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Abstract: In stochastic decision problems, one often wants to estimate
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Ezample 1. Consider the following problem. Let {X,, },en be identical indepen-
dent Bernoulli random variables, with unknown parameter p = P(X,, = 1) =
1— P(X,, = 0), i.e. independent tosses of the same, possibly unfair, coin. You
observe {X,,}_;, and then need to draw a conclusion about the likely behaviour
of an iid trial X.

In a classical frequentist framework, this is straightforward: the estimator
of p (either from MLE or moment matching) is given by p = Sy/N, where
Sy = 25:1 Xn; this estimate has sampling variance p(1 —p)/N =~ p(1 —p)/N.

Suppose we need to evaluate a wager on X. Given a loss function ¢, we
would then usually calculate the expected loss E[¢(X)], where the expectation
is based on the estimated parameters. Without loss of generality, we can assume
¢(0) = 0, so the inferred expectation is simply given by

E[p(X)] = pe(1).

This leads to a surprising conclusion: the precision of the estimate of p has
no impact on our assessment of the wager. To see this, consider a sample based
on N’ > N observations, but with the same value of p. Then the precision of
the estimate (as indicated by the reciprocal of the sampling variance) is much
higher, but the expected loss of the wager remains identical. Consequently, when
considering this wager, this approach concludes that you are indifferent between
the settings when p is known precisely or imprecisely. For example, suppose there
were two coins, the first was thrown 3 times with 2 heads, the second 3000 times
with 2000 heads. The estimated-expected-loss criterion then states that you are
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indifferent in choosing which coin to bet on, which is contrary to experience.
Note that this conclusion is not changed by the presence of the loss function ¢.

Some may argue that this is a particular flaw in the frequentist point-estimate
approach, as the error of the estimate of p is not part of the probabilistic frame-
work we use when calculating the expectation. So, let’s take a Bayesian approach
and put a prior on p. The choice of prior used is immaterial, as the behaviour
is determined by (writing Fy for the o-algebra generated by our observations)

Elp(X)|Fn] = E[E[¢(X)|p. FN]|Fn] = E[po(1)|Fn] = Elp|Fnle(1)

so only the posterior mean value of p has any impact, not its posterior variance
(or any other measure of uncertainty). Even if we extend beyond taking an
expected payoff, for example to considering a posterior mean-variance criterion,
we would find that the posterior variance of ¢(X) is

2
B[(#() - E6(X)IFn) | Fu] = EpIFN]( - BlplFa])o(1)?

which still only depends on the posterior mean of p. The same conclusion will
be reached for any criterion which depends only on the posterior law of ¢(X).

From this, we can conclude both the frequentist and Bayesian expected loss
approaches fail to incorporate uncertainty in p in our decision making, in this
simple setting’.

The unusual behaviour of this type of example has been noticed before. For
example, Keynes remarks (using the term ‘evidential weight’ to indicate a con-
cept similar to the precision of probabilities):

For in deciding on a course of action, it seems plausible to suppose that we ought to take
account of the weight as well as the probability of different expectations. —J.M. Keynes,
A Treatise on Probability?, 1921 [13, p.76]

Knight [14] argues that ignoring this uncertainty is not descriptive of people’s
actions — we do, generally, have a strict preference for knowledge of the proba-
bilities of outcomes (see also the more general criticism of Allais [1]). This leads
him to distinguish between the concepts of ‘risk’, which is associated with the
outcome of X given p, and ‘uncertainty’®, which is associated with our lack of
knowledge of p.

1The mathematical reason for this is that a mixture of Bernoulli random variables is again
a Bernoulli random variable. Therefore, at the level of the marginal distribution of X, every
hierarchical model is equivalent to a non-hierarchical model, and a Bayesian approach adds
little mathematically. The simplicity of this setting may seem contrived, but demonstrates that
one cannot, in general, claim that a Bayesian posterior expected loss approach is sufficient to
deal with all forms of uncertainty.

2This idea is discussed at length in Keynes’ treatise, but is not pursued as a principle in
statistics, as is shown by the next sentence: “But it is difficult to think of any clear exam-
ple of this, and I do not feel sure that the theory of ‘evidential weight’ has much practical
significance.” In some sense, the aim of this paper is to address this lack of examples in a con-
crete mathematical fashion, and to propose practical solutions based on classical statistical
methods.

3This is a significant simplification of Knight’s argument, which also looks at the question
of estimating probabilities of future events, which by their very nature, are not the same as
events which have already occurred. Nevertheless, the terminology of ‘Knightian uncertainty’
has become common as referring to lack of knowledge of probabilities, so we retain this usage.
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Within either of the two classical frameworks considered above, there is a
natural and classical way to deal with this issue. For a frequentist, instead of
using the point estimate p, one could consider building a confidence interval
for p, and then comparing wagers by their worst expectation among parame-
ters within the confidence interval. As the sample size increases, the confidence
interval typically shrinks, and so (for a fixed value of p) the value of the wa-
ger increases. Similarly for a Bayesian, using a credible interval in the place
of the confidence interval. While well known and sensible, this is (at least on
the surface) an ad hoc fix. In more complex settings, where the parameter p is
replaced by a multidimensional parameter and we are interested in comparing
the values of a variety of random outcomes (whose expectations are generally
nonlinear functions of the parameters), confidence sets become less natural, so
a more general and rigorous approach seems to be needed.

1. Uncertain valuations

As Example 1 shows, to fully incorporate our statistical uncertainty, we cannot
simply estimate the (posterior) distribution of the outcome. Instead, we need to
retain some knowledge of how accurate that estimate is, and feed that additional
knowledge into our decision making.

Instead of simply dealing with a single probability, we will study the effect of
using the likelihood function (which indicates how well a model fits our obser-
vations) to generate a ‘convex expectation’, closely related to the risk measures
often studied in mathematical finance. The theory of these nonlinear expecta-
tions is explored in detail in Follmer and Schied [8] (up to some changes of sign)
and gives a mathematically rigorous way to deal with ‘Knightian uncertainty’.
In economics, this is closely linked to Gilboa and Schmeidler’s model of mul-
tiple priors [10]. However, little work has been done on connecting nonlinear
expectations with statistics.

For Example 1 above, our proposal amounts to the following. Instead of
working with the expected loss E[¢(X )] under one particular estimated measure,
consider the quantity

E(B(X)) = sup {Ey[¢(X)] - (k'alq)"}

q€[0,1]

for a fixed uncertainty aversion parameter £ > 0 and exponent v > 1. Here E,
denotes the expectation with probability ¢ and « is the negative log-likelihood
of our observations, shifted to have minimal value zero, that is (for p = Sy /N
as above),

. P . 1—-p N 512
aqu(plog(—)+(1—p10g( ))% ~(q—1p)", 1
@ q ) 1—g¢q p(l— p)( o
where the approximation is for large N, in a sense to be explored later (see
Section 3.2). The operator £ gives an ‘upper’ expectation for the loss, depend-
ing on the certainty of our parameter estimate given the sample. In effect, we
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are considering all possible values for p, and using our data to determine how
reasonable we think they are (as indicated by —(k~'a(p))?).

If we were to use € to choose between a family of wagers ¢;, we would obtain
a classical minimax or ‘robust optimization’ problem (see for example Ben-Tal,
El Ghaoui and Nemirovski [5]),

min €(64(X) = min sup {E,[0i(X)] = (k" al0)"}

The expectation £ can be thought of as an ‘upper’ expectation, and is con-
vex. The corresponding ‘lower’ expectation —€(—¢) can also be defined, and is
concave. This leads naturally to

[- -0,

as an interval prediction for £. Comparing with more familiar quantities, such as
(frequentist) confidence intervals, (Bayesian) credible intervals and upper and
lower probabilities in Dempster—Schafer theory, we see that an interval estimate
is a natural object to study when describing uncertainty in parameters. We shall
see that confidence intervals (in particular, likelihood intervals) arise as a special
case of our approach.

We proceed as follows: First, we give a summary of some of the basic proper-
ties of nonlinear expectations. Secondly, we consider the effect of using the log-
likelihood as the basis for a penalty function and the corresponding “divergence-
robust nonlinear expectations”, and their connection to relative entropy. Us-
ing this, we tease out generic large-sample approximations, in both paramet-
ric and non-parametric settings. Finally, we consider the connection between
divergence-robust expectations and robust statistics (in particular M-estimates).

1.1. Nonlinear expectations

In this section we introduce the concepts of nonlinear expectations and convex
risk measures, and discuss their connection with penalty functions on the space
of measures. These objects provide a technical foundation with which to model
the presence of uncertainty in a random setting. This theory is explored in some
detail in Follmer and Schied [8] and Frittelli and Rosazza-Gianin [9], among
many others. We here present, without proof, the key details of this theory as
needed for our analysis.

Definition 1. Let (2, F, P) be a probability space, and L>°(F) denote the space
of P-essentially bounded F-measurable random variables. A nonlinear exrpecta-
tion on L*°(F) is a mapping

£:L®(F) >R

satisfying the assumptions,
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e Strict Monotonicity: for any &1,& € L (F), if & > & a.s. then £(&) >
E(&), and if in addition E(&1) = E(&) then & = & a.s.

o Constant triviality: for any constant k € R, E(k) = k.

o Translation equivariance: for any k € R, £ € L>®(F), E(E+k) = E(&) + k.

A ‘convex’ expectation in addition satisfies

o Convexity: for any X € [0,1], &,& € L®(F),
EMGL + (1= X)&) < AE(&) + (1= N)E(&).

If £ is a convex expectation, then the operator defined by p(§) = E(=E) is
called a convex risk measure. A particularly nice class of convex expectations is
those which satisfy

o Lower semicontinuity: For a sequence {&n}tnen C LO°(F) with &, 1T & €
L>(F) pointwise, £(&,) T E(E).

Definition 2. Let M; denote the space of all probability measures on (Q, F)
absolutely continuous with respect to P.

The following theorem (which was expressed in the language of risk measures)
is due to Follmer and Scheid [8] and Frittelli and Rosazza-Gianin [9)].

Theorem 1. Suppose £ is a lower semicontinuous convex expectation. Then
there exists a ‘penalty’ function a: My — [0, 00] such that

£(€) = sup {Eqlg] - a(Q)}.

QeM

Provided a(Q) < oo for some Q equivalent to P, we can restrict our attention
to measures in My equivalent to P without loss of generality.

Remark 1. The convex expectation £ is defined above as an operator on L.
However, given the equivalent representation

£ = sup {Eqlé] — a(Q)},
{QeMi:a(Q)<o}

we can clearly define £(€) for a wider class of random variables. In particular,
E(&) is well defined (but may be infinite) for all random variables £ such that
Eq[l€]] < oo for some Q € M; with a(Q) < oo.

Given a convex nonlinear expectation &, there is a natural class of ‘acceptable’
random variables for a decision problem, namely (given we evaluate losses) the
convex level set

A={¢: (¢ <0}

One can also use a nonlinear expectation as a value to be optimized; in this
setting the convexity of the operator is of significant interest. Finally, one can
use a nonlinear expectation to give a robust point estimate of £, given a loss
function ¢, by choosing the value ¢ € R which minimizes the loss & (p(€ — é))
(cf. Wald [21]).
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2. Penalties and likelihood

The general framework of nonlinear expectations is well suited to modelling
Knightian uncertainty, but is not usually connected with statistical estimation.
We would like to have a general principle for treating our uncertainty, which is
closely tied to classical statistics. Rather than continuing to take an abstract ax-
iomatic approach, we shall consider a concrete proposal, based on the following
classical concepts.

Definition 3. For a model Q € My, let L(Q|x) denote the likelihood of x under
Q, that is the density of x with respect to a reference measure (which we shall
take to be Lebesque measure on RN for simplicity).

Let Q C M; be a set of models under consideration (for example, a paramet-
ric set of distributions). We then define the “Q|x-divergence” to be the negative
log-likelihood ratio

a0x(Q) i= ~log (L(QIx)) + sup { log (L(Q[x)) }. (2)

QeQ

Remark 2. The right hand side of (2) is well defined whether or not a maximum
likelihood estimator? exists. Given a Q-MLE (), we would have the simpler

representation
L(Q|x)
agx(Q) := —log (%)
L(QIx)
Definition 4. For fized observations x, for an uncertainty aversion parameter
k > 0 and exponent vy € [1,00], we define the convexr expectation

1 Rl

£57() i= swp { Eolé(,x)] - (;aox(@) '} 3)
QeQ

where we adopt the convention x> = 0 for x € [0,1] and +oo otherwise. Here

£:Q xRN — R is a Borel measurable function with respect to x.

We call Sgg{ the “Q|x-divergence robust expectation” (with parameter k,~),

or simply the “DR-expectation®”.

Remark 3. We have defined the DR-expectation separately for each fixed obser-
vation vector x. For this to be meaningful, we formally first consider x as ran-

dom, and choose a version of the divergence ag|.(Q) for every measure Q € Q.

Using this approach, it is difficult to show that the map x — Sg’ll(g) is mea-

surable, particularly given the presence of the supremum in the definition. For
reasonable choices of Q (which give continuous versions of the divergence and
conditional expectation), this will nevertheless typically be the case (cf. Re-
mark 11).

4Recall that a Q-MLE (maximum likelihood estimator) is a map x — Q € Q such that
L(Q|x) > L(Q|x) for all Q € Q. We say that a quantity Y is a Q-MLE for Eg[¢] if Y = Eq €]
where Q is a O-MLE.

5This acronym could also stand for ‘Data-driven Robust expectation’, which may be a
preferable emphasis.
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In the definition of the DR-expectation, we have allowed & to depend (explic-
itly) on the observations x. We shall now focus our attention on the following
special case, which allows analytic tractability. Unless otherwise stated, we take
this assumption as given from this point onwards.

Assumption 1. Suppose x = {X,}_, and, under each Q € Q, we know
X, { X, }nen are éid random variables and & = ¢(X) for some Borel function ¢.

Note that, under Assumption 1, we can write Eg[§(w, x)] = Eg[{] = Eq[¢(X)]
for all @ € Q. Our attention will mainly be on the two extremal cases v = 1
and v = oo, where

gk’l = E _l x ) (c/'k,OO = E, :
ohx(*) 5161%{ okt~ goa (Q)} ohe ) {Q:agS\fFQKk}{ Qm}

The intervening cases are natural interpolations between these. The statement
1% = 0 is natural from a convex analytic perspective, as it implies |z|? is
proportional to the convex dual of |z|P, whenever p~! 4+ ¢~ =1, for p € [1, x].

Remark 4. In Example 1 above®, Q corresponds to the set of measures such that
X, {X,,}_, are iid Bernoulli with parameter p € [0, 1]. In this example, we did
not consider all measures in M; (this would include, for example, models where
{X,,}N_, and X come from completely unrelated distributions), but neither did
we restrict our attention to a single @ € Q.

Typically the operator £ cannot be evaluated by hand, instead numerical
optimization or approximation is needed. In the setting of Example 1 above,
if v = 1 then a closed form representation can be obtained, however is quite
inelegant (the optimal ¢ is the solution to a quadratic equation, but the resulting
equation for Eg’ll(f) does not simplify). A simple example where closed form
quantities can be derived is when the data are assumed to be Gaussian with
unknown mean.

Ezample 2. Suppose x = (X1, Xo, ..., Xn) and Q corresponds to those measures
under which X, {X,,}V_; are iid N(u, 1) random variables, where  is unknown.
Then, if X = N~! 25:1 X, denotes the sample mean, for any constant 5 > 0,
consider £ = BX. Simple calculus can be used to derive

el %) = {30 (5 (D0 o - 300 - %)) )
ne n=1 n=l
=sup (= (gl = %))

= BX + BT (%)ﬁm)%m -1).

60f course, this example does not satisfy our assumption that all measures in Q are ab-
solutely continuous with respect to Lebesgue measure, but one can observe directly that the
DR-expectation is well defined (and measurable) in this case.



Data-driven nonlinear expectations 1865

In particular, when v = 1, we have

B Qk _ k _
Egn(BX) = BX + ’g—N = BX + 5 Var(BX)

and, from the definition,

SG%) = X 4y = 9% VIRSA5E)

In the latter case, taking k ~ 2, we obtain the upper bound of the classical 95%
confidence interval for E[SX].

The corresponding lower expectations are given by the symmetric quantities

2 /
k,1 v Bk k00 R 2k
_gQ\x(_ﬁX) _ﬁX_ Wa _ngx <_ﬁX) _ﬁX_B N
From this example we can observe a few phenomena, which we will discuss
more generally below. First, for v = oo, 55& is positively homogeneous, that is,

55‘1 (8X) = BSS&(X ) for all B > 0, and there is a close relationship between

Sg"f (X) and the classical confidence interval for E[X]. On the other hand, this
is not satisfied when v # co.

Secondly, for any «, as the ratio of the uncertainty parameter and the sample
size k/N — 0, the DR-expectation converges to the (unique) Q-MLE BX. This
convergence is of the order (k/N)# 1.

In this setting we can also calculate, for g > 0,

N _
gkl BX?) = su 14+ 12— —(u—X)?
G (5X%) = sup {31+ %) — (= X2}
_ [+ 85N ) X2 B < N/2k
+00 B> N/2k
whereas
2

ESR(BX?) = 5(1 X+ s/2k/N)

which is always finite. Explosions in 52’& will be considered in more detail in
Section 4. Notice that again, as k/N — 0,

EST(BX?) = B(1 + X?),

which is the Q-MLE for E[3X?].

We have noticed above, in the Gaussian case, that our nonlinear expectation
is positively homogeneous only in the case v = co. This is a general fact, as
shown by the following proposition.
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Proposition 1. In the case v = oo (and only in this case, provided the likelihood
is finite and varying for a nontrivial subset of Q), our nonlinear expectation is
positively homogeneous, that is

EGn(BE) = BES(&) for all B> 0 iff v = oo.

Proof. Tt is classical (see for example Follmer and Schied [8]) that a convex
nonlinear expectation is positively homogeneous if and only if the penalty takes
only the values {0, c0}. Given the likelihood is finite and varying on a nontrivial
subset of Q, this is not the case for any v < oo, but is the case for v = co by
definition. O

2.1. Dynamic consistency

Within the theory of nonlinear expectations, much attention has been paid to
questions of dynamic consistency. If we have a family {£s}s>0 of ‘conditional’
nonlinear expectations relative to a filtration {#; };+>0, then dynamic consistency
requires, for every £ and all s < ¢, that we have (i) the recursivity relationship
Es(&1(€)) = &5(€) and (ii) the regularity condition E5(14&) = [4E5(§) for all
A € F;. This concept is generally not appropriate for our approach, as the
expectations we define are typically not consistent. This can be seen from the
following easy extension of Example 2.

Ezample 3. In the context of Example 2, write xy = {X1,..., Xn}, so Fny =
o(xn). We have

k1 okl g1 (X1 +Xo  k X1 k g1 [ Xo2
€6, EG5 (XN = €8, (5 + ) = 5+ 1 €k ()
X, k X, k 3k
=t Al - X on
s "1t 2 T3 1+ 3
k
# X+ 5 = Egp, (X)

and

k,00 k,00 k,00 X1+ Xo 2k
Eai (Egin, (X)) = SQ\xl( 5 T\ 3 ) +‘/_+5@|x( )
+\f+ \/7 Xi+ 14272k
75X1+\/_ EQ‘X

So in either case, the nonlinear expectation {€ Q’llN} NeN is not recursive.

In effect, our problem differs from the dynamically consistent one in the
following (closely related) key ways:

e In a dynamically consistent setting, the penalty is prescribed while the
observations lead to conditional expectations appearing in the nonlinear
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expectation. In our setting, the penalty is determined by the observations
(through the Q|x-divergence), and so only the family of models Q and
the constants k,~ need to be specified. In this way, the observations will
inform our understanding of the real-world probabilities directly, rather
than simply replacing them with conditional probabilities.

e In a dynamically consistent setting, the underlying models are typically
required to be stable under pasting through time. Conceptually, this im-
plies that there is no significant link assumed between the ‘true’ model
governing our observations at different times”. Conversely, in our setting,
we typically assume that the underlying model is constant through time
(e.g. through the assumption that our observations are iid), and hence
repeated observations can inform our view of the ‘true’ model.

2.2. Exponentials and entropy

It will not be a surprise that there is a connection between the convex expecta-
tion we propose and a more traditional quantity in risk-averse decision making,
namely the certainty equivalent under exponential utility.

Definition 5. For a random variable &, under a reference measure P, the cer-
tainty equivalent under exponential utility has definition

£54(6) =  log Eplexp(kt)]

where k > 0 is a risk-aversion parameter. Defining the relative entropy (or
Kullback-Liebler divergence)

Dic(@IIP) = Eo 105 (12)] = Br[ 52105 (52))]

we have the representation (see, for example, [8])

1
Ep(&) = sup {Foldl - L Dwa(@lIP)}.

Replacing expectations by conditional expectations, we obtain the conditional
certainty equivalent.

Remark 5. Tt is useful to consider the relative entropy of the law of X separately
from the other observations {X,, }nen. We therefore define

f(z,Q)
f(z, P)

7In particular, new observations cannot affect our opinions on the measure which was active
at an earlier time. As previously mentioned, this connects more generally with the concerns
of Knight [14], who discusses the problem that observations at different times may be from
different models. The difficulty lies in the fact that, without some presumption of homogeneity
in nature, statistical inference is impossible.

Diayx(@|1P) = [ 1og (5250 o @y
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Assuming Q ~ P, where P is the ‘real world’ probability measure, in light of the
law of large numbers we hope for a simple connection, at least asymptotically,
between the scaled deviance

1

N
NaQ|x<Q) = —% log ( 1X,Q)
n=1

%) ~—Fp {log (mﬂ ~ Dxyx (P||Q)

and the penalty in the exponential utility, that is, Dkr,(Q||P). In general, this
is made more difficult by the fact we have an infinite family of measures Q, and
by the lack of symmetry in the relative entropy, as Dkr(Q||P) # DxL(P||Q).
We shall pursue this connection in the coming section.

Remark 6. One extension of our approach is to change the penalty function to
include a entropy term taken in the ‘other’ direction, that is, to use the penalty

1 1
k,B o / /
@ = inf {—D + —a }
(Q) a3 kL(QlQ) + 7 aox(@)
for some 8 > 0. This is particularly of interest where we wish to include both
uncertainty aversion and risk aversion (as measured using exponential utility®).
This is well defined for all measures (Q € M1, and gives the expectation:

1 ,
A {Eql¢] — o™P(Q)} = Glo Eqne (%)

3. Large-sample theory

In this section, we shall seek to study the large-sample theory of the nonlinear
expectation Sg’ll. In practice, this is particularly useful to give approximations
and qualitative descriptions of its behaviour.

Throughout this section, we shall assume that we have observations { X, },en,
and a family of measures Q@ under which X, {X,, },en are iid random variables
with corresponding densities f(z;Q)dz. We write xy = (X1, ..., Xn). We shall
be interested in determining the behaviour, for large IV, of 52‘1 L (#(X)), where ¢
is a bounded function. For simplicity, we shall assume that the MLE exists (how-
ever our results can be extended to remove this assumption, with an increase in
notational complexity). We write Q n for the O-MLE based on observations x .

Given the lack of positive homogeneity, it is useful to consider the behaviour
of 52\1 (c€) when varying c¢. The following lemma connects variation of ¢ with
variation in k.

Lemma 1. For any ¢,k > 0, any v < o0, any random variable &,
k, K,
5Q|1(Cf) = 059\1(5)7

where k' = ¢/ 7k.

8Replacing entropy with a different penalty would allow for other risk aversion functionals
to be considered, if desired. This is a form of inf-convolution, as considered by Barrieu and El
Karoui [3].
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Proof.
1, o v
E5(c6) = s {Folee] — (20x(Q))"}

1 ol %
=csup § E —(—a )}zcé‘ (). O
sup { Folé] - (S en(@ G

To enable a simple description of our asymptotic results, we recall the fol-
lowing definition. Here P* is the outer measure associated with P, to deal with
any potential lack of measurability.

Definition 6. Consider sequences f = {fn}nen and g = {gn}tnen of functions
Q—R.

(i) We write f = Op(g) whenever f,/g, is stochastically bounded, that is,
P*(|fn/gn] > M) = 0 as M — oo for each n,
(ii)) We write f = op(g) whenever im,,_,oc P*(|fn/gn| > €) =0 for all e > 0.

Note that this depends on the choice of measure P.

Remark 7. In the above analysis, we have assumed that Q is a family of mea-
sures absolutely continuous with respect to a given measure P. For a finite
observation vector xy = {X1, ..., X}, this assumption is not overly restrictive,
as we only made use of the behaviour of the measures on o(xy, X) (cf. Assump-
tion 1). When we start considering the limiting behaviour of our expectations,
this becomes problematic — Assumption 1 implies that, for every Q € Q, the
restrictions of @ and P to o(xy,X) are equivalent, for every finite N, but will
generally be singular for N = oo. This weaker assumption implies that the
statements f = Op(g) and f = Og(g) are no longer equivalent.

3.1. Nonparametric results

We now give some results for a general Q. We restrict our attention to bounded
random variables £ = ¢(X). Given we will take a supremum over a family of
densities, we need a uniform version of the law of large numbers. For this reason,
we make the following definition.

Definition 7. We say a family Q is a Glivenko—Cantelli-Donsker family of
measures (or GCD family) if, for any P € Q,

sup
QeEQ

o

{22 @ PIQ)} = 0pv 1)

Remark 8. The reason for the name (Glivenko—-Cantelli-Donsker) is simply be-
cause, if we have a uniform weak Glivenko—Cantelli theorem when indexing the
empirical distribution by the family of log-likelihoods, then the term in brackets
converges in probability to 0. If we also have a uniform Donkser theorem, then
we know that \/N(OZQ‘XN (Q)/N — Dkr(P||Q)) converges (in some sense) to a
finite-valued Gaussian process, which implies it is of the order stated.
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It is easy to show, given consistency of the MLE and some integrability, that
a finite family Q is always a GCD family. Clearly a subset of a GCD family is
also a GCD family. The following lemma gives a sufficient condition for a family
of measures to be GCD, in terms of the smoothness of the densities.

Lemma 2. Suppose Q is a family of measures such that { X, }nen are iid with
respective densities {f(-; Q)}oeo which satisfy

i) there is a compact set K, and a uniform constant € > 0 such that for every
PeQ, P(XeK)=1, and f(P) > € on K,

it) there is C < oo and p > 1/2 such that, for all P,Q € Q, the likelihood
ratios f(-,Q)/f(-, P) take values in [C~',C] and are uniformly p-Hélder
continuous with norm C, that is, writing L(x) = f(z,Q)/f(z, P),

sup L& LWL _

ey T —ylP
Then Q is a GCD family.
Proof. See Appendix. O

Ezample 4. For fixed m € N, ¢ > 0 and ¢ > 0, suppose we have observa-
tions {X;}¥, modelled using mixtures of Gaussian distributions (with a small
regularizing diffuse component). In particular, suppose the density for each ob-
servation can be written

m
fx(@) = ep(2;0,6%) + (1 — €)Y mjp(ws 1y, 07)
j=1
where ¢(+; pj, 07) is the density of the N (u;,07) distribution. A measure Q € Q
is then determined by the parameters (u,o,7), where p is a vector in [—e™1,
e 1™, o a vector in [¢,5/2]™ and 7 is a probability vector in R™.

Defining X; = ®(X;/5), where ® is the standard normal cdf, one can check
that (for every m,a,€) the conditions of Lemma 2 are satisfied for the density
of X;. As ® is invertible, X; and X, generate the same divergence and their
distributions have the same entropy. We conclude that Q is a GCD family.

This example shows that assuming Q is a GCD family is a technical re-
quirement, rather than being a significant restriction on modelling (as sending
m,d — 00, € — 0 we obtain a weakly dense family of densities for X).

Remark 9. Given the generality of the assumptions we have placed on our family
of measures, obtaining a rigorous proof is difficult. It will prove convenient to
allow the uncertainty aversion parameter k£ to depend on the sample size N. We
prove two main results:

e As the sample size becomes large, provided kny = o(N) the DR expectation
is consistent. (Note that this includes the case when k is constant.)

e As the sample size becomes large, provided ky = o(N) and ky > O(N'/2),
we obtain a second-order estimate for the expectation, corresponding to
the Gaussian case. Provided the family Q is sufficiently rich, this bound
is attained (this forms a ‘central limit’-type result).
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By Lemma 1, this second case can also be interpreted as being a result for
‘asymptotically large’ random variables, as taking 6 € (1/2,1) we have the

identity N‘éggll(Néf) = 5&?”(5)-

We begin with the case v = 1.

Theorem 2. Suppose Q is a GCD family of measures and ky = o(N). Consider
a random variable £ = ¢(X), where ¢ is a bounded measurable function and

X, { X, }nen are iid under every Q € Q.

. kn,l . . . .
(i) Egpuy 18 a consistent estimator, that is

E51(€) = Eple] + op(1)

as N — oo for every P € Q.
(ii) We have the asymptotic behaviour (as N — oo, for each P € Q)

ek < Bt + 5 pvaen o () - or (57)

with equality whenever P is such that, for all N sufficiently large, the
measure P with density

. flz; P
A— W¢($)
(where X\ > sup,, ¢(x) is chosen to ensure this is a probability density) is

also in Q.

Remark 10. Given the error of the expectation based on the Q-MLE is asymp-
totically of the order of 1/v/N, the requirement implied by (ii) that ky grows
faster than /N, is unsurprising, as this is what is needed to ensure that the
risk aversion term %Var(f) asymptotically dominates the statistical error of
the estimation of Ep[¢].

Proof. We begin by proving (ii). As Q is a GCD family, we know that,

|02 (@)~ Diaix (PIQ)| < 0p(N72)

with error bounded independently of . Hence, uniformly in @,

1 N
‘k_aQ\xN(Q) - k_DKL\X(PHQ)‘ < Op(NY2/ky).
N N
Calculating & gllvlev (€), we have
k1 1
N — q E .
£k (&) = s {Falé] - -0y (Q)

wp {Bale] ~ - Diayx(PIIQ)} + Op(N/2/k)
Q N
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We shall now focus on solving the problem under the assumption that the
penalty is given by (N/kn)Dxk1(P||Q).

For fixed N, we can try and solve this simplified problem directly. Assuming
the optimum will be attained with a measure denoted 9, this corresponds to
finding the density g = f(-,Q9). Calculus of variations yields

N g _
¢+ H(—f(-,P) +2) =0,
or equivalently

A= By’

where A is chosen to ensure g is a density, that is, Ep[(\ — %Vf)*l] = 1. This
requires A\ > E¥ sup, ¢(z) (this is the reason we have assumed ¢ = ¢(X) is
bounded). As the map A — (A — %X ¢(2))~! is monotone, we also know that the
corresponding value of A is unique and

e [1 + kWN ir;f¢(x), 1+ %V blip(b(x)}
This avoids inconsistency with the requirement A > %V sup, ¢(z) whenever N
is large enough that % > 2sup, |¢(z)|. For every fixed large N, we have a
compact set of values for \. Therefore, we can assume (A — %\’5 )~1 is uniformly
approximated by its Taylor series in A around A = 1 + %\’Ep [€]. Furthermore,
we immediately see the first approximation

A=1+ %NEP[Q +O(ky/N).

Expanding the Taylor series of (A — %’f)‘l, we have

1:Ep[1f (,\f1f%§)+(/\f1f%§)2+...]
or equivalently
A=1+4 %NEP[Q +EP[(A 1- %Ngﬂ + O(EPK)\ 1- %Ng)?’]) (4)
Substituting our first approximation of A on the right hand side of (4), we have
A=1+ %NEp[g] + (’%)2%@[5] + 0((%)2).

Substituting this second approximation back into (4), we observe that the error
can be taken to be O((kx/N)?3), rather than O((kx/N)?).
We can now approximate our convex expectation. We know that
_ 5 _ kN 2
Equl¢] = Ep| | = Bele(1 - S (Bl - ©) + Ok /N)D) )]

A— e

= Epl¢] + kWNVarP[E} +O0((kn/N)?)
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and similarly

e 102 (7)) = B [108 (- €)= 5 (F) Vrrtg + o((F)).

Hence we can calculate the desired approximation

el € = sup {Eole) - oDy PIQ)} +0r ()
< Boule] ~ L e 1og ()] +0n (3 7) )
— Eple] + %varp(g) + o((’%)Q) + OP(J\QNM).

with equality whenever Q9 € Q, as stated in (ii).
We now seek to reduce to the assumptions of (i). As increasing ky will only
increase the (nonnegative) differences

EGNL(©) — B 6, Eg, 6]+ 55 (-6

and we know that Es [¢] is consistent, we can assume that NY2/kny — 0
without loss of generality. Under this assumption, the right hand side of (5)

converges to Ep[¢], and hence we verify that Sg‘vlev (&) —p Epl€] as desired. O

We will now consider the case v = co. It is easy to check that the interval

In(E) = | - e, (-0, €57, ()]

is a likelihood interval for E[¢], that is, it corresponds to the range of expec-
tations under the measures in Q with likelihood at least e~*. Such intervals
are commonly used as generalizations of confidence intervals (see for example
Hudson [12], drawing on the well known results of Neyman and Pearson [17]).
In this context, we shall see that a stronger property holds, as the confidence
region is uniform in ¢. (See also Theorem 7.)

We here only use the assumption that ky = o(N) (which includes the case
where k is constant).

Theorem 3. Suppose Q is a GCD family and X,{X,, }nen are éid under each
Q € Q. Thenif ky = o(IN), the nonlinear expectation with v = 0o is a uniformly
consistent estimator, that is,

e {EGT(O00) ~ Erlo(X))} = or(1) forall P Q.

Proof. Observe that

53,;20@()()) = sup {Eqlo(X)]}.
{Q:agixy (Q)<knN}
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As @Q is a GCD family, we know that for any P € Q,

1

@b (@) = Dicrx (PllQ) + Op(N~1/?)

and so, provided ky = o(N),

agxy (Q) < kn & Dxpx(Pl|Q) < %V +O0p(N7'?) = 0p(1)

with the terminal error uniform in ). From Pinsker’s inequality, looking only
at the marginal law of X, we know that the total variation norm satisfies

/ (@ P) — F(: Q)ldz = [|Plac) — Qloco oy < +/2Dreix (PI1Q).

Therefore,

sup {E5 (6(X)) — Eplo()]}

¢:|o|<1

= swp s {Eole(X)] - Brlo(X)]|
#:|p1<1{Q:agx (Q)<kN}

= sup sup {Ealo(x)] - Epls(x)]}
¢:1¢|<1 {Q: Dk x (Pl|Q)<op (1)}

< sup P|0'(X _Q|0'(X
{Q@:Dicyx (PIIQ) <or (1)} {H ) )HTV}

< op(1).

It follows that the nonlinear expectation is a uniformly consistent estimator. [
By a simple comparison, we also obtain consistency for all other v € [1, c0].

Corollary 1. If Q is a GCD family, ky = o(N) and v € [1, 00|, the nonlinear
expectation Eg’&N(qb(f)) is a consistent estimator of Ep[$(€)], for any bounded
Borel-measurable ¢.

Proof. We know that the two extreme cases v = 1 and 7 = oo are both con-
sistent, as is the MLE Ej [¢(¢)] (this follows, for example, from the fact
EQN[f] € Iy, where Zy is as in Theorem 3). Furthermore, for any =, as
|2|7 > min{|z|, |£|>°}, it is easy to check from the definition that

B, [ < €550, (€) < max {5 (), £51,(9)}.

The result follows. O

3.2. Parametric results

We now suppose that Q is a family of measures coming from a ‘nice’ parametric
family. In this setting, we can obtain more precise asymptotics by consider-
ing the divergence as a function of the parameter, rather than as a function
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of the abstract space of probability measures. For simplicity, we shall consider
an exponential family of measures, which is general enough for many applica-
tions, but gives sufficient structure to obtain tight results. We shall also assume
throughout that, for every Q € Q, X,{X,, }nen are iid with density f(-; Q).

Definition 8. A distribution is said to come from an exponential family (in
natural parameters) if the density can be written

f(5Q) = hiw)exp {(0,T(x)) — A®) }.

Here 0 is the parameter of Q, and is in an open subset © of R% for some d.
The exponential family is then defined by the quantities ©, T and A, where T
is a (vector of) sufficient statistics, A is the log-partition function and h is a
normalization function (which can be deduced from T, A).

We write g for the parameters of @), Q? for the measure associated with 6,
and Ey for Eqo, etc...

For any exponential family, it is standard that A is convex and C3. We shall
here make a slightly stronger assumption.

Assumption 2. For a given exponential family (in particular a given log-
partition function A and sufficient statistic T ), we assume that

(i) Q corresponds to the family of measures with parameters in an open set
O C R™
(ii) The Hessian J9 = 0*A(0) (commonly known as the information matriz)
is (strictly) positive definite at every point of ©.
(#ii) The Q-MLE exists and is consistent, with probability tending to 1 as N —
oo (that is, for every Q € Q, a mazximizer QN exists with Q-probability
approaching 1 and On = ‘QQN —q 0g).

These assumptions can be justified using weak assumptions on the family
considered, see for example Berk [6, Theorem 3.1], Silvey [19] or the more gen-
eral discussion of Lehmann [15] (see also [16]). For more advanced discussion
of the theory of likelihood in exponential families, see Barndorff-Nielsen [2].
Many standard distribution families are exponential families satisfying these as-
sumptions (e.g. Gaussian, log-Gaussian, exponential, gamma, beta and Dirichlet
distributions, with their usual parameterizations).

Under this assumption, whenever the O-MLE 6y exists, we observe that the
divergence is given by

N A~ A
gy (0) = =Y (0 — On, T(X:)) + N(A(6) — A(n)),

n=1

using the natural abuse of notation agx, (0) := ag|xy (Q%). Given a first order
condition will hold at the MLE, we can simplify to remove dependence on the
observations (except through the MLE)

agpxy (0) = N(A(0) — A(Oy) — (0 — Ox, 0A(Dy))).
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Remark 11. Under Assumption 2, 6 — ag|x, (¢) is continuous and measurable.
If we also know 6 — Ejp[¢] is upper semicontinuous (which is easy to check
for bounded &), then the supremum in (3) can be taken over a countable dense
subset of ©, which implies immediately that the DR-expectation is a measurable
function of x.

The following result will allow us to get a tight asymptotic approximation of
the penalty, as it will allow us to focus our attention on a small ball around the
MLE.

Lemma 3. Let p > 0 be a constant and let Oy denote the MLE of 0 (when
it exists, and an arbitrary point in © otherwise). Then, for each P € Q, there
exist constants c1,co independent of N such that, writing

_ap C2p _ —1/2
R=—V,/—=—=0(N
N N ( )

we have that
P(agx(0) > p for all : |6 — On| > R) — 1.

In other words, with high probability, we know ag|x(0) > p whenever |0 — 0 >
R=0O(N~Y?),

Proof. See Appendix. O

Remark 12. The previous result will mainly be used to show that, when we
consider bounded random variables, for any P € Q we can approximate the
divergence by

N A R
Agixy (0) = 5 (0= 0n) " |35, +Op(NTV/2)| (0 — Ox).

This is itself an interesting and useful result, particularly when we use the DR-
expectation approach as a first step in a larger problem. For example, when
we use a DR-expectation to capture the uncertainty in calibration of a model,
which we then wish to use in a variety of settings this result shows that it is
enough (to first order) to penalize using the observed information matrix, rather
than repeatedly calculating the likelihood function. This is the approximation
we made in (1).

As the approximation is a quadratic, the optimization needed to calculate
55\1 L 18 straightforward (particularly for linear or quadratic functionals of the
parameters), which can have significant numerical advantages (see for example
Ben-Tal and Nemirovski [4]).

We now use this approximation to give asymptotic estimates for the DR-
expectation. This can be seen as an analogue to the central limit theorem (cf.
Example 2). Note that, unlike in the nonparametric case, we do not need to
scale the risk aversion parameter k as N — oo to obtain a second order approx-
imation. It is convenient to make the following definition.
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Definition 9. Let ¢ be a bounded function such that the map ¢ : 0 — Ej [o(X)]
is differentiable. We write

V(9,0) := (99l5) T (3;1)(09,).

Remark 13. Observe that, by classical arguments, if ¢ can be written as a linear
function of the sufficient statistics then

V(9,0) = Vary(4(X)).

If Oy has the variance appearing in the central limit theorem, that is?, Var(é N) R
N _13;1317 then (given an appropriate array of integrability and continuity as-
sumptions) we have the approximate variance of the MLE-expectation

%V((JS, On) ~ Varp(E; [¢(X)]).

Theorem 4. Let ¢ be a bounded function such that the map ¢ : 6 — Ej [0(X)]
is twice differentiable. Then for oll P € Q,

k N —
Ebhen (X)) = By [6(0)] + 5V (,0x) + Op(N /%)
Proof. Fix P € Q. For simplicity, we write § for 6. To begin, observe that

5g|IXN (H(X)) = 21618 {EQe [0(X)] — %aQ‘XN (0)}

and as ¢ is bounded, we need only consider those measures
Oy = {9 €0 agixy(0) < ksup |¢(x)|}.
From Lemma 3, we know that

P( sup || — 4] > 0(N71/2)) 0.
0eON

We know 6 —p 0p and q~5 is twice differentiable at 0p, so for 0 € Oy,
Eqo[6(X)] = 3(0) + (6 — 6,081 + Op(ll0 - ]))
6(0) + (0= 0,095+ Op(N"1/2))

We also know that agx,(f) is smooth, convex and minimized at 0, so for
0 €Oy,

| 2

iy (0) = 50— 0)T 35+ Op(ll0 = 1] (0 - 6)

- %(9 47 [Jé + OP(N*/?)] (6 —8).

9See Lehmann [15, Section 7.7] for one set of sufficient conditions under which this holds.
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Substituting these, we have the approximate DR-expectation

£k51. (0(X)) = 3(0) + sup {(6-0,03]; + 0p(N1/2)

6cON
N

L (0—0)7 [jé + OP(N_l/Q)] = é)}.

The term in braces has optimizer
«_ 5, k —1/2 g —1/2
o —9+N(39+OP(N ) (001 + 0p(N12),

where we know that, as 6 — 0p and Ty » 1s positive definite, with P-probability
approaching 1 the matrix J;+Op(N —1/2) is nonsingular. Substituting, we have
the desired approximation

- A k B ~
‘%\iN (0(X)) = ¢(0) + ﬁ(améﬂ(jgl)(a@é) +Op(N372). -
We now consider the case v = oo.

Theorem 5. Let ¢ be a bounded function such that the map ¢ : 0 — Ego[¢p(X)]
18 twice differentiable. Then for all P € Q,

58&0N(¢(X)) = E; [#(X)] + \/% 4 Op(N3/4),

Proof. The proof follows much in the same way as the case v = 1 and we use
the same notation. We know that

£ G(X) = Bo(X)] + swp  (6-0,08]5+0p(16 - 8])).
{GZQQ‘XN(G)SIC}

We see that
g (6) = 5 (6 0) 35+ Op(l6 - 8D (6 - )

and from Lemma 3, with probability approaching 1, it is enough to consider
On ={0: |6 —0|| < Op(N~'/?)}. Standard optimization then yields

EGR((X)) — Eylo(X)]
-1

=/ % ((aa”ﬂé +O0p(N~V2)T [ﬁé +Op(N"V2)| (905 +Op(N~Y 2”)1/2

=\ e (103173 @319+ op(v),

The result follows. O

Remark 14. The cases v € (1,00) can also be treated using the approximation
implied by Lemma 3 (in the way suggested by Remark 12), and are left as a
tedious exercise for the reader.
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For a more general result, we recall the following theorem (named for Wilks
[22]) from classical likelihood theory:

Theorem 6 (Wilks’ theorem). Suppose P € Q, the family of densities corre-
sponding to Q satisfies appropriate reqularity conditions'® and Q is parameter-
ized by an open subset of R®. Then

1

iaglx(P) — p_Dist X3

where P-Dist refers to convergence, in distribution, under P.

Theorem 7. Suppose the MLE is consistent and Wilks’ theorem holds under
every P € Q. Then, for a random variable & (which may be unbounded and
depend on the observations X )

In(e) = [ - 5%, (-, €57, (©)]
is a likelihood interval for E[¢(w,xn)], with the uniform asymptotic property

]\}gnooP(Ep[f(w,xN)] € Iy for all 5) > Fe (2k).
Proof. That Iy (&) corresponds to a likelihood interval is trivial, as v = oo
implies we are considering expectations under those measures where the log
likelihood (relative to the MLE) is at least k. Wilks’ theorem then determines
the asymptotic behaviour of the relative log likelihood, in particular, we know

P(agixy (P) <k) — F2(2k) for all P € Q,

where F\2 is the cdf of the x2-distribution. Clearly agixy (P) < k implies
Epl¢|xn] € In(€) for all . We then obtain the desired result,

P(Ep [€(w, xy)] € Zy for all 5) > Pagpey(P) < k) = Fe(2k). O

4. Robustness and models

In this section, we shall consider the behaviour of the divergence-robust ex-
pectation for unbounded random variables, and its relationship with ‘robust’
statistical estimates. We shall regard the sample size N as fixed. The follow-
ing theorem complements our earlier asymptotic results (which were generally
for bounded outcomes), to demonstrate that without any parametric structure
most unbounded random variables do not have finite DR-expectations.

10Conditions for Wilks’ theorem are related to those needed for the MLE to satisfy a
central limit theorem (as in the Wald test), and are typically based on integrability and
differentiability assumptions on the densities (which do not need to come from an exponential
family). These hold for the majority of classical statistical models. See Lehmann [15, Section
7.7] for full details (in particular, this result is a special case of [15, Theorem 7.7.4]).
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Theorem 8. Let Q be a family of measures such that Q is closed under tak-
ing finite miztures (i.e. finite convex combinations of measures). Then for any
random variable § such that supgeo{Eq[]} = oo, for any v € [1, 00],
k,
gg&(f) = 0.

Proof. For any € > 0, let Q° € Q be a measure such that Fge[(] > ¢ 2. Fix
P € Q such that agx(P) < k. We define the mixture distribution P(e) =
(1 —€)P + eQc. Tt follows that P(e) € Q and, provided Ep[§] > —o0,

Eple] = (1= OEpE] + eEq[¢] > (1 - Ep[¢] + €1 — 00
as € — 0. Also, we know

L(P(e)[x) = (1 — e)L(P[x) + eL(Q“|x) > (1 — €)L(P[x), (6)

so (assuming for notational simplicity that the Q-MLE Q exists)

ag(P(e)) = ~log (%) < —log (%) > ag(P) < k.
It follows that, as € — 0,
- -1 1 (1 —€)L(P[x)\\”
E5T(6) > (1 OBple] +¢ ' — (E log (W)) S, O

Remark 15. The above assumes Q is closed under finite mixtures of measures.
If we assume that Q is such that {X,,}nen are iid, then this is not the case.
However, for N < oo, an almost identical proof holds whenever Q corresponds
to a family of densities f(-; @), and this family of densities is closed under taking
finite mixtures. (The only significant change is that we obtain the inequality
L(P(e)|x) > (1 — )N L(P|x) in the place of (6).)

This result highlights the importance of parametric structure for estimation
of unbounded random variables, in terms of restricting the class of probability
measures that can be considered. This restriction can be thought of in terms
of restricting the probabilities of very large (positive or negative) values of &,
and hence ensuring enough integrability that finite expectations arise. With-
out these restrictions, unlikely events (which by their very nature will generally
not be seen in the data, so are not penalized) result in unbounded expecta-
tions.

Given the importance of parametric families, it is then of interest to consider
how the ‘statistical robustness’ of the parametric estimation problem interacts
with the ‘robustness’ of the expectations considered. Before giving general re-
sults, we consider a simple setting.

Ezample 5. Consider X, {X,}Y_, iid observations from a Laplace (or double
exponential) distribution with known scale 1 and unknown mean p. That is, X,
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has density
1
f(@) = 5 exp(—lw — ).

Let Q denote the corresponding family of measures and write @Q* for the measure
with mean p. For simplicity, assume N is odd, so the MLE is uniquely given by
Q™, where m is the sample median. This is known to be ‘statistically robust’,
see Huber and Ronchetti [11], as it does not depend on extreme observations,
and is therefore unaffected by outliers.

The Q|xn-divergence is then given by

N

Qo (@") =Y (IXn —pl =X = m\).

n=1

For X an iid observation from the same distribution as X,, and 8 > 0 (the case
B < 0 is symmetric) we have

?vl»—‘

€ (8X) = sup { B -

52 (1%l 1, =)}

A first observation which can be drawn is that Eg’li (8X) is generally infinite,
unless 8 < N/k. To see this, observe that if 8 > N/k, then the function to
maximize is linear and increasing for p > max,<y Xn.

Assuming that 8 < N/k, the function to maximize is piecewise linear, concave
and asymptotically decreasing (for both positive and negative p), so a finite
solution exists. Except at points where u = X,, for some n, we can differentiate
to obtain the equation

?v|>—‘

al N
Z Uixu<py = Lixampy) = B = L Gw).

As we are looking for the maximal solution, we can generally state that the
solution will be

. . N
i —1nf{u.B—ZG(u)>0}.
We can also write

G(p) = (1= F(p) = Fp—)

where F(y) = & ij:l I;x, <y} is the empirical cdf of our observations. Assum-
ing N is moderately large, this is well approximated by a continuous increasing
function (so all quantiles are uniquely defined), and we obtain

(e )

It follows that the optimizing choice of u* is given by the empirical % + %
quantile.
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Introducing this back into our equation for €5 (3X), we obtain

le
1 N
k *
Ebn (BX) = _EZ< n— M \—IXn—ml)
N
= Bu" — (u* —m) Z (I{x,<m) = [{x,>p})

-3 fnenzin (- 0)

n=1

N
w4+ my k
2 )7 o Z Ttm<x, <p 3 Xn
kYo 1 [imex, <p=3 (BXn )

N Z I{m<X,L<H *}

We see that the divergence-robust estimate depends on a weighted combination
of the median Sm, an upper quantile Su*, and the mean value taken between
these two bounds!!. Therefore, this quantity can still be robustly estimated,
as it still does not depend on the tail behaviour beyond the % + 5—]@ quantile.
More formally, the breakdown point of this estimator (the proportion of the data
which can be made arbitrarily large without affecting the estimate) is £ (1—3%).

It is easy to see (as Egu[3X?] = fu? + 28) that

ELL(BX?) =

for all N, k, 8 > 0. For negative (3, a finite answer can be obtained, but even its
approximate closed-form representation is inelegant.

%ﬂu**(u**m*

= (1= g5)ow + ayom = 5

Comparing this example with the normal example (Example 2), we can see
that, when considering a likelihood model, there is a delicate relationship be-
tween the ‘statistical’ robustness in the classical estimation problem and the
‘parameter uncertainty’ robustness embedded in é’g"i. We now seek to make
this behaviour more precise, for the general setting of a family of measures Q
describing an uncertain ‘location parameter’.

Assumption 3. Suppose that under Q € Q, we know X, {X,}N_, are iid ob-
servations from a distribution with density exp(¥(z — pg)), and so Q is param-
eterized by pg = EglX] € R. Suppose U has monotone increasing derivative 1
(which may be discontinuous) and

e < i : <
oo < Igrzlooz/)(m) <0< mgrfoolb(x) < 00.

Note that the MLE parameter (assuming it exists, for simplicity) is given by the
solution p to Y (X, —pu) =0.

11This estimate can then be compared with the various perturbations of value-at-risk
considered by Cont, Deguest and Scandolo [7]. However, it is important to note that this
closed-form is only for the random variables SX, not for a general random variable.
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Definition 10. An estimator 6 defined by an implicit equation of the form

N ~
> e(Xi;0) =0
n=1

is called an M -estimate.

The following result is given by Chapter 3 of Huber and Ronchetti [11],
in particular Theorem 3.6, and addresses the ‘statistical robustness’ of an M-
estimate.

Theorem 9. In the setting of Assumption 3, the following are equivalent.

(i) The MLE parameter has a breakdown point above zero (that is, some frac-
tion of the observations can be made arbitrarily large or small without
making the MLE arbitrarily large or small),

(i) The MLE parameter is weakly continuous with respect to the empirical cdf
of observations, for any empirical cdf where the MLE parameter is uniquely
defined,

(i) 1 is bounded.

Remark 16. The classic example where this result holds is Example 5, where
the MLE parameter is given by the sample median.

Theorem 10. In the setting of Assumption 3, the conditions of Theorem 9 are
equivalent to

(i) For any fized k, N, for all B € R sufficiently large (in absolute value), for
X an iid copy of the observations,

£k, (BX) £ R

Proof. We seek to show Theorem 9(iii) and Theorem 10(iv) are equivalent. First,
if (iii) holds, then ¥ is of linear growth. Let S > N sup, |¢(z)|. We can then
calculate

Eqix(BX) = Sup {ﬁucz -> (‘P(Xn — Q) — V(X — uMLE)> }

n

As (3 is larger than the maximal derivative of ) W¥(X, — ug), we can see
that the term in brackets is unbounded, so (iv) holds. A similar result holds if
B < —Nsup, [¢(z)].

To show (iv) implies (iii), we first observe that (iv) implies that for all g
sufficiently large,

sup {ﬁucz -3 (‘If(Xn —pQ) — V(X — uMLE))} = 0.

In other words, ¥ is bounded above by a linear function. As ¢ = ¥’ is monotone
increasing, this implies that ¢ is bounded above. A similar argument shows that
1) is bounded below. O
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Conversely, we have the following.

Theorem 11. In the setting of Assumption 3, write

P(o0) = lim ¢(z),  ¢(—o0) = lim o(z).
If 1/)( o0) < —|B|/N and |B|/N < 1(o0), then the mnonlinear expectation
EQ‘X (8X) is finite, and has breakdown fraction at least

. () = [BI/N —|BI/N = (=0)
0 = min , .
{1//(00) —p(=00)" ¥(00) — P(—00) }

That is, for any m < N, at least m observations can be made arbitrarily large
or small while Eg"iN (8X) remains bounded.

Proof. Consider the function
VRSE ***Zd) (7)

From a first order condition, the value of é’gli (8X) is given by

N
ESRBX) = B’ (x) = 3 (WX = 07 () = (X — i (x)) )
n=1
where £%(x) is the solution to A\?(u,x) = 0 (where = indicates either equality
or a change of sign, if \? jumps over zero) and pype(x) is the MLE based on
X.

Now observe that A’ is monotone increasing with respect to p and, as we
have assumed 1(—o0) < B/N < 1b(oc), we know lim, oo AV (u,x) > 0 and
lim,, oo M (,x) < 0. Therefore, there is exactly one (finite) solution to
N (p,x) = 0. It follows that Eg‘lx(BX) exists and is real.

We now need to determine the breakdown fraction. For M a set of indices,
let x(M,y) denote the set of observations, with X; replaced by y; for i € M.
Suppose |M| = m and m/N < 6. We wish to show that there is a bound on
Sg"lxN (8X) which is uniform in y. From the definition and nonnegativity of the
penalty function, it is easy to see that

S ) < 6, (BX) < G (M),

it follows that it is enough for us to prove that p*#l(x(M,y)) is uniformly
bounded in y.
As 1) is monotone, we observe that
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By monotonicity, it is enough to show that the terms on the right and left have
roots for finite values of 1 (as these will not depend on y). Considering the lower
bound first, we see that as ;1 — 0o, we obtain

p m m
———HE€M¢ - ——¢( )*N—(l—ﬁ)w(—oo)—ﬁw(oo)>0
and as y — —o0,
m B8
***E (X — *NW o0) — N*7/)(OO)<0'

ngM

Therefore, there is a finite root for the lower bound on A?(p, x(M, y)). A similar
argument applies to the upper bound, and when replacmg B with —3. By mono-
tonicity, we conclude that p*18l(x(M,y)) and hence 5Q|x (6X) are uniformly
bounded in y, as desired. O

To conclude, we observe that the non-existence of finite values for EQ‘X(X )
can also manifest itself in surprising ways, as we can see from the following
extension of Example 2.

Ezample 6. Consider the case where X, {X;}¥, are iid N(u,0?), where both u
and o2 are unknown The divergence penalty is then (writing the MLE estimate
of variance 6% = + Zn (X, — X)?)

XN—JZQ

N
o? _
gy (Q47) = 5 Tog(o +Z sl - Yo Fa Ik

il EnNzl(Xn —p)? 1).

= 7 (108(0?/6%) +

If we attempt to calculate Eg’|1x(ﬁX ), we obtain

& (X —p)? )}

o2

N
Q\XN(’BX) - ZUEE {B.UJ - ﬁ (log( 2/6'2) +

2 N ~2
= sup {5}( ¥ g—NU . ﬁ(1og(02/5f2) —1+ %)}
This causes a problem, as the term on the right is unbounded above with respect

to o2. Looking more closely, this function typically has a local maximum for

o2 ~ 62, but for very large values of ¢ the %02 term will dominate. Therefore,

there is no way that, even for large samples, a finite value of £ g’llxN (8X) can be
obtained.

One possible way to deal with this is to modify our approach slightly, either
by including a prior distribution'?, or by adding an additional regularizing term

121n this case, to ensure a finite answer, the prior distribution would need to be asymptot-
ically exponentially small as 02 — oo, which is not the case for the conjugate inverse-Gamma,
distributions for 2. This renders explicit calculation difficult.
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to ensure the supremum chooses values close to the statistical parameters. For
example, taking the penalty

% ZiLl(Xn - N)z

o2

aQxy (@) = g(log(02/52) + - 1) +e(0? — 6?)

ﬁzk €

for some € > 0, results in a finite value for EgllxN (BX) whenever 557 < £, in

particular one obtains consistent estimates as N — oo.

Appendix

Proof of Lemma 2. We know that

N . N -
agixy (@) = *nz::llog <;E§Z:g;) + glog (Jm)

Considering the first term, by translation and scaling, we can assume that K =
[0,1]. For any P € Q, write Fp(z) = [ f(y; P)dy for the distribution function
associated with P. We know that Fp !is ¢! with a norm on its derivative
independent of P, by assumption (ii). Next observe that the natural logarithm
is C* on [C~1, O], so by standard results on composition of functions, the map

w)
f(Fp'(w). P)

is p-Holder continuous, with a norm independent of P, (). Working under P, we
note that U, = Fp(X,,) are independent and uniformly distributed on [0, 1],
By rescaling, we can assume, without loss of generality, that for every P, Q €

Q,

u— l(u; Q, P) :=log (

0(5Q,P)eF,={g:|g9(u) —g(v)| < |u—v| for all u,v € [0,1]}.

It is enough, therefore, to prove a uniform convergence rate for functions in F,.

We can now appeal to Corollary 17.3.3 and the proof of Theorem 17.3.1 of
Shorack and Wellner [18, p.633] (itself based on Strassen and Dudley [20]) to
see that, writing

V(5 S o)~ Blg)]) = Zng),

we know that for any n > 0, there is M sufficiently large (independent of N)
that

P( sup || Zn(g)| > M) <.
geF,
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(The usual purpose of this is as a step towards showing that Zy converges weakly
to a Gaussian process, which is a form of Donsker’s theorem.) By rearranging,
it follows that

) = g {] - Do (X2 - Diwix (PIQ)|} = 0p (%) (8)

QEQ TL7 )

In particular, we know that Q ~ takes values in 9, so,

Zl ( )?;QF]’\;)) fDKL\X(PHQAN)‘ — OP(Nfl/Q). )

From the definition of Q ~ we see that

N

_ f(Xau; P)

0= N;k’g (f(Xn,P))
L, (£ Q)Y _ 1S (F(XiQ)

=N ,;IOg ( f(X.:P) )= oee N ;log (f<Xn;P))

< —Dxpx (PllQn) +(N).
Therefore,

0 < Dy jx (Pl|Qn) < v(N) = Op(N7V/2). (10)

The result then follows from using (8), (9) and (10) with the triangle inequality.

O

Proof of Lemma 3. Our proof depends on three facts: that « is locally a quad-
ratic to second order (via Taylor’s theorem), that the MLE is consistent (al-
lowing us to bound the third derivative with high probability), and that « is
convex (which controls its global behaviour). We write 0 for Oy for notational
simplicity.

As the MLE is consistent (and exists with high probability), as N — oo, for
any radius C' > 0, we know

P(||6 — 07| < C/2) — 1. (11)

We also know that, for some constant k (which will in general depend on P
and on C being sufficiently small, but is independent of N), we have the bound
|03A(0)| < k for all 6 with || — 0F| < C. Combining these, for all § with
160 — ]| < C/2, from Taylor’s theorem

agi(8) > N (56— 0)T250 — 6) ~ k6 — 0]°).

As we know that J; is not degenerate (uniformly in a neighbourhood of 67,
we can also assume that (making & sufficiently large)

~ ) ]‘ )
(0=0)735(0 = 0) > — [l - 0]*.



1888 S. N. Cohen

Therefore, taking C' < k=2, on the set [|6 — ]| < C/2 we have

1 R R
aopx(8) = N (10 = 01| — kllo — 0]

1 kC s N k2C 5o
> - _ - (1-2= — 12
_N<k 2 )”0 ol k (1 2 )”0 I (12)
N A
> . _ 2
> Mg

Note that k& and C' do not depend on N, so (11) remains valid.
We now need to extend the bound of (12) to all . We know that agx is

convex and aQ‘x(é) = 0. For any point 6 such that [|§ —@|| > C/2, its projection
on the ball of radius C'/2 around 0 is given by

O =0+ X0 —0) ;:é+LA(efé).
2[l6 - ol
Hence, from (12), we know that
1 1N A N N
0) > — 0r) > ——|0= — 0> = =0 — 9. 1
oox(8) > agu(t) > o0~ B = 2~ 0] (13)

Combining (12) and (13), we know that

aaw(®) > (g0 —017) A (20— d).

Now consider the set {6 : ag|x(f) < p}. We know that for all § in this set,

(510 —012) A (Sl —an) <

- Ckp 2kp
-0 < — — =: R. O
16— 0| < N V4 i R

which implies
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