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1. Introduction

Statistical tests for the presence of changes in the structure of time series are
of great importance in a wide range of scientific discussions, e.g. regarding eco-
nomic, technological and climate data. Many procedures for detecting changes
and for estimating change-points have been proposed in the literature; see e.g.
Csörgő and Horvath (1997) for a detailed exposition. In the case of independent
data, the theory is quite satisfactory. For various types of change-point models,
statistical procedures have been proposed and their properties investigated. In
contrast, the situation is different for dependent data, such as encountered in
time series models. For dependent data, most research has focused on linear
procedures, such as cumulative sum (CUSUM) tests, and there are many open
problems when it comes to other types of test procedures, e.g. those used in
robust statistics.

In the present paper, we study the change-point problem for Gaussian sub-
ordinated long-range dependent data. Specifically, we will test the hypothesis
that the process is stationary against the alternative that there is a change in
the mean. The classical test statistic for this problem is the CUSUM statistic,

max
1≤k≤n−1

∣∣∣∣∣
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

∣∣∣∣∣ = max
1≤k≤n−1

1

n

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣∣∣ (1.1)

When the test statistic is large, one infers that there is a change in the mean.
The CUSUM test has good properties when the underlying process is Gaussian.
The asymptotic distribution of the CUSUM test in the presence of long-range
dependent data has been investigated by Horváth and Kokoszka (1997). Ben
Hariz and Wylie (2005) have studied the rate of convergence of a change-point
estimator based on the CUSUM test.

However, the CUSUM test is not robust against possible outliers in the data,
because the sum

∑k
i=1 Xi can change drastically when there are outliers. Re-

cently, Dehling, Rooch and Taqqu (2013) have proposed a robust alternative
to the CUSUM test, which is based on the Wilcoxon two-sample rank statistic.
The corresponding “Wilcoxon change-point test” uses the test statistic

max
1≤k≤n−1

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ . (1.2)

One rejects the null hypothesis when this test statistic is large. Motivation for
the centering constant 1/2 is provided in Remark 3.2.

Rank tests for change-point problems have been studied earlier by Antoch et
al. (2008), in the presence of i.i.d. data, and by Wang (2008) for linear processes.
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Ben Hariz, Wylie and Zhang (2007) have studied optimal rates of convergence
for a wide class of nonparametric change-point estimators.

In their paper, Dehling, Rooch and Taqqu (2013) investigated the asymptotic
distribution of the Wilcoxon change-point test under the null hypothesis of no
change, in the presence of long-range dependence. Moreover, they performed a
simulation study to compare the finite sample performance and the power of
the CUSUM test based on (1.1) and the Wilcoxon change-point test based on
(1.2).1

In the present paper, we study the power of the CUSUM test and the
Wilcoxon change-point test for a shift in the mean of a long-range dependent
process. We will calculate the power under local alternatives, where the height
of the shift decreases with the sample size n in such a way that the tests have
non-trivial limit power as n → ∞. These results enable us to compute the
asymptotic relative efficiency (ARE) of the CUSUM and the Wilcoxon change-
point tests, which is defined as the limit of the ratio of the sample sizes required
to obtain a given power. We obtain the surprising result that the ARE of these
two tests equals 1 in the case of long-range dependent Gaussian data. This is in
contrast with the case of i.i.d. and short-range dependent data, where the ARE
of the Wilcoxon change-point test with respect to the CUSUM test is 3/π. In
the context of M-estimation of a location parameter, a similar phenomenon has
been observed by Beran (1991); see also Beran (1994), Corollary 8.1.

We consider a model where the observations are generated by a stochastic
process (Xi)i≥1 of the type

Xi = μi + εi, (1.3)

where (εi)i≥1 is a long-range dependent stationary process with mean zero, finite
variance and where (μi)i≥1 are the unknown means. We focus on the case when
(εi)i≥1 is an instantaneous functional of a stationary Gaussian process (ξi)i≥1

with non-summable covariances, i.e.

εi = G(ξi), i ≥ 1.

We assume that (ξi)i≥1 is a long-range dependent (LRD), mean-zero Gaussian
process with variance E(ξ2i ) = 1 and autocovariance function

ρ(k) = k−DL(k), k ≥ 1, (1.4)

where 0 < D < 1, and where L(k) is a slowly varying function. Moreover,
G : R → R is a measurable function satisfying E(G(ξi)) = 0.

Based on observations X1, . . . , Xn, we wish to test the hypothesis

H : μ1 = . . . = μn

that there is no change in the means of the data against the alternative

A : μ1 = . . . = μk �= μk+1 = . . . = μn, for some k ∈ {1, . . . , n− 1}. (1.5)

We shall refer to this test problem as (H,A).

1Dehling et al. (2013) called the CUSUM test, the “difference of means test”, and called
the Wilcoxon change-point test, the “Wilcoxon-type” test.
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Dehling, Rooch and Taqqu (2013) have studied two tests for this change-point
problem, namely the CUSUM test which uses the test statistic

Dn :=
1

ndn
max

1≤k≤n−1

∣∣∣∣
k∑

i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣, (1.6)

and the Wilcoxon change-point test which is based on the test statistic

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣
k∑

i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

) ∣∣∣∣. (1.7)

Here d2n = Var(
∑n

i=1 Hm(ξi)), where Hm is the m-th order Hermite polynomial,
and where m is the Hermite rank of G, respectively of the class of functions
1{G(ξ)≤x}; see below for details. Observe that the normalization dn, which will
be specified below, is the same for both tests. These tests are similar in spirit.
They compare the first part of the sample to the second part. The Wilcoxon
change-point test (1.7) involves the rank of the data whereas the CUSUM test
(1.6) involves their values. One rejects the null hypothesis of no change when
these test statistics are large.

Dehling, Rooch and Taqqu (2013) investigated the asymptotic distribution of
these test statistics under the null hypothesis H of no change in the means. In
addition, they calculated the power of these tests numerically via a Monte-Carlo
simulation. In this paper, we will compute the power of the above test statis-
tics under a local alternative. More specifically, we shall consider the following
sequence of alternatives

Aτ,hn(n) : μi =

{
μ for i = 1, . . . , [nτ ]
μ+ hn for i = [nτ ] + 1, . . . , n,

(1.8)

where 0 ≤ τ ≤ 1. Observe that the mean shift hn depends on the sample size n.

2. Power of the CUSUM test under local alternatives

We will first investigate the asymptotic distribution of the process

Dn(λ) :=
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(Xj −Xi), 0 ≤ λ ≤ 1. (2.1)

To do so, we consider the Hermite expansion of G(ξi), namely

G(ξi) =

∞∑
q=1

aq
q!
Hq(ξi),

where Hq is the q-th order Hermite polynomial, and where

aq = E(Hq(ξ)G(ξ)); (2.2)
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We define the Hermite rank of the function G as

m = min{q ≥ 1 : aq �= 0},

and introduce the normalization constants

d2n = Var

( n∑
j=1

Hm(ξi)

)
.

We suppose 0 < D < 1/m, in which case

d2n ∼ κm n2−mD Lm(n), (2.3)

where κm = 2(m!)/(1 − Dm)(2 − Dm). Here we use the symbol an ∼ bn to
denote an/bn → 1 as n → ∞.

Under the null hypothesis H of no mean shift, we get that the process
(Dn(λ))0≤λ≤1 in (2.1) converges in distribution, in the space D[0, 1], towards
the process

am
m!

(λZm(1)− Zm(λ))0≤λ≤1;

see Dehling, Rooch and Taqqu (2013), proof of Theorem 3. Here, (Zm(λ))λ≥0

denotes the m-th order Hermite process with Hurst parameter H = 1−Dm/2 ∈
(1/2, 1). It is Gaussian (namely fractional Brownian motion) when m = 1, but it
is non-Gaussian when m ≥ 2. For various representations of the Hermite process
(Zm(λ))λ≥0, see Pipiras and Taqqu (2010).

In view of (1.3), under the alternative A in (1.5), we need to consider

Dn(λ) =
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(G(ξj)−G(ξi)) +
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(μj − μi). (2.4)

Observe that the statistic Dn(λ) presumes that the jump occurs at time [nλ]+1,
whereas the local alternative Aτ,hn(n) involves a jump at [nτ ] + 1. There will
therefore be an interplay between λ and τ . In fact, under the local alternative
Aτ,hn(n) in (1.8), we get

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(μj − μi) =

{
hn

ndn
[λn](n− [τn]) for λ ≤ τ

hn

ndn
(n− [λn])[τn] for λ ≥ τ.

(2.5)

We introduce the function φτ : [0, 1] → R by

φτ (λ) =

{
λ(1− τ) for λ ≤ τ
(1− λ)τ for λ ≥ τ,

(2.6)

which takes its maximum value τ(1 − τ) at λ = τ ; see Figure 1. Note that for
large n, we get using (2.5),

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(μj − μi) ∼
nhn

dn
φτ (λ).
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Fig 1. Graph of the function φτ ; see (2.6).

Thus, in order for the second term in (2.4) to converge as n → ∞, we have to
choose the mean shift hn ∼ c dn/n. When n is large, this is exactly the order
of the mean shift that can be detected with a nontrivial power, that is with a
power which is neither 0 nor 1.

Theorem 2.1. Let (ξi)i≥1 be a stationary Gaussian process with mean zero,
variance 1 and autocovariance function as in (1.4) with 0 < D < 1/m. More-
over, let G : R → R be a measurable function satisfying EG2(ξ) < ∞ and define
Xi = μi +G(ξi). Then under the local alternative Aτ,hn(n) in (1.8) with

hn ∼ dn
n

c, (2.7)

for an arbitrary constant c, the process (Dn(λ))0≤λ≤1 in (2.4) converges in
distribution, in the space D[0, 1] to the process(am

m!
(λZm(1)− Zm(λ)) + c φτ (λ)

)
0≤λ≤1

, (2.8)

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter
H = 1−Dm/2 ∈ (1/2, 1), where am is given by (2.2) and φτ (λ) by (2.6).

Proof. We use the decomposition (2.4). The first term on the right hand side
has the same distribution as Dn(λ) under the hypothesis, and thus converges
in distribution to am

m! (λZm(1)−Zm(λ)). Regarding the second term, we observe
that by (2.7) and (2.5) we get

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(μj − μi) ∼
{

c
n2 [λn](n− [τn]) for λ ≤ τ
c
n2 (n− [λn])[τn] for λ ≥ τ

→ c φτ (λ),

uniformly in λ ∈ [0, 1], as n → ∞.

Remark 2.2.
(i) Observe that for c = 0 we recover the limit distribution under the null hy-
pothesis. Thus, Theorem 2.1 is a generalization of the results obtained previously
under the null hypothesis. The limit process is a fractional bridge process. When
m = 1, this process is a fractional Gaussian bridge. For m > 1, the process is
non-Gaussian.
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(ii) Under the local alternative, i.e. when c �= 0, the limit process is the sum of
a fractional bridge process and the deterministic function c φτ .

As an application of the continuous mapping theorem, we obtain the following
corollary.

Corollary 2.3. Under the local alternative Aτ,hn(n) with hn ∼ dn

n c, Dn as
defined in (1.6) converges in distribution to

sup
0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ . (2.9)

Remark 2.4.
(i) The limit distribution (2.9) depends on the constant c. For c = 0, we obtain
the limit distribution under the null hypthesis. Quantiles of this limit distri-
bution were calculated numerically via a Monte-Carlo simulation by Dehling,
Rooch and Taqqu (2013), Table 1. Increasing the value of |c| leads to a shift of
the distribution to the right. If c = ∞, that is, if hn tends slower to zero than
dn

n c for any c > 0, then the correct normalization for Dn(λ) should go to ∞ at
a higher rate which would kill the random part (λZm(1)−Zm(λ)) in (2.8), and
hence the mean shift could be detected precisely. The power of the asymptotic
test would be equal to 1 in this case.

(ii) For a given τ ∈ [0, 1], the function φτ (λ) takes its maximum value in λ = τ ,
and this maximum value equals τ(1 − τ). Thus, for values of τ close to 0 and
close to 1, τ(1− τ) is close to 0, and thus the effect of adding the term cφτ (λ)
is rather small. As a result, the power of the test is small at mean shifts that
occur very early or very late in the process.

(iii) The higher the mean shift, the easier it is to detect.

(iv) If the observations are short-range dependent, one can typically detect mean
shifts hn of height

√
n/n = 1/

√
n, but here, because of long-range dependence,

the mean shifts that can be detected are of larger order dn

n ∼ cn1−Dm/2L(n)
n =

cn−Dm/2L(n); note that Dm < 1.

We will now apply Corollary 2.3 in order to make power calculations for the
change-point test that rejects for large values of Dn. Under the null hypothesis
of no mean shift,

Dn
D−→ sup

0≤λ≤1

|am|
m!

|λZm(1)− Zm(λ)|.

If we denote by qα the upper α-quantile of the distribution of sup0≤λ≤1 |λZm(1)−
Zm(λ)|, we obtain

lim
n→∞

PH

(
Dn ≥ |am|

m!
qα

)
= P

(
sup

0≤λ≤1

|am|
m!

|λZm(1)− Zm(λ)| ≥ |am|
m!

qα

)
= α,

where PH indicates the probability under the null hypothesis H. Thus, the test

that rejects the null hypothesis H when Dn ≥ |am|
m! qα has asymptotic level α. If
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hn is chosen as in (2.7), we obtain under the local alternative Aτ,hn(n)

lim
n→∞

PAτ,hn (n)

(
Dn ≥ |am|

m!
qα

)
(2.10)

= P

(
sup

0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ ≥ |am|

m!
qα

)
.

Thus, for large n, the power of our test at the alternative Aτ,hn(n) is approxi-
mately given by the right-hand side of (2.10).

We may also apply Corollary 2.3 in order to determine the size of a mean
shift at time [τn] that can be detected with a given power β. First, we calculate
c = c(α, β) such that

P

(
sup

0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ ≥ |am|

m!
qα

)
= β.

Thus, by (2.10), we get that the asymptotic power of the test at the alternative
Aτ,hn(n) is equal to β. Thus, given a sample size n, we can detect a mean shift
of height hn = dn

n c(α, β) at time [τn] with power β with a level α test based on
the test statistic Dn. Note that the above calculations are of limited practical
value when m ≥ 2, as the quantiles of the process λZm(1)−Zm(λ) are not easily
calculated.

3. Power of the Wilcoxon change-point test under local alternatives

In the context of the Wilcoxon change-point test, the Hermite rank is not that
of the function G, but of the class of functions

1{G(ξi)≤x} − F (x), x ∈ R, (3.1)

where F (x) = E(1{G(ξi)≤x}) = P (G(ξi) ≤ x). We define the Hermite expansion
of the class of functions (3.1) as

1{G(ξi)≤x} − F (x) =

∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq is again the q-th order Hermite polynomial and where the coefficients
are

Jq(x) = E
(
Hq(ξi)1{G(ξi)≤x}

)
. (3.2)

We define the Hermite rank of the class of functions (3.1) as

m := min{q ≥ 1 : Jq(x) �= 0 for some x ∈ R}.

Theorem 3.1. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean
zero, variance 1 and autocovariance function as in (1.4) with 0 ≤ D < 1/m.
Moreover, let G : R → R be a measurable function, and assume that G(ξk) has
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continuous distribution function F (x). Let m denote the Hermite rank of the
class of functions (3.1), let dn be as in (2.3), and let the mean shift hn be as in
(2.7). Then, under the local alternative Aτ,hn(n), defined in (1.8), if hn → 0 as
n → ∞, the process

(
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{Xi≤Xj}−

1

2

)
− n

dn
φτ (λ)

∫
R

(F (x+hn)−F (x))dF (x)

)
0≤λ≤1

(3.3)
converges in distribution, in the space D[0, 1], towards the process(∫

R
Jm(x)dF (x)

m!

(
Zm(λ)− λZm(1)

))
0≤λ≤1

, (3.4)

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter
H = 1−Dm/2 ∈ (1/2, 1) and where Jm(x) is defined as in (3.2).

Remark 3.2.
(i) The normalization dn and the processes (Zm(λ))λ≥0 in Theorem 2.1 and
Theorem 3.1 are the same.

(ii) Note that it is possible that the Hermite ranks in Theorem 2.1 and The-
orem 3.1 are different. This is the case, e.g. when G(x) = H3(x) = x3 − 3x.
Obviously, the Hermite rank of G is 3, while the Hermite rank of the class of
functions 1{G(ξi)≤x} is 1. As a consequence, the CUSUM test converges at a
faster rate than the Wilcoxon test.

(iii) Since, by assumption, the distribution F (x) of G(ξk) is continuous, it fol-
lows from integration by parts that

∫
R
F (x)dF (x) = 1

2 . This explains the 1/2 in
(3.3) because

∫
R
F (x)dF (x) = E(1{X1≤X′

1}), where X ′
1 is an independent copy

of X1. The independence assumption is reasonable as the dependence between
Xi and Xj vanishes asymptotically when |i− j| → ∞.

(iv) As noted at the beginning of the proof, the first part of (3.3) converges to
(3.4) under the null hypothesis. We show in the proof that the second part of
(3.3) compensates for the presence of the local alternative Aτ,hn .

(v) We make no assumption about the exact order of the sequence (hn)n≥1.
Theorem 3.1 holds under the very general assumption that hn → 0, as n → ∞.

(vi) If we choose (hn)n≥1 as in (2.7), the centering constants in (3.3) converge,
provided some technical assumptions are satisfied. To see this, observe that

n

dn
φτ (λ)

∫
R

(F (x+ hn)− F (x))dF (x)

∼ nhn

dn
φτ (λ)

∫
R

F (x+ hn)− F (x)

hn
dF (x)

→ c φτ (λ)

∫
R

f(x)dF (x) = c φτ (λ)

∫
R

f2(x)dx.

The convergence in the next to last step requires some justification – this holds,
e.g. if F is differentiable with bounded derivative f(x).
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Corollary 3.3. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean
zero, variance 1 and autocovariance function as in (1.4) with 0 ≤ D < 1/m.
Moreover, let G : R → R be a measurable function, and assume that G(ξk) has a
distribution function F (x) with bounded density f(x). Let m denote the Hermite
rank of the class of functions 1{G(ξi)≤x} − F (x), x ∈ R. Then, under the local
alternative Aτ,hn , defined in (1.8), with hn ∼ cdn/n we obtain that

(
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{Xi≤Xj} −

1

2

))
0≤λ≤1

converges in distribution, in the space D[0, 1], to the process(∫
R
Jm(x)dF (x)

m!
(Zm(λ)− λZm(1)) + cφτ (λ)

∫
R

f2(x)dx

)
0≤λ≤1

.

Proof of Theorem 3.1. In our proof, we will make use of the limit theorem that
was derived in Dehling, Rooch and Taqqu (2013) under the null hypothesis.
They showed (see Theorem 1) that

(
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{G(ξi)≤G(ξj)} −

1

2

))
0≤λ≤1

D−→
(∫

R
Jm(x)dF (x)

m!
(Zm(λ)− λZm(1))

)
0≤λ≤1

,

in the space D[0, 1]. In order to make use of this result, we will decompose
the test statistic into a term whose distribution is the same both under the
null hypothesis as well as under the alternative, and a second term which, after
proper centering converges to zero. As in Dehling, Rooch and Taqqu (2013),
we will express the test statistic as a functional of the empirical distribution
function of the G(ξi), namely

Fk(x) =
1

k

k∑
i=1

1{G(ξi)≤x}.

Given integers k, l with k ≤ l we denote by Fk,l(x) the empirical distribution
function based on G(ξk), . . . , G(ξl), i.e.

Fk,l(x) =
1

l − k + 1

l∑
i=k

1{G(ξi)≤x}.

Recall that under the local alternative, we have

Xi =

{
G(ξi) + μ for i = 1, . . . , [nτ ]
G(ξi) + μ+ hn for i = [nτ ] + 1, . . . , n.
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Thus, we obtain for λ ≤ τ ,

[nλ]∑
i=1

n∑
j=[nλ]+1

1{Xi≤Xj}

=

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

1{G(ξi)+μ≤G(ξj)+μ} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξi)+μ≤G(ξj)+μ+hn}

=

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξi)≤G(ξj)+hn}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)}

+

[nλ]∑
i=1

n∑
j=[nτ ]+1

(
1{G(ξi)≤G(ξj)+hn} − 1{G(ξi)≤G(ξj)}

)

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn}.

In the same way, we obtain for λ ≥ τ ,

[nλ]∑
i=1

n∑
j=[nλ]+1

1{Xi≤Xj}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)+μ≤G(ξj)+μ+hn}

+

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

1{G(ξi)+μ+hn≤G(ξj)+μ+hn}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)+hn} +

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)}

+

[nτ ]∑
i=1

n∑
j=[nλ]+1

(
1{G(ξi)≤G(ξj)+hn} − 1{G(ξi)≤G(ξj)}

)

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn}.
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Thus, in order to prove Theorem 3.1, it suffices to show that the following two
terms,

1

ndn
sup

0≤λ≤τ

∣∣∣∣
[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} (3.5)

−n2λ(1−τ)

∫
R

(F (x+ hn)−F (x))dF (x)

∣∣∣∣
1

ndn
sup

τ≤λ≤1

∣∣∣∣
[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} (3.6)

−n2τ(1−λ)

∫
R

(F (x+ hn)−F (x))dF (x)

∣∣∣∣
both converge to zero in probability. We first show this for (3.5). Observe that

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} − n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ]

n∑
j=[nτ ]+1

(
F[nλ](G(ξj) + hn)− F[nλ](G(ξj))

)

−n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)

−n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])

(∫
R

(F[nλ](x+ hn)− F[nλ](x))dF[nτ ]+1,n(x)

−
∫
R

(F (x+ hn)− F (x))dF (x)

)

+
(
[nλ](n− [nτ ])− n2λ(1− τ)

)∫
R

(F (x+ hn)− F (x))dF (x).

Note that |[nλ](n−[nτ ])−n2λ(1−τ)| ≤ n and |
∫
R
(F (x+hn)−F (x))dF (x)| ≤ 1.

Thus

1

ndn

(
[nλ](n− [nτ ])− n2λ(1− τ)

) ∫
R

(F (x+ hn)− F (x))dF (x) ≤ 1

dn
→ 0,

as n → ∞. Hence, in order to show that (3.5) converges to zero in probability,
it suffices to show that
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1

ndn
[nλ](n− [nτ ])

(∫
R

(F[nλ](x+ hn)− F[nλ](x))dF[nτ ]+1,n(x) (3.7)

−
∫
R

(F (x+ hn)− F (x))dF (x)

)

converges to zero, in probability, uniformly in λ ∈ [0, 1]. In order to prove this,
we rewrite the difference of the integrals in (3.7) as∫

R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)−

∫
R

(F (x+ hn)− F (x)) dF (x)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

+

∫
R

(F (x+ hn)− F (x)) d(F[nτ ]+1,n − F )(x)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

−
∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x)),

where we have used integration by parts in the final step. Thus, in order to prove
that (3.7) converges to zero, in probability, uniformly in λ ∈ [0, 1], it suffices to
show that

sup
0≤λ≤1

∣∣∣∣ [nλ]dn

∫
R

(
(F[nλ](x+ hn)− F[nλ](x)) (3.8)

−(F (x+ hn)− F (x))
)
dF[nτ ]+1,n(x)

∣∣∣∣ P−→0

sup
0≤λ≤1

∣∣∣∣ (n− [nτ ])

dn

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))

∣∣∣∣ P−→0. (3.9)

In order to prove (3.8) and (3.9), we now apply the empirical process non-central
limit theorem of Dehling and Taqqu (1989) which states that

(
d−1
n [nλ](F[nλ](x)− F (x))

)
x∈[−∞,∞],λ∈[0,1]

D−→(J(x)Z(λ))x∈[−∞,∞],λ∈[0,1],

where

J(x) = Jm(x) = E
(
1{G(ξi)≤x}Hm(ξi)

)
and Z(λ) =

Zm(λ)

m!
.

By the Dudley-Wichura version of the Skorohod representation theorem (see
Shorack and Wellner (1986), Theorem 2.3.4) we may assume without loss of
generality that convergence holds almost surely with respect to the supremum
norm on the function space D([0, 1]× [−∞,∞]), i.e.

sup
λ∈[0,1],x∈R

∣∣d−1
n [nλ](F[nλ](x)− F (x))− J(x)Z(λ)

∣∣ a.s.−→ 0. (3.10)
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Note that by definition, for any λ ≤ τ

([nτ ]−[nλ])(F[nλ]+1,[nτ ](x)−F (x))= [nτ ](F[nτ ](x)−F (x))−[nλ](F[nλ](x)−F (x)).

Hence, we may deduce from (3.10) the following limit theorem for the empirical
distribution of the observations X[nλ]+1, . . . , X[nτ ],

sup
0≤λ≤τ,x∈R

∣∣d−1
n ([nτ ]− [nλ])(F[nλ]+1,[nτ ](x)− F (x))− J(x)(Z(τ)−Z(λ))

∣∣ a.s.−→ 0.

As a special case, for τ = 1, we obtain

sup
0≤λ≤1,x∈R

∣∣d−1
n (n− [nλ])(F[nλ]+1,n − F (x))− J(x)(Z(1)− Z(λ))

∣∣ a.s.−→ 0,

(3.11)
Now we return to (3.8) and write∣∣∣∣

∫
R

1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
dF[nτ ]+1,n(x)

∣∣∣∣
≤

∣∣∣∣
∫
R

(J(x+ hn)− J(x))Z(λ)dF[nτ ]+1,n(x)

∣∣∣∣
+ sup

x∈R,0≤λ≤1

∣∣∣∣ 1dn [nλ]
(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
−(J(x+ hn)− J(x))Z(λ)

∣∣∣∣
≤

∣∣∣∣
∫
R

(J(x+ hn)− J(x))dF[nτ ]+1,n(x)

∣∣∣∣ sup
0≤λ≤1

|Z(λ)|

+ sup
x∈R,0≤λ≤1

∣∣∣∣ 1dn [nλ]
(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
−(J(x+ hn)− J(x))Z(λ)

∣∣∣∣. (3.12)

The second term on the right-hand side converges to zero by (3.10). Concerning
the first term, note that

J(x) =

∫
R

1{G(y)≤x}Hm(y)φ(y)dy = −
∫
R

1{x≤G(y)}Hm(y)φ(y)dy, (3.13)

where φ(y) = 1√
2π

e−y2/2 denotes the standard normal density function. For

the second identity, we have used the fact that G(ξ), by assumption, has a
continuous distribution, and that

∫
R
Hm(y)φ(y)dy = 0, for m ≥ 1. Using (3.13)

we thus obtain∫
R

J(x)dF[nτ ]+1,n(x) = −
∫
R

∫
R

1{x≤G(y)}Hm(y)φ(y)dydF[nτ ]+1,n(x)

= −
∫
R

∫
R

1{x≤G(y)}dF[nτ ]+1,n(x)Hm(y)φ(y)dy

= −
∫
R

F[nτ ]+1,n(G(y))Hm(y)φ(y)dy, (3.14)
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and, using analogous arguments,∫
R

J(x+ hn)dF[nτ ]+1,n(x) = −
∫
R

F[nτ ]+1,n(G(y)− hn)Hm(y)φ(y)dy. (3.15)

By the Glivenko-Cantelli theorem, applied to the stationary, ergodic process
(G(ξi))i≥1, we get supx∈R

|Fn(x)− F (x)| → 0, almost surely. Since

F[nτ ]+1,n(x) =
n

n− [nτ ]
Fn(x)−

[nτ ]

n− [nτ ]
F[nτ ](x),

we get that

sup
x∈R

∣∣F[nτ ]+1,n(x)− F (x)
∣∣ a.s.−→ 0. (3.16)

Returning to the first term on the right-hand side of (3.12), we obtain, using
(3.14) and (3.15),∣∣∣∣

∫
R

(J(x+ hn)− J(x)) dF[nτ ]+1,n(x)

∣∣∣∣
=

∣∣∣∣
∫
R

(
F[nτ ]+1,n(G(y)− hn)− F[nτ ]+1,n(G(y))

)
Hm(y)φ(y)dy

∣∣∣∣
≤

∫
R

|F (G(y)− hn)− F (G(y))| |Hm(y)|φ(y)dy

+2 sup
x

∣∣F[nτ ]+1,n(x)− F (x)
∣∣ ∫

R

|Hm(y)|φ(y)dy.

Both terms on the right-hand-side converge to zero; the second one by (3.16),
the first one by continuity of F , the fact that hn → 0, and Lebesgue’s domi-
nated convergence theorem. In both cases, we have made use of the fact that∫
|Hm(y)|φ(y)dy < ∞. Thus we have finally established (3.8). In order to prove

(3.9), we observe that

1

dn
(n− [nτ ])

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))

≤
∣∣∣∣
∫
R

J(x)(Z(τ)− Z(1))d(F (x+ hn)− F (x))

∣∣∣∣
+sup

x∈R

∣∣∣∣ 1dn (n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(τ)− Z(1))

∣∣∣∣
≤

∣∣∣∣
∫
R

J(x)d(F (x+ hn)− F (x))

∣∣∣∣ |Z(τ)− Z(1)|

+sup
x∈R

∣∣∣∣ 1dn (n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(τ)− Z(1))

∣∣∣∣ .
The second term on the right-hand side converges to zero, by (3.11). Concerning
the first term, note that∫

R

J(x)d(F (x+ hn)− F (x)) = E (J(G(ξi)− hn)− J(G(ξi))) .
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Applying Lebesgue’s dominated convergence theorem and making use of the
fact that, by assumption, J is continuous, we obtain that

∫
R
J(x)d(F (x+hn)−

F (x)) → 0. In this way, we have finally proved that (3.5) converges to zero,
in probability. By similar arguments, we can prove this for (3.6), which finally
ends the proof of Theorem 3.1.

4. ARE of the Wilcoxon change-point test and the CUSUM test for
LRD data

In this section, we calculate the asymptotic relative efficiency (ARE) of the
Wilcoxon change-point test with respect to the CUSUM test. To do so, we
calculate the number of observations needed to detect a small mean shift h
at time [τ n] with a test of given level α and given power β, both for the
Wilcoxon change-point test and the CUSUM test, and denote these numbers
by nW and nC , respectively. We then define the asymptotic relative efficiency
of the Wilcoxon change-point test TW with respect to the CUSUM test TC by

ARE(TW , TC) = lim
h→0

nC

nW
. (4.1)

It will turn out that the limit (4.1) exists and that the asymptotic relative
efficiency does not depend on the choice of τ, α, β. If this limit is larger than
1, then the CUSUM test requires a larger sample size to detect the mean shift,
and hence the Wilcoxon change-point test is (asymptotically) more efficient.

In the remaining part of this section, we will focus on the case when m = 1
both for the CUSUM as well as the Wilcoxon change-point test, i.e. when the
Hermite rank of G(ξ1) and of the class of functions 1{G(ξ1)≤x} − F (x), x ∈ R,
are both equal to 1. This is the case, for example, when G is a strictly monotone
function. In this case ∫

R

J1(x)dF (x) = − 1

2
√
π
,

see Relation (20) in Dehling, Rooch and Taqqu (2013), showing that the Hermite
rank of the class of functions 1{G(ξ1)≤x} − F (x), x ∈ R equals 1. Focusing now
on G(ξ1) and using integration by parts, we get that the first order Hermite
coefficient a1 of G equals

a1 = E(G(ξ1)ξ1) =

∫
R

G(x)xφ(x)dx = −
∫
R

G(x)φ′(x)dx =

∫
R

φ(x)dG(x) > 0,

where φ(x) = 1√
2π

e−x2/2 denotes the standard normal density function. Thus,

the Hermite rank of G(ξi) equals 1, as well.

In this case, i.e. when m = 1, the Hermite process arising as limit in The-
orem 2.1, Theorem 3.1 as well as in Corollary 3.3 is fractional Brownian mo-
tion (BH(λ))0≤λ≤1. Note that fractional Brownian motion is symmetric, i.e.
(−BH(λ))0≤λ≤1 has the same distribution as (BH(λ))0≤λ≤1. Thus the limit
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processes in Theorem 2.1 and Corollary 3.3 can also be written as(
|a1|(BH(λ)− λBH(1)) + c φτ (λ)

)
0≤λ≤1

,

and (∣∣∣ ∫
R

J1(x)dF (x)
∣∣∣ (BH(λ)− λBH(1)) + c φτ (λ)

∫
R

f2(x)dx

)
0≤λ≤1

,

respectively.
As preparation, we first calculate a quantity that is related to the asymptotic

relative efficiency, namely the ratio of the heights of mean shifts that can be
detected by the two tests, based on the same number of observations n, again for
given values of τ, α, β. We denote the corresponding mean shifts by hW (n) and
hC(n), respectively, assuming that these numbers depend on n in the following
way:

hW (n) = cW
dn
n

(4.2)

hC(n) = cC
dn
n
, (4.3)

where cW and cC are given constants. In order to simplify the following consid-
erations, we take a one-sided change-point test, thus rejecting the hypothesis of
no change-point for large values of

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi)

or

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

1{Xi≤Xj},

respectively. These are the appropriate tests when testing against the alternative
of a non-negative mean shift. In order to obtain tests that have asymptotically
level α, the CUSUM test and the Wilcoxon change-point test reject the null-
hypothesis when

1

ndn |a1|
max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi) ≥ qα, (4.4)

1

ndn |
∫
R
J1(x)dF (x)| max

k=1,...,n−1

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
≥ qα, (4.5)

where qα denotes the upper α quantile of the distribution of sup0≤λ≤1(BH(λ)−
λBH(1)). This follows from Theorem 2.1 and Corollary 3.3 after applying the
continuous mapping theorem. The constants a1 and the functions J1(x) are
defined in (2.2) and (3.2), respectively, and have just been computed. Under
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the local alternative Aτ,hC(n), the asymptotic distribution of the test statistic
in (4.4) is given by

sup
0≤λ≤1

(
BH(λ)− λBH(1) +

cC
|a1|

φτ (λ)
)
;

see Theorem 2.1. Under the local alternative Aτ,hW (n), the asymptotic distribu-
tion of the test statistic in (4.5) is given by

sup
0≤λ≤1

(
BH(λ)− λBH(1) +

cW
∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)|φτ (λ)

)
;

see Corollary 3.3. Thus, the asymptotic power of the CUSUM test is given by

lim
n→∞

PAτ,hC (n)

(
1

ndn |a1|
max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi) ≥ qα

)

= P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) +

cC
|a1|

φτ (λ)
)
≥ qα

)
. (4.6)

In the same way, we obtain the asymptotic power of the Wilcoxon change-point
test

lim
n→∞

PAτ,hW (n)

(
1

ndn |
∫
R
J1(x)dF (x)| max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
≥ qα

)

= P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) +

cW
∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)|φτ (λ)

)
≥ qα

)
. (4.7)

Thus, if we want the two tests to have identical power, we have to choose cC
and cW in such a way that

cC
|a1|

φτ (λ) =
cW

∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)|φτ (λ),

which again yields by (4.2) and (4.3),

hC(n)

hW (n)
=

cC
cW

=
|a1|

∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)| .

This quantity gives the ratio of the height of a mean shift that can be detected
by a CUSUM test over the height that can be detected by a Wilcoxon change-
point test, when both tests are assumed to have the same level α, the same
power β and the shifts are taking place at the same time [nτ ]. In addition, we
assume that the tests are based on the same number of observations n, which
is supposed to be large.

Example 4.1. In the case of Gaussian data, i.e. when G(ξ) = ξ, we have

m = 1, a1 = E(ξ1H1(ξ1)) = E(ξ21) = 1,
∫
R
f2(x)dx =

∫
R

1
2π e

−x2

dx = 1
2
√
π
and
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∫
R
J1(x)dF (x) = − 1

2
√
π
; see Dehling, Rooch and Taqqu (2013), Relation (20).

Thus we obtain
cC
cW

=
1/2

√
π

1/2
√
π

= 1.

Hence, both tests can asymptotically, as n → ∞, detect mean shifts of the same
height.

The mean shifts can be expressed in terms of

ψ(t) := P

(
sup

0≤λ≤1
(BH(λ)− λBH(1) + t φτ (λ)) ≥ qα

)
,

viewed as a function of t, for fixed values of τ and α. The function ψ is mono-
tonically increasing. We define the generalized inverse,

ψ−(β) := inf{t ≥ 0 : ψ(t) ≥ β}.

Thus, we get

P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) + ψ−(β)φτ (λ)

)
≥ qα

)
≥ β, (4.8)

and, in fact, for given τ , α and β, ψ−(β) is the smallest number having this
property.

We can now apply Theorem 2.1 and Theorem 3.1. By comparing (4.6) and
(4.8), we can detect a mean shift of height h at time [nτ ] with a CUSUM test
of mean α and power β based on n observations, if hC(n) ∼ dn

n cC , where cC
satisfies cC

|a1| = ψ−(β). Hence we obtain that hC(n) has to satisfy

hC(n) =
dn
n
|a1|ψ−(β) = n−D/2L(n)|a1|ψ−(β).

Similarly, by comparing (4.7) and (4.8), we get for the Wilcoxon change-point
test that n has to satisfy

hW (n) = n−D/2L(n)
|
∫
R
J1(x)dF (x)|∫
R
f2(x)dx

ψ−(β).

In the following theorem, we compute the asymptotic relative efficiency of
the Wilcoxon change point test with respect to the CUSUM test.

Theorem 4.2. Let (ξi)i≥1 be a stationary Gaussian process with mean zero,
variance 1 and autocovariance function as in (1.4). Moreover, let G : R →
R be a measurable function satisfying E(G2(ξ1)) < ∞, and such that G(ξ1)
has a distribution function F (x) with bounded density f(x). Assume that the
Hermite rank of G(ξ1) as well as the Hermite rank of the class of functions
(1{G(ξ1)≤x} − F (x)), x ∈ R are equal to 1. Moreover assume that 0 < D < 1.
Then

ARE(TW , TC) =

( |a1|
∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)|

)2/D

, (4.9)
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where TC and TW denote the CUSUM test and the Wilcoxon change-point test,
respectively.

Proof. For abbreviation, we define

b =

( |
∫
R
J1(x)dF (x)|

|a1|
∫
R
f2(x)dx

)2/D

.

We will show that the Wilcoxon change-point test based on b n observations has
asymptotically the same power as the CUSUM test based on n observations.
We will consider the local alternative

AC
n = Aτ,hC(n) = Aτ,c dn

n
(n)

for the CUSUM test, and the local alternative

AW
n = Aτ,hW (n) = Aτ,c b

ndn/b
(n)

for the Wilcoxon change-point test. Note that under AW
bn the mean shift is the

same as under AC
n . Further observe that, by (2.3),

hW
n ∼ c

b

n
dn/b = c

b

n
κ
1/2
1 (n/b)1−D/2L1/2(n/b)

= c
b

n
κ
1/2
1 n1−D/2L1/2(n)bD/2−1L

1/2(n/b)

L1/2(n)

= c
dn
n
bD/2

(
L(n/b)

L(n)

)1/2

∼ c
dn
n
bD/2, (4.10)

where we have used the fact that L(n) is a slowly varying function.
For the CUSUM test, we can apply Corollary 2.3 and we obtain under the

local alternative AC
n , that

1

|a1|
Dn

D−→ sup
0≤λ≤1

{(BH(λ)− λBH(1)) +
1

|a1|
cφτ (λ)}.

For the Wilcoxon change-point test, we apply Corollary 3.3 with c replaced
by c bD/2, in view of (4.10). We thus obtain under the local alternative AW

n ,

1

|
∫
R
J1(x)dF (x)|Wn

D−→ sup
0≤λ≤1

{
(BH(λ)− λBH(1)) +

∫
R
f2(x)dx

|
∫
R
J1(x)dF (x)|c b

D/2φτ (λ)

}

= sup
0≤λ≤1

{
(BH(λ)− λBH(1)) +

1

|a1|
c φτ (λ)

}
,
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by (4.10). Let qα denote the upper α-quantile of the distribution of

sup
0≤λ≤1

{BH(λ)− λBH(1)}.

Then the tests that reject the null hypothesis when 1
|a1|Dn ≥ qα or when

1
|
∫
R
J1(x)dF (x)|Wn ≥ qα, respectively, have asymptotically level α. The power

of these tests at the local alternatives AC
n and AW

n , respectively, converges to

P

(
sup

0≤λ≤1

{
(BH(λ)− λBH(1)) +

1

|a1|
c φτ (λ)

}
≥ qα

)
.

Note that this also holds for the power along any other sequence, such as bn.
Since the mean shift at the local alternative AC

n equals the mean shift at the local
alternative AW

bn, we have shown that the Wilcoxon change-point test requires
b n observations to yield the same performance as the CUSUM test with n
observations. Thus ARE(TW , TC) = 1/b, proving the theorem.

5. ARE of the Wilcoxon change-point test and the CUSUM test for
IID data

We have shown in Example 4.1 that in the case of LRD data, the ARE of the
Wilcoxon change-point test and the CUSUM test is 1 for Gaussian data. In this
section, we will compare this surprising result with the case of i.i.d. Gaussian
data. We will find that in this case, the ARE is 3/π, i.e. the Wilcoxon change-
point test is less efficient than the CUSUM test.

In this section, we consider the model (1.3) with i.i.d. Gaussian noise (εi)i≥1.
Thus, the data are given by Xi = μi + εi, i ≥ 1. We consider the U -statistic

Uk =

k∑
i=1

n∑
j=k+1

h(Xi, Xj).

As kernel we will choose hC(x, y) = y−x and hW (x, y) = 1{x≤y}−1/2, in other
words we consider

U
(C)
k =

k∑
i=1

n∑
j=k+1

hC(Xi, Xj) =

k∑
i=1

n∑
j=k+1

(Xj −Xi),

U
(W )
k =

k∑
i=1

n∑
j=k+1

hW (Xi, Xj) =

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
.

Both kernels hC , hW are antisymmetric, i.e. they satisfy h(x, y) = −h(y, x), so

in order to determine the limit behaviour of U
(C)
k and U

(W )
k , we can apply the

limit theorems of Csörgő and Horváth (1988).
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Theorem 5.1. We consider the model (1.3) with i.i.d. Gaussian noise εi ∼
N(0, 1). Under the null hypothesis of no change in the mean, one has

sup
0≤λ≤1

∣∣∣∣ 1

n3/2
U

(C)
[λn] −B1,n(λ)

∣∣∣∣ = oP (1)

and

sup
0≤λ≤1

∣∣∣∣∣∣
1

n3/2
√

1
12

U
(W )
[λn] −B2,n(λ)

∣∣∣∣∣∣ = oP (1),

where (Bi,n(λ))0≤λ≤1, i = 1, 2, is a sequence of Brownian bridges with mean
E[Bi,n(λ)] = 0 and auto-covariance E[Bi,n(s)Bi,n(t)] = min(s, t)− st.

Proof. By Theorem 4.1 of Csörgő and Horváth (1988), it holds under the null
hypothesis H that

sup
0≤λ≤1

∣∣∣∣ 1

n3/2σ
U[λn] −Bn(λ)

∣∣∣∣ = oP (1),

where (Bn(λ))0≤λ≤1 is a sequence of Brownian bridges like B1,n and B2,n above

and where σ2 = E[h̃2(X1)] with h̃(t) = E[h(t,X1)]. The kernel h has to fulfill
E[h2(X1, X2)] < ∞ which is the case for hC(x, y) = y − x and hW (x, y) =
1{x≤y} − 1/2 and Gaussian Xi.

Theorem 5.2. We consider the model (1.3) with i.i.d. Gaussian noise εi ∼
N(0, 1). Under the local alternative Aτ,hn(n) and with hn = 1√

n
c, where c is a

constant, one has(
1

n3/2
U

(C)
[λn]

)
0≤λ≤1

D−→ (B1(λ) + cφτ (λ))0≤λ≤1 , (5.1)

and ⎛
⎝ 1

n3/2
√

1
12

U
(W )
[λn]

⎞
⎠

0≤λ≤1

D−→

⎛
⎝B2(λ) +

c

2
√
π ·

√
1
12

φτ (λ)

⎞
⎠

0≤λ≤1

, (5.2)

in the space D[0, 1], where (Bi(λ))0≤λ≤1 is a Brownian bridge, i = 1, 2.

Proof. First, we prove (5.1). Like for the case of LRD observations, we decom-
pose the statistic, so that we obtain under the local alternative Aτ,hn(n)

1

n3/2
U

(C)
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(εj − εi) +
1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(μj − μi).

By Theorem 5.1, the first term on the right-hand side converges to a Brownian
bridge B(λ). For the second term we have like in the proof for LRD observations

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(μj − μi) ∼
√
nhnφτ (λ),
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and in order for the right-hand side to converge, we have to choose

hn =
1√
n
c. (5.3)

Now let us prove (5.2). Again like for LRD observations, we decompose the
statistic into one term that converges like under the null hypothesis and one
term which converges to a constant. Under the local alternative Aτ,hn(n) and
for the case λ ≤ τ , this decomposition is

1

n3/2
U

(W )
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(
1{εi≤εj}−

1

2

)
+

1

n3/2

[λn]∑
i=1

n∑
j=[τn]+1

1{εj<εi≤εj+hn}.

(5.4)
The first term converges uniformly to a Brownian Bridge, like under the null
hypothesis. We will show that, if the observations εi = G(ξi) are i.i.d. with
c.d.f. F which has two bounded derivatives F ′ = f and F ′′, the second term
converges uniformly to cλ(1− τ)

∫
R
f2(x) dx, which is cφτ (λ)

∫
R
f2(x) dx for the

case λ ≤ τ . In the case of standard normally distributed G(ξi), i.e. for F = Φ and
f = ϕ, this function is c(2

√
π)−1φτ (λ). To this end, we consider the Hoeffding

decomposition for the sequence of kernels hn(x, y) = 1{y<x≤y+hn}:

hn(x, y) = θn + h1,n(x) + h2,n(y) + h3,n(x, y). (5.5)

Let X,Y ∼ F be i.i.d. random variables. Then we define

θn := E[hn(X,Y )] = P (Y ≤ X ≤ Y + hn)

=

∫
R

(∫ y+hn

y

f(x) dx

)
f(y) dy

=

∫
R

(F (y + hn)− F (y)) f(y) dy

= hn

∫
R

F (y + hn)− F (y)

hn
f(y) dy

∼ hn

∫
R

f2(y) dy, (5.6)

where in the last step we have used that (F (y + hn) − F (y))/hn → f(y) and
the dominated convergence theorem. Moreover, we define

h1,n(x) = E[hn(x, Y )]− θn

= E[1{Y <x≤Y+hn}]− θn = F (x)− F (x− hn)− θn

h2,n(y) = E[hn(X, y)]− θn

= E[1{y<X≤y+hn}]− θn = F (y + hn)− F (y)− θn

h3,n(x, y) = hn(x, y)− h1,n(x)− h2,n(y)− θn

= 1{y<x≤y+hn} − F (x) + F (x− hn) + θn − F (y + hn) + F (y).
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We will now show that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(h1,n(εi) + h2,n(εj) + h3,n(εi, εj))

∣∣∣∣∣∣
P−→ 0, (5.7)

and from this it follows by the sequence of Hoeffding decompositions (5.5) that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(hn(εi, εj)− θn)

∣∣∣∣∣∣
P−→ 0,

i.e. that the second term in (5.4) converges uniformly to

lim
n→∞

1

n3/2

[λn]∑
i=1

n∑
j=[τn]+1

θn = lim
n→∞

1

n3/2
[λn](n− [τn])θn = λ(1− τ)c

∫
R

f2(x) dx,

by (5.6) and (5.3).
We use the triangle inequality and show the uniform convergence to 0 for

each of the three terms in (5.7) seperately. Since the parameter λ occurs only
in the floor function value [λn], the supremum is in fact a maximum, and the
h1,n(εi) are i.i.d. random variables, so we can use Kolmogorov’s inequality. We
obtain for the first term in (5.7)

P

⎛
⎝ sup

0≤λ≤τ

n− [τn]

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

h1,n(εi)

∣∣∣∣∣∣ > s

⎞
⎠ ≤ 1

s2
n2(1− τ)2

n3

[τn]∑
i=1

Var[h1,n(εi)].

(5.8)
By the mean value theorem, we obtain

1

h2
n

Var[h1,n(εi)] = Var

[
F (εi)− F (εi − hn)

hn

]
= Var [F ′(ζni )] ,

where ζni ∈ [εi − hn, εi]. Since f = F ′ is bounded by assumption, we get
Var[h1,n(ε)] = O(h2

n). Since hn → 0, the right-hand side of (5.8) converges
to 0 as n increases.

In the same manner, we obtain

P

⎛
⎝ sup

0≤λ≤τ

[λn]

n3/2

∣∣∣∣∣∣
n∑

j=[τn]+1

h2,n(εj)

∣∣∣∣∣∣ > s

⎞
⎠ ≤ 1

s2
n2λ2

n3

n∑
j=1

Var[h2,n(εj)] → 0.

Finally, we have to show that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

h3,n(εi, εj)

∣∣∣∣∣∣
P−→ 0, (5.9)
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We set temporarily l := [λn] and T := [τn] and obtain from Markov’s inequality

P

(
max
0≤l≤T

1

n3/2

∣∣∣ l∑
i=1

n∑
j=T+1

h3,n(εi, εj)
∣∣∣ > s

)

≤ 1

s2
E

[
max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

]2
.

Now for any collection of random variables Y1, . . . , Yk, one has the inequality
E[max{Y 2

1 , . . . Y
2
k }] ≤

∑k
i=1 EY 2

i , and thus

1

s2
E

[
max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

]2
≤ 1

s2
1

n3

T∑
l=1

E

[ l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

]2

=
1

s2
1

n3

T∑
l=1

l∑
i=1

n∑
j=T+1

Var [h3,n(εi, εj)] ,

where in the last step we have used that h3,n(εi, εj) are uncorrelated by Ho-
effding’s decomposition. Now for two i.i.d. random variables ε, η, we have, like
above with the Taylor expansion of F :

Var [h3,n(ε, η)]

= Var
[
1{η<ε≤η+hn} − F (ε) + F (ε− hn) + θn − F (η + hn) + F (η)

]
= Var

[
1{η<ε≤η+hn} − hn (f(ε) +OP (hn)) + hn (f(η) +OP (hn))

]
= Var

[
1{η<ε≤η+hn}

]
+Var [hn (f(ε) + f(η) +OP (hn))]

+2Cov
[
1{η<ε≤η+hn}, hn (f(ε) + f(η) +OP (hn))

]
≤ (θn − θ2n) + h2

nO(1) + 2
√
(θn − θ2n) · h2

nO(1)

= O(hn),

using (5.6). We have just shown that

P

(
max
0≤l≤T

1

n3/2

∣∣∣ l∑
i=1

n∑
j=T+1

h3,n(εi, εj)
∣∣∣ > s

)
≤ 1

s2
O(hn),

which proves (5.9). So we have proven (5.4) for the case λ ≤ τ . The proof for
λ > τ is similar.

Now the stage is set to calculate the ARE of the Wilcoxon test based on

U
(W )
[λn] and the CUSUM test based on U

(C)
[λn], as defined in the section about the

ARE in the LRD case. Let qα denote the upper α-quantile of the distribution
of sup0≤λ≤1 B(λ). By Theorem 5.2, the asymptotic power of the tests is given
respectively by

P

(
sup

0≤λ≤1
(B(λ) + cCφτ (λ)) ≥ qα

)
, (5.10)
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and

P

(
sup

0≤λ≤1

(
B(λ) + cW

1

σ · 2√π
φτ (λ)

)
≥ qα

)
,

where σ2 = 1/12 and we assume that

hW (n) =
cW√
n
, hC(n) =

cC√
n
.

Thus if we want both tests to have identical power, we must ensure that cC =
cW /(σ · 2√π), in other words

hC(n)

hW (n)
=

cC
cW

=
1

σ · 2√π
.

Now we define, as in the proof for LRD observations, the probability

ψ(t) := P

(
sup

0≤λ≤1
(B(λ) + t φτ (λ)) ≥ qα

)
,

for whose generalized inverse ψ− holds

P

(
sup

0≤λ≤1

(
B(λ) + ψ−(β)φτ (λ)

)
≥ qα

)
≥ β. (5.11)

Now, comparing (5.11) and (5.10), we conclude that we can detect a mean shift
of height h at time [nτ ] with the CUSUM test of (asymptotic) level α and
power β based on n observations, if hC(n) = cC/

√
n and where cC satisfies

cC = ψ−(β); hence we obtain that hC(n) has to satisfy

hC(n) =
1√
n
ψ−(β).

In the same manner, we get for the Wilcoxon test the conditions hW (n) =
cW /

√
n and cW /(σ2

√
π) = ψ−(β) and thus

hW (n) =
σ2

√
π√

n
ψ−(β).

Solving these two equations for n again and denoting the resulting numbers of
observations by nC and nW , respectively, we obtain

nC =

(
1

hC
ψ−(β)

)2

nW =

(
2σ

√
π

hW
ψ−(β)

)2

.

To obtain ARE(TW , TC), we equate hW and hC . We then obtain the following
theorem.
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Theorem 5.3. We consider the model (1.3) with i.i.d. Gaussian noise εi ∼
N(0, 1). Then

ARE(TW , TC) = lim
h→0

nC

nW
= (2σ

√
π)−2 =

3

π
,

where TC , TW denote the one-sided CUSUM-test, respectively the one-sided
Wilcoxon test, for the test problem (H,Aτ,hn).

6. Simulation results

We have proven that for Gaussian data, the CUSUM test and the Wilcoxon
change-point test show asymptotically the same performance, i.e. that their
ARE is 1. For Pareto(3,1) distributed data, we obtain, using (4.9) and numerical
integration, an ARE of approximately (2.68)2/D. Now we will illustrate these
findings by a simulation study.

Gaussian data

We consider realizations ξ1, . . . , ξn of a fGn process with Hurst parameter H =
0.7 (D = 0.6), using the fArma package in R, and create observations

Xi =

{
G(ξi) for i = 1, . . . , [nλ]

G(ξi) + h for i = [nλ] + 1, . . . , n,

by applying a transformation G which is (with respect to the standard normal
measure) normalized and square-integrable: E[G(ξ)] = 0, E[G2(ξ)] = 1 for
ξ ∼ N (0, 1). As a first step, we choose G(t) = t in order to obtain Gaussian
observations X1, . . . , Xn (later we will choose a function G such that we obtain
Pareto distributed data). In other words, we consider data which follow the local
alternative

Aλ,h :

{
μ = E[Xi] = 0 for i = 1, . . . , [nτ ]

μ = E[Xi] = h for i = [nτ ] + 1, . . . , n,

as in (1.8). In contrast to the simulations by Dehling, Rooch and Taqqu (2013),
we choose a sample size n = 2, 000 instead of n = 500. We let both the break
point k = [τn] and the mean shift h := μk+1 − μk vary; specifically, we choose
k = 100, 200, 600, 1000 (which corresponds to τ = 0.05, 0.1, 0.3, 0.5) and we
let h = 0.5, 1, 2. For each of these situations, we will compare the power of
the CUSUM test and the power of the Wilcoxon change-point test in the test
problem (H,Aλ,h): We have repeated each simulation 10, 000 times and counted,
how often the respective test (correctly) rejected the null hypothesis.

Since our theoretical considerations yield an ARE of 1, we expect that both
tests detect jumps equally well – that means that both tests, set on the same
level, detect jumps of the same height and at the same position in the same
number of observations with the same relative frequency. And indeed, we can
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clearly see in Table 1 that the power of both tests approximately coincides at
many points; differences can be spotted only when the break occurs early in the
data.

relative jump position τ
0.05 0.1 0.3 0.5

h=0.5 0.074 0.153 0.767 0.874
h=1 0.153 0.694 1.000 1.000
h=2 0.828 1.000 1.000 1.000

relative jump position τ
0.05 0.1 0.3 0.5

h=0.5 0.072 0.143 0.765 0.876
h=1 0.128 0.602 1.000 1.000
h=2 0.321 1.000 1.000 1.000

Table 1

Power of the CUSUM test (left) and of the Wilcoxon change-point test (right), for n = 2000
observations of fGn with LRD parameter H = 0.7, different break points [τn] and different
mean shifts h. Both tests have asymptotically level 5%. The calculations are based on 10,000

simulation runs.

Heavy tailed data

We consider again realizations ξ1, . . . , ξn of a fGn process with Hurst parameter
H = 0.7 (D = 0.6) and create observations

Xi =

{
G(ξi) for i = 1, . . . , [nλ]

G(ξi) + h for i = [nλ] + 1, . . . , n,

by applying the transformation

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
.

In this case, the first Hermite coefficient of G, obtained by numerical integration,
equals a1 ≈ −0.6784. This transformation G produces observations Xi = G(ξi)
which follow a standardized Pareto(3, 1) distribution with mean zero and vari-
ance 1. The probability density function of Xi is given by

f(x) =

⎧⎨
⎩3

√
3
4

(√
3
4 x+ 3

2

)−4

if x ≥ −
√

1
3

0 else.

To the second sample of observations, X[τn]+1, . . . , Xn, we again add a constant
h, but this time we choose

h = hn = c
dn
n

= cn−D/2, (6.1)

as in (2.7). We let the break point k = [τn] vary, choosing τ = 0.05, 0.1, 0.3, 0.5.
We let also the sample size vary; we will give details below. To these data,
we have applied the CUSUM test and the Wilcoxon change-point test, and
under 10, 000 simulation runs we counted how often the respective test (rightly)
rejected the null hypothesis.
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Now our theoretical considerations, see (4.9), predict for this situation

ARE = lim
n→∞

nC

nW
=

( |a1|
∫
R
f2(x) dx

|
∫
R
J1(x)f(x) dx|

)2/D

≈ (2.67754)2/0.6 ≈ 26.655.

This means that the CUSUM test needs approximately 26.66 times as many
observations as the Wilcoxon test in order to detect the same jump on the same
level with the same probability. In order to find this behaviour, we have analysed
the power of the Wilcoxon test for nW = 10, 50, 100, 200 observations and the
power of the CUSUM test for nC = 266, 1332, 2666, 5330 observations.

In order to be able to compare the two tests, we need to have identical mean
shifts when applying the Wilcoxon test to a sample of size nW and the CUSUM
test to a sample of size nC = 26.655nW . This can be achieved by choosing the
constants c in (6.1) accordingly, namely taking cC = 2.67754 cW . In this way,
we obtain

hC
nC

= cCn
−D/2
C = 2.67754cW (26.655nW )−D/2 = cWn

−D/2
W = hW

nW
.

We ran simulations for two different choices of cW , namely cW = 1 and cW = 2;
see Table 3 and Table 4 for the results.

Here, we have to face a problem which was already encountered by Dehling,
Rooch and Taqqu (2013). For the heavy-tailed Pareto data, the convergence
of the CUSUM test statistic towards its limit is so slow that the asymptotic
quantiles of the limit distribution are not appropriate as critical values to define
the domain of rejection of the test: In finite sample situations, the observed
level of the test is not 5% – as it should be when using the 5%-quantile of the
asymptotic limit distribution. In order to remedy this, we used as critical value
for the test, the finite sample 5% quantiles of the distribution of the CUSUM test
statistic under the null hypothesis, using a Monte Carlo simulation; see Table 6
in Dehling, Rooch and Taqqu (2013). Here, we have performed the same steps,
but for sample sizes n = nC = 266, 1332, 2666, 5330. The results are given in
Table 2. Note that this problem does not arise when using the Wilcoxon change-
point test, since the Wilcoxon test is distribution free under the null hypothesis.

n 266 1332 2666 5330 ∞
qemp,0.05 0.73 0.66 0.64 0.63 0.59

Table 2

5% -quantiles of the finite sample distribution of the CUSUM test under the null hypothesis
for Pareto(3,1)-transformed fGn with LRD parameter H = 0.7 and different sample sizes

n = nC .

The simulation results are shown in Table 3 (for cW = 1) and Table 4 (for
cW = 2). Indeed, for a fixed jump position τ , the power of the CUSUM test
(for n = nC = 266, 1332, 2666, 5330 observations) and of the Wilcoxon test
(for n = nW = 10, 50, 100, 200 observations) coincide. They are not fully equal,
but we conjecture this is due to the small sample size which conflicts with the
asymptotic character of our results. But it becomes clear: The CUSUM test
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needs quite a number of observations more to detect the same jump on the
same level with the same probability – as predicted by our calculation around
25 times as many.

relative jump position τ
n h 0.05 0.1 0.3 0.5

266 0.50 0.049 0.049 0.066 0.088
1332 0.31 0.050 0.052 0.083 0.110
2666 0.25 0.052 0.055 0.092 0.127
5330 0.20 0.051 0.054 0.099 0.130

relative jump position τ
n h 0.05 0.1 0.3 0.5
10 0.50 0.036 0.025 0.033 0.079
50 0.31 0.049 0.051 0.093 0.120

100 0.25 0.050 0.053 0.102 0.134
200 0.20 0.051 0.055 0.103 0.134

Table 3

Power of the CUSUM test (left) and of the Wilcoxon change-point test (right), at different
break points [τn], different sample sizes n, and different jump heights h, for Pareto(3,1)
distributed data. Both tests have asymptotically level 5% (CUSUM test is performed with

empirical quantiles). The calculations are based on 10,000 simulation runs.

relative jump position τ
n h 0.05 0.1 0.3 0.5

266 1.00 0.049 0.054 0.162 0.259
1332 0.62 0.052 0.062 0.236 0.345
2666 0.50 0.055 0.069 0.272 0.390
5330 0.41 0.054 0.074 0.287 0.402

relative jump position τ
n h 0.05 0.1 0.3 0.5
10 1.00 0.033 0.024 0.039 0.197
50 0.62 0.049 0.055 0.199 0.283

100 0.50 0.051 0.063 0.225 0.316
200 0.41 0.054 0.066 0.242 0.338

Table 4

Power of the CUSUM test (left) and of the Wilcoxon change-point test (right) at different
break points [τn], different sample sizes n, and different jump heights h, for Pareto(3,1)
distributed data. Both tests have asymptotically level 5% (CUSUM test is performed with

empirical quantiles). The calculations are based on 10,000 simulation runs.
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