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Abstract: The Morse-Smale complex of a function f decomposes the sam-
ple space into cells where f is increasing or decreasing. When applied to
nonparametric density estimation and regression, it provides a way to rep-
resent, visualize, and compare multivariate functions. In this paper, we
present some statistical results on estimating Morse-Smale complexes. This
allows us to derive new results for two existing methods: mode clustering
and Morse-Smale regression. We also develop two new methods based on
the Morse-Smale complex: a visualization technique for multivariate func-
tions and a two-sample, multivariate hypothesis test.
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1. Introduction

Let f be a smooth, real-valued function defined on a compact set K ∈ R
d. In

this paper, f will be a regression function or a density function. The Morse-
Smale complex of f is a partition of K based on the gradient flow induced by f .
Roughly speaking, the complex consists of sets, called crystals or cells, comprised
of regions where f is increasing or decreasing. Figure 1 shows the Morse-Smale
complex for a two-dimensional function. The cells are the intersections of the
basins of attractions (under the gradient flow) of the function’s maxima and
minima. The function f is piecewise monotonic over cells with respect to some
directions. In a sense, the Morse-Smale complex provides a generalization of
isotonic regression.
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Fig 1. An example of a Morse-Smale complex. The green dots are local minima; the blue
dots are local modes; the violet dots are saddle points. Panels (a) and (b) give examples of
descending d-manifolds (blue region) and an ascending 0-manifold (green region). Panel (c)
shows the corresponding d-cell (yellow region). Panel (d) is shows all d-cells.

Because the Morse-Smale complex represents a multivariate function in terms
of regions on which the function has simple behavior, the Morse-Smale complex
has useful applications in statistics, including in clustering, regression, testing,
and visualization. For instance, when f is a density function, the basins of at-
traction of f ’s modes are the (population) clusters for density-mode clustering
(also known as mean shift clustering (Fukunaga and Hostetler, 1975; Chacón
et al., 2015)), each of which is a union of cells from the Morse-Smale complex.
Similarly, when f is a regression function, the cells of the Morse-Smale complex
give regions on which f has simple behavior. Fitting f over the Morse-Smale
cells provides a generalization of nonparametric, isotone regression; Gerber et al.
(2013) proposes such a method. The Morse-Smale representation of a multivari-
ate function f is a useful tool for visualizing f ’s structure, as shown by Gerber
et al. (2010). In addition, suppose we want to compare two multi-dimensional
datasets X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym). We start by forming the
Morse-Smale complex of p̂− q̂ where p̂ is density estimate from X and q̂ is den-
sity estimate from Y . Figure 2 shows a visualization built from this complex.
The circles represent cells of the Morse-Smale complex. Attached to each cell is
a pie-chart showing what fraction of the cell has p̂ significantly larger than q̂.
This visualization is a multi-dimensional extension of the method proposed for
two or three dimensions in Duong (2013).
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Fig 2. Graft-versus-Host Disease (GvHD) dataset (Brinkman et al., 2007). This is a d = 4
dimensional dataset. We estimate the density difference based on the kernel density estimator
and find regions where the two densities are significantly different. Then we visualize the
density difference using the Morse-Smale complex. Each green circle denotes a d-cell, which
is a partition for the support K. The size of circle is proportional to the size of cell. If two
cells are neighborhors, we add a line connecting them; the thickness of the line denotes the
amount of boundary they share. The pie charts show the ratio of the regions within each cell
where the two densities are significantly different from each other. See Section 3.4 for more
details.

For all these applications, the Morse-Smale complex needs to be estimated.
To the best of our knowledge, no theory has been developed for this estimation
problem, prior to this paper. We have three goals in this paper: to show that
many existing problems can be cast in terms of the Morse-Smale complex, to
develop some new statistical methods based on the Morse-Smale complex, and
to develop the statistical theory for estimating the complex.

Main results The main results of this paper are:

1. Consistency of the Morse-Smale Complex. We prove the stability of the
Morse-Smale complex (Theorem 1) in the following sense: if B and B̃ are
boundaries of the descending d-manifolds (or ascending 0-manifolds) of p
and p̃ (defined in Section 2), then

Haus(B, B̃) = O (‖∇p−∇p̃‖∞) .

2. Risk Bound for Mode clustering (mean-shift clustering; section 3.1): We
bound the risk of mode clustering in Theorem 2.

3. Morse-Smale regression (section 3.2): In Theorems 4 and 5, we bound the
risk of Morse-Smale regression, a multivariate regression method proposed
in Gerber et al. (2010); Gerber and Potter (2011); Gerber et al. (2013)
that synthesizes nonparametric regression and linear regression.

4. Morse-Smale signatures (section 3.3): We introduce a new visualization
method for densities and regression functions.

5. Morse-Smale two-sample testing (section 3.4): We develop a new method
for multivariate two-sample testing that can have good power.
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Related work The mathematical foundations for the Morse-Smale complex
are from Morse theory (Morse, 1925, 1930; Milnor, 1963). Morse theory has
many applications including computer vision (Paris and Durand, 2007), com-
putational geometry (Cohen-Steiner et al., 2007) and topological data analysis
(Chazal et al., 2014).

Previous work on the stability of the Morse-Smale complex can be found in
Chen et al. (2016) and Chazal et al. (2014) but they only consider critical points
rather than the whole Morse-Smale complex. Arias-Castro et al. (2016) prove
pointwise convergence for the gradient ascent curves but this is not sufficient
for proving the stability of the complex because the convergence of complexes
requires convergence of multiple curves and the constants in the convergence
rate derived from Arias-Castro et al. (2016) vary from points to points and some
constants diverge when we are getting closer to the boundaries of complexes.
Thus, we cannot obtain a uniform convergence of gradient ascent curves directly
based on their results. Morse-Smale regression and visualization were proposed
in Gerber et al. (2010); Gerber and Potter (2011); Gerber et al. (2013).

The R code (Algorithms 1, 2, and 3) used in this paper can be found at
https://github.com/yenchic/Morse_Smale.

2. Morse theory

To motivate formal definitions, we start with the simple, one-dimensional ex-
ample depicted in Figure 3. The left panel shows the sets associated with each
local maximum (i.e. the basins of attraction of the maxima). The middle panel
shows the sets associated with each local minimum. The right panel show the
intersections of these basins, which gives the Morse-Smale complex defined by
the function. Each interval in the complex, called a cell, is a region where the
function is increasing or decreasing.

Now we give a formal definition. Let f : K ⊂ R
d �→ R be a function with

bounded third derivatives that is defined on a compact set K. Let g(x) = ∇f(x)
and H(x) = ∇∇f(x) be the gradient and Hessian matrix of f , respectively, and
let λj(x) be the jth largest eigenvalue of H(x). Define C = {x ∈ K : g(x) = 0}
to be the set of all f ’s critical points, which we call the critical set. Using the
signs of the eigenvalues of the Hessian, the critical set C can be partitioned into
d+ 1 distinct subsets C0, · · · , Cd, where

Ck = {x ∈ K : g(x) = 0, λk(x) > 0, λk+1(x) < 0}, k = 1, · · · , d− 1. (1)

We define C0, Cd to be the sets of all local maxima and minima (corresponding
to all eigenvalues being negative and positive respectively). The set Ck is called
k−th order critical set.

A smooth function f is called a Morse function (Morse, 1925; Milnor, 1963)
if its Hessian matrix is non-degenerate at each critical point. That is, |λj(x)| >
0, ∀x ∈ C for all j. In what follows we assume f is a Morse function (actually,
later we will assume further that f is a Morse-Smale function).

https://github.com/yenchic/Morse_Smale
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Fig 3. A one dimensional example. The blue dots are local modes and the green dots are
local minima. Left panel: the basins of attraction for two local modes are colored by brown
and orange. Middle panel: the basin of attraction (negative gradient) for the local minima are
colored by red, purple and violet. Right panel: The intersection of the basins, which are called
d-cells.

Given any point x ∈ K, we define the gradient ascent flow starting at x,
πx : R+ �→ K, by

πx(0) = x

π′
x(t) = g(π(t)).

(2)

A particle on this flow moves along the gradient from x towards a “destination”
given by

dest(x) ≡ lim
t→∞

πx(t).

It can be shown that dest(x) ∈ C for x ∈ K.
We can thus partition K based on the value of dest(x). These partitions are

called descending manifolds in Morse theory (Morse, 1925; Milnor, 1963). Recall
Ck is the k-th order critical points, we assume Ck = {ck,1, · · · , ck,mk

} contains
mk distinct elements. For each k, define

Dk = {x : dest(x) ∈ Cd−k}
Dk,j = {x : dest(x) = cd−k,j} , j = 1, · · ·md−k.

(3)

That is, Dk is the collection of all points whose gradient ascent flow converges to
a (d−k)-th order critical point andDk,j is the collection of points whose gradient
ascent flow converges to the j-th element of Cd−k. Thus,Dk =

⋃md−k

j=1 Dk,j . From
Theorem 4.2 in Banyaga and Hurtubise (2004), each Dk is a disjoint union
of k-dimensional manifolds (Dk,j is a k-dimensional manifold). We call Dk,j

a descending k-manifold of f . Each descending k-manifold is a k-dimensional
manifold such that the gradient flow from every point converges to the same
(d− k)-th order critical point. Note that {D0, · · · , Dk} forms a partition of K.
The top panels of Figure 4 give an example of the descending manifolds for a
two dimensional case.

The ascending manifolds are similar to descending manifolds but are defined
through the gradient descent flow. More precisely, given any x ∈ K, a gradient
descent flow γ : R+ �→ K starting from x is given by

γx(0) = x

γ′
x(t) = −g(π(t)).

(4)
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Fig 4. Two-dimensional examples of critical points, descending manifolds, ascending mani-
folds, and 2-cells. This is the same function as Figure 1. (a): The set Ck for k = 0, 1, 2. The
four blue dots are C0, the collection of local modes (each of them is c0,j some j = 1, · · · , 4).
The four orange dots are C1, the collection of saddle points (each of them is c1,j for some
j = 1, · · · , 4). The green dots are C2, the collection of local minima (each green dot is c2,j
for some j = 1, · · · , 9). (b): The set Dk for k = 0, 1, 2. The yellow area is D2 (each subregion
separated by blue curves are D2,j , j = 1, · · · , 4). The two blue curves are D1 (each of the 4
blue segments are D1,j , j = 1, · · · , 4). The green dots are D0 (also C2), the collection of local
minima (each green dot is D0,j for some j = 1, · · · , 9). (b): The set Ak for k = 0, 1, 2. The
yellow area is A0 (each subregion separated by red curves are A0,j , j = 1, · · · , 9). The two
red curves are A1 (each of the 4 red segments are A1,j , j = 1, · · · , 4). The blue dots are A2

(also C0), the collection of local modes (each green dot is A0,j for some j = 1, · · · , 4). (d):
Example for 2-cells. The thick blue curves are D1 and thick red curves are A1.

Unlike the ascending flow defined in (2), γx is a flow that moves along the
gradient descent direction. The descent flow γx shares similar properties to the
ascent flow πx; the limiting point limt→∞ γx(t) ∈ C is also in critical set when
f is a Morse function. Thus, similarly to Dk and Dk,j , we define

Ak =
{
x : lim

t→∞
γx(t) ∈ Cd−k

}
Ak,j =

{
x : lim

t→∞
γx(t) = cd−k,j

}
, j = 1, · · · ,mj−k.

(5)
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Ak and Ak,j have dimension d − k and each Ak,j is a partition for Ak and
{A0, · · · , Ad} consist of a partition for K. We call each Ak,j an ascending k-
manifold to f .

A smooth function f is called aMorse-Smale function if it is a Morse function
and any pair of the ascending and descending manifolds of f intersect each
other transversely (which means that pairs of manifolds are not parallel at their
intersections); see e.g. Banyaga and Hurtubise (2004) for more details. In this
paper, we also assume that f is a Morse-Smale function. Note that by the
Kupka-Smale Theorem (see e.g. Theorem 6.6 in Banyaga and Hurtubise (2004)),
Morse-Smale functions are generic (dense) in the collection of smooth functions.
For more details, we refer to Section 6.1 in Banyaga and Hurtubise (2004).

A k-cell (also called Morse-Smale cell or crystal) is the non-empty intersection
between any descending k1-manifold and an ascending (d − k2)-manifold such
that k = min{k1, k2} (the ascending (d−k2)-manifold has dimension k2). When
we simply say a cell, we are referring to the d-cell since d-cells consists of the
majority of K (the totality of k-cells with k < d has Lebesgue measure 0). The
Morse-Smale complex for f is the collection of all k-cells for k = 0, · · · , d. The
bottom panels of Figure 4 give examples for the ascending manifolds and the
d-cells for d = 2. Another example is given in Figure 1.

The cells of a smooth function can be used to construct an additive de-
composition that is useful in data analysis. For a Morse-Smale function f , let
E1, · · · , EL be its associated cells. Then we can decompose f into

f(x) =

L∑
�=1

f�(x)1(x ∈ E�), (6)

where each f�(x) behaves like a multivariate isotonic function (Barlow et al.,
1972; Bacchetti, 1989). Namely, f(x) = f�(x) when x ∈ E�. This decomposition
is because within each E�, f has exact a local mode and a local minimum on
the boundary of E�. The fact that f admits such a decomposition will be used
frequently in Sections 3.2 and 3.3.

Among all descending/ascending manifolds, the descending d-manifolds and
the ascending 0-manifolds are often of great interest. For instance, mode cluster-
ing (Li et al., 2007; Azzalini and Torelli, 2007) uses the descending d-manifolds
to partition the domain K into clusters. Morse-Smale regression (Gerber and
Potter, 2011; Gerber et al., 2013) fits a linear regression individually over each
d-cell (non-empty intersection of pairs of descending d-manifolds and ascending
0-manifolds). Regions outside descending d-manifolds or ascending 0-manifolds
have Lebesgue measure 0. Thus, later in our theoretical analysis, we will focus
on the stability of the set Dd and A0 (see Section 4.1). We define boundaries of
Dd as

B ≡ ∂Dd = Dd−1 ∪ · · · ∪D0. (7)

The set B will be used frequently in Section 4.
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Fig 5. An example of mode clustering. (a): Basin of attraction for each local mode (red +).
Black dots are data points. (b): Gradient flow (blue lines) for each data point. The gradient
flow starts at one data point and ends at one local modes. (c): Mode clustering; we use the
destination for gradient flow to cluster data points.

3. Applications in statistics

3.1. Mode clustering

Mode clustering (Li et al., 2007; Azzalini and Torelli, 2007; Chacón and Duong,
2013; Arias-Castro et al., 2016; Chacón et al., 2015; Chen et al., 2016) is a
clustering technique based on the Morse-Smale complex and is also known as
mean-shift clustering (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu
and Meer, 2002). Mode clustering uses the descending d-manifolds of the density
function p to partition the whole space K. (Although the d-manifolds do not
contain all points in K, the regions outside d-manifolds have Lebesgue measure
0). See Figure 5 for an example.

Now, we briefly describe the procedure of mode clustering. Let X = {X1, · · · ,
Xn} be a random sample from density p defined on a compact setK and assumed
to be a Morse function. Recall that dest(x) is the destination of the gradient
ascent flow starting from x. Mode clustering partitions the sample based on
dest(x) for each point; specifically, it partitions X = X1

⋃
· · ·
⋃
XK such that

X� = {Xi ∈ X : dest(Xi) = m�},

where eachm� is a local mode of p. We can also view mode clustering as a cluster-
ing technique based on the d-descending manifolds. Let Dd = Dd,1

⋃
· · ·
⋃

Dd,L

be the d-descending manifolds of p, assuming that L is the number of local
modes. Then each cluster X� = X

⋂
Dd,�.

In practice, however, we do not know p so we have to use a density estimator
p̂n. A common density estimator is the kernel density estimator (KDE):

p̂n(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
, (8)

where K is a smooth kernel function and h > 0 is the smoothing parameter.
Note that mode clustering is not limited to the KDE; other density estimators
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also give us a sample-based mode clustering. Based on the KDE, we are able to

estimate gradient ĝn(x), the gradient flows π̂x(t), and the destination d̂estn(x)
(note that the mean shift algorithm is an algorithm to perform these tasks).
Thus, we can estimate the d-descending manifolds by the plug-in from p̂n. Let
D̂d = D̂d,1

⋃
· · ·
⋃
D̂d,L̂ be the d-descending manifolds of p̂n, where L̂ is the

number of local modes of p̂n. The estimated clusters will be X̂1, · · · , X̂L̂, where

each X̂� = X
⋂

D̂d,�. Figure 5 displays an example of mode clustering using the
KDE.

A nice property of mode clustering is that there is a clear population quan-
tity that our estimator (clusters based on the given sample) is estimating: the
population partition of the data points. Thus we can consider properties of the
procedure such as consistency, which we discuss in detail in Section 4.2.

3.2. Morse-Smale regression

Let (X,Y ) be a random pair where Y ∈ R and Xi ∈ K ⊂ R
d. Estimating the

regression function m(x) = E[Y |X = x] is challenging for d of even moderate
size. A common way to address this problem is to use a simple regression function
that can be estimated with low variance. For example, one might use an additive
regression of the form m(x) =

∑
j mj(xj) which is a sum of one-dimensional

smooth functions. Although the true regression function is unlikely to be of this
form, it is often the case that the resulting estimator is useful.

A different approach, Morse-Smale regression (MSR), is suggested in Gerber
et al. (2013). This takes advantage of the (relatively) simple structure of the
Morse-Smale complex and the isotone behavior of the function on each cell.
Specifically, MSR constructs a piecewise linear approximation to m(x) over the
cells of the Morse-Smale complex.

We first define the population version of the MSR. Let m(x) = E(Y |X = x)
be the regression function and is assumed to be a Morse-Smale function. Let
E1, · · ·EL be the d-cells for m. The Morse-Smale Regression for m is a piecewise
linear function within each cell E� such that

mMSR(x) = μ� + βT
� x, for x ∈ E�, (9)

where (μ�, β�) are obtained by minimizing mean square error:

(μ�, β�) = argmin
μ,β

E
(
(Y −mMSR(X))2|X ∈ E�

)
= argmin

μ,β
E
(
(Y − μ− βTX)2|X ∈ E�

) (10)

That is, mMSR is the best linear piecewise predictor using the d-cells. One can
also view MSR as using a linear function to approximate f� in the additive
model (6). Note that mMSR is well defined except on the boundaries of E� that
have Lebesgue measure 0.

Now we define the sample version of the MSR. Let (X1, Y1), · · · , (Xn, Yn) be
the random sample from the probability measure PX × PY such that Xi ∈ K ⊂
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R
d and Yi ∈ R. Throughout section 3.2, we assume the density of covariates X

is bounded, positive and has a compact support K and the response Y has finite
second moment.

Let m̂n be a smooth nonparametric regression estimator for m. We call m̂n

the pilot estimator. For instance, one may use the kernel regression Nadaraya

(1964) m̂n(x) =
∑n

i=1 YiK( x−Xi
h )∑n

i=1 K( x−Xi
h )

as the pilot estimator. We define d-cells for

m̂n as Ê1, · · · , ÊL̂. Using the data (Xi, Yi) within each estimated d-cell, Ê�, the
MSR for m̂n is given by

m̂n,MSR(x) = μ̂� + β̂T
� x, for x ∈ Ê�, (11)

where (μ̂�, β̂�) are obtained by minimizing the empirical squared error:

(μ̂�, β̂�) = argmin
μ,β

∑
i:Xi∈Ê�

(Yi − μ− βTXi)
2

(12)

This MSR is slightly different from the original version in Gerber et al. (2013).
We will discuss the difference in Remark 1. Computing the parameters of MSR
is not very difficult–we only need to compute the cell labels of each observation
(this can be done by the mean shift algorithm or some fast variants such as the
quick-shift algorithm Vedaldi and Soatto 2008) and then fit a linear regression
within each cell.

MSR may give low prediction error in some cases; see Gerber et al. (2013) for
some concrete examples. In Theorem 5, we prove that we may estimate mMSR at
a fast rate. Moreover, the regression function may be visualized by the methods
discussed later.

Remark 1. The original version of Morse-Smale regression proposed in Gerber
et al. (2013) does not use d-cells of a pilot nonparametric estimate m̂n. Instead,
they directly find local modes and minima using the original data points (Xi, Yi).
This saves computational effort but comes with a price: there is no clear popu-
lation quantity being estimated by their approach. That is, when the sample size
increases to infinity, there is no guarantee that their method will converge. In
our case, we apply a consistent pilot estimate for m and construct d-cells on
this pilot estimate. As is shown in Theorem 4, our method is consistent for this
population quantity.

3.3. Morse-Smale signatures and visualization

In this section we define a new method for visualizing multivariate functions
based on the Morse-Smale complex, called Morse-Smale signatures. The idea is
very similar to the Morse-Smale regression but the signatures can be applied to
any Morse-Smale function.

Let E1, · · · , EK be the d-cells (nonempty intersection of a descending d-
manifold and an ascending 0-manifold) for a Morse-Smale function f that has
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a compact support K. The function f depends on the context of the prob-
lem. For density estimation, f is the density p or its estimator p̂n. For regres-
sion problem, f is the regression function m or a nonparametric estimator m̂n.
For two sample test, f is the density difference p1 − p2 or the estimated den-
sity difference p̂1 − p̂2. Note that E1, · · · , EK form a partition for K except
a Lebesgue measure 0 set. Each cell corresponds to a unique pair of a local
mode and a local minimum. Thus, the local modes and minima along with
d-cells form a bipartite graph which we call it signature graph. The signature
graph contains geometric information about f . See Figures 6 and 7 for exam-
ples.

The signature is defined as follows. We project the maxima and minima of
the function into R

2 using multidimensional scaling. We connect a maximum
and minimum by an edge if there exists a cell that connects them. The width
of the edge is proportional to the norm of the linear coefficients of the lin-
ear approximation to the function within the cell. The linear approximation
is

fMS(x) = η†� + γ†T
� x, for x ∈ E�, (13)

where η†� ∈ R and γ†
� ∈ R

d are parameters from

(η†� , γ
†
� ) = argmin

η,γ

∫
E�

(
f(x)− η − γTx

)2
dx. (14)

This is again a linear approximation for f� in the additive model (6). Note that
fMS may not be continuos when we move from one cell to another. The sum-
mary statistics for the edge associated with cell E� are the parameters (η†� , γ

†
� ).

We call the function fMS the (Morse-Smale) approximation function; it is the
best piecewise-linear representation for f (piecewise linear within each cell) un-
der L2 error given the d-cells. This function is well-defined except on a set of
Lebesgue measure 0 (the boundaries of each cell). See Figure 6 for a example
on the approximation function. The details are in Algorithm 1.

Algorithm 1 Visualization using Morse-Smale Signatures
Input: Grid points x1, · · · , xN and the functional evaluations f(x1), · · · , f(xN ).
1. Find local modes and minima of f on the discretized points x1, · · · , xN . Let M1, · · ·MK

and m1, · · · ,mS denote the grid points for modes and minima.
2. Partition {x1, · · · , xN} into X1, · · · XL according to the d-cells of f (1. and 2. can be done
by using a k-nearest neighbor gradient ascent/descent method; see Algorithm 1 in Gerber
et al. (2013)).
3. For each cell X�, fit a linear regression with (Xi, Yi) = (xi, f(xi)), where xi ∈ X�. Let
the regression coefficients (without intercept) be β�.
4. Apply multidimensional scaling to modes and minima jointly. Denote their 2 dimensional
representation points as

{M∗
1 , · · ·M∗

K ,m∗
1, · · · ,m∗

S}.
5. Plot {M∗

1 , · · ·M∗
K ,m∗

1, · · · ,m∗
S}.

6. Add edge to a pair of mode and minimum if there exist a cell that connects them. The
width of the edge is in proportional to ‖β�‖ (for cell X�).
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Fig 6. Morse-Smale signatures for a smooth function. (a): The original function. The blue
dots are local modes, the green dots are local minima and the pink dot is a saddle point. (b):
The Morse-Smale approximation to (a). This is the best piecewise linear approximation to the
original function given d-cells. (c): This bipartite graph has nodes that are local modes and
minima and edges that represent the d-cells. Note that we can summarize the smooth function
(a) by the signature graph (c) and the parameters for constructing approximation function
(b). The signature graph and parameters for approximation function define the Morse-Smale
signatures.

Example. Figure 7 is an example using the GvHD dataset. We first conduct
multidimensional scaling (Kruskal, 1964) on the local modes and minima for f
and plot them on the 2-D plane. In Figure 7, the blue dots are local modes and
the green dots are local minima. These dots act as the nodes for the signature
graph. Then we add edges, representing the cells for f that connect pairs of local
modes and minima, to form the signature graph. Lastly, we adjust the width
for the edges according to the strength (L2 norm) of regression function within

each cell (i.e. ‖γ†
�‖). Algorithm 1 provides a summary for visualizing a general

multivariate function using what we described in this paragraph.

3.4. Two sample comparison

The Morse-Smale complex can be used to compare two samples. There are two
ways to do this. The first one is to test the difference in two density functions
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Fig 7. Morse-Smale Signature visualization (Algorithm 1) of the density difference for GvHD
dataset (see Figure 2). The blue dots are local modes; the green dots are local minima;
the brown lines are d-cells. These dots and lines form the signature graph. The width in-

dicates the L2 norm for the slope of regression coefficients. i.e. ‖γ†
� ‖. The location for modes

and minima are obtained by multidimensional scaling so that the relative distance is pre-
served.

locally and then use the Morse-Smale signatures to visualize regions where the
two samples are different. The second approach is to conduct a nonparametric
two sample test within each Morse-Smale cell. The advantage of the first ap-
proach is that we obtain a visual display on where the two densities are different.
The merit of the second method is that we gain additional power in testing the
density difference by using the shape information.

3.4.1. Visualizing the density difference

Let X1, . . . Xn and Y1, . . . , Ym be two random sample with densities pX and pY .
In a two sample comparison, we not only want to know if pX = pY but we also
want to find the regions that they significantly disagree. That is, we are doing
the local tests

H0(x) : pX(x) = pY (x) (15)

simultaneously for all x ∈ K and we are interested in the regions where we reject
H0(x). A common approach is to estimate the density for both sample by the
KDE and set a threshold to pickup those regions that the density difference is
large. Namely, we first construct density estimates

p̂X(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
, p̂Y (x) =

1

mhd

m∑
i=1

K

(
x− Yi

h

)
(16)
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and then compute f̂(x) = p̂X(x)− p̂Y (x). The regions

Γ(λ) =
{
x ∈ K : |f̂(x)| > λ

}
(17)

are where we have strong evidence to reject H0(x). The threshold λ can be
picked by quantile values of the bootstrapped L∞ density deviation to control
type 1 error or can be chosen by controlling the false discovery rate (Duong,
2013).

Unfortunately, Γ(λ) is hard to visualize when d > 3. So we use the Morse-

Smale complex for f̂ and visualize Γ(λ) by its behavior on the d-cells of the
complex. Algorithm 2 gives a method for visualizing density differences like
Γ(λ) in the context of comparing two independent samples.

Algorithm 2 Visualization For Two Sample Test
Input: Sample 1: {X1, ...Xn}, Sample 2: {Y1, · · · , Ym}, threshold λ and radius constant r0
1. Compute the density estimates p̂X and p̂Y .
2. Compute the difference function f̂ = p̂X − p̂Y and the significant regions

Γ+(λ) =
{
x ∈ K : f̂(x) > λ

}
, Γ−(λ) =

{
x ∈ K : f̂(x) < −λ

}
(18)

3. Find the d-cells for f̂ , denoted as E1, · · · , EL.
4. For cell E�, do (4-1) and (4-2):
4-1. compute the cell center e�, cell size V� = Vol(E�),
4-2. compute the positive significant ratio and negative significant ratio

r+� =
Vol(E� ∩ Γ+(λ))

Vol(E�)
, r−� =

Vol(E� ∩ Γ−(λ))

Vol(E�)
. (19)

5. For every pair of cell Ej and E� (j �= �), compute the shared boundary size:

Bj� = Vold−1(Ēj ∩ Ē�), (20)

where Vold−1 is the d− 1 dimensional Lebesgue measure.
6. Do multidimensional scaling (Kruskal, 1964) to e1, · · · , eL to obtain low dimensional
representation ẽ1, · · · , ẽL.
7. Place a ball center at each ẽ� with radius r0 ×

√
V�.

8. If r+� + r−� > 0, add a pie chart center at ẽ� with radius r0 ×
√
V� × (r+� + r−� ). The pie

chart contains two groups, each with ratio

(
r+
�

r+
�
+r−

�

,
r−
�

r+
�
+r−

�

)
.

9. Add a line to connect two nodes ẽj and ẽ� if Bj� > 0. We may adjust the thickness of
the line according to Bj�.

An example for Algorithm 2 is in Figure 2, in which we apply the visualization
algorithm for the the GvHD dataset by using kernel density estimator. We
choose the threshold λ by bootstrapping the L∞ difference for f̂ i.e. supx |f̂∗(x)−
f̂(x)|, where f̂∗ is the density difference for the bootstrap sample. We pick
α = 95% upper quantile value for the bootstrap deviation as the threshold.

The radius constant r0 is defined by the user. It is a constant for visualiza-
tion and does not affect the analysis. Algorithm 2 preserves the relative position
for each cell and visualizes the cell according to its size. The pie-chart provides
the ratio of regions where the two densities are significantly different. The lines
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connecting two cells provide the geometric information about how cells are con-
nected to each other.

By applying Algorithm 2 to the GvHD dataset (Figure 2), we find that there
are 6 cells and one cell much larger than the others. Moreover, in most regions,
the blue regions are larger than the red areas. This indicates that compared
to the density of the control group, the density of the GvHD group seem to
concentrates more so that the regions above the threshold are larger.

3.4.2. Morse-Smale two-sample test

Here we introduce a technique combining the energy test (Baringhaus and Franz,
2004; Székely and Rizzo, 2004, 2013) and the Morse-Smale complex to conduct
a two sample test. We call our method the Morse-Smale Energy test (MSE
test). The advantage of the MSE test is that it is a nonparametric test and
its power can be higher than the energy test; see Figure 8. Moreover, we can
combine our test with the visualization tool proposed in the previous section
(Algorithm 2); see Figure 9 for an example for displaying p-values from MSE
test when visualizing the density difference.

Before we introduce our method, we first review the ordinary energy test.
Given two random variables X ∈ R

d and Y ∈ R
d, the energy distance is defined

as

E(X,Y ) = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖, (21)

where X ′ and Y ′ are iid copies of X and Y . The energy distance has several
useful applications such as the goodness-of-fit testing (Székely and Rizzo, 2005),
two sample testing (Baringhaus and Franz, 2004; Székely and Rizzo, 2004, 2013),
clustering (Szekely and Rizzo, 2005), and distance components (Rizzo et al.,
2010) to name but few. We recommend an excellent review paper in (Székely
and Rizzo, 2013).

For the two sample test, let X1, · · · , Xn and Y1, · · · , Ym be the two samples
we want to test. The sample version of energy distance is

Ê(X,Y ) =
2

nm

n∑
i=1

m∑
j=1

‖Xi−Yj‖−
1

n2

n∑
i=1

n∑
j=1

‖Xi−Xj‖−
1

m2

m∑
i=1

m∑
j=1

‖Yi−Yj‖.

(22)

If X and Y are from the sample population (the same density), Ê(X,Y )
P→ 0.

Numerically, we use the permutation test for computing the p-value for Ê(X,Y ).
This can be done quickly in the R-package ‘energy’ (Rizzo and Szekely, 2008).

Now we formally introduce our testing procedure: the MSE test (see Algo-
rithm 3 for a summary). Our test consists of three steps. First, we split the data
into two halves. Second, we use one half of the data (contains both samples)
to do a nonparametric density estimation (e.g. the KDE) and then compute
the Morse-Smale complex (d-cells). Last, we use the other half of the data to
conduct the energy distance two sample test ‘within each d-cell’. That is, we
partition the second half of the data by the d-cells. Within each cell, we do the
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energy distance test. If we have L cells, we will have L p-values from the energy
distance test. We reject H0 if any one of the L p-values is smaller than α/L
(this is from Bonferroni correction). Figure 9 provides an example for using the
above procedure (Algorithm 3) along with the visualization method proposed
in Algorithm 2. Data splitting is used to avoid using the same data twice, which
ensures we have a valid test.

Algorithm 3 Morse-Smale Energy Test (MSE test)

Input: Sample 1: {X1, ...Xn}, Sample 2: {Y1, · · · , Ym}, smoothing parameter h, significance
level α
1. Randomly split the data into halves D1 and D2; both contain equal number of X and Y
(assuming n and m are even).
2. Compute the KDE p̂X and p̂Y by the first sample D1.
3. Find the d-cells for f̂ = p̂X − p̂Y , denoted as E1, · · · , EL.
4. For cell E�, do 4-1 and 4-2:
4-1. Find X and Y in the second sample D2,
4-2. Do the energy test for two sample comparison. Let the p-value be p(�)
5. Reject H0 if p(�) < α/L for some �.

Example. Figure 8 shows a simple comparison for the proposed MSE test to
the usual Energy test. We consider a K = 4 Gaussian mixture model in d = 2
with standard deviation of each component being the same σ = 0.2 and the
proportion for each component is (0.2, 0.5, 0.2, 0.1). The left panel displays a
sample with N = 500 from this mixture distribution. We draw the first sample
from this Gaussian mixture model. For the second sample, we draw a similar
Gaussian mixture model except that we change the deviation of one component.
In the middle panel, we change the deviation to the third component (C3 in
left panel, which contains 20% data points). In the right panel, we change the
deviation to the fourth component (C4 in left panel, which contains 10% data
points). We use significance level α = 0.05 and for MSE test, we consider the
Bonferroni correction and the smoothing bandwidth is chosen using Silverman’s
rule of thumb (Silverman, 1986).

Note that in both the middle and the right panels, the left most case (added
deviation equals 0) is where H0 should not be rejected. As can be seen from
Figure 8, the MSE test has much stronger power compared to the usual Energy
test.

The original energy test has low power while the MSE test has higher power.
This is because the two distributions only differ at a small portion of the regions
so that a global test like energy test requires large sample sizes to detect the
difference. On the other hand, the MSE test partitions the space according to
the density difference so that it is capable of detecting the local difference.

Example. In addition to the higher power, we may combine the MSE test with
the visualization tool in Algorithm 2. Figure 9 displays an example where we
visualize the density difference and simultaneously indicate the p-values from
the Energy test within each cell using the GvHD dataset. This provides us more
information about how two distributions differ from each other.
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Fig 8. An example comparing the Morse-Smale Energy test to the original Energy test. We
consider a d = 2, K = 4 Gaussian mixture model. Left panel: an instance for the Gaussian
mixture. We have four mixture components, denoting as C1, C2, C3 and C4. They have equal
standard deviation (σ = 0.2) and the proportions for each components are (0.2, 0.5, 0.2, 0.1).
Middle panel: We changed the standard deviations of component C3 to 0.3, 0.4 and 0.5 and
compute the power for the MSE test and the usual Energy test at sample size N = 500 and
1000. (Standard deviation equals 0.2 is where H0 should not be rejected.) Right panel: We
add the variance of component C4 (the smallest component) and do the same comparison as
in the middle panel. We pick the significance level α = 0.05 (gray horizontal line) and in the
MSE test, we reject H0 if the minimal p-value is less than α/L, where L is the number of
cells (i.e. we are using the Bonferroni correction).

Fig 9. An example using both Algorithms 2 and 3 to the GvHD dataset introduced in Figure 2.
We use data splitting as described in Algorithm 3. For the first part of the data, we compute
the cells and visualize the cells using Algorithm 2. Then we apply the energy distance two
sample test for each cell as described in Algorithm 3 and we annotate each cell with a p-
value. Note that the visualization is slightly different to Figure 2 since we use only half of the
original dataset in this case.

4. Theoretical analysis

We first define some notation for the theoretical analysis. Let f be a smooth
function. We define ‖f‖∞ = supx |f(x)| to be the L∞-norm of f . In addition, let
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‖f‖j,max denote the elementwise L∞-norm for j-th derivatives of f . For instance,

‖f‖1,max = max
i

‖gi(x)‖∞, ‖f‖2,max = max
i,j

‖Hij(x)‖∞.

We also define ‖f‖0,max = ‖f‖∞. We further define

‖f‖∗�,max = max {‖f‖j,max : j = 0, · · · , 
} . (23)

The quantity ‖f −h‖∗�,max measures the difference between two functions f and
h up to 
-th order derivative.

For two sets A,B, the Hausdorff distance is

Haus(A,B) = inf{r : A ⊂ B ⊕ r,B ⊂ A⊕ r}, (24)

where A⊕ r = {y : minx∈A ‖x− y‖ ≤ r}. The Hausdorff distance is like the L∞
distance for sets.

Let f̃ : K ⊂ R
d �→ R be a smooth function with bounded third derivatives.

Note that as long as ‖f̃−f‖∗3,max is small, f̃ is also a Morse function by Lemma 9.

Let D̃ denote the boundaries of the descending d-manifolds of f̃ . We will show
if ‖f − f̃‖∗3,maxis sufficiently small, then Haus(D̃,D) = O(‖f̃ − f‖1,max).

4.1. Stability of the Morse-Smale complex

Before we state our theorem, we first derive some properties of descending mani-
folds. Recall that we are interested in B = ∂Dd, the boundary of the descending
d-manifolds (and B is also the union of all j-descending manifolds for j < d).
Since each Dj is a collection of smooth j-dimensional manifolds embedded in
R

d, for every x ∈ Dj , there exists a basis v1(x), · · · , vd−j(x) such that each vk(x)
is perpendicular to Dj at x for k = 1, · · · d− j (Bredon, 1993; Helgason, 1979).
That is, v1(x), · · · , vd−j(x) span the normal space to Dj at x. For simplicity, we
write

V (x) = (v1(x), · · · , vd−j(x)) ∈ R
d×(d−j) (25)

for x ∈ Dj .
Note the number of columns d− j ≡ d− j(x) in V (x) depends on which Dj

the point x belongs to. We use j rather than j(x) to simplify the notation. For
instance, if x ∈ D1, V (x) ∈ R

d×(d−1) and if x ∈ Dd−1, V (x) ∈ R
d×1. We also

let
V(x) = span{v1(x), · · · , vd−j(x)} (26)

denote the normal space to B at x. One can view V(x) as the normal map of
the manifold Dj at x ∈ Dj .

For each x ∈ B, define the projected Hessian

HV (x) = V (x)TH(x)V (x), (27)

which is the Hessian matrix of p by taking gradients along column space of
V (x). If x ∈ Dj , HV (x) is a (d− j)× (d− j) matrix. The eigenvalues of HV (x)
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determine how the gradient flows are moving away from B. We let λmin(M) be
the smallest eigenvalue for a symmetric matrix M . If M is a scalar (just one
point), then λmin(M) = M .

Assumption (D): We assume that Hmin = minx∈B λmin(HV (x)) > 0.

This assumption is very mild; it requires that the gradient flow moves away
from the boundary of ascending manifolds. In terms of mode clustering, this
requires the gradient flow to move away from the boundaries of clusters. For a
point x ∈ Dd−1, let v1(x) be the corresponding normal direction. Then the gradi-
ent g(x) is normal to v1(x) by definition. That is, v1(x)

T g(x) = v1(x)
T∇p(x) =

0, which means that the gradient along v1(x) is 0. Assumption (D) means that
the the second derivative along v1(x) is positive, which implies that the density
along direction v1(x) behaves like a local minimum at point x. Intuitively, this
is how we expect the density to behave around the boundaries: gradient flows
are moving away from the boundaries (except for those flows that are already
on the boundaries).

Theorem 1 (Stability of descending d-manifolds). Let f, f̃ : K ⊂ R
d �→ R

be two smooth functions with bounded third derivatives defined as above and
let B, B̃ be the boundaries of the associated ascending manifolds. Assume f is
a Morse function satisfying condition (D). When ‖f − f̃‖∗3,max is sufficiently
small,

Haus(B̃, B) = O(‖f̃ − f‖1,max). (28)

This theorem shows that the boundaries of descending d-manifolds for two
Morse functions are close to each other and the difference between the bound-
aries is controlled by the rate of the first derivative difference.

Similarly to descending manifolds, we can define all the analogous quantities
for ascending manifolds. We introduce the following assumption:

Assumption (A): We assume Hmax = maxx∈∂A0 λmax(HV (x)) < 0.

Note that λmax(M) denotes the largest eigenvalue of a matrix M . If M is a
scalar, λmax(M) = M . Under assumption (A), we have a similar stability result
(Theorem 1) for ascending manifolds. Assumptions (A) and (D) together imply
the stability of d-cells.

Theorem 1 can be applied to nonparametric density estimation. Our goal is to
estimate the boundary of the descending d-manifolds, B, of the unknown popu-
lation density function p. Our estimator is B̂n, the boundary of the descending
d-manifolds to a nonparametric density estimator e.g. the kernel density esti-
mate p̂n. Then under certain regularity condition, their difference is given by

Haus
(
B̂n, B

)
= O (‖p̂n − p‖1,max) .

We will see this result in the next section when we discuss mode clustering.
Similar reasoning works for the nonparametric regression case. Assume that

we are interested in B, the boundary of descending d-manifolds, for the regres-
sion function m(x) = E(Y |X = x). And our estimator B̂ is again a plug-in
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estimate based on m̂n(x), a nonparametric regression estimator (e.g., kernel
estimator). Then under mild regularity conditions,

Haus
(
B̂n, B

)
= O (‖m̂n −m‖1,max) .

4.2. Consistency of mode clustering

A direct application of Theorem 1 is the consistency of mode clustering. Let
K(α) be the α-th derivative of K and let BCr denote the collection of functions
with bounded continuously derivatives up to the r-th order. We consider the
following two assumptions on the kernel function:

(K1) The kernel function K ∈ BC3 and is symmetric, non-negative and∫
x2K(α)(x)dx < ∞,

∫ (
K(α)(x)

)2
dx < ∞

for all α = 0, 1, 2, 3.
(K2) The kernel function satisfies condition K1 of Gine and Guillou (2002).

That is, there exists some A, v > 0 such that for all 0 < ε < 1, supQ N(K,

L2(Q), CKε) ≤
(
A
ε

)v
, where N(T, d, ε) is the ε−covering number for a

semi-metric space (T, d) and

K =

{
u �→ K(α)

(
x− u

h

)
: x ∈ R

d, h > 0, |α| = 0, 1, 2

}
.

(K1) is a common assumption; see Wasserman (2006). (K2) is a weak assump-
tion guarantee the consistency for KDE under L∞ norm; this assumption first
appeared in Gine and Guillou (2002) and has been widely assumed (Einmahl
and Mason, 2005; Rinaldo et al., 2010; Genovese et al., 2012; Rinaldo et al.,
2012; Genovese et al., 2014; Chen et al., 2015).

Theorem 2 (Consistency for mode clustering). Let p, p̂n be the density function

and the KDE. Let B and B̂n be the boundaries of clusters by mode clustering
over p and p̂n respectively. Assume (D) for p and (K1–2), then when logn

nhd+6 →
0, h → 0,

Haus
(
B̂n, B

)
= O(‖p̂n − p‖1,max) = O(h2) +OP

(√
log(n)

nhd+2

)
.

The proof is simply to combine Theorem 1 and the rate of convergence for
estimating the gradient of density using KDE (Theorem 8). Thus, we omit the
proof. Theorem 2 gives a bound for the rate of convergence for the bound-
aries for mode clustering. The rate can be decomposed into two parts, the bias

O(h2) and the (square root of) variance OP

(√
log(n)
nhd+2

)
. This rate is the same

for the L∞-loss of estimating the gradient of a density function, which makes
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sense since the mode clustering is completely determined by the gradient of
density.

Another way to describe the consistency for mode clustering is to show that
the proportion of data points that are incorrectly clustered (mis-clustered) con-
verges to 0. This can be quantified by the use of Rand index (Rand, 1971; Hubert
and Arabie, 1985; Vinh et al., 2009), which measures the similarity between two

partitions of the data points. Let dest(x) and d̂estn(x) be the destination of
gradient of the true density function p(x) and the KDE p̂n(x). For a pair of
points x, y, we define

Ψ(x, y) =

{
1 if dest(x) = dest(y)
0 if dest(x) �= dest(y)

, Ψ̂n(x, y) =

{
1 if d̂estn(x) = d̂estn(y)

0 if d̂estn(x) �= d̂estn(y)

(29)
Thus, Ψ(x, y) = 1 if x, y are in the same cluster and 0 if they are not. The Rand
index for mode clustering using p versus using p̂n is

rand (p̂n, p) = 1−
(
n

2

)−1∑
i �=j

∣∣∣Ψ(Xi, Xj)− Ψ̂n(Xi, Xj)
∣∣∣ , (30)

which is the proportion of pairs of data points that the two clustering results
disagree on. If two clusterings output the same partition, the Rand index will
be 1.

Theorem 3 (Bound on Rand Index). Assume (D) for p and (K1–2). Then
when logn

nhd+6 → 0, h → 0, the adjusted Rand index

rand (p̂n, p) = 1−O(h2)−OP

(√
log(n)

nhd+2

)
.

Theorem 3 shows that the Rand index converges to 1 in probability, which
establishes the consistency of mode clustering in an alternative way. Theo-
rem 3 shows that the proportion of data points that are incorrectly assigned
(compared with mode clustering using population p) is bounded by the rate

O(h2) +OP

(√
log(n)
nhd+2

)
asymptotically.

Azizyan et al. (2015) also derived the convergence rate of the mode cluster-
ing for the rand index. Here we briefly compare our results to theirs. Azizyan
et al. (2015) consider a low-noise condition that leads to a fast convergence
rate when clusters are well-separated. Their approach can even be applied to
the case of increasing dimensions. In our case (Theorem 3), we consider a fixed
dimension scenario but we do not assume the low-noise condition. Thus, the
main difference between Theorem 3 and the result in Azizyan et al. (2015) is
the assumptions being made so our result complements the findings in Azizyan
et al. (2015).
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4.3. Consistency of Morse-Smale regression

In what follows, we will show that m̂n,MSR(x) is a consistent estimator of
mMSR(x). Recall that

mMSR(x) = μ� + βT
� x, for x ∈ E�, (31)

where E� is the d-cell defined on m and the parameters are

(μ�, β�) = argmin
μ,β

E
(
(Y − μ− βTX)2|X ∈ E�

)
. (32)

And m̂n,MSR is the two-stage estimator to mMSR(x) defined by

m̂n,MSR(x) = μ̂� + β̂T
� x, for x ∈ Ê�, (33)

where {Ê� : 
 = 1, · · · , L̂} are the collection of cells of the pilot nonparametric

regression estimator m̂n and μ̂�, β̂� are the regression parameters from equation
(12):

(μ̂�, β̂�) = argmin
μ,β

∑
i:Xi∈Ê�

(Yi − μ− βTXi)
2.

(34)

Theorem 4 (Consistency of Morse-Smale Regression). Assume (A) and (D)
for m and assume m is a Morse-Smale function. Then when logn

nhd+6 → 0, h → 0,
we have

|mMSR(x)− m̂n,MSR(x)| = OP

(
1√
n

)
+O (‖m̂n −m‖1,max) (35)

uniformly for all x except for a set Nn with Lebesgue measure OP(‖m̂n−m‖1,max),

Theorem 4 states that when we have a consistent pilot nonparametric re-
gression estimator (such as the kernel regression), the proposed MSR estimator
converges to the population MSR. Similarly as in Theorem 6, the set Nn are
regions around the boundaries of cells where we cannot distinguish their host
cell. Note that when we use the kernel regression as the pilot estimator m̂n,
Theorem 4 becomes

|mMSR(x)− m̂n,MSR(x)| = O(h2) +OP

(√
logn

nhd+2

)
.

under regular smoothness conditions.
Now we consider a special case where we may obtain parametric rate of

convergence for estimating mMSR. Let E = ∂ (E1

⋃
· · ·
⋃
EL) be the boundaries

of all cells. We consider the following low-noise condition:

P (X ∈ E ⊕ ε) ≤ Aεβ , (36)

for some A, β > 0. Equation (36) is Tsybakov’s low noise condition (Audibert
et al., 2007) applied to the boundaries of cells. Namely, (36) states that it is
unlikely to many observations near the boundaries of cells of m. Under this
low-noise condition, we obtain the following result using kernel regression.
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Theorem 5 (Fast Rate of Convergence for Morse-Smale Regression). Let the
pilot estimator m̂n be the kernel regression estimator. Assume (A) and (D)
for m and assume m is a Morse-Smale function. Assume also (36) holds for
the covariate X and (K1-2) for the kernel function. Also assume that h =

O

((
logn
n

)1/(d+6)
)
. Then uniformly for all x except for a set Nn with Lebesgue

measure OP

((
logn
n

)2/(d+6)
)
,

|mMSR(x)− m̂n,MSR(x)| = OP

(
1√
n

)
+OP

((
log n

n

)2β/(d+6)
)
. (37)

Therefore, when β > 6+d
4 , we have

|mMSR(x)− m̂n,MSR(x)| = OP

(
1√
n

)
. (38)

Theorem 5 shows that when the low noise condition holds, we obtain a fast
rate of convergence for estimating mMSR. Note that the pilot estimator m̂n does
not ahve to be a kernel estimator; other approaches such as the local polynomial
regression will also work.

4.4. Consistency of the Morse-Smale signature

Another application of Theorem 1 is to bound the difference of two Morse-
Smale signatures. Let f be a Morse-Smale function with cells E1, . . . , EL. Recall
that the Morse-Smale signatures are the bipartite graph and summary statistics
(locations, density values) for local modes, local minima, and cells. It is known in

the literature (see, e.g., Lemma 9) that when two functions f̃ , f are sufficiently
close, then

max
j

‖c̃j − cj‖ = O
(
‖f̃ − f‖1,max

)
, max

j
‖f̃(c̃j)− f(cj)‖ = O

(
‖f̃ − f‖∞

)
,

(39)

where c̃j , cj are critical points f̃ and f respectively. This implies the stability of
local modes and minima.

So what we need is the stability of the summary statistics (η†� , γ
†
� ) associated

with the edges (cells). Recall that these summaries are defined through (14)

(η†� , γ
†
� ) = argmin

η,γ

∫
E�

(
f(x)− η − γTx

)2
dx.

For another function f̃ , let (η̃†� , γ̃
†
� ) be its signatures for cell Ẽ�. The following

theorem shows that if two functions are close, their corresponding Morse-Smale
signatures are also close.
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Theorem 6. Let f be a Morse-Smale function satisfying assumptions A and D,
and let f̃ be a smooth function. Then when logn

nhd+6 → 0, h → 0, after relabeling

the indices of cells of f̃ ,

max
�

{
‖η̃†� − η†�‖, ‖γ̃

†
� − γ†

�‖
}
= O

(
‖f̃ − f‖∗1,max

)
.

Theorem 6 shows stability of the signatures (η†� , γ
†
� ). Note that Theorem 6

also implies that the stability of piecewise approximation

|fMS(x)− f̃MS(x)| = O
(
‖f̃ − f‖∗1,max

)
.

Together with the stability of critical points (39), Theorem 6 proves the stability
of Morse-Smale signatures.

4.4.1. Example: Morse-Smale density estimation

As an example for Theorem 6, we consider density estimation. Let p be the
density of random sample X1, · · · , Xn and recall that p̂n is the kernel density
estimator. Let (η†� , γ

†
� ) be the signature for p under cell E� and (η̂†� , γ̂

†
� ) be the

signature for p̂n under cell Ê�. The following corollary guarantees the consistency
of Morse-Smale signatures for the KDE.

Corollary 7. Assume (A,D) holds for p and the kernel function satisfies (K1–
2). Then when logn

nhd+6 → 0, h → 0, after relabeling we have

max
�

{
‖η̂†� − η†�‖, ‖γ̂

†
� − γ†

�‖
}
= O(h2) +OP

(√
log n

nhd+2

)
.

The proof to Corollary 7 is a simple application of Theorem 6 with the rate
of convergence for the first derivative of the KDE (Theorem 8). So we omit the

proof. The optimal rate in Corollary 7 is OP

((
logn
n

) 2
d+6

)
when we choose h to

be of order O

((
logn
n

) 1
d+6

)
.

Remark 2. When we compute the Morse-Smale approximation function, we
may have some numerical problem in low-density regions because the density
estimate p̂n may have unbounded support. In this case, some cells may be un-
bounded, and the majority of these cells may have extremely low density value,
which makes the approximation function 0. Thus, in practice, we will restrict
ourselves only to the regions whose density is above a pre-defined threshold λ so
that every cell is bounded. A simple data-driven threshold is λ = 0.05 supx p̂n(x).
Note that Theorem 7 still works in this case but with a slight modification: the
cells are define on the regions {x : ph(x) ≥ 0.05× supx ph(x)}.



1414 Y.-C. Chen et al.

Remark 3. Note that for a density function, local minima may not exist or the
gradient flow may not lead us to a local minimum in some regions. For instance,
for a Gaussian distribution, there is no local minimum and except for the center
of the Gaussian, if we follow the gradient descent path, we will move to infinity.
Thus, in this case we only consider the boundaries of ascending 0-manifolds
corresponding to well-defined local minima and assumptions (A) is only for the
boundaries corresponding to these ascending manifolds.

Remark 4. When we apply the Morse-Smale complex to nonparametric density
estimation or regression, we need to choose the tuning parameter. For instance,
in the MSR, we may use kernel regression or local polynomial regression so
we need to choose the smoothing bandwidth. For the density estimation prob-
lem or mode clustering, we need to choose the smoothing bandwidth for the
kernel smoother. In the case of regression, because we have the response vari-
able, we would recommend to choose the tuning parameter by cross-validation.
For the kernel density estimator (and mode clustering), because the optimal
rate depends on the gradient estimation, we recommend choosing the smoothing
bandwidth using the normal reference rule for gradient estimation or the cross-
validation method for gradient estimation (Duong et al., 2007; Chacón et al.,
2011).

5. Discussion

In this paper, we introduced the Morse-Smale complex and the summary sig-
natures for nonparametric inference. We demonstrated that the Morse-Smale
complex can be applied to various statistical problems such as clustering, re-
gression and two sample comparisons. We showed that a smooth multivariate
function can be summarized by a few parameters associated with a bipartite
graph, representing the local modes, minima and the complex for the underly-
ing function. Moreover, we proved a fundamental theorem about the stability
of the Morse-Smale complex. Based on the stability theorem, we derived con-
sistency for mode clustering and regression.

The Morse-Smale complex provides a method to synthesize both paramet-
ric and nonparametric inference. Compared to parametric inference, we have a
more flexible model to study the structure of the underlying distribution. Com-
pared to nonparametric inference, the use of the Morse-Smale complex yields a
visualizable representation for the underlying multivariate structures. This re-
veals that we may gain additional insights in data analysis by using geometric
features.

Although the Morse-Smale complex has many potential statistical applica-
tions, we need to be careful when applying it to a data set whose dimension
is large (say d > 10). When the dimension is large, the curse of dimensionality
kicks in and the nonparametric estimators (in both density estimation problems
or regression analysis) are not accurate so the errors of the estimated Morse-
Smale complex can be huge.

Here we list some possible extensions for future research:
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• Asymptotic distribution. We have proved the consistency (and the rate of
convergence) for estimating the complex but the limiting distribution is
still unknown. If we can derive the limiting distribution and show that
some resampling method (e.g. the bootstrap Efron (1979)) converges to
the same distribution, we can construct confidence sets for the complex.

• Minimax theory. Despite the fact that we have derived the rate of con-
vergence for a plug-in estimator for the complex, we did not prove its
optimality. We conjecture the minimax rate for estimating the complex
should be related to the rate for estimating the gradient and the smooth-
ness around complex (Audibert et al., 2007; Singh et al., 2009).

Appendix: Proofs

First, we include a Theorem about the rate of convergence for the kernel density
estimator. This Lemma will be used in deriving the convergence rates.

Theorem 8 (Lemma 10 in Chen et al. (2015); see also Genovese et al. (2014)).
Assume (K1–2) and that logn/n ≤ hd ≤ b for some 0 < b < 1. Then we have

‖p̂n − p‖∗�,max = O(h2) +OP

(√
logn

nhd+2�

)

for 
 = 0, 1, 2.

To prove Theorem 1, we introduce the following useful Lemma for stability
of critical points.

Lemma 9 (Lemma 16 of Chazal et al. (2014)). Let p be a density with compact
support K of R

d. Assume p is a Morse function with finitely many, distinct,
critical values with corresponding critical points C = {c1, · · · , ck}. Also assume
that p is at least twice differentiable on the interior of K, continuous and dif-
ferentiable with non vanishing gradient on the boundary of K. Then there exists
ε0 > 0 such that for all 0 < ε < ε0 the following is true: for some positive
constant c, there exists η ≥ cε0 such that, for any density q with support K

satisfying ‖p− q‖∗2,max ≤ η, we have

1. q is a Morse function with exact k critical points c′1, · · · , c′k and
2. after suitable relabeling the indices, maxi=1,··· ,k ‖ci − c′i‖ ≤ ε.

Note that similar result appears in Theorem 1 of Chen et al. (2016). This
lemma shows that two close Morse functions p, q will have similar critical points.

The proof of Theorem 1 requires several working lemmas. We provide a chart
for how we are going to prove Theorem 1.

First, we define some notations about gradient flows. Recall that πx(t) ∈ K

is the gradient (ascent) flow starting at x:

πx(0) = x, π′
x(t) = g(πx(t)).
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Fig 10. Diagram for lemmas and Theorem 1.

For x that is not on the boundary set D, we define the time:

tε(x) = inf{t : πx(s) ∈ B(m,
√
ε), for alls ≥ t},

where m is the destination of πx. That is, tε(x) is the time to arrive the regions
around a local mode.

First, we prove a property for the direction of the gradient field around bound-
aries.

Lemma 10 (Gradient field and boundaries). Assume the notations in Theo-
rem 1 and assume f is a Morse function with bounded third derivatives and
satisfies assumption (D). Let s(x) = x − Πx, where Πx ∈ B is the projected
point from x onto B (when Πx is not unique, just pick any projected point). For
any q ∈ B, let x be a point near q such that x− q ∈ V(q), the normal space of
B at q. Let δ(x) = ‖x− q‖ and e(x) = x−q

‖x−q‖ denote the unit vector. Then

1. For every point x such that

d(x,B) ≤ δ1 =
2Hmin

d2 · ‖f‖3,max
,

we have
g(x)T s(x) ≥ 0.

That is, the gradient is pushing x away from the boundaries.
2. When δ(x) ≤ Hmin

d2·‖f‖3,max
,


(x) = e(x)T g(x) ≥ 1

2
Hminδ(x).
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Fig 11. Illustration for Lemmas 10 and 11. (a): We show that the angle between projection
vector s(x) and the gradient g(x) is always right whenever x is closed to the boundaries B. (b):
According to (a), any gradient flow line start from a point x that is close to the boundaries
(distance < δ1), this flow line is always moving away from the boundaries when the current
location is close to the boundaries. The flow line can temporally get closer to the boundaries
when it is away from boundaries (distance > δ1)

Proof. Claim 1. Because the projection of x onto B is Πx, s(x) ∈ V(Πx) and
s(x)T g(Πx) = 0 (recall that for p ∈ B, V(p) is the collection of normal vectors
of B at p).

Recall that d(x,B) = ‖s(x)‖ is the projected distance. By the fact that
s(x)T g(Πx) = 0,

s(x)T g(x) = s(x)T (g(x)− g(Πx))

≥ s(x)TH(Πx)s(x)−
d2

2
‖f‖3,maxd(x,B)3 (Taylor’s theorem)

= d(x,B)2
s(x)T

d(x,B)
H(Πx)

s(x)

d(x,B)
− d2

2
‖f‖3,maxd(x,B)3

≥ d(x,B)2
(
Hmin − d2

2
‖f‖3,maxd(x,B)

)
. (40)

Note that we use the vector-value Taylor’s theorem in the first inequality and
the fact that for two close points x, y, the difference in the j-the element of
gradient gj(x)− gj(y) has the following expansion

gj(x)− gj(y) = Hj(y)
T (x− y) +

∫ x

u=y

(u− y)Tj(u)du

≥ Hj(y)
T (x− y)− 1

2
sup
u

‖Tj(u)‖2‖x− y‖2

≥ Hj(y)
T (x− y)− d2

2
‖f‖3,max‖x− y‖2,
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where Hj(y) = ∇gj(y) and Tj(y) = ∇∇gj(y) is the Hessian matrix of gj(y),
whose elements are the third derivatives of f(y).

Thus, when d(x,B) ≤ 2Hmin

d2·‖f‖3,max
, s(x)T g(x) ≥ 0, which proves the first claim.

Claim 2. By definition, e(x)T g(q) = 0 because g(q) is in tangent space of B at
q and e(x) is in the normal space of B at q. Thus,


(x) = e(x)T g(x)

= e(x)T (g(x)− g(q))

≥ e(x)TH(q)(x− q)− d2

2
‖f‖3,max‖x− q‖2

= e(x)TH(π(x))e(x)δ(x)− d2

2
‖f‖3,maxδ(x)

2

≥ 1

2
Hminδ(x)

(41)

whenever δ(x) = ‖x− q‖ ≤ Hmin

d2·‖f‖3,max
. Note that in the first inequality we use

the same lower bound as the one in claim 1. Also note that x − q = e(x)δ(x)
and e(x) is in the normal space of B at π(x) so the third inequality follows from
assumption (D).

Lemma 10 can be used to prove the following result.

Lemma 11 (Distance between flows and boundaries). Assume the notations
as the above and assumption (D). Then for all x such that 0 < d(x,B) = δ ≤
δ1 = 2Hmin

d2‖f‖3,max
,

d(πx(t), B) ≥ δ,

for all t ≥ 0.

The main idea is that the projected gradient (gradient projected to the normal
space of nearby boundaries) is always positive. This means that the flow cannot
move “closer” to the boundaries.

Proof. By Lemma 10, for every point x near to the boundaries (d(x,B) < δ1),
the gradient is moving this point away from the boundaries. Thus, for any flow
πx(t), once it touches the region B ⊕ δ1, it will move away from this region. So
when a flow leaves B ⊕ δ1, it can never come back.

Therefore, the only case that a flow can be within the region B ⊕ δ1 is that
it starts at some x ∈ B ⊕ δ1. i.e. d(x,B) < δ1.

Now consider a flow start at x such that 0 < d(x,B) ≤ δ1. By Lemma 10,
the gradient g(x) leads x to move away from the boundaries B. Thus, whenever
πx(t) ∈ B⊕ δ1, the gradient is pushing πx(t) away from B. As a result, the time
that πx(t) is closest to B is at the beginning of the flow .i.e. t = 0. This implies
that d(πx(t), B) ≥ d(πx(0), B) = d(x,B) = δ.

With Lemma 11, we are able to bound the low gradient regions since the
flow cannot move infinitely close to critical points except its destination. Let
λmin > 0 be the minimal ‘absolute’ value of eigenvalues of all critical points.
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Lemma 12 (Bounds on low gradient regions). Assume the density function f is
a Morse function and has bounded third derivatives. Let C denote the collection
of all critical points and let λmin is the minimal ‘absolute’ eigenvalue for Hessian
matrix H(x) evaluated at x ∈ C. Then there exists a constant δ2 > 0 such that

G(δ) ≡
{
x : ‖g(x)‖ ≤ λmin

2
δ

}
⊂ C ⊕ δ (42)

for every δ ≤ δ2.

Proof. Because the support K is compact and x ∈ K �→ ‖g(x)‖ is continuous,
for any g0 > 0 sufficiently small, there exists a constant R(g0) > 0 such that

G1(g0) ≡ {x : ‖g(x)‖ ≤ g0} ⊂ C ⊕R(g0)

and when g0 → 0, R(g0) → 0. Thus, there is a constant g1 > 0 such that
R(g1) =

λmin

2d3‖f‖3,max
.

The set C ⊕ λmin

2‖f‖3,max
has a useful feature: for any x ∈ C ⊕ λmin

2‖f‖3,max
,

‖H(x)−H(c)‖F = ‖(x− c)f (3)(c+ t(x− c))dt‖F
≤ d3‖x− c‖‖f‖3,max

≤ d3
λmin

2d3‖f‖3,max
· ‖f‖3,max

=
λmin

2
,

where f (3) is a d × d × d array of the third derivative of f and ‖A‖F is the
Frobenius norm of the matrix A. By Hoffman–Wielandt theorem (see, e.g., page
165 of Bhatia 1997), the eigenvalues between H(x) and H(c) is bounded by
‖H(x) − H(c)‖F . Therefore, the smallest eigenvalue of H(x) must be greater
than or equal to the smallest eigenvalue of H(c) minus λmin

2 . Because λmin is
the smallest absolute eigenvalues of H(c) for all c ∈ C, the smallest eigen-
value of H(x) is greater than or equal to λmin

2 , for all x ∈ C ⊕ R(g1) =

C ⊕ λmin

2d3‖f‖3,max
.

Using the above feature and the fact that G1(g1) ⊂ C ⊕ λmin

2d3‖f‖3,max
, for any

x ∈ G1(g1), we have the following inequalities:

g1 ≥ ‖g(x)‖

=

∥∥∥∥∫ 1

0

(x− c)H(c+ t(x− c))dt

∥∥∥∥
≥ ‖x− c‖1

2
λmin.

Thus, ‖x− c‖ ≤ 2g1
λmin

, which implies

G1(g1) ⊂ C ⊕ 2g1
λmin

.
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Moreover, because G1(g2) ⊂ G1(g3) for any g2 ≤ g3, any g2 ≤ g1 satis-
fies

G1(g2) ⊂ C ⊕ 2g2
λmin

.

Now pick δ = 2g2
λmin

, we conclude

G1

(
λmin

2δ

)
= G(δ) ⊂ C ⊕ δ

for all

δ =
2g2
λmin

≤ 2g1
λmin

= δ2, (43)

where g1 is the constant such that R(g1) =
λmin

2d3‖f‖3,max
.

Lemma 13 (Bounds on gradient flow). Using the notations above and assump-
tion (D), let δ1 be defined in Lemma 11 and δ2 be defined in Lemma 12, equation
(43). Then for all x such that

d(x,B) = δ < δ0 = min

{
δ1, δ2,

Hmin

d2 · ‖f‖3,max

}
,

and picking ε such that δ2 > ε2 > δ, we have

ηε(x) ≡ inf
0≤t≤tε(x)

‖g(πx(t))‖ ≥ δ
λmin

2
.

Moreover,

γε(δ) ≡ inf
x∈Bδ

ηε(x) ≥ δ
λmin

2
,

where Bδ = {x : d(x,B) = δ}.

Proof. We consider the flow πx starting at x (not on the boundaries) such that

d(x,B) = δ < min {δ1, δ2} .

For 0 ≤ t ≤ tε(x), the entire flow is within the set

H(ε, δ) = {x : d(x,B) ≥ δ, d(x,M) ≥
√
ε}. (44)

That is,
{πx(t) : 0 ≤ t ≤ tε(x)} ⊂ H(ε, δ). (45)

This is because by Lemma 11, the flow line cannot get closer to the boundaries
B within distance δ, and the flow stops when its distance to its destination is
at ε. Thus, if we can prove that every point within H(ε, δ) has gradient lowered
bounded by δ λmin

2 , we have completed the proof. That is, we want to show that

inf
x∈H(ε,δ)

‖g(x)‖ ≥ δ
λmin

2
. (46)



Inference using the Morse-Smale 1421

Fig 12. Illustration for H(ε, δ). The thick black lines are boundaries B; solid dots are local
modes; box is local minimum; empty dots are saddle points. The three purple lines denote
possible gradient flows starting from some points x with d(x,B) = δ. The gray disks denote

all possible regions such that ‖g‖ ≤ λmin
2

δ. Thus, the amount of gradient within the set H(ε, δ)

is greater or equal to λmin
2

δ.

To show the lower bound, we focus on those points whose gradient is small.
Let

S(δ) =

{
x : ‖g(x)‖ ≤ δ

λmin

2

}
.

By Lemma 12, the S(δ) are regions around critical points such that

S(δ) ⊂ C ⊕ δ.

Since we have chosen ε such that ε ≥ δ2 and by the fact that critical points
are either in M , the collection of all local modes, or in B the boundaries so that,
the minimal distance between H(ε, δ) and critical points C is greater that δ (see
equation (44) for the definition of H(ε, δ)). Thus,

(C ⊕ δ) ∩H(ε, δ) = ∅,

which implies equation (46):

inf
x∈H(ε,δ)

‖g(x)‖ ≥ δ
λmin

2
.

Now by the fact that all πx(t) with d(x,B) < δ are within the set H(ε, δ)
(equation (45)), we conclude the result.

Lemma 13 links the constant γε(δ) and the minimal gradient, which can be
used to bound the time tε(x) uniformly and further leads to the following result.
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Fig 13. Result from Lemma 13: lower bound on minimal gradient. This plot shows possible
values for minimal gradient ηε(x) (pink regions) when d(x,B) is known. Note that we have
chosen ε2 < δ2.

Lemma 14. Let K(δ) = {x ∈ K : d(x,B) ≥ δ} = K\(B⊕δ) and δ0 be defined as
Lemma 13 and M is the collection of all local modes. Assume that f has bounded
third derivative and is a Morse function and that assumption (D) holds. Let f̃
be another smooth function. There exists constants c∗, c0, c1, ε0 that all depend
only on f such that when (ε, δ) satisfy the following condition

δ < ε < ε0, δ < min{δ0,Haus(K(δ), B(M,
√
ε))} (47)

and if

‖f − f̃‖∗3,max ≤ c0

‖f − f̃‖1,max ≤ c1 exp

(
−4

√
d‖f‖2,max‖f‖∞

δ2λ2
min

)
,

(48)

then for all x ∈ K(δ)

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖ ≤ c∗

√
‖f − f̃‖∞. (49)

Note that condition (47) holds when (ε, δ) are sufficiently small.

Proof. The proof of this lemma is closely related to the proof of Theorem 2
of Arias-Castro et al. (2016). The results in Arias-Castro et al. (2016) is a
pointwise convergence of gradient flows; now we will generalize their findings to
the uniform convergence.

Note that K(δ) = H(ε, δ) ∪ B(x,
√
ε). For x ∈ B(x,

√
ε), the result is trivial

when ε is sufficiently small. Thus, we assume x ∈ H(ε, δ).
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From equation (40–44) in Arias-Castro et al. (2016) (proof to their Theo-
rem 2),

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖

≤

√√√√ 2

λmin

(
2λminε+

‖f‖1,max√
d‖f‖2,max

‖f − f̃‖1,maxe
√
d‖f‖2,maxtε(x) + 2‖f − f̃‖∞

)
(50)

under condition (48) and ε < ε0 for some constant ε0.
Thus, the key is to bound tε(x). Recall that x ∈ H(ε, δ). Now consider the

gradient flow πx and define z = πx(tε(x)).

f(z)− f(x) =

∫ tε(x)

0

∂f(πx(s))

∂s
ds =

∫ tε(x)

0

g(πx(s))
Tπ′

x(s)ds

=

∫ tε(x)

0

‖g(πx(s))‖2ds ≥ γε(δ)
2tε(x).

(51)

Since f(z)− f(x) ≤ 2‖f‖∞, we have

‖f‖∞ ≥ 1

2
γε(δ)

2tε(x)

and by Lemma 13,

tε(x) ≤
2‖f‖∞
γε(δ)2

≤ 8‖f‖∞
δ2λ2

min

(52)

for all x ∈ H(ε, δ).
Now plug-in (52) into (50), we have

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖

≤

√
a0ε+ a1‖f − f̃‖1,maxe

√
d‖f‖2,max

8‖f‖∞
δ2λ2

min + a2‖f − f̃‖∞ (53)

for some constants a0, a1, a2. Now using condition (48) to replace the second
term of right hand side, we conclude

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖ ≤ a3

√
ε+ ‖f − f̃‖∗1,max

for some constant a3.
By Lemma 7 in Arias-Castro et al. (2016), there exists some constant c3 such

that when a3

√
ε+ ‖f − f̃‖∗1,max < 1/c3,

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖ ≤
√
2c3‖f − f̃‖.

Thus, when both ε and ‖f − f̃∗
3,max‖ are sufficiently small, there exists some

constant c∗ such that

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖ ≤ c∗‖f − f̃‖

for all x ∈ H(ε, δ).
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Now we turn to the proof of Theorem 1.

Proof of Theorem 1. The proof contains two parts. In the first part, we show
that when ‖f − f̃‖∗3,max is sufficiently small, we have Haus(B, B̃) < Hmin

d2‖f‖3,max
,

where B and B̃ are the boundary of descending d-manifolds for f and f̃ . The
second part of the proof is to derive the convergence rate. Because Haus(B, B̃) <

Hmin

d2‖f‖3,max
, we can apply the second assertion of Lemma 10 to derive the rate of

convergence. Note that C and C̃ are the critical points for f and f̃ and M ≡ C0,
M̃ ≡ C̃0 are the local modes for f and f̃ .

Part 1: Haus(B, B̃) < Hmin

d2·‖f‖3,max
, the upper bound for Hausdorff dis-

tance. Let σ = min{‖x − y‖ : x, y ∈ M,x �= y}. That is, σ is the smallest dis-

tance between any pair of distinct local modes. By Lemma 9, when ‖f− f̃‖∗3,max

is small, f and f̃ have the same number of critical points and

Haus(C, C̃) ≤ A‖f − f̃‖∗2,max ≤ A‖f − f̃‖∗3,max,

where A is a constant that depends only on f (actually, we only need ‖f−f̃‖∗2,max

to be small here).

Thus, whenever ‖f − f̃‖∗3,max satisfies

‖f − f̃‖∗3,max ≤ σ

3A
, (54)

every M has an unique corresponding point in M̃ and vice versa. In addition,
for a pair of local modes (mj , m̃j) : mj ∈ M, m̃j ∈ M̃ , their distance is bounded
by ‖mj − m̃j‖ ≤ σ

3 .
Now we pick (ε, δ) such that they satisfy equation (47). Then when ‖f −

f̃‖∗3,max is sufficiently small, by Lemma 14, for every x ∈ H(ε, δ) we have

‖ lim
t→∞

πx(t)− lim
t→∞

π̃x(t)‖ ≤ c∗

√
‖f − f̃‖∞ ≤ c∗

√
‖f − f̃‖∗3,max.

Thus, whenever

‖f − f̃‖∗3,max ≤ 1

c2∗

(σ
3

)2
, (55)

πx(t) and π̃x(t) leads to the same pair of modes. Namely, the boundaries B̃

will not intersect the region H(ε, δ). And it is obvious that B̃ cannot intersect
B(M,

√
ε). To conclude,

B̃ ∩H(ε, δ) = ∅
B̃ ∩B(M,

√
ε) = ∅

⇒ B̃ ∩K(δ) = ∅,
(56)

because by definition, K(δ) = H(ε, δ) ∩B(M,
√
ε).

Thus, B̃ ⊂ K(δ)C = B ⊕ δ, which implies Haus(B, B̃) ≤ δ < Hmin

d2‖f‖3,max
(note

that δ < δ0 ≤ Hmin

d2‖f‖3,max
appears in equation (47) and Lemma 13).
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Part 2: Rate of convergence. To derive the convergence rate, we use proof
by contradiction. Let q ∈ B, q̃ ∈ B̃ a pair of points such that their distance

attains the Hausdorff distance Haus
(
B̃, B

)
. Namely, q and q̃ satisfy

‖q − q̃‖ = Haus
(
B̃, B

)
and either q is the projected point from q̃ onto B or q̃ is the projected point
from q onto B̃.

Recall that V(x) is the normal space to B at x ∈ B and we define Ṽ(x)

similarly for x ∈ B̃. An important property of the pair q, q̃ is that q − q̃ ∈
V(q), Ṽ(q̃). If this is not true, we can slightly perturb q (or q̃) on B (or B̃) to
get a projection distance larger than the Hausdorff distance, which leads to a
contradiction.

Now we choose x to be a point between q, q̃ such that x = 1
3q + 2

3 q̃. We

define e(x) = q−x
‖q−x‖ and ẽ(x) = q̃−x

‖q̃−x‖ . Then e(x) ∈ V(q) and ẽ(x) ∈ Ṽ(q̃) and

e(x) = −ẽ(x).
By Lemma 10 (second assertion),


(x) = e(x)T g(x) ≥ 1

2
Hmin‖q − x‖ > 0


̃(x) = ẽ(x)T g̃(x) ≥ 1

2
H̃min‖q̃ − x‖ > 0.

(57)

Thus, for every x between q, q̃,

e(x)T g(x) > 0, , e(x)T g̃(x) = −ẽ(x)T g̃(x) < 0. (58)

Note that we can apply Lemma 10 to f̃ and its gradient because when ‖f − f̃‖∗2
is sufficiently small, the assumption (D) holds for f̃ as well.

To get the upper bound of ‖q−q̃‖ = Haus(B̃, B), note that ‖q−x‖ = 2
3‖q−q̃‖,

so
e(x)T g̃(x) = e(x)T (g̃(x)− g(x)) + e(x)T g(x)

≥ e(x)T g(x)− ‖f̃ − f‖1,max

≥ 1

2
Hmin‖q − x‖ − ‖f̃ − f‖1,max (By Lemma 10)

=
1

3
Hmin‖q − q̃‖ − ‖f̃ − f‖1,max.

(59)

Thus, as long as

Haus(B̃, B) = ‖q − q̃‖ > 3
‖f̃ − f‖1,max

Hmin
,

we have e(x)T g̃(x) > 0, a contradiction to equation (58). Hence, we conclude
that

Haus(B̃, B) ≤ 3
‖f̃ − f‖1,max

Hmin
= O

(
‖f̃ − f‖1,max

)
.
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Proof of Theorem 3. To prove the asymptotic rate of the rand index, we assume
that for every local mode of p, there exists one and only one local mode of p̂n that
is close to the specific mode of p. By Lemma 9, this is true when ‖p̂n−p‖∗3,max is
sufficiently small. Thus, after relabeling, the local mode m̂� of p̂n is an estimator
to the local mode m� of p. Let Ŵ� be the basin of attraction to m̂� using ∇p̂n
and W� be the basin of attraction to m� using ∇p. Let A�B = {x : x ∈ A, x /∈
B} ∪ {x : x ∈ B, x /∈ A} be the symmetric difference between sets A and B.
The regions

En =
⋃
�

(
Ŵ��W�

)
⊂ K (60)

are where the two mode clustering disagree with each other. Note that En are
regions between the two boundaries B̂n and B

Given a pair of points Xi and Xj ,

Ψ(Xi, Xj) �= Ψ̂n(Xi, Xj) =⇒ Xi or Xj ∈ En. (61)

By the definition of rand index (30),

1− rand (p̂n, p) =

(
n

2

)−1∑
i,j

1
(
Ψ(Xi, Xj) �= Ψ̂n(Xi, Xj)

)
(62)

Thus, if we can bound the ratio of data points within En, we can bound the
rate of rand index.

Since K is compact and p has bounded second derivatives, the volume of En

is bounded by

Vol(En) = O
(
Haus(B̂n, B)

)
. (63)

Note Vol(A) denotes the volume (Lebesgue measure) of a set A. We now con-
struct a region surrounding B such that

En ⊂ B ⊕ Haus(B̂n, B) = Vn (64)

and
Vol(Vn) = O

(
Haus(B̂n, B)

)
. (65)

Now we consider a collection of subsets of K:

V = {B ⊕ r : R > r > 0}, (66)

where R < ∞ is the diameter for K. For any set A ⊂ K, let P (Xi ∈ A) and

P̂n(A) =
1
n

∑n
i=1 1(Xi ∈ A) denote the probability of an observation within A

and the empirical estimate for that probability, respectively. It is easy to see
that Vn ∈ V for all n and the class V has a finite VC dimension (actually, the
VC dimension is 1). By the empirical process theory (or so-called VC theory,
see e.g. Vapnik and Chervonenkis (1971)),

sup
A∈V

∣∣∣P (Xi ∈ A)− P̂n(A)
∣∣∣ = OP

(√
log(n)

n

)
. (67)



Inference using the Morse-Smale 1427

Thus, ∣∣∣P (Xi ∈ Vn)− P̂n(Vn)
∣∣∣ = OP

(√
log(n)

n

)
. (68)

Now by equations (61) and (62),

1− rand (p̂n, p) ≤ 8P̂n(En) ≤ 8P̂n(Vn) ≤ 8P (Xi ∈ Vn)+OP

(√
log(n)

n

)
. (69)

Therefore,

1− rand (p̂n, p) ≤ P (Xi ∈ Vn) +OP

(√
log(n)

n

)

≤ sup
x∈K

p(x)× Vol(Vn) +OP

(√
log(n)

n

)

≤ O
(
Haus(B̂n, B)

)
+OP

(√
log(n)

n

)

= O
(
h2
)
+OP

(√
log(n)

nhd+2

)
,

(70)

which completes the proof. Note that we apply Theorem 2 in the last equality.

Proof of Theorem 4. Let (X1, Y1), · · · , (Xn, Yn) be the observed data. Let Ê�

denote the d-cell for the nonparametric pilot regression estimator m̂n. With
I� = {i : Xi ∈ Ê�}, we define X� as the matrix with rows Xi, i ∈ I� and
similarly we define Y�.

We define X0,� to be the matrix similar to X� except that the row elements
are those Xi within E�, the d-cell defined on true regression function m. We
also define Y0,� to be the corresponding Yi.

By the theory of linear regression, the estimated parameters μ̂�, β̂� have a
closed form solution:

(μ̂�, β̂�)
T = (XT

� X�)
−1

X
T
� Y�. (71)

Similarly, we define

(μ̂0,�, β̂0,�)
T = (XT

0,�X0,�)
−1

X
T
0,�Y0,� (72)

as the estimated coefficients using X0,� and Y0,�.
As ‖m̃ − m‖∗3,max is small, by Theorem 3, the number of rows at which

X� and X0,� differ is bounded by O(n × ‖m̂n − m‖1,max). This is because
an observation (a row vector) that appears only in one of X� and X0,� is

those fallen within either Ê� or E� but not both. Despite the fact that Theo-
rem 3 is for basins of attraction (d-descending manifolds) of local modes, it can
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be easily generalized to 0-ascending manifolds of local minima under assump-
tion (A). Thus, the similar bound holds for d-cells as well. Thus, we conclude
that ∥∥∥∥ 1nXT

� X� −
1

n
X

T
0,�X0,�

∥∥∥∥
∞

= O(‖m̂n −m‖1,max)∥∥∥∥ 1nXT
� Y� −

1

n
X

T
0,�Y0,�

∥∥∥∥
∞

= O(‖m̂n −m‖1,max)

(73)

since (X�,Y�) and (X0,�,Y0,�) only differ by O(n × ‖m̂n − m‖1,max) elements.
Thus, ∥∥∥(μ̂0,� − μ̂�, β̂0,� − β̂�)

∥∥∥
∞

=

∥∥∥∥∥
(
1

n
X

T
0,�X0,�

)−1
1

n
X

T
0,�Y0,� −

(
1

n
X

T
� X�

)−1
1

n
X

T
� Y�

∥∥∥∥∥
∞

= O(‖m̂n −m‖1,max), (74)

which implies.

max
{
‖μ̂0,� − μ̂�‖, ‖β̂0,� − β̂�‖

}
= O(‖m̂n −m‖1,max). (75)

Now by the theory of linear regression,

max
{
‖μ̂0,� − μ�‖, ‖β̂0,� − β�‖

}
= OP

(
1√
n

)
. (76)

Thus, combining (75) and (76) and use the fact that all the above bounds are
uniform over each cell, we have proved that the parameters converge at rate

O(‖m̂n −m‖1,max) +OP

(
1√
n

)
.

For points within the regions where E� and Ê� agree with each other, the rate
of convergence for parameter estimation translates into the rate of m̂n,MSR −
mMSR. The regions that E� and Ê� disagree to each other, denoted as Nn,
have Lebesgue O(‖m̂n − m‖1,max) by Theorem 1. Thus, we have completed
the proof.

Proof of Theorem 5. The proof of Theorem 5 is nearly identical to the proof of
Theorem 4. The only difference is that the number of rows that X� and X0,�

differ is bounded by O(n×‖m̂n −m‖β1,max) due to the low noise condition (36).
Thus, equation (73) becomes∥∥∥∥ 1nXT

� X� −
1

n
X

T
0,�X0,�

∥∥∥∥
∞

= O(‖m̂n −m‖β1,max)∥∥∥∥ 1nXT
� Y� −

1

n
X

T
0,�Y0,�

∥∥∥∥
∞

= O(‖m̂n −m‖β1,max)

(77)

so the parameter estimation error (76) is O(‖m̂n −m‖β1,max) +OP

(
1√
n

)
.
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Under assumption (K1–2) and using Theorem 8 (the same result works for
kernel regression),

O(‖m̂n −m‖1,max) = O(h2) +OP

(√
logn

nhd+2

)
.

Thus, with the choice that h=O

((
logn
n

)1/(d+6)
)
, we have O(‖m̂n−m‖1,max)=

OP

((
log n
n

)2/(d+6)
)
, which proves equation (37).

Proof of Theorem 6. We first derive the explicit form of the parameters (η†� , γ
†
� )

within cell E�. Note that the parameters are obtained by (14):

(η†� , γ
†
� ) = argmin

η,γ

∫
E�

(
f(x)− η − γTx

)2
dx.

Now we define a random variable U� ∈ R
d that is uniformly distributed over E�.

Then equation (14) is equivalent to

(η†� , γ
†
� ) = argmin

η,γ
E

((
f(U�)− η − γTU�

)2)
. (78)

The analytical solution to the above problem is(
η†�
γ†
�

)
=

(
1 E(U�)

T

E(U�) E(U�U
T
� )

)−1(
E(f(U�))

E(U�f(U�))

)
(79)

Now we consider another smooth function f̃ that is close to f such that
‖f̃ − f‖∗3,max is small so we can apply Theorem 1 to obtain consistency for both
descending d-manifolds and ascending 0-manifolds. Note that by Lemma 9, all
the critical points are close to each other and after relabeling, each d-cell E� of
f is estimated by another d-cell Ẽ� of f̃ . Theorem 1 further implies that∣∣∣Leb(Ẽ�)− Leb(E�)

∣∣∣ = O
(
‖f̃ − f‖1,max

)
Leb
(
Ẽ��E�

)
= O

(
‖f̃ − f‖1,max

)
,

(80)

where Leb(A) is the Lebesgue measure for set A and A�B = (A\B)∪ (B\A) is
the symmetric difference. By simple algebra, equation (80) implies that

‖E(Ũ�)− E(U�)‖∞ = O
(
‖f̃ − f‖1,max

)
‖E(Ũ�Ũ

T
� )− E(U�U

T
� )‖∞ = O

(
‖f̃ − f‖1,max

)
|E(f̃(Ũ�))− E(f(U�))| = O

(
‖f̃ − f‖∗1,max

)
‖E(Ũ�f̃(Ũ�))− E(U�f(U�))‖∞ = O

(
‖f̃ − f‖∗1,max

)
.

(81)
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By (81) and the analytic solution to (η̃†� , γ̃
†
� ) from (79), we have proved∥∥∥∥( η̃†�

γ̃†
�

)
−
(

η†�
γ†
�

)∥∥∥∥
∞

= O
(
‖f̃ − f‖∗1,max

)
. (82)

Since the bound does not depend on the cell indices 
, (82) holds uniformly for
all 
 = 1, · · · ,K.
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