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Abstract: Given a pair of random vectors (X,Y ), we consider the problem
of approximating Y by c(X) = {c1(X), . . . , cM (X)} where c is a measur-
able set-valued function. We give meaning to the approximation by using
the principles of vector quantization which leads to the definition of a multi-
function regression problem. The formulated problem amounts at quantiz-
ing the conditional distributions of Y given X. We propose a nonparametric
estimate of the solutions of the multifunction regression problem by combin-
ing the method of M -means clustering with the nonparametric smoothing
technique of k-nearest neighbors. We provide an asymptotic analysis of the
estimate and we derive a convergence rate for the excess risk of the esti-
mate. The proposed methodology is illustrated on simulated examples and
on a speed-flow traffic data set emanating from the context of road traffic
forecasting.
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1. Introduction

Regression analysis encompasses important statistical methods for exploring
the relationship between a response variable Y and a predictor X. Most com-
monly, the focus is on estimating (or modeling) the regression function η(x) :=
E[Y |X = x] by methods of various sorts [see e.g. 41, 20]. Over the years, alter-
natives to mean regression (that is, estimation of the regression function η) have
been proposed and analyzed in the literature. Among these, median regression
[as a special case of quantile regression 27] exhibits properties of robustness to
outliers [22]. Another alternative is modal regression. In [28, 29] [see also 25, 46]
the mode of the conditional distribution of Y given X is modeled as a linear
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function of x. A related setting is that considered in [42] where the dependence
of the conditional mode on the predictor x is monotone. Typical nonparametric
approaches to conditional mode estimation resort to first estimating the con-
ditional densities using a nonparametric method, and then to infer the mode
by maximization, as in [10] for instance, and [47] for a generalization of this
approach using local polynomials.

Yet in the situation where the data is heterogeneous, summarizing the condi-
tional distribution of Y given X by a single measure of location (mean, median,
or mode) may be inadequate. As an illustration, consider the scatterplot repre-
sented in Figure 1. The distribution of Y given X is a mixture of two Normal
distributions with equal proportions, equal variances, and means η1(x) < η2(x),
and X follows a uniform distribution over the unit interval. The difference in
means η2(x) − η1(x) increases with x so that the conditional distribution of Y
given X is clustered into two distinct groups, all the more separate as x is large.
By construction, η(x) = 1

2 [η1(x) + η2(x)] and η is an increasing function of x.
Thus the regression function is well representative of the average trend in the
data but provides a limited summary of the distribution of Y given X since it
is bimodal. Instead, the set-valued map, also referred to as a multi-valued func-
tion or a multifunction, defined by x �→ {η1(x), η2(x)} would better capture the
structure of the data than a real-valued map such as the conditional mean (or
mode or median) function.

Fig 1. Scatterplot of 400 realizations of the pair (X,Y ) where X follows a uniform distribution
over [0, 1], and where the distribution of Y given X is a mixture of two Normal distribution
with weights equal to 1

2
, variances equal to 0.01, and means η1(x) = arctan(8x) (green curve)

and η2(x) = 2 arctan(6x) (red curve). The regression function E[Y |X = x] = 1
2
[η1(x) + η2(x)]

is represented by the dashed curve.

Fitting a finite mixture model is a popular approach for modeling such het-
erogeneous data. These models are typically studied in an estimation framework
[see e.g. 16, 45, 34] where an application of the maximum likelihood principle
defines the estimation method of choice. For purposes of regression analysis,
a finite mixture regression model is obtained by conditioning a finite mixture
distribution on a vector of covariates, as in [26]. For instance, the data repre-
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sented in the scatterplot of Figure 1 is drawn from a Gaussian mixture regression
model with two components, and the interest would be primarily in estimating
the mean curves η1(x) and η2(x), in addition to the mixture proportions and the
variances of the components of the model. Finite mixture regression models pro-
vide a flexible way of handling heterogeneous data and are receiving a growing
attention from the statistical community, with recent results giving performance
bounds even in a high-dimensional setting [see e.g. 43, 35, 12]. These models are
also known as mixture of experts [23, 24] in machine learning.

Another class of methods centered on modal regression has developed to es-
timate the set of all the modes of the conditional distribution, that is, the set of
points of local maximum of the conditional density, called the modal set. Follow-
ing [15], [8] propose a plug-in nonparametric estimate of the modal set based on
a kernel density estimate. This contrasts with early works on modal regression
[e.g. 28, 29, 42] which focused primarily on estimating the principal mode moti-
vated by concerns of robustness to outliers. Formally, [8] defines the modal set
Mod(x) at some point x as the set of points y in R where the conditional density
fY |X=x(y) of Y givenX = x satisfies f ′

Y |X=x(y) = 0 and f ′′
Y |X=x(y) < 0 and it is

assumed that Mod(x) is finite (we note that, as defined, Mod(x) is a subset of the
set of points of local maximum). Hence the map x �→ Mod(x) is a multivalued
function. From an algorithmic standpoint, [15] propose to estimate the modal
set with a conditional version of the mean-shift algorithm, which is a modified
version of the mean-shift algorithm used in the context of density mode cluster-
ing [9, 11, 4], and [8] prove that the resulting modal set estimate is consistent.

Arguably, nonparametric modal regression may prove effective especially when
the conditional distributions admit only a limited number of local modes, as in
the speed-flow traffic data reported in [15]. There, the conditional distribution
of the speed of vehicules on a Californian freeway given the traffic flow is found
to be bimodal over a range of small flow values, and then unimodal for larger
values of the flow. In this example, the modal set is composed of at most two
points. However in a situation where the conditional distributions would admit
a large number of local points of maximum, then the modal set might be dif-
ficult to interpret (the modal set may even be uncountable, when this latter is
defined as the set of points of local maximum). Therefore, there is a need for
developing a regression methodology which could extract potentially more than
one feature from the data, in a manner similar to modal regression, but while
keeping their number relatively small, or even the control thereof, to preserve
the interpretability of these features.

In this paper, we propose to apply the principles of vector quantization [17,
18, 32] to the conditional distributions of Y given X in order to define, given
M an integer, a set-valued function x �→ c(x) := {c1(x), . . . , cM (x)} meant to
capture the underlying structure of the data, thereby extending the regression
problem to a multifunction regression problem. We define optimality in terms of
the mean squared error or predictive risk

E(c) = E

[
min

1≤j≤M
‖Y − cj(X)‖2

]
(1)
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and we focus on the estimation of a multifunction c� which achieves the infimum
of E(c) over the set of measurable multifunctions of the form x �→ c(x) :=
{c1(x), . . . , cM (x)}. We remark that when M = 1, E(c) coincides with the L2

risk E[|Y −f(X)|2] of a real-valued function f used in regression analysis. Hence
E(c) is a natural extension of the L2 risk to multifunctions. We emphasize that,
even when M = 1, our objective is not to quantize the regression function η, a
problem studied in [21], but to estimate an optimal multifunction c�, which can
be represented by the M real-valued functions x �→ cj(x), for j = 1, . . . ,M .

Given IID data (X1, Y1), . . . , (Xn, Yn) with the same distribution as (X,Y ),
we propose a nonparametric estimate ĉn(x) := {ĉn,1(x), . . . , ĉn,M (x)} defined
by combining the approach of k-means clustering [see e.g. 14, Chap. 10] with
the smoothing technique of k-nearest neighbors averaging [see e.g. 20]. Under-
lying the definition of ĉn is the estimation of E(c) with k-nearest neighbors
smoothing, followed by minimization of this estimate over the set of measurable
multifunctions x �→ c(x) := {c1(x), . . . , cM (x)}. As will be argued further in
the paper, the minimization problem over c can be reduced to a collection of
quantization problems indexed by x, which leads to a simple algorithm for eval-
uating the value of the estimate ĉn(x) at any x. We measure the performance
of the estimate by the excess risk

R(ĉn) = E

[
min

1≤j≤M
‖Y − ĉn,j(X)‖2

]
− inf

c
E

[
min

1≤j≤M
‖Y − cj(X)‖2

]
. (2)

Notice that when M = 1, ĉn reduces to a single valued function ĉn,1 : R → R

andR(ĉn) = E[(ĉn,1(X)−η(X)2], the expectation of the L2 error of the estimate
ĉn,1 of the regression function η. To summarize, in the present paper, we make
in particular the following contributions:

• We state a multifunction regression problem and we study its solutions.
• We propose a nonparametric multifunction estimate ĉn defined by com-

bining the method of M -means with the smoothing technique of k-nearest
neighbors averaging. We propose a simple companion algorithm to com-
pute the value of the estimate.

• We prove the consistency of the estimate and we derive convergence rates
on the excess risk and on a pointwise version of the excess risk.

• We propose a heuristic for automatically selecting the number of neigh-
bours of the estimate. We also study the automatic selection of the num-
ber of quantization points. We illustrate the methods on two simulated
examples and on a data set of speed records versus the location along an
automobile path in the city of Toulouse, France.

The paper is organized as follows. In section 2, we summarize the founda-
tional principles of vector quantization and of the design of empirical vector
quantizors by minimization of the empirical risk. In section 3, we define the
multifunction regression problem, emphasizing potential measurability issues
that we address. In section 4, we define our proposed estimate ĉn, and in sec-
tion 5, we provide an asymptotic analysis of the estimate. First, in Theorem 1,
we obtain a bound on the pointwise version of the excess risk, under a local
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regularity condition on the conditional densities. Then we derive a convergence
rate on the excess risk in Theorem 2 under mild regularity conditions. In The-
orem 3, we prove a convergence result of the estimte towards elements of the
solution set of the multifunction regression problem. Then in section 6, we re-
port on practical implementation details on numerical experiments and we also
apply the methodology to speed data along an automobile path in the city of
Toulouse, France. The proofs of the theorems are exposed in section 7.

2. Vector quantization

In this section, we collect foundational materials on vector quantization. We
start by formulating the quantization problem and by defining the notion of an
optimal quantizer. Then we describe the application of the principle of empirical
risk minimization to the design of an empirical quantizer from IID data.

2.1. The quantization problem

Vector quantization refers to the process of discretizing a random vector by
a random variable that can take only a finite number of values [17, 18, 32].
Known as lossy data compression in information theory and signal processing,
vector quantization forms the basic principle of the method of k-means for data
clustering [38] and is also used in defining numerical integration schemes [36].
In this section, and we collect foundational materials on vector quantization.

Let Y be a random vector in R
p with distribution PY . Given M an integer,

an M -points quantizer is a map q : Rp → R
p such that its image is a finite

set {c1, . . . , cM} of M points of Rp. Using the Euclidean norm ‖.‖ on R
p, the

performance of a quantizer q is measured by the distortion

D(q;PY ) = E[‖Y − q(Y )‖2]. (3)

An M -points nearest-neighbor quantizer is a quantizer qc of the form qc(x) =
argmin1≤j≤M ‖x−cj‖, where ties are broken arbitrarily, and where c := (c1, . . . ,
cM ) is a configuration, or codebook, of M points in R

p. Any quantizer q defines a
partition of Rp into the sets q−1(cj), for j = 1, . . . ,M . In the case of a nearest-
neighbor quantizer qc, the partition is called a Voronoi partition and for any
j = 1, . . . ,M , the (closed) Voronoi cell Vj(c) associated with cj is defined by

Vj(c) = {x ∈ R
p : ‖x− cj‖ ≤ ‖x− c�‖ for all 1 ≤ � ≤ M} . (4)

Notice that {V1(c), . . . , VM (c)} does not form a partition of Rp because Vi(c)∩
Vj(c) is not empty for all 1 ≤ i �= j ≤ M , but q−1

c (cj) ⊂ Vj(c) for all j =
1, . . . ,M .

2.2. Optimal quantizers

The search for an optimal quantizer minimizing the distortion can be restricted
to the class of nearest-neighbor quantizers [18, Lemma 3.1]. In the present work,
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only nearest-neighbor quantizers are considered, and a nearest-neighbor quan-
tizer qc is referred to by the configuration c := (c1, . . . , cM ) from which it is
defined. A configuration c := (c1, . . . , cM ) will be called simply a quantizer and
the distortion E(c;PY ) of the quantizer c is defined by

E(c;PY ) := D(qc;PY ) = E

[
min

1≤j≤M
‖Y − cj‖2

]
. (5)

An optimal quantizer c� is any minimizer of E(c;PY ) over all c in (Rp)M , that
is, such that E(c�;PY ) = E�(PY ), where

E�(PY ) = inf
c∈(Rp)M

E(c;PY ), (6)

and its existence is guaranteed; see e.g. Theorem 1 in [32] or Theorem 4.12 in
[18].

2.3. Approximation of measures

The connection between vector quantization and the Wasserstein distance has
long been recognized; in particular, we have

E�(PY ) = inf {W2(PY , Q) : Q probability measure with |Supp(Q)| ≤ M} ,
(7)

where W2(PY , Q) denotes the L2 Wasserstein distance between the probability
measures PY and Q [18, Lemma 3.4]. Hence finding an optimal quantizer for PY

is equivalent to best approximating PY , in the Wasserstein distance, by a discrete
measure with support of cardinality at mostM . Under the regularity assumption
that, for any optimal quantizer c�, PY does not charge the boundaries common
to any two adjacent Voronoi cells, that is, if PY (Vi(c

�) ∩ Vj(c
�)) = 0 for all

1 ≤ i �= j ≤ M , then the set of minimizers in (7) coincides with the set of
optimal quantizers minimizing (5) by [18, Lemma 3.1] and [18, Lemma 4.4].
Following [18], any minimizer of (7) is called an M -optimal quantizing measure.
By this equivalence, any M -optimal quantizing measure is of the form PY ◦q−1

c� ,
that is, the image measure (pushforward measure) of PY by the quantizer map

qc� , and it can be expressed as PY ◦ q−1
c� =

∑M
i=1 P(Y ∈ Vi(c

�))δc�i , where
c� = (c�1, . . . , c

�
M ).

2.4. Empirical vector quantization

Empirical vector quantization refers to the quantization of the empirical measure
of a random sample and forms the basis for data clustering by the method of k-
means [38], where the goal is to automatically partition the data into dissimilar
groups of similar items. The setting is that of a sequence (Yi)i≥1 of independent
random vectors with the same distribution as Y . For each sample size n, denote

by P
(n)
Y := 1

n

∑n
i=1 δYi the empirical measure associated with Y1, . . . , Yn. An

empirical quantizer c�n is any minimizer of the distortion for P
(n)
Y , that is, such

that En(c�n;PY ) = E�
n := infc∈(Rp)M En(c;PY ) where



Prediction by quantization 2685

En(c;PY ) := E
(
c;P

(n)
Y

)
=

1

n

n∑
i=1

min
1≤j≤M

‖Yi − cj‖2, (8)

with E as in (5). Consistency of c�n is shown in [37, 38]. It is shown in [33, 6, 2]
that the excess risk E[E(c�n;PY )] − E�(PY ) of an empirical quantizer decreases
at a rate on the order of O(1/

√
n) under the assumption that PY has bounded

support. This result is extended in [7] for the quantization over a separable
Hilbert space. Faster convergence rates have been reported in the literature
under different kind of assumptions [see e.g. 3, 30]. We mention that these
rates share the property of depending only on the sample size, and not on the
number of quantization points nor on the space dimension. The dependence on
these parameters is only through the constant factors.

3. The multifunction regression problem

Let (X,Y ) be a pair of random vectors taking values in R
d×R

p. Following [40],
a set-valued mapping or multifunction c : Rd ⇒ R

p is a map which to each
x in R

d associates a subset c(x) of Rp. The double arrow notation is used to
distinguish multifunctions from single-valued functions and the Euclidean spaces
under consideration are endowed with their Borel σ-fields. A multifunction c :
R

d ⇒ R
p is closed-valued if c(x) is closed for each x; it is measurable if for every

open set O ⊂ R
p the set c−1(O) is measurable [40, Definition 14.1].

Given M an integer, we consider the set FM of measurable multifunctions
c : Rd ⇒ R

p such that c(x) contains exactly M points of Rp for each x, that is,

FM =
{
c : Rd ⇒ R

p : c is measurable and #c(x) = M for each x
}
, (9)

where # denotes the cardinality of a set.
Notice that each multifunction in FM is closed-valued. By [40, Theorem 14.5],

each closed-valued measurable multifunction admits a Castaing representation,
meaning in our context that, for each c in FM , there exists M measurable
functions c1, . . . , cM from R

d to R
p such that c(x) = (c1(x), . . . , cM (x)) for

all x. We define the multifunction regression problem as the problem of best
approximating Y by c(X), for some c in FM , in the sense of the predictive risk
E(c) defined in (1) as

E(c) = E

[
min

1≤j≤M
‖Y − cj(X)‖2

]
. (10)

Notice that E(c) does not depend on the choice of functions (c1, . . . , cM ) used to
represent c. Then we define a solution to the multifunction regression problem
as any multifunction c� in FM such that

E(c�) = inf
c∈FM

E(c).

A notable difference with the conventional regression setting (corresponding
to M = 1) is that the solution set typically contains multiple solutions when
M ≥ 2, while when M = 1, the solution is unique and coincides with the
regression function η(x) = E[Y |X = x].
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As claimed in the Introduction, minimization over c can be reduced to a
collection of quantization problems indexed by x. This is true in the following
sense. Denote by PX the distribution of X and by SX its support. By condi-
tioning on X in the definition of E(c), let E(c;x) be the function defined for any
x in SX and any c = (c1, . . . , cM ) ∈ R

p × · · · × R
p by

E(c;x) = E

[
min

1≤j≤M
‖Y − cj‖2

∣∣X = x

]
, (11)

which is also equal to the conditional version of (5) (we use the same notation
c to denote either a multifunction R

d ⇒ R
p or a point in R

p × · · · × R
p when

this is clear from the context and there is no risk of confusion). Thus E(c;x)
corresponds to the distortion of the conditional distribution of Y given X at x
by the M -points quantizer with codebook (c1, . . . , cM ). It is clear that E(c;x)
is measurable in x for each c and continuous in c for each x, which imply
that E(c;x) is a Carathéodory integrand (these are the defining conditions).
Therefore E(c;x) is a normal integrand in the sense of [40, Definition 14.27] and
by [40, Theorem 14.60] on the interchange of minimization and integration, we
have

inf
c∈FM

∫
SX

E(c(x);x)PX(dx) =

∫
SX

[
inf

c∈Rp×···×Rp
E(c;x)

]
PX(dx), (12)

and for any c̄ in FM , the following equivalence holds:

c̄ ∈ argmin
c∈FM

∫
SX

E(c(x);x)PX(dx) ⇐⇒ c̄(x) ∈ argmin
c∈Rp×···×Rp

E(c;x) for PX -a.e. x.

Thus minimizing E(c) over FM is equivalent to minimizing E(c;x) over c ∈
R

p × · · · × R
p, up to measurability. This issue can be resolved by considering a

measurable selection from the argmin sets as follows: since E(c, x) is a normal in-
tegrand, the multifunction SX ⇒ R

p defined by x �→ argminc∈Rp×···×Rp E(c;x)
is closed-valued and measurable by [40, Theorem 14.37], and so it admits a mea-
surable selection [40, Corollary 14.6], that is, a measurable function c̄ : SX →
R

p × · · · × R
p such that c̄(x) ∈ argminc∈Rp×···×Rp E(c;x) for all x in SX (c̄ is

cannonically identified with a multifunction in FM ).
We conclude that any solution c� to the multifunction regression problem

can be defined either directly as a minimizer of E(c) over FM or as a mea-
surable selection (which exists) from the collection of argmin sets defined by
{argminc∈Rp×···×Rp E(c;x) : x ∈ SX}.

4. The estimate

In this section, we define our estimate ĉn(x) := (ĉn,1(x), . . . , ĉn,M (x)). We also
describe an optimization algorithm to compute the values of ĉn(x) at any point
x.
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4.1. Definition of the estimate

Let (Xi, Yi)i≥1 be an IID sequence of random vectors with the same distribution
as (X,Y ). To define ĉn(x), we proceed by first estimating E(c;x) and next by
minimizing the estimated distortion over c for each x. Clearly there is ample
leeway for the first step, and for computational reasons exposed in section 4.2,
we consider a k-nearest neighbors local averaging estimate of E(c;x) of the form

En(c;x) =
n∑

i=1

Wn,i(x) min
1≤j≤M

‖Yi − cj‖2, (13)

where {Wn,i(x), i = 1, . . . , n} is the set of weights depending on the observations
X1, . . . , Xn defined as

Wn,i(x) =
1

k
1 {Xi is among the k nearest neighbors of x} . (14)

As for E(c;x) defined in (10), En(c;x) is a Carathéodory integrand (hence a
normal integrand) and so there exists a measurable selection from its argmin
sets. Then we define our estimate ĉn as any measurable selection from the col-
lection {argminc∈Rp×···×Rp En(c;x) : x ∈ SX}, meaning that ĉn is measurable
and satisfies

En(ĉn(x);x) = inf
c∈Rp×···×Rp

En(c;x), for all x in SX . (15)

4.2. An optimization algorithm

Minimizing En(c;x), or En(c;PY ) in the non conditional setting, is known for
being computationally difficult (it is NP-hard). A popular and tractable opti-
mization algorithm for this purpose is the k-means algorithm, which proceeds it-
eratively by constructing a sequence of quantizers converging to a local optimum.

From a practical perspective, the local averaging estimate En(c;x) defined
in (13) can be minimized by considering a weighted version of the k-means
algorithm, as described in Algorithm 1. Naturally, weights other than the k-
nearest neighbors weights could be used. But when using the k-nearest neighbor
weights (14), the algorithm is equivalent to the standard M -means algorithm
applied to the Yi’s which correspond to the k nearest neighbors of x among the
Xi’s. Thus, the algorithm is rather simple to implement.

5. Asymptotic analysis

In this section, we study the convergence of the estimate ĉn defined in (15).
We assume that (X,Y ) admits a probability density fXY with respect to the
Lebesgue measure on R

d × R
p and that Y is bounded, that is, that there is

R > 0 such that ‖Y ‖ ≤ R almost surely.
We shall need the following notation. The conditional density of Y given

X = x at y is denoted by fY |X=x(y). For any m, the closed ball of Rm centered
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at x and of radius ρ is denoted by Bm(x, ρ). The closed ball centered at the origin
and of radius ρ is denoted by Bm(ρ) and the volume of Bm(1) is denoted by ωm.

Recall the excess risk defined in (2) by

R(ĉn) = E

[
min

1≤j≤M
‖Y − ĉn,j(X)‖2

]
− inf

c∈FM

E

[
min

1≤j≤M
‖Y − cj(X)‖2

]
, (16)

where the class FM is defined in (9). We also consider the pointwise excess risk
defined by

R(ĉn;x) = E

[
min

1≤j≤M
‖Y − ĉn,j(X)‖2|X = x

]

− inf
c∈Rp×···×Rp

E

[
min

1≤j≤M
‖Y − cj‖2|X = x

]
.

(17)

We note that by (12),

inf
c∈F

E

[
min

1≤j≤M
‖Y − cj(X)‖2

]
= E

[
inf

c∈Rp×···×Rp
E

[
min

1≤j≤M
‖Y − cj‖2|X

]]
,

and so R(ĉn) = E [R(ĉn;X)].

5.1. Bounds on the excess risk

In Theorem 1 and Theorem 2, we establish convergence rates on the pointwise
excess risk (17) and on the excess risk (16) of a sequence of estimate ĉn. We con-
sider local and global Lipschitz regularity conditions on the conditional densities
analogous to those used in [19] for the estimation of conditional distributions.

Theorem 1. Let x be a point in SX . Assume that there exists κ > 0 such that

P (‖X − x‖ ≤ ε) ≥ κεd, for all ε > 0. (18)

Assume that there exists δ > 0 and an integrable function h : Rp → R+ such
that

Algorithm 1: Conditional weighted k-means algorithm.

Input: Data (X1, Y1), . . . , (Xn, Yn), weights Wn,i(x), i = 1, . . . , n, and number of
quantization points M .

1. Initialize a configuration c(0) = (c
(0)
1 , . . . , c

(0)
M ).

2. Iterate for t ≥ 0 over:

(a) Assignment step: Set I
(t)
j = {1 ≤ i ≤ n : ‖Yi − cj‖ ≤ ‖Yi −

c�‖ for all 1 ≤ � ≤ M}, for each 1 ≤ j ≤ M ,

(b) Update step: Set c
(t+1)
j =

∑
i∈I

(t)
j

Wn,i(x)Yi∑
i∈I

(t)
j

Wn,i(x)
.

Output: Configuration c = (c1, . . . , cM ) obtained at convergence.
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∣∣fY |X=x̃(y)− fY |X=x(y)
∣∣ ≤ h(y)‖x̃− x‖ (19)

for all y ∈ R
p and for all x̃ with ‖x̃− x‖ ≤ δ.

Then there exists a constant C := C(δ, κ, h,R) > 0 such that, for all k and

n satisfying k
n ≤ 1

C

((
log k
k

) d
2 ∧ δd

)
, and any sequence ĉn of estimate,

R (ĉn;x) ≤
√

C(pM + 1)

2

√
log k

k
+ 8R2 exp

(
−nδd

C

)
+ o

(√
log k

k

)
. (20)

Condition (18) is a regularity condition on the support SX in a neighborhood
of the point x which is used for instance in set estimation to define the notion
of a standard set [see e.g. 5].

The term
√

C(pM+1)
2

√
log k
k in the right-hand side of (20) corresponds to the

excess risk of an empirical quantizer defined on a random sample of size k [33].
As pointed out in [6], the log k factor can be eliminated at the price of added
technical difficulties, and we speculate that the same applies here, so that the
first term in the righ hand side of (20) could be sharpened to a constant multiple
of 1/

√
k.

With the choice of k � n
2

d+2 , Theorem 1 leads to the following bound on the
pointwise excess risk.

Corollary 1. In the setting of Theorem 1, with k � n
2

d+2 , then

R (ĉn(x);x) = O

((
log n

n

) 1
d+2

)
.

We note that the rate of Corollary 1 is slower than the O(
√

logn/n) rate that
would be obtained in the quantization of a sample of size n without conditioning.
Hence we see that a curse of dimensionality is at play here, as expected.

To bound the excess risk, we consider a global version of the Lipschitz condi-
tion (19). We also assume that the support SX is compact, which is a standard
condition in regression estimation with nearest neighbors.

Theorem 2. Suppose that SX is compact, and that there exists an integrable
function h : Rp → R+ such that∣∣fY |X=x̃(y)− fY |X=x(y)

∣∣ ≤ h(y)‖x̃− x‖, (21)

for all x and x̃ in SX . Let ĉn be a sequence of estimate. Then with k � n
2

d+2 ,

R(ĉn) = O

((
logn

n

) 1
d+2

)
. (22)

We note that the rates in both Corollary 1 and Theorem 2 depend adversely
on the dimension d of the predictor variable X. This results from the smooth-
ing over x used to estimate the conditional distortions E(c;x). Note also that
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these rates do not depend on the number of quantization points M , nor on the
dimension p of the response Y ; the dependence on p and M is only through the
constants, as exhibited in the right-hand side of (20) for instance. This is con-
sistent with known bounds on the excess risk in empirical vector quantization
[33, 6, 2], as seen in Section 2.4.

In the real-valued regression setting (with M = 1 and p = 1), condition (21)
entails the Lipschitz continuity of the regression function η(x) = E[Y |X = x]
by the Lebesgue dominated theorem combined with the assumption that Y is
bounded. Therefore the rate in Theorem 2 is suboptimal for M = 1 since the
minimax rate of convergence of the L2 risk for a Lipschitz continuous regression

function with bounded Y is n− d
d+2 . Yet a striking difference between the cases

M = 1 and M ≥ 2 is that the equality

R(ĉn) = E[(Y − ĉn(X))2]− E[(Y − η(X))2] = E[(ĉn(X)− η(X)]2

in the case M = 1, which allows for the decomposition into the well-known
bias/variance sum, with the bias depending on the regularity of the regression
function, does not extend to the case M ≥ 2. Therefore when M ≥ 2, the
dependence, if any, of the convergence rate of the excess risk on the regularity
of the solution(s) to the multifunction regression problem is unclear. In addition
when M ≥ 2, the solution set of a quantization problem may contain multiple
solutions (and as pointed out in [39], few conditions enforcing uniqueness exist).
Thus one might expect that irregular solutions to the multifunction regression
problem do exist. Therefore a deeper analysis of the convergence rate would
necessitate a fine examination of the regularity of the argmin sets of E(c;x)
over x, which is something that we remain curious about. That said, by using
the connection between the quantization problem and the Wasserstein distance,
we can state a convergence result on the solution, as shown in the next Section.

5.2. Convergence in solution

For any x in SX , let C�(x) = argminc∈Rp×···×Rp E(c;x), the argmin set of E(c;x).
Given two closed-valued multifunctions c1 and c2, we measure the proximity
between c1(x) and c2(x) by their Hausdorff distance dH(c1(x), c2(x)), where
the Hausdorff distance between two subsets A and B of Rp is defined by

dH(A,B) = sup
a∈A

inf
b∈B

‖a− b‖ ∨ sup
b∈B

inf
a∈A

‖a− b‖.

We state the following qualitative result under the local conditions used in
Theorem 1.

Theorem 3. Let x be a point in SX and suppose that (18) and (19) hold. Let
ĉn be a sequence of estimate. Suppose that k

n → 0 and k
logn → ∞. Then the set

of accumulation points of ĉn(x) is a nonempty subset of C�(x) and

inf
c∈C�(x)

dH(ĉn(x), c) → 0 almost surely as n → ∞.
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Thus, at any x in SX , the accumulation points of ĉn(x) are optimal. In
particular, if the multifunction regression problem admits a unique solution c�,
then ĉn(x) converges almost surely to c�(x) for all x in SX satisfying (18) and
(19). We note that (19) holds for all x ∈ SX when (21) is satisfied, and that
(18) holds for all x when the support SX is a standard set in the sense of [5].

6. Numerical experiments

In this section, we report on practical aspects for the implementation of the
empirical conditional quantizer with k-nearest neighbor weights, as described
in Algorithm 1. In particular, through two simulated examples, we discuss the
choice of the parameter k corresponding to the number of neighbors and of the
parameter M corresponding to the number of quantization points. The method-
ology is then applied to a real-world data set of speed records as a function of
location along a daily automobile path in the city of Toulouse, France. This
data is provided by Mediamobile (http://www.mediamobile.com).

6.1. Example 1: Two-conditional clusters

In this example, we apply the methodology to a sample of n = 2, 500 simulated
points for the distribution represented in Figure 1. In details, X follows a uni-
form distribution over [0, 1], and given X, Y follows a mixture of two normal
distributions with equal weights, with both variances equal to 0.01, and with
mean functions η1(x) = arctan(8x) and η2(x) = 2 arctan(6x). The number of
quantization points is set to M = 2 for all x in [0, 1].

To select the number of neighbors k, we propose a data-driven method based
on the minimization of an estimate of the average prediction error E[E(ĉn(X);X)]
used to define the excess risk. For this purpose, we split the data into two parts,
of size �2n/3� and n − �2n/3�. The first part is used to construct the model,
while the second part is used to estimate the mean prediction error (other frac-
tions than 2/3 − 1/3 could be taken so long as the size of the test set remains
smaller than the size of the learning set). Specifically, given an integer k, for
each �2n/3�+ 1 ≤ i ≤ n, we determine an empirical quantizer ĉn(Xi) by mini-
mization of the quantization error based on the k-nearest neighbors of Xi among
the (Xj , Yj), for 1 ≤ j ≤ �2n/3�, that is, ĉn(Xi) := (ĉn,1(Xi), . . . , ĉn,M (Xi))
minimizes

c �→ 1

k

n∑
j=1

min
1≤j≤M

(Yj − cn,�)
2
1
{
Xj is a k-NN of Xi among X1, . . . , X�2n/3�

}
.

Using this, we set

ÊP,n(k) =

n∑
i=�2n/3�+1

min
1≤j≤M

(Yi − ĉn,j(Xi))
2
,

which is an estimate of the average prediction error. The data-driven value of
the number of neighbors is then selected as a minimizer of ÊP,n(k) over k.

http://www.mediamobile.com
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In this example, ÊP,n(k) over k has been evaluated for values of k ranging from

10 to 150 by steps of 5. The graph of ÊP,n(k) as a function of k is represented
in the left panel of Figure 2. The minimum of the estimated prediction error is
attained at k = 75. This value is then used to evaluate empirical conditional
quantizers at 100 equally spaced x-values ranging from 0 to 1. The resulting
conditional quantizers are represented as the green and red curves in the right
panel of Figure 2.

Fig 2. Left: Estimated prediction mean square error versus the number of neighbors k. The
minimum is attained at k = 75. Right: Scatterplot of the data with the curves corresponding
to the empirical quantizers with k = 75.

6.2. Example 2: One or two conditional clusters

In this example, we consider a pair (X,Y ) where X follows a uniform distribu-
tion over [−1, 1], and where given X, Y follows a mixture of normal distribution
with equal proportions, with variances both equal to 0.01, and with mean func-
tions η1(x) = x2 and η2(x) = −x2. A scatterplot of n = 1, 200 points simulated
from this distribution is represented in the right panel of Figure 3. It appears
that the conditional distribution of Y given X is well concentrated around one
cluster when x is approximately in the range [−0.4, 0.4], while it clusters into
two groups outside this interval. This calls for an automatic selection of both
k (the number of neighbors) and M (the number of quantization points). Here,
the goal is have k and M both depend on x.

The problematic of selecting a number a quantization points is standard
in clustering analysis, where it corresponds to the selection of the number of
clusters. Several heuristics have been introduced for that purpose. We shall use
the gap heuristic proposed by [44], whereby the number of clusters is selected by
comparing the change in the within-cluster variability to that expected under
a null reference distribution, which is not clustered, like a uniform or unimodal
distribution. In the present setting, the difficulty in selecting bothM and k lies in
the lack of a global criterion to optimize. Indeed, for each k, the mean prediction
error decreases with M , so this criterion cannot be used to simultaneously select
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Fig 3. Left: Optimal value of k (number of neighbors) selected by minimizing the estimated
mean prediction error as a function of M (number of quantization points). Right: Scatterplot
of the data with the curves of the empirical quantizers. For each x, the number of quantization
points is selected automatically using the gap heuristic [44]

k and M . Moreover, the use of an empirical heuristic, like the gap heuristic, for
selecting M would require k to have been specified first.

To circumvent these issues, we propose the following method. First, for each
M in a given range, a value of k is selected from the data by minimizing the mean
prediction error, as described in Example 1. Denote this value by k(M). In this
example, we let M vary between 1 and 8; the estimated k(M) are represented
in Figure 3 (left) as a function of M . Next, for each x-value, and for each value
of k(M), we applied the gap heuristic [44] to select M . Denote this value by
Mgap(k(M)). The final value of M is then selected by a majority vote. Denote

this value by M̂ . At last, we select k as k̂ := k(M̂). This procedure is repeated
for each x-value, so the selected values of k and M both vary with x.

Interestingly in these simulations, for each x, the values {Mgap(k(M)) , M =
1, . . . , 8} where all equal, therefore the selection of M was particularly robust
to the initial value of k. It is also interesting to note that on this example the
pair (k̂, M̂) selected at each x satisfies the stability relations M̂ = Mgap(k̂) and

k̂ = k(M̂).
We applied this selection procedure to 100 x values equally spaced between

−1 and 1. This resulted in either 1 or 2 clusters. The quantization points are
represented as curves in the right panel of Figure 3.

6.3. Example: Speed data

We consider a data set of Floating Car Data (FCD) extracted from GPS devices
which record the speed and location of cars at a frequency of 10 Hz. The raw
data is map-matched to a network of roads. In this example, n = 70 vehicles
have been monitored at different times and days while moving along a given
path, 10 kilometers long, and composed of sections of inner-city roads and of a
freeway. The data is represented in the top-left panel of Figure 4 as 70 curves
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giving the speed (in kilometers per hour) as a function of the distance along the
path (normalized to unit length).

As an approach to road traffic forecasting, [1] propose to first cluster the
speed-location curves to define prototypical speed patterns, and next to assign
a new individual to the closest cluster. To implement the clustering approach,
it is required that the data correspond to the same path. Yet when using FCD,
vehicles may share only a small section of a trajectory, so that the number of
data for a given path may be limited and this may hamper the prediction in
some cases.

To cope with this issue, we propose to strongly localize the determination of
the speed patterns by inferring the cluster structure of the speed conditionally
on the location. It can be noticed from the top-left panel of Figure 4 that drivers
have different behaviors at high speeds while vehicle speeds with small values
present less variability. This difference in variabilities may be explained by the
presence of traffic jams, which has a stronger effect on a freeway ride, where high
speeds can no longer be attained, than on an inner-city ride, where the traffic is
already constrained by speed limits, traffic signals and stop signs. The cluster
structure of the traffic flow is well revealed by the conditional quantization,
as represented in the top-right panel of Figure 4. The analysis yields either
one or two cluster conditionally on the location which can be interpreted as
corresponding to free flow and congested flow situations.

7. Proofs

We start in section 7.1 by establishing a uniform concentration inequality on
the distortion. Theorem 1, Theorem 2 and Theorem 3 are proved in sections
7.2, 7.3, and 7.4 respectively.

7.1. Concentration of the distortion

Proposition 1 below gives an upper bound on the uniform deviations of En(c;x)
to E(c;x) for each fixed point x.

Proposition 1. In the context of Theorem 1, let x be a point in the support of
the distribution of X, let κ > 0 satisfying (18) and let δ > 0 and h : Rp → R+

integrable satisfying (19). There exists a constant C := C(δ, κ, h,R) > 0 such
that for any ε > 0, any k and n satisfying k

n ≤ 1
C

(
εd ∧ δd

)
,

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)

≤
ωM
p 25pM+1R2pM

ωpM
ε−pM exp

(
− kε2

64R2(32R2 + ε)

)

+ exp

(
−nεd

C

)
+ exp

(
−nδd

C

)
.

We shall need the following Lemma which is Lemma 6 in [13].
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Fig 4. Top-left: Speed records as a function of location along the path. Top-right: Optimal
number of quantization point selected with the gap heuristic as a function of location. Bottom-
left: Quantization points (either 1, 2, or 3) as a function of location.

Lemma 1 ([13]). Let (Ui)i≥1 be a sequence of independent, zero mean random
variables such that |Ui| ≤ c almost surely. For all real numbers a1, . . . , an ≥ 0
such that

∑n
i=1 ai ≤ 1, and all ε > 0,

P

(∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

2(c2 + cε)(sup ai)

)
.

Proof. Given c := (c1, . . . , cM ) ∈ (Rp)M . Set Zi = min1≤j≤M ‖Yi − cj‖2, for
i = 1, . . . , n. Then En(c;x) can be expressed as

En(c;x) =
n∑

i=1

Wn,i(x)Zi.

Let

Ẽn(c;x) =
n∑

i=1

Wn,i(x)E(c;Xi) (23)
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be a centering term. We proceed to bound the deviations of |En(c;x)−Ẽn(c;x)|
and |Ẽn(c;x)− E(c;x)| uniformly over c in Bp(R)M .

For any ε > 0, we have

P

(∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)

= E

[
P

(∣∣∣∣∣
n∑

i=1

Wn,i(x) (Zi − E(c;Xi))

∣∣∣∣∣ > ε
∣∣X1, . . . , Xn

)]
.

Note that for each i = 1, . . . , n, the weight Wn,i(x) depends on the distance of
x with respect to the Xi’s and hence is σ(X1, . . . , Xn)-measurable, the random
variable Zi is almost surely bounded by 4R2, and E[Zi−E(c1, . . . , cM ;Xi)|X1, . . . ,
Xn] = 0 almost surely. So, by applying Lemma 1 with coefficients ai = Wn,i(x),
random variables Ui = Zi − E(c;Xi), conditionally on the sample X1, . . . , Xn,
we obtain that for any ε > 0,

P

(∣∣∣∣∣
n∑

i=1

Wn,i(x) (Zi − E(c;Xi))

∣∣∣∣∣ > ε
∣∣X1, . . . , Xn

)

≤ 2 exp

(
− ε2

2[(8R2)2 + (8R2)ε](1/k)

)
,

from which it follows that

P

(∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)
≤ 2 exp

(
− kε2

16R2[8R2 + ε]

)
. (24)

To obtain a uniform bound, we consider a covering of the set {(c1, . . . , cM ) :
ci ∈ B(R)} = Bp(R)M using the distance induced by the Euclidean norm of
R

pM . Since the set Bp(R)M is a compact subset of RpM , the minimal number
N (Bp(R)M , η) of balls of radius η that are necessary to cover Bp(R)M is of order
η−pM , i.e., by considering an η-packing of Bp(R)M , we can prove that

N
(
Bp(R)M , η

)
≤

ωM
p 2pM

ωpM

(
R

η

)pM

=: C0η
−pM . (25)

Let a1, . . . ,aNη be a covering of {(c1, . . . , cM ) : ci ∈ Bp(R)} = Bp(R)M by balls
of radius η > 0 of minimal cardinality, that is, Nη = N (Bp(R)M , η) and for any
c ∈ Bp(R)M , there is at least one a� with components a� = (a�,1, . . . , a�,M ) such
that ‖c−ai‖ ≤ η, where the norm is defined by ‖c−a�‖2 = ‖c1− a�,1‖2+ · · ·+
‖cM − a�,M‖2. By a union bound, we have

P

(
sup

c∈B(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)

≤
Nη∑
�=1

P

(
sup

c∈B(a�,η)

∣∣∣En(c;x)− Ẽ(c;x)
∣∣∣ > ε

)
. (26)
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Fix 1 ≤ � ≤ Nη. For any c = (c1, . . . , cM ) in Bp(a�, η)
M , and any 1 ≤ j ≤ M ,

‖Y −cj‖2 = ‖Y −a�,j‖2+‖a�,j−cj‖2+2〈Y −a�,j , a�,j−cj〉 ≥ ‖Y −a�,j‖2−4Rη,
(27)

since ‖Y −a�,j‖ ≤ 2R and using the fact that ‖c−a�‖ ≤ η implies ‖a�,j−cj‖ ≤ η.
Therefore,

min
1≤j≤M

‖Y − cj‖2 ≥ min
1≤j≤M

‖Y − a�,j‖2 − 4Rη,

and by taking the expectation conditionally on X, we deduce that E(c;x′) ≥
E(a�;x′)−4Rη for any x′ in the support of the distribution of X. By exchanging
cj with a�,j in (27), the same reasoning leads to the inequality E(a�;x′) ≥
E(c;x′)− 4Rη. Hence, for any c in Bp(a�, η) and for any x′ in SX ,

|E(c;x′)− E(a�;x′)| ≤ 4Rη,

from which we deduce that∣∣∣Ẽn(c;x)− Ẽn(a�;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(a�;Xi)| ≤ 4Rη.

Similarly, by considering En in place of E in the steps above, we also have that,
for any c in Bp(ai, η),

|En(c;x)− En(ai;x)| ≤ 4Rη.

Therefore, for any 1 ≤ � ≤ Nη,

sup
c∈Bp(a�,η)

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ ≤ ∣∣∣En(a�;x)− Ẽn(a�, x)

∣∣∣+ 8Rη. (28)

Then we deduce from (26) and (28) with η = ε/(16R), together with the ex-
ponential inequality in (24) and the bound on the covering number in (25),
that

P

(
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)

≤ N
(
Bp(R)M ,

ε

16R

)
max

1≤�≤Nε

P

(∣∣∣En(a�;x)− Ẽn(a�, x)
∣∣∣ > ε

2

)

≤ 2C0

( ε

16R

)−pM

exp

(
− kε2

32R2(16R2 + ε)

)
. (29)

Now we proceed to bound the deviations of
∣∣∣Ẽn(c;x)− E(c;x)

∣∣∣ uniformly

over c. For any c in Bp(R)M , we have

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(c;x)| .

Let δ > 0 and h : Rp → R+ integrable satisfying the regularity (19). Since ‖Y ‖
is bounded by R, for x̃ with ‖x̃− x‖ ≤ δ and any c in Bp(R)M ,
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|E(c; x̃)− E(c;x)| ≤ (4R2)

∫
Rp

∣∣fY |X=x̃(y)− fY |X=x(y)
∣∣ dy ≤ 4R2‖h‖1‖x̃− x‖

=:L‖x̃− x‖,
(30)

where ‖h‖1 denotes the L1 norm of the function h.
Denote by X(k,n)(x) the k

th nearest neighbor of x among the sample X1, . . . ,
Xn. Then, for any c in Bp(R)M ,∣∣∣Ẽn(c;x)− E(c;x)

∣∣∣ ≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}

+
∣∣∣Ẽn(c;x)− E(c;x)

∣∣∣1{‖X(k,n)(x)− x‖ > δ}
≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}

+8R21{‖X(k,n)(x)− x‖ > δ} almost surely,

where in the last inequality we used the fact that

sup
c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ 8R2.

Hence, with probability one,

sup
c∈B(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣

≤ L‖X(k,n)(x)− x‖1{‖X(k,n)(x)− x‖ ≤ δ}+ 8R21{‖X(k,n)(x)− x‖ > δ}.
(31)

Then,

P

(
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ > ε

)

≤ P

([
L‖X(k,n)(x)− x‖ >

ε

2

]
∩
[
‖X(k,n)(x)− x‖ ≤ δ

])
+ P

(
8R21{‖X(k,n)(x)− x‖ > δ} >

ε

2

)
≤ P

(
‖X(k,n)(x)− x‖ >

ε

2L

)
+ P

(
‖X(k,n)(x)− x‖ > δ

)
. (32)

For any 0 < η ≤ δ, let pη = P(‖X − x‖ ≤ η). Note that pη ≥ κηd where κ > 0
is defined in (18). Since,

P
(
‖X(k,n)(x)− x‖ > η

)
= P

(
n∑

i=1

1 {‖Xi − x‖ ≤ η} ≤ k − 1

)
,

we deduce by using Chernoff’s bound that, for any 0 < η ≤ δ

P
(
‖X(k,n)(x)− x‖ > η

)
≤ exp

(
−1

2

(
1− k − 1

npη

)2

npη

)
≤ exp

(
−npη

8

)
,
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where the last inequality holds whenever k−1
npη

≤ 1
2 , which is implied when

k

n
≤ κ

2
ηd. (33)

Therefore in this case

P
(
‖X(k,n)(x)− x‖ > η

)
≤ exp

(
−κ

8
nηd

)
. (34)

Hence, by reporting (34) in (32), for any ε > 0, and any k and n such that

k

n
≤ κ

2

[( ε

2L

)d

∧ δd
]
, (35)

we have

P

(
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ > ε

)

≤
[
exp

(
−nεd

C1

)
+ exp

(
−nδd

C1

)]
1{ε ≤ 8R2}, (36)

with C1 = 8
κ [1 ∨ (2L)d].

Combining (29) and (36), we obtain that, for any ε > 0, and any k and n
satisfying (35),

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)

≤ 2C0

(
ε/2

16R

)−pM

exp

(
− k(ε/2)2

32R2(16R2 + ε/2)

)

+ exp

(
−n(ε/2)d

C1

)
+ exp

(
−nδd

C1

)
.

From this, and the fact that (35) is satisfied when k
n ≤ κ

2

(
1

(2L)d
∧ 1

) (
εd ∧ δd

)
,

we conclude.

7.2. Proof of Theorem 1

Let c� be an optimal quantizer, meaning that E(c�, x) = E�. Denote by c�n :=
ĉn(x) the value of the estimate ĉn at the point x. Following standard arguments,
we have

E(c�n;x)− E�(x) = [E(c�n;x)− En(c�n;x)] + [En(c�n;x)− En(c�;x)]
+ [En(c�;x)− E(c�;x)]

≤ 2 sup
c∈Bp(R)M

|En(c;x)− E(c;x)| , (37)

so that

E [E(c�n)]− E� ≤ 2E

[
sup

c∈Bp(R)M
|En(c;x)− E(c;x)|

]
. (38)
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Given a > 0, and since supc∈Bp(R)M |En(c;x)− E(c;x)| ≤ 8R2 almost surely, we
have

E

[
sup

c∈Bp(R)M
|En(c;x)− E(c;x)|

]

=

∫ ∞

0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤ a+

∫ ∞

a

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε. (39)

By Proposition 1 there exists constants C0 := C0(R, p,M) > 0 and C1 :=
C1(δ, κ, h,R) > 0 such that, for any ε > 0, and any k and n with k

n ≤
1
C1

(
εd ∧ δd

)
,

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)

≤ C0ε
−pM exp

(
−kε2

C1

)
+ exp

(
−nεd

C1

)
+ exp

(
−nδd

C1

)
.

Let a > 0 and suppose that k
n ≤ 1

C1

(
ad ∧ δd

)
. Then, since

sup
c∈Bp(R)M

|En(c;x)− E(c;x)| ≤ 8R2 almost surely,

∫ ∞

0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤ a+ C0

∫ 8R2

a

ε−pM exp

(
−kε2

C1

)
dε

+

∫ 8R2

a

exp

(
−nεd

C1

)
dε+ 8R2 exp

(
−nδd

C1

)

≤ a+ C0
8R2

apM
exp

(
−ka2

C1

)
+ 8R2 exp

(
−nad

C1

)
+ 8R2 exp

(
−nδd

C1

)
. (40)

Taking a = c
√

log k
k , with c =

√
C1(pM+1)

2 , we have

1

apM
exp

(
−ka2

C1

)
= c−pM 1√

k(log k)pM/2
= o

(√
log k

k

)
,

and since k
n ≤ 1

C1

(
ad ∧ δd

)
,

exp

(
−nad

C1

)
≤ exp (−k) = o

(√
log k

k

)
.
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Therefore∫ ∞

0

P

(
sup

c∈Bp(R)M
|En(c;x)− E(c;x)| > ε

)
dε

≤
√

C1(pM + 1)

2

√
log k

k
+ 8R2 exp

(
−nδd

C1

)
+ o

(√
log k

k

)

for all k and n satisfying k
n ≤ 1

C1

((
C(pM+1)

2

) d
2
(

log k
k

) d
2 ∧ δd

)
. This inequality

is implied when k
n ≤ 1

C1

((
C(pM+1)

2

) d
2 ∧ 1

)((
log k
k

) d
2 ∧ δd

)
and from this we

conclude with any choice of constant C (in the statement of Theorem 1) larger

than

[
1
C1

((
C(pM+1)

2

) d
2 ∧ 1

)]−1

∨ C1.

7.3. Proof of Theorem 2

For any x in SX and c in Bp(R)M , let Ẽn(c;x) be defined in (23). Using (37),
for any x in SX , we have

E(ĉn(x);x)− E�(x) ≤ 2 sup
c∈Bp(R)M

|En(c;x)− E(c;x)|

≤ 2 sup
c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣

+2 sup
c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ .

Hence

E [E(ĉn(x);x)− E�(x)] ≤ 2E

[
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣
]

+ 2E

[
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣
] (41)

and we proceed to bound the two terms on the right-hand side of (41).
To bound the first term, we use the concentration inequality (29) from the

proof of Proposition 1 to deduce that, for any ε > 0 and for any x in SX ,

P

(
sup

c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣ > ε

)
≤ Cε−pM exp

(
−kε2

C

)
,

where C > 0 is a constant not depending on x. Hence, by proceeding as in the
first part of (40), followed by integrating over x, we deduce that

E

[∫
Rd

sup
c∈Bp(R)M

∣∣∣En(c;x)− Ẽn(c;x)
∣∣∣
]
PX(dx) ≤ C

√
log k

k
(42)

for some constant C > 0.
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To bound the second term, let h : Rp → R+ be an integrable function satis-
fying (21). Since ‖Y ‖ is bounded by R, for any c ∈ Bp(R)M and any x and x̃
in SX , we have

|E(c; x̃)− E(c;x)| ≤ 4R2‖h‖1‖x̃− x‖.
Hence

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣ ≤ n∑

i=1

Wn,i(x) |E(c;Xi)− E(c;x)| ≤ 4R2‖h‖1‖X(k,n)(x)−x‖

and so

E

[
sup

c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣
]
≤ 4R2‖h‖1E

[
‖X(k,n)(x)− x‖

]
. (43)

Using [31, Theorem 3.2], we have

E
[
‖X(k,n)(X)−X‖

]
≤ 2

√
d diam(SX)

(
k

n

) 1
d

, (44)

where X denotes a random variable with distribution PX and independent from
the sample, and where diam(SX) denotes the diameter of SX . By inserting (44)
in (43) we obtain

E

[∫
Rd

sup
c∈Bp(R)M

∣∣∣Ẽn(c;x)− E(c;x)
∣∣∣PX(dx)

]
≤ 8R2‖h‖1

√
d diam(SX)

(
k

n

) 1
d

,

(45)
and we conclude by combining (42) and (45).

7.4. Proof of Theorem 3

Let Pn,k =
∑n

i=1 Wn,i(x)δYi . By [18, Theorem 4.21], the result will hold if

W2

(
Pn,k, PY |X=x

)
→ 0 almost surely. (46)

Recall that a sequence (Qn) of probability measures converges to Q in the (L2)
Wasserstein distance if (Qn) converges weakly to Q and if

∫
‖y‖2dQn(y) →∫

‖y‖2dQ(y) as n → ∞. Thus, since ‖Y ‖ ≤ R almost surely, it suffices to show
that Pn,k =

∑n
i=1 Wn,i(x)δYi converges weakly to PY |X=x almost surely.

Towards proving this, let g be a continuous and bounded function over R
p

and let m(x) = E[g(Y )|X = x]. Proceeding as in the proof of (24), we get

P

(∣∣∣∣∣
n∑

i=1

Wn,i(x)g(Yi)−
n∑

i=1

Wn,i(x)m(Xi)

∣∣∣∣∣ > ε

)

≤ 2 exp

(
− kε2

4‖g‖∞ (2‖g‖∞ + ε)

)
. (47)
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Let δ > 0 and h : Rp → R+ integrable satisfying the regularity condition (19).
For any x̃ with ‖x̃− x‖ ≤ δ,

|m(x̃)−m(x)| ≤ ‖g‖∞‖h‖1‖x̃− x‖ =: L‖x̃− x‖.

So ∣∣∣∣∣
n∑

i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ ≤ L‖X(k,n)(x)− x‖1
{
‖X(k,n) − x‖ ≤ δ

}
+ 2‖g‖∞1

{
‖X(k,n) − x‖ > δ

}
.

Hence, for any ε > 0,

P

(∣∣∣∣∣
n∑

i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ > ε

)
≤ P

(
‖X(k,n)(x)− x‖ >

ε

2L

)
+ P

(
‖X(k,n)(x)− x‖ > δ

)
.

Using (34), for any k and n such that

k

n
≤ κ

2

(( ε

2L

)d

∧ δd
)
, (48)

where κ is defined in (18), we have

P

(∣∣∣∣∣
n∑

i=1

Wn,i(x)m(Xi)−m(x)

∣∣∣∣∣ > ε

)
≤ exp

(
−nεd

C1

)
+ exp

(
−nδd

C1

)
, (49)

with C1 = 8
κ [1∨ (2L)d]. Combining (47) and (49), we deduce that for any ε > 0

and k and n satisfying (48),

P

(∣∣∣∣∣
n∑

i=1

Wn,i(x)g(Yi)−m(x)

∣∣∣∣∣ > ε

)

≤ 2 exp

(
− k(ε/2)2

4‖g‖∞ (2‖g‖∞ + ε/2)

)
+ exp

(
−n(ε/2)d

C1

)
+ exp

(
−nδd

C1

)
.

(50)

Since k
n → 0, (48) is satisfied for all n large enough. Now for any ε > 0, the last

two terms in the right-hand side of (48) are summable over n, and the first term
is summable if k

logn → ∞. So by the Borel-Cantelli Lemma,
∑n

i=1 Wn,i(x)g(Yi)

converges almost surely tom(x). Hence Pn,k converges weakly to PY |X=x almost
surely which implies that (46) holds.
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