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1. Introduction

Let (Ω,F,P) be a probability space, and BH =
{
BH

t , t ∈ R
}

be a fractional
Brownian motion with Hurst parameter H ∈ (0, 1) on this probability space,
that is a centered Gaussian process with covariance function

EBH
t BH

s =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R.

Since E
(
BH

t −BH
s

)2
= |t− s|2H and the process BH is Gaussian, it has a

continuous modification by Kolmogorov’s theorem. In what follows we consider
such modification.
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The present paper deals with the inference problem associated with the
Langevin equation

Xt = x0 + θ

∫ t

0

Xs ds+BH
t , t ≥ 0, (1)

where x0 ∈ R, and θ ∈ R is an unknown drift parameter. This equation has
a unique solution, see [5]. In order to avoid integration with respect to the
fractional Brownian motion for 0 < H < 1/2, we can write this solution in the
following form

Xt = x0e
θt + θeθt

∫ t

0

e−θsBH
s ds+BH

t , t ≥ 0. (2)

The process X = {Xt, t ≥ 0} is called a fractional Ornstein–Uhlenbeck pro-
cess [5]. It is a Gaussian process, consequently its one-dimensional distributions
are normal, with mean x0e

θt and variance

v(θ, t) = H

∫ t

0

s2H−1
(
eθs + eθ(2t−s)

)
ds,

see Lemma A.1 in Appendix.
The estimation problem for the drift parameter θ in the model (1) was studied

in many works. We refer to the paper [15] for the extended survey of these results.
The maximum likelihood estimators (MLE’s) were studied in [13, 18, 19] forH ≥
1/2 and in the paper [20] for H < 1/2. Note that the MLE is hardly discretized
because it contains the stochastic integrals with singular kernels. Therefore,
several nonstandard estimators have been proposed recently. In particular, for
θ < 0 (the ergodic case) and H ≥ 1/2 Hu and Nualart [11] constructed the
analog of the least-squares estimator of the form

θ̂T =

∫ T

0
XtdXt∫ T

0
X2

t dt
, (3)

where the integral
∫ T

0
XtdXt is the divergence-type one. As an alternative, they

considered the estimator

θ̂T = −
(

1

HΓ(2H)T

∫ T

0

X2
t dt

)− 1
2H

. (4)

In the non-ergodic case, when θ > 0, Belfadli et al. [1] proposed the estimator

θ̂T =
X2

T

2
∫ T

0
X2

t dt
(5)

and proved its strong consistency for H > 1/2. Later in [6] its strong consistency
was obtained for all H ∈ (0, 1). Note that the estimator (5) coincides with the
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estimator (3), where the integral
∫ T

0
XtdXt is understood in the path-wise sense.

In the papers [3, 4, 7, 8, 9, 12, 15, 21] the discretized estimators were considered.
For the case θ < 0 the drift parameter estimator based on polynomial variations
was proposed in [10].

The methods of constructing the estimators and their asymptotic properties
essentially depend on the sign of unknown drift parameter θ. In particular, the
estimator (4) is based on the ergodicity and does not work in the non-ergodic
case. Similarly, the estimator (5) converges to zero if θ < 0, see remark at the
end of Sec. 3 in [11].

The above discussion motivates the hypothesis testing of the sign of drift
parameter in the model (1). The interest to this problem is also connected with
the stability properties of the solution to the equation (1), which also depend
on the sign of θ. For H ≥ 1/2, this problem was studied by Moers [16]. He
constructed a test using the estimator

θ̃T,H =
X2

T −X2
0

2
∫ T

0
X2

t dt
−

(
1

HΓ(2H)T

∫ T

0

X2
t dt

)− 1
2H

. (6)

The exact distribution of θ̃T,H is not known, and the test is based on the asymp-

totic distribution of T θ̃T,H . The values of the corresponding test statistic should
be compared with quantiles of the random variable

(
BH

1

)2
2

∫ 1

0

(
BH

t

)2
dt

−
(

1

HΓ(2H)

∫ 1

0

(
BH

t

)2
dt

)− 1
2H

, (7)

and the quantiles can be obtained by Monte Carlo simulation. The test can
be used for testing three types of hypothesis: H0 : θ ≥ 0 against H1 : θ < 0,
H0 : θ ≤ 0 against H1 : θ > 0, and H0 : θ = 0 against H1 : θ �= 0. The consistency
of the test is proved only for H ∈ [1/2, 3/4) for a simple alternative θ1 < 0,
and for H ∈ [1/2, 1) for θ1 > 0. Tanaka [18, 19] considered the testing of the
hypothesis H0 : θ = 0 against the alternatives H1 : θ < 0 and H1 : θ > 0. He
proposed tests based on the MLE (for both alternatives) and on the minimum
contrast estimator (only for the ergodic case). Those tests were considered also
for H ≥ 1/2. To the best of our knowledge, there are no tests, suitable for the
discrete-time observations of the process.

In the present paper we propose comparatively a simple test for testing the
null hypothesis H0 : θ ≤ 0 against the alternative H1 : θ > 0. The main advan-
tage of our approach is that it can be used for any H ∈ (0, 1). The distribution
of the test statistic is computed explicitly, and the power of test can be found
numerically for any given simple alternative. Also we consider the hypothesis
testing H0 : θ ≥ θ0 against H1 : θ ≤ 0, where θ0 ∈ (0, 1) is some fixed number.
Unfortunately, our approach does not enable to test the hypothesis H0 : θ = 0
against the two-sided alternative H1 : θ �= 0. The test is based on the observa-
tions of the process X at two points: 0 and T . Therefore, it is applicable for
both continuous and discrete cases.
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Remark 1.1. The situation is similar to the model Yt = at+Wt, where Wt is
a Wiener process. In this case the MLE of the drift parameter by observations
at points 0 = t0 ≤ t1 ≤ . . . ≤ tN = T is given by

â =
1

tN − t0

N−1∑
i=0

(
Yti+1 − Yti

)
=

YT − Y0

T
,

and depends on the observations at two points, see e. g. [2, p. 363]. Similarly,

in Samuelson’s model [17] of the form logSt = (μ − σ2

2 )t + σWt with constant
drift parameter μ and known volatility σ, the MLE of μ equals

μ̂ =
logST − logS0

T
+

σ2

2
.

and also depends on the observations at two points.

The paper is organized as follows. In Section 2 the problem of hypothesis
testing for the sign of the drift parameter θ is considered. Section 3 is devoted to
numerics. In Appendix we get some auxiliary results. In particular, we calculate
the first two moments of the fractional Ornstein–Uhlenbeck process.

2. Hypothesis testing of the drift parameter sign

2.1. Test statistic

For hypothesis testing of the sign of the parameter θ we construct a test based
on the asymptotic behavior of the random variable

Z(t) =
log+ log |Xt|

log t
, t > 1, (8)

where log+ x = log x when x > 1 and log+ x = 0 otherwise. The following
result explains the main idea. It is based on the different asymptotic behavior
of the fractional Ornstein–Uhlenbeck process with positive drift parameter and
negative one.

Lemma 2.1. The value of Z(t) converges a. s. to 1 for θ > 0, and to 0 for
θ ≤ 0, as t → ∞.

Proof. For θ > 0, by [6, Lemma 2.1] (see also [1] for H > 1/2),

e−θtXt → ξθ a. s., as t → ∞,

where ξθ = x0 + θ
∫ ∞
0

e−θsBH
s ds � N

(
x0,

HΓ(2H)
θ2H

)
. Then

log |Xt| − θt → log |ξθ| a. s., as t → ∞,

where ξθ is a normal random variable, hence, 0 < |ξθ| < ∞ a. s. Therefore,

log |Xt|
t

→ θ a. s., as t → ∞.
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It means that there exists Ω′ ⊂ Ω such that P(Ω′) = 1 and for any ω ∈ Ω′ there
exists t(ω) such that for t ≥ t(ω): log |Xt| > 0. Hence, for t ≥ t(ω) we have that

∣∣∣∣ log+ log |Xt|
log t

− 1

∣∣∣∣ =
∣∣∣∣ log log |Xt|

log t
− 1

∣∣∣∣
=

∣∣∣∣ log log |Xt| − log t

log t

∣∣∣∣ =
∣∣∣∣∣ log

log|Xt|
t

log t

∣∣∣∣∣ → 0

a. s., as t → ∞. For θ ≤ 0, it follows from (19) that

|Z(t)| ≤
∣∣∣∣∣ log

+
(
log

(
1 + tH log2 t

)
+ log ζ

)
log t

∣∣∣∣∣
=

∣∣∣∣∣ log
(
log

(
1 + tH log2 t

)
+ log ζ

)
log t

∣∣∣∣∣ ∼
∣∣∣∣∣ log

(
log

(
tH log2 t

))
log t

∣∣∣∣∣ → 0,

as t → ∞.

The next result gives the cdf of Z(t). Let Φ and ϕ denote the cdf and pdf,
respectively, of the standard normal variable.

Lemma 2.2. For t > 1 the probability g(θ, x0, t, c) = P(Z(t) ≤ c) is given by

g(θ, x0, t, c) = Φ

(
et

c − x0e
θt√

v(θ, t)

)
+Φ

(
et

c

+ x0e
θt√

v(θ, t)

)
− 1, (9)

and g is a decreasing function of θ ∈ R.

Proof. Using Lemma A.1 and taking into account that log+ x is a non-decreasing
function, we obtain

P(Z(t) ≤ c) = P
(
|Xt| ≤ et

c
)
= Φ

(
et

c − x0e
θt√

v(θ, t)

)
− Φ

(
−et

c − x0e
θt√

v(θ, t)

)

= Φ

(
et

c − x0e
θt√

v(θ, t)

)
+Φ

(
et

c

+ x0e
θt√

v(θ, t)

)
− 1.

Let us prove the monotonicity of the function g with respect to θ. Note that g
is an even function with respect to x0. Therefore, it suffices to consider only the
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case x0 ≥ 0. The partial derivative equals

∂g

∂θ
= ϕ

(
et

c − x0e
θt√

v(θ, t)

) (
−x0te

θtv−
1
2 (θ, t)− 1

2
v−

3
2 (θ, t)v′θ(θ, t)

(
et

c − x0e
θt

))

+ ϕ

(
et

c

+ x0e
θt√

v(θ, t)

) (
x0te

θtv−
1
2 (θ, t)− 1

2
v−

3
2 (θ, t)v′θ(θ, t)

(
et

c

+ x0e
θt

))

= −1

2
v−

3
2 (θ, t)v′θ(θ, t)e

tc

(
ϕ

(
et

c − x0e
θt√

v(θ, t)

)
+ ϕ

(
et

c

+ x0e
θt√

v(θ, t)

))

− x0e
θtv−

3
2 (θ, t)

(
tv(θ, t)− 1

2
v′θ(θ, t)

)

×
(
ϕ

(
et

c − x0e
θt√

v(θ, t)

)
− ϕ

(
et

c

+ x0e
θt√

v(θ, t)

))
.

(10)

Since

v′θ(θ, t) = H

∫ t

0

s2H−1
(
seθs + (2t− s)eθ(2t−s)

)
ds > 0, (11)

we see that the first term in the right-hand side of (10) is negative. Let us
consider the second term. From (16) and (11) it follows that

tv(θ, t)− 1
2v

′
θ(θ, t) = H

∫ t

0

s2H−1
((

t− 1
2s

)
eθs + 1

2se
θ(2t−s)

)
ds > 0.

Since
∣∣etc − x0e

θt
∣∣ ≤ et

c

+ x0e
θt for x0 ≥ 0, we have

ϕ

(
et

c − x0e
θt√

v(θ, t)

)
− ϕ

(
et

c

+ x0e
θ1t√

v(θ, t)

)
≥ 0.

Thus, the second term in the right-hand side of (10) is non-positive. Hence,
∂g
∂θ < 0.

2.2. Testing the hypothesis H0 : θ ≤ 0 against H1 : θ > 0

To test H0 : θ ≤ 0 against the alternative H1 : θ > 0, we consider the following
procedure: for a given significance level α, and for sufficiently large value of t we
choose a threshold c = ct ∈ (0, 1), see Lemma 2.3. Further, when Z(t) ≤ c the
hypothesis H0 cannot be rejected, and when Z(t) > c it is rejected. Below we
will propose a technically simpler version of this test, without the computation
of c, see Remark 2.4. The threshold c can be chosen as follows.

Fix a number α ∈ (0, 1), the significance level of the test. This level gives
the maximal probability of a type I error, that is in our case the probability to
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reject the hypothesis H0 : θ ≤ 0 when it is true. By Lemma 2.2, for a threshold
c ∈ (0, 1) and t > 1 this probability equals

sup
θ≤0

P(Z(t) > c) = 1− g(0, x0, t, c).

Therefore, we determine ct as a solution to the equation

g(0, x0, t, ct) = 1− α. (12)

The following result shows that for any α ∈ (0, 1), it is possible to choose a
sufficiently large t such that ct ∈ (0, 1).

Lemma 2.3. Let α ∈ (0, 1). Then there exists t0 ≥ 1 such that for all t > t0
there exists a unique ct ∈ (0, 1) such that g(0, x0, t, ct) = 1−α. Moreover ct → 0,
as t → ∞.

The constant t0 can be chosen as the largest t ≥ 1 that satisfies at least one
of the following two equalities

g(0, x0, t, 0) = 1− α or g(0, x0, t, 1) = 1− α. (13)

Proof. By Lemma A.3 (iii), v(0, t) = t2H . Then for θ = 0 the formula (9)
becomes

g(0, x0, t, c) = Φ

(
et

c − x0

tH

)
+Φ

(
et

c

+ x0

tH

)
− 1. (14)

For any t > 1, the function g(0, x0, t, c) is strictly increasing with respect to c.
For c = 0 we have

g(0, x0, t, 0) = Φ

(
e− x0

tH

)
+Φ

(
e+ x0

tH

)
− 1 → 2Φ(0)− 1 = 0, as t → ∞.

Therefore, there exists t1 > 1 such that g(0, x0, t, 0) < 1− α for all t ≥ t1.
Similarly, for c = 1

g(0, x0, t, 1) = Φ

(
et − x0

tH

)
+Φ

(
et + x0

tH

)
− 1 → 2Φ(∞)− 1 = 1, as t → ∞.

Therefore, there exists t2 > 1 such that g(0, x0, t, 1) > 1− α for all t ≥ t2.
Thus, for any t ≥ t0 = max {t1, t2} there exists a unique ct ∈ (0, 1) such that

g(0, x0, t, ct) = 1− α.
To prove the convergence ct → 0, t → ∞, consider an arbitrary ε ∈ (0, 1).

Then

g(0, x0, t, ε) = Φ

(
et

ε − x0

tH

)
+Φ

(
et

ε

+ x0

tH

)
− 1 → 2Φ(∞)− 1 = 1, as t → ∞.

Arguing as above, we see that there exists t3 > 1 such that for any t > t3 the
unique ct ∈ (0, 1), for which g(0, x0, t, ct) = 1− α, belongs to the interval (0, ε).
This implies the convergence ct → 0, as t → ∞.

It follows from (14) that g(0, x0, t, 0) = g(0, x0, t, 1) for t = 1. As t → ∞, we
have g(0, x0, t, 0) → 0, g(0, x0, t, 1) → 1. Hence, at least one of the equalities
(13) is satisfied for some t ≥ 1 and the set of such t’s is bounded.
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Remark 2.4. Since the function g(0, x0, t, c) is strictly increasing with respect
to c for t > 1, we see that the inequality Z(t) ≤ ct is equivalent to the inequality
g(0, x0, t, Z(t)) ≤ g(0, x0, t, ct) = 1 − α. Therefore, we do not need to compute
the value of ct. It is sufficient to compare g(0, x0, t, Z(t)) with the level 1− α.

Algorithm 2.5. The hypothesis H0 : θ ≤ 0 against the alternative H1 : θ > 0
can be tested as follows.

1. Choose 0 < α < 1. Find t0 defined in Lemma 2.3. The algorithm can be
applied only in the case t > t0.

2. Evaluate the statistic Z(t) defined by (8).
3. Compute the value of g(0, x0, t, Z(t)), see (14).
4. Do not reject the hypothesis H0 if g(0, x0, t, Z(t)) ≤ 1 − α, and reject it

otherwise.

Remark 2.6. In fact, the condition t > t0 is not too restrictive, since for
reasonable values of α, the values of t0 are quite small, see Table 1.

Let us summarize the properties of the test in the following theorem.

Theorem 2.7. The test described in Algorithm 2.5 is unbiased and consistent,
as t → ∞. For a simple alternative θ1 > 0 and moment t > t0, the power of the
test equals 1− g(θ1, x0, t, ct), where ct can be found from (12).

Proof. It follows from the monotonicity of g with respect to θ (see Lemma 2.2)
that for any θ1 > 0

P(Z(t) > ct) = 1− g(θ1, x0, t, ct) > 1− g(0, x0, t, ct) = α.

This means that the test is unbiased. Evidently, for a simple alternative θ1 > 0
the power of the test equals 1− g(θ1, x0, t, ct).

It follows from the convergence ct → 0, as t → ∞ (see Lemma 2.3), that
ct < c for sufficiently large t and some constant c ∈ (0, 1). Taking into account
the formula (9) and Lemma A.3 (i), we get, as t → ∞:

1 ≥ 1− g(θ1, x0, t, ct) ≥ 1− g(θ1, x0, t, c)

= 2− Φ

(
et

c − x0e
θ1t√

v(θ1, t)

)
− Φ

(
et

c

+ x0e
θ1t√

v(θ1, t)

)

→ 2− Φ

(
− x0θ

H
1√

HΓ(2H)

)
− Φ

(
x0θ

H
1√

HΓ(2H)

)
= 1.

Hence, the test is consistent.

Remark 2.8. For the composite alternative H1 : θ > 0, the power of the test
of Algorithm 2.5 is small and equals

inf
θ1>0

(1− g(θ1, x0, t, ct)) = 1− g(0, x0, t, ct) = α.
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We can consider testing of H0 : θ ≤ 0 against the alternative H1 : θ ≥ θ0, where
θ0 > 0 is a fixed number. For this composite alternative the power of the test
of Algorithm 2.5 equals

inf
θ1≥θ0

(1− g(θ1, x0, t, ct)) = 1− g(θ0, x0, t, ct)

and tends to 1, as t → ∞.

2.3. Testing the hypothesis H0 : θ ≥ θ0 against H1 : θ ≤ 0

Fix θ0 ∈ (0, 1). Consider the problem of testing the hypothesis H0 : θ ≥ θ0
against alternative H1 : θ ≤ 0.

Algorithm 2.9. The hypothesis H0 : θ ≥ θ0 against the alternative H1 : θ ≤ 0
can be tested as follows.

1. Choose 0 < α < 1. Find t̃0 defined in Lemma 2.10. The algorithm can be
applied only in the case t > t̃0.

2. Evaluate the statistic Z(t) defined by (8).
3. Compute the value of g(θ0, x0, t, Z(t)), see (9).
4. Do not reject the hypothesis H0 if g(θ0, x0, t, Z(t)) ≥ α, and reject it oth-

erwise.

This algorithm is based on the following results. They can be proved similarly
to the previous subsection.

Lemma 2.10. Let α ∈ (0, 1). There exists t̃0 > 1 such that for all t > t̃0 there
exists a unique c̃t ∈ (0, 1) such that

g(θ0, x0, t, c̃t) = α. (15)

In this case c̃t → 1, as t → ∞.
The constant t̃0 can be chosen as the largest t > 1 that satisfies at least one

of the following two equalities

g(θ0, x0, t, 0) = α or g(θ0, x0, t, 1) = α.

Theorem 2.11. The test described in Algorithm 2.9 is unbiased and consistent,
as t → ∞. For a simple alternative θ1 ≤ 0 and moment t > t̃0, the power of the
test equals g(θ1, x0, t, c̃t), where c̃t can be found from (15). For the composite
alternative H1 : θ ≤ 0, the power of the test equals g(0, x0, t, c̃t) and tends to 1,
as t → ∞.

Remark 2.12. The values of t̃0 for various values of θ0 and H are represented
in Table 2. We see that if θ0 is too close to zero, then for small H, the condition
t > t̃0 does not hold for reasonable values of t.

Remark 2.13. If we have a confidence interval for θ, then the value of θ0 ∈ (0, 1)
can be chosen less than or equal to a lower confidence bound (in the case when
the latter is positive).
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Table 1

Value of t0 for various H and α (x0 = 1)

H α = 0.01 α = 0.05

0.1 1.2157 1.5310
0.2 1.2313 1.2373
0.3 1.2492 1.1526
0.4 1.2699 1.1124
0.5 1.2940 1.0889
0.6 1.3224 1.0736
0.7 1.3561 1.0627
0.8 1.3968 1.0547
0.9 1.4462 1.0485

Table 2

Values of t̃0 for various H and θ0 (x0 = 1, α = 0.05)

H θ0 = 0.1 θ0 = 0.05 θ0 = 0.01 θ0 = 0.001 θ0 = 0

0.1 32.433 65.242 326.47 3193.6 2.3369 · 1016
0.2 32.667 64.721 307.43 2719.1 1.5287 · 108
0.3 31.994 61.728 271.64 2073.5 285 900
0.4 30.592 57.078 227.99 1387.8 12 364
0.5 28.659 51.413 181.64 778.94 1878.1
0.6 26.375 45.233 137.06 382.06 534.70
0.7 23.903 38.967 98.759 189.71 217.96
0.8 21.386 32.995 69.618 104.11 111.19
0.9 18.946 27.621 49.408 63.576 65.878

3. Numerical illustrations

In this section we illustrate the performance of our algorithms by simulation
experiments. We choose the initial value x0 = 1 for all simulations.

In Tables 1–2 the values of t0 and t̃0 for various H and θ0 are given.

We simulate fractional Brownian motion at the points t = 0, h, 2h, 3h, . . .
and compute the approximate values of the Ornstein–Uhlenbeck process as the
solution to the equation (1), using Euler’s approximations. For various values
of θ we simulate n = 1000 sample paths with the step h = 1/10000. Then we
apply our algorithms, choosing the significance level α = 0.05. In Table 3 the
empirical rejection probabilities of the test of Algorithm 2.5 for the hypothesis
testing H0 : θ ≤ 0 against the alternative H1 : θ > 0 for H = 0.3 and H = 0.7
are reported.

Then we test the same hypothesis using the test of Moers [16] for H = 0.7. By
Monte Carlo simulations for 20 000 sample paths of the process

{
BH

t , t ∈ [0, 1]
}

we estimate the (1−α)-quantile ψ1−α of the distribution (7) for α = 0.05. Then
we compare the statistic T θ̃T,H (see (6)) with the value of this quantile and reject

the hypothesis H0 : θ ≤ 0 if T θ̃T,H > ψ1−α. We obtained that ψ0.95 ≈ 0.827946.
The empirical rejection probabilities for this test are given in Table 4. We see
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Table 3

Empirical rejection probabilities of the test of Algorithm 2.5 for the hypothesis testing
H0 : θ ≤ 0 against the alternative H1 : θ > 0 for H = 0.3 and H = 0.7

θ −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

H = 0.3
T = 20 0.000 0.003 0.043 0.341 0.701 0.880 0.973 0.982 0.996
T = 40 0.000 0.000 0.043 0.675 0.952 0.995 0.999 1.000 1.000
T = 60 0.000 0.000 0.039 0.860 0.994 1.000 1.000 1.000 1.000
T = 80 0.000 0.000 0.048 0.940 1.000 1.000 1.000 1.000 1.000
T = 100 0.000 0.000 0.049 0.986 1.000 1.000 1.000 1.000 1.000

H = 0.7
T = 20 0.000 0.001 0.058 0.284 0.540 0.800 0.910 0.967 0.979
T = 40 0.000 0.000 0.050 0.581 0.889 0.984 0.998 1.000 1.000
T = 60 0.000 0.000 0.042 0.782 0.980 1.000 0.999 1.000 1.000
T = 80 0.000 0.000 0.047 0.908 0.995 1.000 1.000 1.000 1.000
T = 100 0.000 0.000 0.048 0.959 1.000 1.000 1.000 1.000 1.000

Table 4

Empirical rejection probabilities of the test of Moers [16] for the hypothesis testing
H0 : θ ≤ 0 against the alternative H1 : θ > 0 for H = 0.7

θ −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

T = 20 0.001 0.013 0.085 0.370 0.706 0.873 0.947 0.976 0.992
T = 40 0.000 0.004 0.095 0.682 0.948 0.993 0.999 1.000 1.000
T = 60 0.000 0.002 0.092 0.881 0.995 1.000 1.000 1.000 1.000
T = 80 0.000 0.000 0.105 0.948 0.999 1.000 1.000 1.000 1.000
T = 100 0.000 0.000 0.089 0.977 1.000 1.000 1.000 1.000 1.000

that comparing to our algorithm, the test of Moers has bigger power, i. e., it
works a bit better when the alternative is true. But for θ = 0, the necessary
significance level α = 0.05 is not achieved.

Table 5

Empirical rejection probabilities of the test of Algorithm 2.9 for the hypothesis testing
H0 : θ ≥ θ0 against the alternative H1 : θ ≤ 0 for θ0 = 0.1, H = 0.3 and H = 0.7

θ −0.25 −0.2 −0.15 −0.1 −0.05 0 0.1 0.15 0.2

H = 0.3
T = 40 1.000 1.000 1.000 1.000 1.000 0.938 0.056 0.008 0.000
T = 60 1.000 1.000 1.000 1.000 1.000 1.000 0.052 0.005 0.000
T = 80 1.000 1.000 1.000 1.000 1.000 1.000 0.054 0.001 0.000
T = 100 1.000 1.000 1.000 1.000 1.000 1.000 0.054 0.001 0.000

H = 0.7
T = 40 1.000 1.000 1.000 1.000 0.978 0.689 0.051 0.006 0.001
T = 60 1.000 1.000 1.000 1.000 1.000 1.000 0.052 0.004 0.001
T = 80 1.000 1.000 1.000 1.000 1.000 1.000 0.051 0.003 0.000
T = 100 1.000 1.000 1.000 1.000 1.000 1.000 0.051 0.001 0.000
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Table 6

Empirical rejection probabilities of the test of Algorithm 2.9 for the hypothesis testing
H0 : θ ≥ θ0 against the alternative H1 : θ ≤ 0 for θ0 = 0.05, H = 0.7

θ −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

T = 40 0.842 0.773 0.661 0.566 0.368 0.149 0.051 0.007 0.000
T = 60 0.999 1.000 0.990 0.955 0.799 0.346 0.047 0.002 0.000
T = 80 1.000 1.000 1.000 1.000 0.999 0.719 0.044 0.001 0.000
T = 100 1.000 1.000 1.000 1.000 1.000 0.980 0.050 0.000 0.000

Tables 5 and 6 represent empirical rejection probabilities of the test of Algo-
rithm 2.9 for θ0 = 0.1 and θ0 = 0.05, respectively. We see that the test power
increases if θ0 increases. Also, the test power tends to 1, as the time horizon T
increases. Hence these simulation studies confirm the theoretical results on the
consistency.

Appendix A

A.1. One-dimensional distribution of the fractional
Ornstein–Uhlenbeck process

Let {Xt, t ≥ 1} be the fractional Ornstein–Uhlenbeck process defined by (1).

Lemma A.1. The random variable Xt has normal distribution N(x0e
θt, v(θ, t)),

with variance

v(θ, t) = H

∫ t

0

s2H−1
(
eθs + eθ(2t−s)

)
ds. (16)

Proof. Since BH
t is a centered Gaussian process, it immediately follows from (2)

that Xt has normal distribution with mean x0e
θt. Let us calculate its variance.

We have

VarXt = E

(
BH

t + θeθt
∫ t

0

e−θsBH
s ds

)2

= E
[(
BH

t

)2]
+ 2θeθt

∫ t

0

e−θsE
[
BH

t BH
s

]
ds

+ θ2e2θt
∫ t

0

∫ t

0

e−θs−θuE
[
BH

s BH
u

]
ds du

= t2H + θeθt
∫ t

0

e−θs
(
t2H + s2H − (t− s)2H

)
ds

+
θ2

2
e2θt

∫ t

0

∫ t

0

e−θs−θu
(
s2H + u2H − |s− u|2H

)
ds du

= t2H + eθtt2H
(
1− e−θt

)
+ θeθt

∫ t

0

e−θss2H ds
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− θeθt
∫ t

0

e−θ(t−u)u2H du+ θ2e2θt
∫ t

0

e−θss2H ds

∫ t

0

e−θu du (17)

− θ2

2
e2θt

∫ t

0

∫ t

0

e−θs−θu |s− u|2H ds du

= eθtt2H + θeθt
∫ t

0

e−θss2H ds− θ

∫ t

0

eθss2H ds

+ θe2θt
(
1− e−θt

) ∫ t

0

e−θss2H ds

− θ2

2
e2θt

∫ t

0

∫ t

0

e−θs−θu |s− u|2H ds du

= eθtt2H − θ

∫ t

0

eθss2H ds+ θe2θt
∫ t

0

e−θss2H ds

− θ2

2
e2θt

∫ t

0

∫ t

0

e−θs−θu |s− u|2H ds du.

The last summand can be rewritten as follows

θ2

2
e2θt

∫ t

0

∫ t

0

e−θs−θu |s− u|2H ds du

=
θ2

2
e2θt

(∫ t

0

∫ s

0

e−θs−θu(s− u)2H du ds+

∫ t

0

∫ t

s

e−θs−θu(u− s)2H du ds

)

= θ2e2θt
∫ t

0

∫ s

0

e−θs−θu(s− u)2H du ds = θ2e2θt
∫ t

0

∫ s

0

e−2θs+θvv2H dv ds

=
θ

2
e2θt

∫ t

0

e−θvv2H dv − θ

2

∫ t

0

eθvv2H dv.

Substituting the latter value into the above formula (17) for VarXt, we get

VarXt = eθtt2H − θ

2

∫ t

0

eθss2H ds+
θ

2
e2θt

∫ t

0

e−θss2H ds

= eθtt2H − 1

2

∫ t

0

s2H d
(
eθs + e2θt−θs

)
= H

∫ t

0

s2H−1
(
eθs + e2θt−θs

)
ds.

Remark A.2. The variance of the fractional Ornstein–Uhlenbeck process was
also computed in [6]. Here we derive a quite simple formula for it, which is more
suitable for our purposes.

As a direct corollary from Lemma A.1, we get the asymptotical behavior of
the function v(θ, t), as t → ∞.

Lemma A.3. (i) If θ > 0, then v(θ, t) ∼ HΓ(2H)
θ2H e2θt, as t → ∞.

(ii) If θ < 0, then v(θ, t) → HΓ(2H)
(−θ)2H

, as t → ∞.
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(iii) v(0, t) = t2H , t ≥ 0.

Proof. (i) If θ > 0, then by formula (16),

v(θ, t)

e2θt
= He−2θt

∫ t

0

s2H−1eθsds+H

∫ t

0

s2H−1e−θsds → HΓ(2H)

θ2H
, as t → ∞.

(ii) Note that v(θ, t) = e2θtv(−θ, t), by (16). Then the convergence follows
from (i).

(iii) The statement follows directly from (16).

Remark A.4. The statement (i) was proved in [11] for the case H ∈ [1/2, 1)
and in [6] for all H ∈ (0, 1). The statement (ii) for H > 1/2 was obtained in [1].

A.2. Almost sure bounds for the fractional Ornstein–Uhlenbeck
process

Lemma A.5 ([14, 15]). There exists a nonnegative random variable ζ such that
for all s > 0, the following inequalities hold true:

sup
0≤s≤t

∣∣BH
s

∣∣ ≤ (
1 + tH log2 t

)
ζ, (18)

and for θ ≤ 0

sup
0≤s≤t

|Xs| ≤
(
1 + tH log2 t

)
ζ. (19)

Moreover, ζ has the following property: there exists C > 0 such that
E exp{xζ2} < ∞, for any 0 < x < C.

Proof. The bound (18) was established in [14], see also Eq. (14) in [15]. It also
implies that the inequality (19) holds for θ = 0, since in this case Xt = x0+BH

t .
The bound (19) for θ < 0 was obtained in [15, Eq. (19)].
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