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Abstract: We study a stylized multiple testing problem where the test
statistics are independent and assumed to have the same distribution under
their respective null hypotheses. We first show that, in the normal means
model where the test statistics are normal Z-scores, the well-known method
of Benjamini and Hochberg [4] is optimal in some asymptotic sense. We
then show that this is also the case of a recent distribution-free method
proposed by Barber and Candès [14]. The method is distribution-free in
the sense that it is agnostic to the null distribution — it only requires that
the null distribution be symmetric. We extend these optimality results to
other location models with a base distribution having fast-decaying tails.
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1. Introduction

Multiple testing arises in a wide array of applied settings, ranging from anomaly
detection in sensor arrays to the selection of genes that are differentially ex-
pressed [8, 10]. This is particularly true in so-called discovery science, where
the scientist proceeds by formulating hypotheses, testing each one of them on
data, and following up on the most promising ones. Each step along the way
is fraught with pitfalls, and even if the experiment was correctly designed and
carried out, the scientist still needs to contend with the multitude of tests that
were performed.

Multiple testing is now a well-established area in statistics. In a substantial
proportion of the corresponding literature it is assumed that P-values are avail-
able. This, implicitly, assumes that the null distribution of each test statistic is
known (perfectly). For example, the Benjamini-Hochberg (BH) procedure was
proposed in this context [4]. See [27] for a fairly recent and comprehensive review
of the literature, as it pertains to mathematical results in the area.

Our contribution is two-fold. First, we prove that the BH method is asymp-
totically optimal to first order in the normal (location) model, which corresponds
to an idealized setting where the tests being performed are Z-tests and the ef-
fect, when present, affects the mean. In fact, we show that this is the case in
the much wider context of asymptotically generalized Gaussian models — see
Definition 1. Second, we propose to use the recent distribution-free method of
Barber and Candès [14] that only relies on the assumption that the test statis-
tics have a common null distribution that is symmetric about 0 and show that,
in the same normal model, it achieves the same asymptotic performance to first
order. This method, proposed in the context of post-model selection inference,
is also intimately related to our own work [2] on distribution-free testing of the
global null hypothesis.

1.1. The risk of a multiple testing procedure

Consider a setting where we want to test n null hypotheses, denoted H1, . . . ,Hn.
The test that we use for Hi rejects for large positive values of a statistic Xi.
Throughout, we assume that X1, . . . , Xn are independent. Denote the vector of
test statistics by X = (X1, . . . , Xn). Let Ψi denote the survival function1 of Xi

and Ψ = (Ψ1, . . . ,Ψn).

Remark 1. In a large portion of the literature, it is assumed that P-values can
be computed (or at least approximated). The simplest such case is when Hi is a
singleton, Hi = {Ψnull

i }, and the null distributions Ψnull
1 , . . . ,Ψnull

n are known. In
that case, the i-th P-value is defined as Pi = Ψnull

i (Xi), which is the probability

1In this paper, the survival function of a random variable Y is defined as y �→ P(Y ≥ y).
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of exceeding the observed value of the statistic under its null distribution. In
this context, working with the statistics X1, . . . , Xn is equivalent to working
with the P-values P1, . . . , Pn.

Let F ⊂ [n] := {1, . . . , n} index the false null hypotheses, meaning

F = {i ∈ [n] : Ψi /∈ Hi}. (1)

A multiple testing procedure R takes the test statistics X and return a subset of
R(X) ⊂ [n] representing the null hypotheses that the procedure rejects. Given
such a procedure R, the false discovery rate is defined as the expected value of
the false discovery proportion in [4]

fdrΨ(R) = EΨ(fdp(R(X))), fdp(R) :=
|R \ F|
|R| , (2)

where we denoted the cardinality of a set A ⊂ [n] by |A| and with the convention
that 0/0 = 0. While the FDR of a multiple testing procedure is analogous to
the level or size of a test procedure, the false non-discovery rate (FNR) plays
the role of power and is defined as the expected value of the false non-discovery
proportion2

fnrΨ(R) = EΨ(fnp(R(X))), fnp(R) :=
|F \ R|
|F| . (3)

In analogy with the risk of a test — which is defined as the sum of the prob-
abilities of type I and type II error — we define the risk of a multiple testing
procedure R as the sum of the false discovery rate and the false non-discovery
rate

riskΨ(R) = fdrΨ(R) + fnrΨ(R). (4)

Remark 2. The procedure that never rejects and the one that always reject both
achieve a risk of 1, so that any method that has a risk exceeding 1 is useless.

1.2. Threshold procedures

We say that a multiple testing procedure R is of threshold type if it is of the
form

R(X1, . . . , Xn) = {i : Xi ≥ τ(X1, . . . , Xn)}, (5)

for some threshold function τ . For example, the BH method is a threshold
procedure based on the P-values — see (11).

Because they are so natural in the present context, we will restrict the dis-
cussion to threshold procedures. In particular, the lower bound that we develop
(Theorem 1) is only meant to apply to such procedures.

A sizable proportion of the papers in the literature do the same — see [27].
This is for example the case of [28].

2This definition is different from that of [16].
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1.3. The normal model and the optimality of the BH method

This model corresponds to the setting above with Xi ∼ Ψi = N (μi, 1) and
Hi : μi = 0, so that Hi is a singleton equal to Ψnull

i = N (0, 1). In this context
it is compelling to ask how large the μi’s need to be in order for the risk of the
BH procedure to tend to zero. To the best of our knowledge, this question has
not been directly answered in the literature.

Our inspiration for considering the normal (location) model comes from the
seminal work of Ingster [18, 19] and [9] on testing the global null

⋂
i Hi. In

[18] we find the following first-order asymptotic result. Assume a prior under
which m ≤ n randomly picked μi’s are set to

√
2r logn and the others are set

to 0. An interesting parameterization happens to be m/n ∼ n−β with β > 0
fixed. Focusing on the so-called sparse regime, where β > 1/2, one finds that
the detection boundary is at r = ρ(β), where

ρ(β) =

{
β − 1/2, 1/2 < β ≤ 3/4,

(1−
√
1− β)2, 3/4 < β < 1.

(6)

This means that, taking r to be fixed, when r < ρ(β) all tests have risk at
least 1 in the large sample limit (which is as bad as random guessing), while
when r > ρ(β) the likelihood ratio test has risk 0 in the large sample limit.
Donoho and Jin [9] propose an adaptive test procedure based on Tukey’s higher
criticism that achieves this optimal detection boundary. (The higher criticism
also achieves the detection boundary over β ≤ 1/2 not displayed here.)

Returning to the question of identifying the false null hypotheses, which is our
concern here, we know that r > 1 allows for the identification of the false nulls
with a control of the family-wise error rate (FWER) at any fixed level. In fact,
if we define the corresponding risk as the sum of FWER and the probability of
at least one false non-discovery, then r = 1 is the precise boundary for this to be
controlled, and the Bonferroni procedure achieves the boundary over β ∈ (0, 1)
— we leave this as an exercise to the reader. In this paper, we focus instead on
controlling the risk (4) involving FDR. The following is a special case of a more
general lower bound appearing later in the paper.

Corollary 1. In the normal model, assume that β ∈ (0, 1) and r ≥ 0 are both
fixed. If r < β, then the risk of any threshold procedure has limit inferior at least
1 as n → ∞.

In our context, we know that Corollary 1 is tight because the BH method
(which is a threshold procedure) achieves the stated selection boundary with
FDR control level set at some q → 0 slowly. The following is also a special case
of a more general result appearing later in the paper.

Corollary 2. In the setting of Corollary 1, if instead r > β, then the risk of
the BH procedure (properly calibrated) tends to 0 as n → ∞.

It is worth remembering that BH method is known to control the FDR at
the prescribed level [4], so the result is really about its (asymptotic) control of
the FNR.
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Together, Corollary 1 and Corollary 2 establish the BH procedure as asymp-
totically optimal to first order in the normal model among threshold procedures.
We will see that this remains true for a much wider class of models.

Remark 3. While the equation r = ρ(β) defines the “detection boundary” in
the (β, r) plane for testing the global null

⋂
i Hi in the normal model, the equa-

tion r = β is the “selection boundary” for the same multiple testing problem.
Intuitively, detection is “easier” than selection, and this is confirmed in the fact
that the detection boundary is entirely below the selection boundary — indeed,
β > ρ(β) for all β ∈ (0, 1).

1.4. Multiple testing under symmetry

The P-values are based on the assumed knowledge of the null distribution of
each test statistic. In many practical settings, this is not strictly the case, result-
ing in P-values that are only approximately uniformly distributed under their
respective null hypothesis. This can jeopardize the control of the FDR. In the
same way that it may be appealing in some situations to use a distribution-free
test such as the signed-rank test instead of the t-test, it may also be desirable
to use a distribution-free procedure for multiple testing.

Our working assumption is the following

• X1, . . . , Xn are independent with common null distribution that is sym-
metric about 0.

This assumption might be reasonable in some crossover trials. Although testing
the global null is more typical in such a setting (and one might apply the signed-
rank test), a proper multiple testing analysis may be carried out when it is
desired to identify which subjects truly benefited from treatment.

The assumption of symmetry is at the very core of the literature on nonpara-
metric tests [17]. And it is also quite natural in the context of multiple testing.
For example, under these assumptions, [11] consider testing the global null and
propose a test based on sign flips, while [2] propose a nonparametric analog to
the higher criticism. Beyond testing the global null, [3] propose a resampling
procedure also based on sign flips with the purpose of controlling the FWER in
a setting that also allows for dependence, while [14] propose a nonparametric
analog to the BH method.

We call the latter the Barber-Candès (BC) procedure — see Section 4 for
a proper definition. We study this method and show that, under fairly general
conditions, it achieves the selection boundary. In particular, it does as well as
the BH procedure which requires the knowledge of the null distributions. The
following is a special case of a more general results appearing later on.

Corollary 3. The conclusions of Corollary 2 apply to the BC procedure.

The BC method is shown in [14] to control the FDR at the desired level, so
the result is really about its (asymptotic) control of the FNR.
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1.5. More related work

Our contribution is thus twofold: we obtain an asymptotic oracle risk bound for
multiple testing and then show that the BH achieves that bound; and we show
that the distribution-free BC method also achieves that bound.

Various oracle bounds are available in the literature. In a context where the
P-values are uniformly distributed under the null and have the same distribution
under the alternative, [16] consider an oracle that knows the number of false null
hypotheses |F| and the common alternative distribution. See also [5, 24, 28, 29].
[23] also discusses oracle bounds but in a different setting where FWER control
is the goal.

The notion of risk considered here (4), although natural to us, seems new.
More common is the risk corresponding to Hamming loss, very popular in the
classification literature. In our notation, for a procedure R, this risk is defined
as follows

riskHamming
Ψ (R) = EΨ(|R
F|). (7)

For example, this risk is considered in [5, 6, 16, 20, 22, 24, 29]. All these papers
provide some asymptotic analysis of the Hamming risk, whether from a minimax
or oracle perspective. In this context, [5, 16, 24] compare the performance of
BH method to that of an oracle, concluding that the BH method comes close
to achieving the oracle bound under some conditions.

Other distribution-free procedures have been suggested in the literature. Most
are based on resampling [3, 15, 26, 30, 31]. These methods are not applicable
in the setting assumed here. They are typically applied to situations, as in mi-
croarray analysis, where each test statistic is based on comparing two (or more)
samples. Another class of methods consist in estimating the null distribution
— assumed common to all test statistics — and the alternative distribution —
also assumed to be common to all test statistics — with the goal of imitating
the oracle thresholding method based on that knowledge. This is advocated
in [12, 25], for example. [28] and [29] discuss such procedures and derive per-
formance bounds. Such methods rely on the ability to estimate the mixture
consistently. There is work in that direction in [7, 21].

Although not as directly related, [1] consider the problem of estimating the
mean vector (μ1, . . . , μn) in the normal model, and show that hard thresholding
with the BH threshold is asymptotically minimax in some settings.

1.6. Content

In Section 2 we derive an oracle bound on the boundary for multiple testing in a
location model where the base distribution is asymptotically generalized Gaus-
sian. This comprises the normal model. In Section 3 we analyze the performance
of the BH procedure based on the full knowledge of the null distribution, while
in Section 4 we analyze the performance of the BC procedure. We present the
result of some numerical experiments in Section 5. The proofs are gathered in
Section 6.
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2. The AGG model

We start by defining an oracle threshold procedure, which will serve as bench-
mark on a family of location models where the base distribution is asymptot-
ically polynomial in log-scale — which in particular encompasses the normal
model. The result is an oracle risk bound.

2.1. The oracle procedure

We consider an oracle that provides F and use that information to optimize the
threshold in terms of minimizing the risk at a particular realization, namely,

τo(X) ∈ argmin
t∈R

fdp(Rt(X)) + fnp(Rt(X)), Rt(X) := {i : Xi ≥ t}. (8)

In words, with full knowledge of the set of false null distributions F, the pro-
cedure chooses a threshold that partitions the test statistics in a way that
minimizes the sum of the false discovery and non-discovery proportions. The
expected risk of this procedure is what we call below the oracle risk.

Remark 4. Of course, if one knew F, one would simply reject Hi for all i ∈ F

and, in the end, there would not any multiple testing problem to deal with! The
oracle procedure is, however, constrained to be of threshold type, with the goal
of serving as a benchmark for threshold-type procedures.

Our oracle is the strongest possible, in the sense that it provides F, and we use
the oracle information to optimize the threshold. Most other publications that
discuss oracle bounds, such as [5, 16, 24, 28, 29], operate in a setting where the
statistics have the same null distribution and the same alternative distribution,
and consider an oracle that provides these two distributions together with the
number of false null hypotheses |F|; this oracle information is then used to
optimize a constant threshold. [23] consider an oracle that provides F, and well
as the joint distribution of the P-values indexed by Fc, and use that oracle
information to obtain an optimized single-step procedure for FWER control.

2.2. Asymptotically generalized Gaussian model

In a location model, we assume that we know the null survival function Ψ,
assumed to be continuous for simplicity, and consider Ψ(· − μ) as a location
family of distributions. We then assume that the test statistics are independent
with respective distribution Xi ∼ Ψi = Ψ(· − μi), where μi = 0 under the null
Hi and μi > 0 otherwise. Both minimax and Bayesian considerations lead to
considering a prior on the μi’s where m ≤ n randomly picked μi’s are set equal
to some μ > 0 and the others are set to 0. The prior is therefore defined based
on m and μ, which together control the signal strength.

Beyond the normal model, we consider other location models where the base
distribution has a polynomial right tail in log scale.
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Definition 1. A survival function Ψ is asymptotically generalized Gaussian
(AGG) on the right with exponent γ > 0 if limx→∞ x−γ logΨ(x) = −1/γ.

The AGG class of distributions is nonparametric and quite general. It in-
cludes the parametric class of generalized Gaussian (GG) distributions with
densities {ψγ , γ > 0} given by logψγ(x) ∝ −|x|γ/γ, which comprises the nor-
mal distribution (γ = 2) and the double exponential distribution (γ = 1). We
assume that γ ≥ 1 so that the null distribution has indeed a sub-exponential
right tail.

Remark 5. We note that the scale (e.g., standard deviation) is fixed, but this
is really without loss of generality as both the BH and BC methods are scale
invariant. For the BH method, this is because the P-values are scale invariant.
However, this is so because we provide the BH method with the null distribution,
including the scale. The BC method, by contrast, can operate without knowledge
of the scale.

Donoho and Jin [9] consider the problem of testing the global null in a GG
location model and derived the detection boundary. We use the same prior,
where m nulls chosen uniformly at random are designated to be false and all
positive μi’s are set equal to μ, with

m = �n1−β, with 0 < β < 1 (fixed), (9)

and
μ = μγ(r) = (γr logn)

1/γ
, with r > 0 (fixed). (10)

Neuvial and Roquain [24] obtain general bounds on the excess (Hamming) risks
of Bayesian FDR and the BH method relative to an oracle, which they specialize
to the GG model, showing that under similar conditions the BH method achieves
an oracle bound.

Theorem 1. Consider a location model where the base distribution is AGG
with exponent γ ≥ 1, with prior described above, and with the parameterization
(9)-(10). If r < β, then the oracle risk has limit inferior at least 1 as n → ∞.

3. The performance of the BH method

We order the Xi’s in decreasing order, to obtain the following order statistics
X(1) ≥ · · · ≥ X(n). Given a desired FDR control at q, the BH procedure of [4]
is defined as the threshold procedure (5), with threshold

τBH = X(ιBH), ιBH := max
{
i : X(i) ≥ Ψ−1(iq/n)

}
. (11)

This procedure is shown in [4] to control the FDR at q when the tests are
independent — which we assume throughout.

Typically, q is set to a small number, like q = 0.10. In this paper we allow
q → 0 as n → ∞, but slowly. Specifically, we always assume that

q = q(n) > 0 such that naq(n) → ∞ for all fixed a > 0. (12)
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The following result establishes the BH procedure as optimal in the AGG
model, in the sense that it achieves the selection boundary (r = β) stated in
Theorem 1.

Theorem 2. In the setting of Theorem 1, if instead r > β, then the BH pro-
cedure with q satisfying (12) has fnr tending to 0 as n → ∞. In particular, if
q → 0, then it has risk tending to 0 since the procedure has fdr ≤ q.

Remark 6. For any multiple testing procedure, fnr → 0 if and only if fnp → 0
in probability. Indeed, one direction is justified by Markov’s inequality, and the
other direction is justified by dominated convergence and the fact that fnp ≤ 1.

4. The performance of the BC method

Under the assumption of symmetry, given the desired FDR control level q, the
Barber-Candès (BC) procedure defines the data-dependent threshold τBC as:

τBC = inf
{
t ∈ |X| : f̂dp(t) ≤ q

}
, (13)

where, as usual, the infimum is infinite if the set is empty, |X| := {|Xi| : i =
1, . . . , n} is the set of sample absolute values, and

f̂dp(t) :=
1 +#{i : Xi ≤ −t}
1 ∨#{i : Xi ≥ t} , (14)

is a measure of how asymmetric the set of observations {Xi : |Xi| ≥ t} is.
The notation is borrowed from [14] and is justified by the fact that this

quantity aims at estimating fdp(Rt), where Rt = {i : Xi ≥ t} as in (8). The
BC procedure is shown in [14] to control the FDR at level q.

The following result shows that, although agnostic to the null distribution,
the BC procedure achieves the selection boundary in a AGG model as long as
the underlying distribution is symmetric.

Theorem 3. In the setting of Theorem 1, and assuming that the null distri-
bution Ψ is symmetric about 0, if instead r > β, then the BC procedure with q
satisfying (12) has fnr tending to 0 as n → ∞. In particular, if q → 0, then it
has risk tending to 0 since the procedure has fdr ≤ q.

5. Numerical experiments

In this section, we perform simple simulations to compare the BH and BC
procedures on finite data, with the goal of illustrating the theory we established.
We consider the normal model and the double-exponential model. It is worth
repeating that the BH procedure requires knowledge of null distribution as it is
based on the P-values. In contrast, the BC method does not require knowledge
of the null distribution.
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5.1. Fixed sample size

In this first set of experiments, the sample size is chosen large at n = 105.
The FDR control level is set at q = 0.05. We draw m observations from the
alternative distribution Ψ(·−μ), and the other n−m from the null distribution
Ψ. All the models are parameterized as described in Section 2.2, in particular,
(9) and (10). We choose a few values for the parameter β so as to exhibit different
sparsity levels, while the parameter r takes values in a grid of spanning [0, 1].
Each situation is repeated 500 times and we report the average FDP and FNP
for each procedure.

5.1.1. Normal model

In this model Ψ is the standard normal distribution. The simulation results
are reported in Figure 1 and Figure 2. In Figure 1 we report the FDP. Recall
that the methods are set to control the FDR at the desired level (q = 0.05).
We see that the BC method becomes more conservative than the BH method
as β increases. In Figure 2 we report the FNP. We see that the BC method
performs comparably to the BH method at β = 0.3 and β = 0.5, but is clearly
less powerful in the sparsest regime β = 0.7. This is in line with the earlier
observation that the BC method becomes more conservative with increasing
values of β. It can also be explained by the fact, at β = 0.7, the number of false
nulls (m = 31 out of n = 105) is too small to reveal the asymptotic power of
the BC method. Finally, we remark that the transition from high FNP to low
FNP happens in the vicinity of the theoretical threshold (r = β).

Fig 1. Simulation results showing the FDP for the BH and BC methods under the normal
model in three distinct sparsity regimes. The black horizontal line delineates the desired FDR
control level (q = 0.05).

5.1.2. Double-exponential model

In this model Ψ is double-exponential distribution with variance of 1. The sim-
ulation results are reported in Figure 3 (FDP) and Figure 4 (FNP). Here we
observe that the BC method is rather conservative regardless of β. The two
methods are again comparable in terms of FNP, in fact a bit more so than in
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Fig 2. Simulation results showing the FNP for the BH and BC methods under the normal
model in three distinct sparsity regimes. The black vertical line delineates the theoretical
threshold (r = β).

the normal setting. The transition from FNP near 1 to FNP near 0 happens,
again, in the vicinity of the theoretical threshold, but is much sharper here.

Fig 3. Simulation results showing the FDP for the BH and BC methods under the double-
exponential model in three distinct sparsity regimes. The black horizontal line delineates the
desired FDR control level (q = 0.05).

5.2. Varying sample size

In this second set of experiments, we examine the effect of various sample sizes
on the risk of BH and BC procedures under the standard normal model and
the double-exponential model (with variance 1). We simultaneously explore the
effect of letting the desired FDR control level q tend to 0, in accordance with
(12). Specifically, we set it as q = qn = 1/ logn. We choose n on a log scale,
specifically, n ∈ {102, 103, 104, 105, 106}. Each time, we fix a value of (β, r) such
that r > β.

In the first setting, we set (β, r) = (0.4, 0.9). The simulation results are
reported in Figure 5 and Figure 6. We see that, in both models, the risks of the
two procedures decrease to zero rapidly as the sample size gets larger. The BH
method clearly dominates (in terms of FNP) up until n = 103, and after that
the two methods behave similarly.
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Fig 4. Simulation results showing the FNP for the BH and BC methods under the double-
exponential model in three distinct sparsity regimes. The black vertical line delineates the
theoretical threshold (r = β).

Fig 5. FDP and FNP for the BH and BC methods under the normal model with (β, r) =
(0.4, 0.9) and varying sample size n.

Fig 6. FDP and FNP for the BH and BC methods under the double-exponential model with
(β, r) = (0.4, 0.9) and varying sample size n.

In the second setting, we set (β, r) = (0.7, 1.5) for normal model and (β, r) =
(0.7, 1.2) for double-exponential model. The simulation results are reported in
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Fig 7. FDP and FNP for the BH and BC methods under the normal model with (β, r) =
(0.7, 1.5) and varying sample size n.

Fig 8. FDP and FNP for the BH and BC methods under the double-exponential model with
(β, r) = (0.7, 1.2) and varying sample size n.

Figure 7 and Figure 8. In this sparser regime, we can see that the BC method
is much more conservative than BH method when n is relatively small. But as
n gets larger, this is less pronounced. The BH method clearly dominates (in
terms of FNP) up until n = 103 and past n = 104 the two methods behave
similarly. The difference is much more dramatic here, in line with our findings
in Section 5.1.

6. Proofs

We prove our results in this section.

6.1. Proof of Theorem 1

For t ∈ R, recall that Rt = {i : Xi ≥ t} and define

the number of type I errors: I(t) = |Rt \ F| ; (15)
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the number of type II errors: II(t) = |F \ Rt| . (16)

Set δ = log log n. We distinguish between two cases.

• When t ≤ μ+ δ, using the fact that t �→ I(t) is non-increasing, we have

fdp(Rt) =
I(t)

|Rt|
≥ I(t)

I(t) + |F| ≥
I(μ+ δ)

I(μ+ δ) +m
. (17)

• When t > μ+ δ, using the fact that t �→ II(t) is non-decreasing, we have

fnp(Rt) =
II(t)

|F| ≥ II(μ+ δ)

m
. (18)

(Recall that m = |F| in our model.) Hence, we conclude that for any t ∈ R,

fdp(Rt) + fnp(Rt) ≥
I(μ+ δ)

I(μ+ δ) +m
∧ II(μ+ δ)

m
. (19)

Consequently, to show that the oracle threshold risk has limit inferior at least
1 as n tends to infinity, by dominated convergence, it suffices to show that the
RHS tends to 1 in probability, or put differently, that

I(μ+ δ)

m
→ ∞ and

II(μ+ δ)

m
→ 1, in probability as n → ∞. (20)

On the one hand, we have I(μ + δ) ∼ Bin(n − m,Ψ(μ + δ)), so that for
I(μ+δ)/m to diverge to∞ in probability it suffices that (n−m)Ψ(μ+δ)/m → ∞.
And indeed, this is the case since

log
[
(n−m)Ψ(μ+ δ)/m

]
= log(n/m) + o(1) + logΨ(μ+ δ) (21)

= log(n/n1−β) + o(1)− 1
γ (μ+ δ)γ(1 + o(1)) (22)

= β logn+ o(1)− (r + o(1)) log n (23)

= (β − r + o(1)) log n → ∞, (24)

using the fact that m ∼ n1−β , that Ψ is AGG with exponent γ, that μ+ δ ∼ μ
with μ defined in (10), and that r < β.

On the other hand, we have II(μ+ δ) ∼ Bin(m, 1−Ψ(δ)), so that for II(μ+
δ)/m to converge to 1 in probability it suffices that Ψ(δ) → 0, which is the case
since δ → ∞.

6.2. Proof of Theorem 2

Let Ψ denote the null survival function, assumed to be AGG with parameter
γ ≥ 1. Let Ĝ denote the empirical survival function

Ĝ(t) =
1

n

∑
i∈[n]

I{Xi ≥ t}. (25)
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Let Yi = Xi−μi and note that (Yi : i ∈ [n]) are IID with distribution Ψ. Define
the empirical survival functions

Ŵtrue(y) =
1

n−m

∑
i/∈F

I{Yi ≥ y}, Ŵfalse(y) =
1

m

∑
i∈F

I{Yi ≥ y}, (26)

so that
Ĝ(t) = (1− ε)Ŵtrue(t) + εŴfalse(t− μ). (27)

where ε := m/n ∼ n−β under (9).
We need the following result to control the deviations of the empirical distri-

butions.

Lemma 1 ([13]). Let Z1, . . . , Zk be IID with continuous survival function Q.
Let Q̂k denote their empirical survival function and define ζk =

√
2 log log(k)/k

for k ≥ 3. Then

1

ζk
max

z

Q̂k(z)−Q(z)√
Q(z)(1−Q(z))

→ 1, in probability as k → ∞. (28)

In particular,

Q̂k(z) = Q(z) +OP(ζk)
√
Q(z)(1−Q(z)), uniformly in z. (29)

Applying Lemma 1, we get

Ĝ(t) = (1− ε)
[
Ψ(t) +OP(ζn)

√
Ψ(t)(1−Ψ(t))

]
(30)

+ ε
[
Ψ(t− μ) +OP(ζm)

√
Ψ(t− μ)(1−Ψ(t− μ))

]
. (31)

From this we get
Ĝ(t) = G(t) + R̂(t), (32)

where
G(t) := E[Ĝ(t)] = (1− ε)Ψ(t) + εΨ(t− μ), (33)

and

R̂(t) = OP

(
ζn
√
Ψ(t)(1−Ψ(t)) + ζmε

√
Ψ(t− μ)(1−Ψ(t− μ))

)
, (34)

uniformly in t ∈ R.
Let ι = ιBH be defined as in (11). We have Ĝ(X(i)) = i/n, so that X(i) ≥

Ψ−1(qĜ(X(i))) for i ≤ ι and X(i) < Ψ−1(qĜ(X(i))) for i > ι. Based on that, and

the fact that Ĝ is constant between two consecutive Xi’s, we have that there is
τ ∈ (X(ι+1), X(ι)] such that

τ = min
{
t : t ≥ Ψ−1(qĜ(t))

}
= min

{
t : t = Ψ−1(qĜ(t))

}
. (35)

Note that the BH procedure coincides with Rτ , the threshold method with
threshold τ . In particular,

fnp(Rτ ) = 1− F̂ (τ), F̂ (t) :=
1

m

∑
i∈F

I{Xi ≥ t}, (36)
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so that it suffices to show that F̂ (τ) → 1 in probability. As above, by Lemma 1,

F̂ (t) = Ŵfalse(t− μ) = Ψ(t− μ) +OP(ζm)
√

Ψ(t− μ)(1−Ψ(t− μ)), (37)

and in particular F̂ (τ) = Ψ(τ−μ)+oP(1), so it suffices to show that τ−μ → −∞
in probability.

Since r > β and β < 1, we may take a real number r∗ ∈ (β, r ∧ 1). Define
t∗ = (γr∗ logn)

1/γ . Since t∗ − μ → −∞, it suffices to show that τ ≤ t∗ with
probability tending to 1. We have

G(t∗) = (1− ε)Ψ(t∗) + εΨ(t∗ − μ). (38)

The first term is ∼ Ψ(t∗), with

Ψ(t∗) = n−r∗+o(1), (39)

by Definition 1, which says that logΨ(t) ∼ −tγ/γ as t → ∞. The second term
is ∼ n−β by (9) and the fact that Ψ(t∗ − μ) → 1 since, again, t∗ − μ → −∞.
Together, we obtain G(t∗) ∼ n−β , using also the fact that r∗ > β. In addition,
by (34) we have

R̂(t∗) = OP

(
ζn
√

Ψ(t∗)) + oP(ε) = oP(n
−β), (40)

since ζn
√

Ψ(t∗) = n− 1
2 (r∗+1)+o(1) (any poly-logarithmic factor was absorbed in

no(1)), again by (39), and β < r∗ < 1. Hence, applying (32), we obtain

Ĝ(t∗) = G(t∗) + R̂(t∗) ∼P G(t∗) ∼ n−β . (41)

Together with (39), and using by (12), we have

Ĝ(t∗)/Ψ(t∗) = n(r∗−β)+oP(1) � 1/q. (42)

This, together with (35), implies that τ ≤ t∗ with probability tending to 1, hence
fnp(Rτ ) → 0 in probability. By Remark 6, we have fnr(Rτ ) → 0 as n → ∞.

6.3. Proof of Theorem 3

The proof borrows a number of arguments from Section 6.2. We use the same
notation and assume as before that the Xi’s are distinct. We order the absolute
values of statistic |X| in decreasing order, meaning that |X|(1) ≥ · · · ≥ |X|(n).
Recall that Ψ is now symmetric about 0.

Define the threshold

τ = inf
{
t : f̂dp(t) ≤ q

}
. (43)

The difference with τBC in (13) is that the range is not limited to |X|. It can be
seen that τ = |X|(ιBC+1) if ιBC < n and τ = 0 if ιBC = n. This, in particular,
implies

fnp(Rτ ) ≤ fnp(RτBC) ≤ fnp(Rτ ) +
1
m . (44)
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Since in our model m → ∞, it suffices to show that fnp(Rτ ) → 0 in probability.
As before, (36) holds true, so it suffices to show that F̂ (τ) → 1 in probability.
For that, we saw earlier that it suffices to show that τ ≤ t∗ with probability
tending to 1.

We have

f̂dp(t∗) =
1 + n(1− Ĝ(−t∗))

1 ∨ nĜ(t∗)
. (45)

We already saw that Ĝ(t∗) ∼ n−β , so the denominator above is ∼ n1−β as
n → ∞. For the numerator, by (32), we have

1− Ĝ(−t∗) = 1−G(−t∗)− R̂(−t∗). (46)

By (33),

1−G(−t∗) = (1− ε)(1−Ψ(−t∗)) + ε(1−Ψ(−t∗ − μ)) (47)

= (1− ε)Ψ(t∗) + εΨ(t∗ + μ) [by symmetry of Ψ] (48)

∼ Ψ(t∗) = n−r∗+o(1). [by (39)] (49)

By (34),

R̂(−t∗) = OP

(
ζn
√

1−Ψ(−t∗) + ζmε
√
1−Ψ(−t∗ − μ)

)
(50)

= OP(ζn
√
Ψ(t∗) + ζmε

√
Ψ(t∗ + μ)) [by symmetry of Ψ)] (51)

= OP(n
− 1

2 (r∗+1)+o(1) + o(n− 1
2 (r∗+β+1)+o(1))) [by (39)] (52)

= OP(n
− 1

2 (r∗+1)+o(1)). (53)

(Again, any poly-logarithmic factor was absorbed in no(1).) Combined with the
fact that r∗ < 1, we get 1− Ĝ(−t∗) ∼ n−r∗+o(1), and therefore

f̂dp(t∗) =
n1−r∗+o(1)

n1−β
= nβ−r∗+o(1) � q. [by (12) and β < r�] (54)

Hence, f̂dp(t∗) ≤ q with probability tending to 1, and when this is the case,
τ ≤ t∗, by definition of τ above. This also implies fnp(Rτ ) → 0 in probability.
By Remark 6, we have fnr(Rτ ) → 0 as n → ∞.
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