with
an integral form of the remainder yields

n−1/2
n∑

t=1

∇θ ln q
ϕ(θ̂n,x)(f θ̂n,x〈Y1:t−1〉(x), Yt−1;Yt) = 0
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= n−1/2
n∑

t=1

∇θ ln q
ϕ(θ�)(fθ�〈Y1:t−1〉(x), Yt−1;Yt)

+ n−1
n∑

t=1

(∫ 1

0

∇2
θ ln q

ϕ(θn,s)(fθn,s〈Y1:t−1〉(x), Yt−1;Yt)ds

)√
n(θ̂n − θ�) ,

(C-4)

where θn,s = sθ̂n,x + (1 − s)θ�, for s ∈ (0, 1). The proof of Theorem 4.2 then

follows from (C-4) and the Slutsky Lemma, provided that for all θn
P−→ θ�,

n−1/2
n∑

t=1

∇θ ln q
ϕ(θ�)(fθ�〈Y1:t−1〉(x), Yt−1;Yt)

D
=⇒ N(0, I(θ�)) ,

n−1
n∑

t=1

∂2 ln qϕ(θn)(fθn〈Y1:t−1〉(x), Yt−1;Yt)

∂θi∂θj

P−→ J (θ�) .

However this follows from Lemma C.1 and Lemma C.2. The proof is completed.
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