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Abstract: For the problem of high-dimensional sparse linear regression,
it is known that an £p-based estimator can achieve a 1/n “fast” rate for
prediction error without any conditions on the design matrix, whereas in the
absence of restrictive conditions on the design matrix, popular polynomial-
time methods only guarantee the 1/4/n “slow” rate. In this paper, we show
that the slow rate is intrinsic to a broad class of M-estimators. In particular,
for estimators based on minimizing a least-squares cost function together
with a (possibly nonconvex) coordinate-wise separable regularizer, there is
always a “bad” local optimum such that the associated prediction error is
lower bounded by a constant multiple of 1/y/n. For convex regularizers,
this lower bound applies to all global optima. The theory is applicable to
many popular estimators, including convex ¢1-based methods as well as M-
estimators based on nonconvex regularizers, including the SCAD penalty
or the MCP regularizer. In addition, we show that bad local optima are
very common, in that a broad class of local minimization algorithms with
random initialization typically converge to a bad solution.
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1. Introduction

The classical notion of minimax risk, which plays a central role in decision
theory, is agnostic to the computational cost of estimators. In many modern
inference problems, computational cost is an important consideration, driven
by the growing size of modern data sets and the need to impose constraints
on the amount of time that an analysis can take. Thus it has become increas-
ingly important to study computationally-constrained analogues of the minimax
estimator, in which the choice of estimator is restricted to a subset of compu-
tationally efficient estimators, and to study tradeoffs between computation and
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risk [22, 39]. A fundamental question is when such computationally-constrained
forms of minimax risk estimation either coincide or differ in a fundamental way
from their classical counterparts.

The goal of this paper is to explore such relationships—between classical
and computationally practical minimax risks—in the context of prediction error
for high-dimensional sparse regression. Our main contribution is to establish a
fundamental gap between the classical minimax prediction risk and the best
possible risk achievable by a broad class of M-estimators based on coordinate-
separable regularizers, one which includes various nonconvex regularizers that
are used in practice.

In more detail, the classical linear regression model is based on a response
vector y € R™ and a design matrix X € R"*< that are linked via the relationship

y=X0" 4+ w, (1.1)

where the vector w € R"™ is random. Our goal is to estimate the unknown
regression vector #* € R?. Throughout this paper, we focus on the standard
Gaussian model, in which the entries of the noise vector w are i.i.d. N(0,0?)
variates, and the case of deterministic design, in which the matrix X is viewed
as non-random. In the sparse variant of this model, the regression vector is
assumed to have a small number of non-zero coeflicients. In particular, for some
positive integer k < d, the vector 6* is said to be k-sparse if it has at most k
non-zero coefficients. Thus, the model is parameterized by the triple (n,d, k) of
sample size n, ambient dimension d, and sparsity k. We use Bg(k) to denote the
lo-“ball” of all d-dimensional vectors with at most k£ non-zero entries.

An estimator 0 is a measurable function of the pair (y, X), taking values in
R?, and its quality can be assessed in different ways. In this paper, we focus
on its fized design prediction error, given by E[2]|X (6 —6%)||3], a quantity that
measures how well  can be used to predict the vector X6* of noiseless responses.
The worst-case prediction error of an estimator # over the set By (k) is given by

~ 1 ~
Mo ka0;X):= sup —E[|X (0 —67)]3]. (1.2)
6*cBo(k) T
Given that 6* is k-sparse, the most direct approach would be to seek a k-sparse

minimizer to the least-squares cost ||y — X0||3, thereby obtaining the ¢y-based
estimator

br, € arg mmin Iy — X0|3- (1.3)

The ¢yp-based estimator @0 is known [7, 33] to satisfy a bound of the form

o?klogd

. (1.4)

~

Mmk,d(é\ég;X) 3

where = denotes an inequality up to constant factors—that is, independent of

the triple (n, d, k) as well as the standard deviation o. However, it is not tractable

to compute this estimator, since there are (Z) subsets of size k to consider.
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The computational intractability of the fy-based estimator has motivated
the use of various heuristic algorithms and approximations, including the basis
pursuit method [10], the Dantzig selector [8], as well as the extended family
of Lasso estimators [37, 10, 43, 2]. Essentially, these methods are based on
replacing the fp-constraint with its /;-equivalent, in either a constrained or
penalized form. There is now a very large body of work on the performance
of such methods, covering different criteria including support recovery, ¢>-norm
error and prediction error (see, e.g., the book [6] and references therein).

For the case of fixed design prediction error that is the primary focus here,
such ¢1-based estimators are known to achieve the bound (1.4) only if the design
matrix X satisfies certain conditions, such as the restricted eigenvalue (RE)
condition or compatibility condition [4, 38] or the stronger restricted isometry
property [8]; see the paper [38] for an overview of these various conditions, and
their inter-relationships. Without such conditions, the best known guarantees
for ¢1-based estimators are of the form

-~ log d
Moa@n3 X) S0 R[22, (L5)

a bound that is valid without any RE conditions on the design matrix X when-
ever the k-sparse regression vector 8* has ¢1-norm bounded by R (see, e.g., the
papers [7, 30, 33].)

The substantial gap between the “fast” rate (1.4) and the “slow” rate (1.5)
leaves open a fundamental question: is there a computationally efficient esti-
mator attaining the bound (1.4) for general design matrices? In the following
subsections, we provide an overview of the currently known results on this gap,
and we then provide a high-level statement of the main result of this paper.

1.1. Lower bounds for Lasso

Given the gap between the fast rate (1.4) and Lasso’s slower rate (1.5), one
possibility might be that existing analyses of prediction error are overly con-
servative, and ¢1-based methods can actually achieve the bound (1.4), without
additional constraints on X. Some past work has cast doubt upon this possibil-
ity. Foygel and Srebro [17] constructed a 2-sparse regression vector and a random
design matrix for which the Lasso prediction error, with any choice of regular-
ization parameter A, is lower bounded by 1/+/n. In particular, their proposed
regression vector is §* = (0,...,0,3,%). In their design matrix, the columns
are randomly generated with distinct covariances and the rightmost column is
strongly correlated with the other two columns on its left. With this particular
regression vector and design matrix, they show that Lasso’s prediction error
is lower bounded by 1/4/n for any choice of Lasso regularization parameter A.
This construction is explicit for Lasso, and does not apply to more general M-
estimators. Moreover, for this particular counterexample, there is a one-to-one
correspondence between the regression vector and the design matrix, so that
one can identify the non-zero coordinates of 8* by examining the design matrix.
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Consequently, for this construction, a simple reweighted form of the Lasso can
be used to achieve the fast rate. In particular, the reweighted Lasso estimator

d
0 3 2 . .
b1 € arg min { [ly = XI5+ 2D 51651 ¢, (1.6)

j=1

logd
n

the remaining weights {aq,...,a4_2} chosen to be sufficiently large, has this
property. Dalalyan et al. [12] construct a stronger counter-example, for which
the prediction error of Lasso is again lower bounded by 1/+/n. For this counterex-
ample, there is no obvious correspondence between the regression vector and the
design matrix. Nevertheless, as we show in Appendix A, the reweighted Lasso es-
timator (1.6) with a proper choice of the regularization coefficients still achieves
the fast rate on this example. Another related piece of work is by Candes and
Plan [9]. They construct a design matrix for which the Lasso estimator, when
applied with the usual choice of regularization parameter \ =< a(%)l/ 2 has
sub-optimal prediction error. Their matrix construction is spiritually similar to
ours, but the theoretical analysis is limited to the Lasso for a particular choice
of regularization parameter. Consequently, it does not rule out the possibility
that the Lasso with other choices of regularization parameters, or alternatively
a different polynomial-time estimators might be able to achieve the fast rate.
In contrast, our hardness result applies to general M-estimators based on co-
ordinatewise separable regularizers, and it allows for arbitrary regularization
parameters.

with A chosen in the usual manner (A < o ), weights ag—1 = ag = 1, and

1.2. Complexity-theoretic lower bound for polynomial-time sparse
estimators

In our own recent work [42], we provided a complexity-theoretic lower bound
that applies to a very broad class of polynomial-time estimators. The analy-
sis is performed under a standard complexity-theoretic condition—namely, that
the class NP is not a subset of the class P/poly—and shows that there is no
polynomial-time algorithm that returns a k-sparse vector that achieves the fast
rate. The lower bound is established as a function of the restricted eigenvalue
of the design matrix. Given sufficiently large (n,k,d) and any v > 0, a de-
sign matrix X with restricted eigenvalue v can be constructed, such that every
polynomial-time k-sparse estimator 8,01y has its minimax prediction risk lower
bounded as

- o2 k=0 log d
Mo a(Boory: X) &= Tg’ (1.7)

where § > 0 is an arbitrarily small positive scalar. Note that the fraction k=9 /v,
which characterizes the gap between the fast rate and the rate (1.7), could be
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arbitrarily large. The lower bound has the following consequence: any estimator
that achieves the fast rate must either not be polynomial-time, or must return
a regression vector that is not k-sparse.

The condition that the estimator is k-sparse is essential in the proof of lower
bound (1.7). In particular, the proof relies on a reduction between estimators
with small prediction error in the sparse linear regression model and methods
that can solve the 3-set covering problem [28], a classical problem that is known
to be NP-hard. The 3-set covering problem takes as input a list of 3-sets, which
are subsets of a set S whose cardinality is 3k. The goal is to choose k of these
subsets in order to cover the set S. The lower bound (1.7) is established by
showing that if there is a k-sparse estimator achieving better prediction error,
then it provides a solution to the 3-set covering problem, as every non-zero
coordinate of the estimate corresponds to a chosen subset. This hardness result
does not eliminate the possibility of finding a polynomial-time estimator that
returns dense vectors satisfying the fast rate. In particular, it is possible that
a dense estimator cannot be used to recover a a good solution to the 3-set
covering problem, implying that it is not possible to use the hardness of 3-set
covering to assert the hardness of achieving small prediction error in sparse
regression.

At the same time, there is some evidence that better prediction error can be
achieved by dense estimators. For instance, suppose that we consider a sequence
of high-dimensional sparse linear regression problems, such that the restricted
eigenvalue v = =, of the design matrix X € R"*? decays to zero at the rate
Yn = 1/n?. For such a sequence of problems, as n diverges to infinity, the lower
bound (1.7), which applies to k-sparse estimators, goes to infinity, whereas the
Lasso upper bound (1.5) converges to zero. Although this behavior is somewhat
mysterious, it is not a contradiction. Indeed, what makes Lasso’s performance
better than the lower bound (1.7) is that it allows for non-sparse estimates. In
this example, truncating the Lasso’s estimate to be k-sparse will substantially
hurt the prediction error. In this way, we see that proving lower bounds for non-
sparse estimators—the problem to be addressed in this paper—is a substantially
more challenging task than proving lower bounds for estimators that must return
sparse outputs.

1.3. Main results of this paper

Let us now turn to a high-level statement of the main results of this paper. Our
contribution is to provide additional evidence against the polynomial achievabil-
ity of the fast rate (1.4), in particular by showing that the slow rate (1.5) is a
lower bound for a broad class of M-estimators, namely those based on minimiz-
ing a least-squares cost function together with a coordinate-wise decomposable
regularizer. In particular, we consider estimators that are based on an objective
function of the form L(6; X) = L|ly — X6||3 + A p(6), for a weighted regularizer
p:R? — R that is coordinate-separable. See Section 2.1 for a precise definition
of this class of estimators. Our first main result (Theorem 1) establishes that
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in the regime n < d, there is always a matrix X € R"*? such that for any
coordinate-wise separable function p and for any choice of weight A > 0, the
objective L always has at least one local optimum ) such that

1 ~ logn
sup E[—|X(0h - 0%)[3] 5o/ 2" (1.8)
0*€Bo(k) T n

Moreover, if the regularizer p is convex, then this lower bound applies to all
global optima of the convex criterion L. This lower bound is applicable to many
popular estimators, including the ridge regression estimator [21], the basis pur-
suit method [10], the Lasso estimator [37], the weighted Lasso estimator [43],
the square-root Lasso estimator [2], and least squares based on nonconvex reg-
ularizers such as the SCAD penalty [16] or the MCP penalty [41].

Next, we extend the hardness result from a particular “bad” matrices to
arbitrary design matrices, by presenting sufficient conditions under which the
lower bound (1.8) must hold. Our second result (Theorem 2) provides a general
set of conditions on the design matrix that are sufficient to ensure that any
regularized M-estimator can at best achieve the slow rate. As a corollary, we
prove that there are covariance matrices ¥ € R%*? for which, when a random
design matrix X is generated by sampling its rows in an i.i.d. fashion from the
multivariate Gaussian N (0, X) distribution, the slow rate is still a fundamental
barrier. This negative result for random design matrices is complementary to the
line of work that shows the optimality of /1-based methods on random Gaussian
designs that are generated with an incoherent covariance [26, 32].

In the nonconvex setting, it is impossible (in general) to guarantee any-
thing beyond local optimality for any solution found by a polynomial-time al-
gorithm [19]. Nevertheless, to play the devil’s advocate, one might argue that
the assumption that an adversary is allowed to pick a bad local optimum could
be overly pessimistic for statistical problems. In order to address this concern,
we prove a third result (Theorem 3) that demonstrates that bad local solutions
are difficult to avoid. Focusing on a class of local descent methods, we show
that given a random isotropic initialization centered at the origin, the resulting
stationary points have poor mean-squared error—that is, they can only achieve
the slow rate. In this way, this paper shows that the gap between the fast and
slow rates in high-dimensional sparse regression cannot be closed via standard
application of a very broad class of methods. In conjunction with our earlier
complexity-theoretic paper [42], it adds further weight to the conjecture that
there is a fundamental gap between the performance of polynomial-time and
exponential-time methods for sparse prediction.

The remainder of this paper is organized as follows. We begin in Section 2
with further background, including a precise definition of the family of M-
estimators considered in this paper, some illustrative examples, and discussion
of the prediction error bound achieved by the Lasso. Section 3 is devoted to the
statements of our main results, along with discussion of their consequences. In
Section 4, we provide the proofs of our main results, with some technical lemmas
deferred to the appendices. We conclude with a discussion in Section 5.
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2. Background and problem set-up

As previously described, an instance of the sparse linear regression problem is
based on observing a pair (X,y) € R"*¢ x R™ of instances that are linked via
the linear model (1.1), where the unknown regressor 6* is assumed to be k-
sparse, and so belongs to the fy-ball By (k). Our goal is to find a good predictor,
meaning a vector 8 such that the mean-squared prediction error Lix (5— 0%)|)3
is small.

2.1. Least squares with coordinate-separable regularizers

The analysis of this paper applies to estimators that are based on minimizing a
cost function of the form

1
L(0; ) = 5\\y—X9||§+/\p(9)7 (2.1)

where p : R — R is a regularizer, and A > 0 is a regularization weight. We
consider the following family F of coordinate-separable regularizers:

(i) The function p : R? — R is coordinate-wise decomposable, meaning that
p(0) = Z?=1 p;(6;) for some univariate functions p; : R — R.
(ii) Each univariate function satisfies p;(0) = 0 and is symmetric around zero
(i.e., p;j(t) = p;j(—t) for all t € R).
(i) On the nonnegative real line, [0, +00), each function p; is nondecreasing.

Let us consider some examples to illustrate this definition.

Bridge regression: The family of bridge regression estimates [18] take the
form

d
. 1
BOpiase € arg 52%{51 {EHy - X0|% + )\; \9|V}.

Note that this is a special case of the objective function (2.1) with p;(-) = |- |
for each coordinate. When « € {1, 2}, it corresponds to the Lasso estimator and
the ridge regression estimator respectively. The analysis of this paper provides
lower bounds for both estimators, uniformly over the choice of A.

Weighted Lasso: The weighted Lasso estimator [43] uses a weighted ¢;-norm
to regularize the empirical risk, and leads to the estimator

d
~ 1
B € arg min {—ly— X603+ A ailoil}.
1 € arg min | |y 12+ ¢:1a| |

Here ag, ..., aq are weights that can be adaptively chosen with respect to the
design matrix X. The weighted Lasso can perform better than the ordinary
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Lasso, corresponding to the special case in which all o; are all equal. For in-
stance, on the counter-example proposed by Foygel and Srebro [17], for which
the ordinary Lasso estimator achieves only the slow 1/y/n rate, the weighted
Lasso estimator achieves the 1/n convergence rate. Nonetheless, the analysis of
this paper shows that there are design matrices for which the weighted Lasso,
even when the weights are chosen adaptively with respect to the design, has
prediction error at least a constant multiple of 1/+/n.

Square-root Lasso: The square-root Lasso estimator [2] is defined by mini-
mizing the criterion

~

1
Ocn in § —|ly — X0 A9 -
e € arg yuin { —=lly = X012 + Aol

This criterion is slightly different from our general objective function (2.1), since
it involves the square root of the least-squares error. Relative to the Lasso, its
primary advantage is that the optimal setting of the regularization parameter
does not require the knowledge of the standard deviation of the noise. For the
purposes of the current analysis, it suffices to note that by Lagrangian duality,
every square-root Lasso estimate 6.,.,, is a minimizer of the least-squares criterion
lly — X6|l2, subject to ||6]l1 < R, for some radius R > 0 depending on .
Consequently, as the weight A is varied over the interval [0, o), the square root
Lasso yields the same solution path as the Lasso. Since our lower bounds apply
to the Lasso for any choice of A > 0, they also apply to all square-root Lasso
solutions.

For Lasso and Square-root Lasso, it is a common practice to select the pa-
rameter A by an iterative algorithm [36], or sample it from a data-dependent
distribution [2]. In either case, the value of A is not pre-determined. Our lower
bounds capture these estimators by holding uniformly over all choices of .

SCAD penalty or MCP regularizer: Due to the intrinsic bias induced
by ¢1-regularization, various forms of nonconvex regularization are widely used.
Two of the most popular are the SCAD penalty, due to Fan and Li [16], and
the MCP penalty, due to Zhang et al. [41]. The family of SCAD penalties takes
the form

) Alt| for [t] < A,
oa(t) = X — (12 — 2aA|t] + \?)/(2a — 2) for A\ < |t| < a,
(a+1)X\2/2 for |t| > al,

where a > 2 is a fixed parameter. When used with the least-squares objective, it
is a special case of our general set-up with p;(0;) = ¢x(6;) for each coordinate
j=1,...,d. Similarly, the MCP penalty takes the form

o= | (- 2
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function value

95 0 5
value of t

Fic 1. Plots with regularization weight A = 1, and parameters a = 3.7 for SCAD, and b = 2.7
for MCP.

where b > 0 is a fixed parameter. It can be verified that both the SCAD penalty
and the MCP regularizer belong to the function class F previously defined.
See Figure 1 for a graphical illustration of the SCAD penalty and the MCP
regularizer.

2.2. Prediction error for the Lasso

We now turn to a precise statement of the best known upper bounds for the
Lasso prediction error. We assume that the design matrix satisfies the column
normalization condition. More precisely, letting X; € R™ denote the j* column
of the design matrix X, we say that it is 1-column normalized if

X—\}legl for j =1,2,...,d. (2.2)
Our choice of the constant 1 is to simplify notation; the more general notion
allows for an arbitrary constant C' in this bound.

In addition to the column normalization condition, if the design matrix fur-
ther satisfies a restricted eigenvalue (RE) condition [4, 38], then the Lasso is
known to achieve the fast rate (1.4) for prediction error. More precisely, re-
stricted eigenvalues are defined in terms of subsets S of the index set {1, 2, ..., d},
and a cone associated with any such subset. In particular, letting S¢ denote the
complement of S, we define the cone

C(S) :={0 R | ||0sc|1 < 30s]1}

Here [|0sc[|1 : = >_,c e |;] corresponds to the £1-norm of the coefficients indexed
by S¢, with ||fs||1 defined similarly. Note that any vector 8* supported on S
belongs to the cone C(S); in addition, it includes vectors whose ¢;-norm on
the “bad” set S¢ is small relative to their ¢1-norm on S. Given triplet (n,d, k),
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the matrix X € R™*? is said to satisfy a 7-RE condition (also known as a
compatibility condition) if

1
~[ X015 =)0z forallge U C(S). (2:3)
|SI=k

The following result [4, 29, 6] provides a bound on the prediction error for the
Lasso estimator:

Proposition 1 (Prediction error for Lasso with RE condition). Consider the
standard linear model for a design matriz X satisfying the column normalization
condition (2.2) and the v-RE condition. Then, for any vector 0* € By(k) and

6 € (0,1], the Lasso estimator é\)m with A, = 404/ % +d satisfies

1 o~ wno _ ck o?logd 4 .
EHXH)\TL - X075 < oy { ~ +9 } for any 6* € By(k), (2.4)

with probability at least 1 — c1de—c2n9”

The Lasso rate (2.4) will match the optimal rate (1.4) if the RE constant ~
is bounded away from zero. If v is close to zero, then the Lasso rate could be
arbitrarily worse than the optimal rate. It is known that the RE condition is
necessary for recovering the true vector 6* [see, e.g., 33], but minimizing the
prediction error should be easier than recovering the true vector. In particu-
lar, strong correlations between the columns of X, which lead to violations of
the RE conditions, should have no effect on the intrinsic difficulty of the pre-
diction problem. Recall that the {p-based estimator 6y, satisfies the prediction
error upper bound (1.4) without any constraint on the design matrix. Moreover,
Raskutti et al. [33] show that many problems with strongly correlated columns
are actually easy from the prediction point of view.

In the absence of RE conditions, ¢1-based methods are known to achieve the
slow 1/4/n rate, with the only constraint on the design matrix being a uniform
column bound [4]:

Proposition 2 (Prediction error for Lasso without RE condition). Consider the
standard linear model for a design matriz X satisfying the column normalization
condition (2.2). Then for any vector 8* € Bo(k)NB1(R) and § € (0, 1], the Lasso

estimator §>\n with A\, = 404/ @ + 0 satisfies the bound

1 ~ 112 2logd
~X(Br, = 0713 < e R/ =2 +3), (2:5)

with probability at least 1 — c1d e—c2nd?

Combining the bounds of Proposition 1 and Proposition 2, we have

o?klogd R logd}.

g
o

Mn,k,d(ael : X) < ¢ min { -
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If the RE constant ~ is sufficiently close to zero, then the second term on the
right-hand side will dominate the first term. In that case, the 1/4/n achievable
rate is substantially slower than the 1/n optimal rate for reasonable ranges of
(k, R). One might wonder whether the analysis leading to the bound (2.6) could
be sharpened so as to obtain the fast rate. Among other consequences, our first
main result (Theorem 1 below) shows that no substantial sharpening is possible.

3. Main results

We now turn to statements of our main results, and discussion of their conse-
quences.

3.1. Lower bound for a particular family of design maitrices

In this section, we show that there exists a particular family of “bad” design
matrices, in which the 1/4/n rate is unavoidable for any regularized M-estimator.
Our analysis applies to the set of local minimas of the objective function L
defined in equation (2.1). More precisely, a vector 6 is a local minimum of
the function 6 — L(0; ) if there is an open ball B centered at 6 such that
0 € arg Iglei]}I}} L(6; \). We then define the set

Oy = {9 € R? | 6 is a local minimum of the function 6 — L(6; )\)}, (3.1)

an object that depends on the triplet (X, v, p) as well as the choice of regular-
ization weight A. The set &) A can contain multiple elements, and it may contain
both global and local minima.

At best, a typical descent method applied to the objective L can be guaran-
teed to converge to some element of © . The following theorem provides a lower
bound, applicable to any method that always returns some local minimum of
the objective function (2.1).

Theorem 1. For any pair (n,d) such that d > n > max{4, (132)*log(n), (£)*}
and any sparsity level k > 2, there is a design matriz X € R™*? satisfying
the column normalization condition (2.2) such that for any coordinate-separable

penalty, we have

1
sup E |inf sup —||X(0 —60%)||3| > coR
0*€Bo (k)NB1(R) A20pch, T

logn

- (3.2a)

Moreover, for any convex coordinate-separable penalty, we have

sip  E|inf inf L[X(0— 02| > cory/ B (3.2b)
n

0*€Bo(k)NBy(R) [*200cO, N

In both of these statements, the constant ¢ is universal, independent of
(n,d, k,o, R) as well as the design matrix. See Section 4.1 for the proof.
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In order to interpret the lower bound (3.2a), consider any estimator 0 that
takes values in the set © A, corresponding to local minima of L. The result is of a
game-theoretic flavor: the statistician is allowed to adaptively choose A based on
the observations (y, X), whereas nature is allowed to act adversarially in choos-
ing a local minimum for every execution of 1/9\,\. Under this setting, Theorem 1

implies that
1 ~ .12 logn
sup  -E [||XeA — X9 HQ} > coR . (3.3)
0*€Bo(k)NBy1 (R) T n

For any convex regularizer (such as the ¢;-penalty underlying the Lasso esti-
mate), equation (3.2b) provides a stronger lower bound, one that holds uniformly
over all choices of A > 0 and all (global) minima. For the Lasso estimator, the
lower bound of Theorem 1 matches the upper bound (2.5) up to the logarithmic
term (%)1/ 2. Thus, our lower bound is tight as long as the dimension d is
bounded by a constant-degree polynomial function of n. Closing the gap for

problems of super-polynomial dimensions remains an open problem.

3.2. Lower bound for design matrices under RE conditions

One potential concern with Theorem 1 is that lower bound might apply only to
extremely ill-conditioned design matrices, even with sparsity constraints; such
matrices might not be as likely to arise in practice. As noted earlier, control
of restricted eigenvalues provides guarantees on the “sparse condition number”
of the design matrix, and such control plays an important role in the theory of
sparse estimation. Accordingly, it is natural to wonder whether it is also possible
to prove a non-trivial lower bound when the restricted eigenvalues are bounded
above zero. Recall that under the RE condition with a positive constant v, the
Lasso will achieve the rate (2.6), as defined by the minimum of a scaled fast
rate 1/(7?n) and the familiar slow rate 1/y/n. The following result shows that
the Lasso rate cannot be improved to match the fast rate.

Corollary 1. For any sparsity level k > 2, any constant v € (0,1] and any
pair (n,d) such that d = n > max{2k?, k(152)?log(n), k(£)*}, there is a design
matriz X € R™¥4 satisfying the column normalization condition (2.2) and the
v-RE condition, such that for any coordinate-separable penalty, we have

1 21 1
sup E |inf sup —|| X (0 —6%)[|3| > cmin w,O’R oen
A20,.6 N n

0*€Bo (2k)NB1 (R) n
(3.4a)

Moreover, for any convex coordinate-separable penalty, we have

1 k1 1
sup E {inf inf —||X(90*)§} > cmin U—Ogn,ch cen i,
0*€Bo(2k)NB1 (R) [A200cO, N mn n

(3.4b)
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Since none of the terms on the right-hand side of inequalities (3.4a) and (3.4b)
match the optimal rate (1.4), the corollary implies that the optimal rate is not
achievable even if the restricted eigenvalues are bounded above zero. Comparing
this lower bound to the Lasso upper bound (2.6), we observe that the upper
bound has a term that is proportional to 1/42, but the corresponding term in
the lower bound is proportional to 1/4. Proving a sharper lower bound that
closes this gap remains an open problem.

We remark that Corollary 1 follows by a refinement of the proof of Theorem 1.
In particular, we first show that the design matrix underlying Theorem 1—call
it X,.q—satisfies the v,-RE condition, where the quantity -y, converges to zero
as a function of sample size n. In order to prove Corollary 1, we construct a
new block-diagonal design matrix such that each block corresponds to a version
of X,.4. The size of these blocks are then chosen so that, given a predefined
quantity v > 0, the new matrix satisfies the v-RE condition. We then lower
bound the prediction error of this new matrix, using Theorem 1 to lower bound
the prediction error of each of the blocks. We refer the reader to Appendix C
for the full proof.

3.3. Lower bound for general design matrices

Our proof of Theorem 1 is based on a particular construction of “bad” design
matrices, but at a deeper level, there is actually a fairly broad class of matrices
that also lead to the slow rate. In particular, in this section, we describe a set
of general conditions on design matrices that are sufficient to ensure that the
slow rate is unavoidable by any regularized M-estimator. We then show that the
family of “bad” design matrices from the previous sections can be understood
as a special case. We further show that our theory also encompasses certain
ensembles of random matrices, for instance, those with rows sampled in an
ii.d. manner from a multivariate normal distribution with a suitable covariance
matrix.

Before presenting the main result of this subsection, let us introduce some
shorthand notation that is useful. For an arbitrary subset of integers J C
{1,...,d} and arbitrary matrix A (or vector v), we denote by A; the sub-matrix
with column indices in J (or by v; the sub-vector with coordinate indices in
J). We use A_; (or v_j) as shorthand notation for the sub-matrix (or the sub-
vector) whose column indices (or coordinate indices) are not in J. Similarly,
we denote by ps(0) = > ,c;pi(0;) and p_s(0) := >4, p;(0;) the penalty
function for coordinates in and outside of the set J. We use the standard or-
der notation O(-), (-) and O(-), where we suppress all constants that do not
depend on the triple (n,d, k).

Given this notation, we are ready to describe our sufficient conditions on the
design matrix:

Assumption A (Sufficient conditions for “badness”).

o First, the matriz X € R"™ ? satisfies the column normalization condi-
tion (2.2), and has rank at least r = Q(n'/?).
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e Second, there are integers s = O(1) and m = Q(r) as well as disjoint sets
J1, ..oy Jm C[d], each of cardinality s, such that:

(a) For each subset J in the collection {Ji,...,Jm}, there is a vector
u € R® such that ||uly =1 and 2| XT X jull; = O(n=1/?).

(b) For each J € {Ji,...,Jm}, any unit vector v in the column space
of Xy and any unit vector v’ in the column space of X_;, we have
[{v,0)] < O(r~1/2).

(¢) For each index j € U™, J;, we have ﬁHXj”Q = Q(1). Moreover, the
singular values of matrix ﬁX(U;';lji) are lower bounded as Q(n~='/4)
and upper bounded as O(1).

It is worthwhile making a few comments on the meaning of these different re-
quirements. First, condition (a) implies there is an s-dimensional vector u such
that the squared norm 1||X;u3 is bounded by v|u||} where v = O(n=1/2).
Comparing with inequality (2.3), we observe that the Restricted Eigenvalue
(RE) condition is violated. Since the RE condition is sufficient for the fast rate,
it is obvious that condition (a) is necessary for the slow rate. On the other
hand, condition (b) implies that the column space of X ; is roughly orthogonal
to the space spanned by other columns in the design matrix. The consequence of
this assumption is that the original d-dimensional regression problem contains m
weakly correlated sub-problems of dimension s, so that each of them can be sep-
arately studied. Condition (c¢) implies that the singular values of the joint design
matrix of these sub-problems—namely, the singular values of ﬁX (Um ,J;)——are
neither too large nor too small.

We present a general theorem before giving concrete examples. In order to
simplify the statement, we assume the noise variance 02 = 1, and that the true
vector 6* is bounded by [|6*||1 < 1. The theorem holds if these two quantities
are assigned by any other constants.

Theorem 2. Consider any design matriz X that satisfies the conditions in
Assumption A. For any sufficiently large sample size n > ¢y, any sparsity level
k > s, and for any coordinate-separable penalty, we have

1
sup E |inf sup —||X (0 —0")|2] > con™ /2, (3.5)
0 €Bo(k)MB1(1)  [*209eb, T

where ¢1,ca > 0 denote constants independent of (n,d, k).

Relative to our earlier results, the proof of Theorem 2 is significantly more
challenging, because we have no explicit control over the design matrix. In par-
ticular, if a matrix X satisfies Assumption A, then the assumption will remain
valid for any small perturbation of the matrix. This property enables the lower
bound to capture random design matrices, but adds challenges to the proof. See
Section 4.2 for the proof of the theorem.

Example 1 As a concrete example, let us demonstrate that the fixed design
matrix defined in the proof of Theorem 1 satisfies Assumption A. As detailed
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in Section 4.1, the proof of this result is based on constructing a block-diagonal
design matrix X € R"*? given by

X = [blkdiag {VnA, ViiA, ..., VnA} 0] e R™,

n/2 copies

where the sub-matrix A takes the form

= (o) inter

It is straightforward to verify that the matrix X satisfies the column nor-
malization condition ((2.2)) and has rank n. It remains to verify the condi-
tions (a), (b) and (c) of Assumption A. Choosing s = 2 and J; = {2i — 1,2¢}
for i =1,2,...,n/2, then condition (a) holds with vector u := (1/2,1/2). Con-
dition (b) is satisfied because the column spaces of X, and X_;, are orthog-
onal spaces for every i € [n/2]. Condition (c) is satisfied because the matrix
n~l/2x (um 7, 1s a block-diagonal matrix consisting of sub-matrices A, and each

] ., with «:= arcsin(n~%/%).

submatrix’s singular values are lower bounded by Q(n~/4) and upper bounded
by 1.

Example 2 As a second illustration, consider a random design X € R™*¢
with rows drawn in an i.i.d. manner from a multivariate normal distribution
N(0,%) where the covariance matrix is defined by:

1/2 1/2 —n~1/?

1/2 —n=1/2 1/2 (3:6)

Y =diag(4,A4,...,A) where A:=
——
d/2 copies

For such correlated Gaussian designs, sufficient conditions for achieving the op-
timal rate (1.4) have been extensively studied (e.g., [26, 32]). However, it has
remained unknown if the optimal rate can be achieved for random design ma-
trices drawn from general covariance matrices ¥. Here we provide a negative
answer to this question by showing that if the covariance matrix is unfavor-
ably chosen, then any regularized M-estimator can (at best) achieve the slow
rate.

Proposition 3. For d = \/n, consider a random design matriz X € R™"*< with
each row sampled in an i.i.d. manner from the multivariate normal N'(0, %) with
the covariance X from equation (3.6). Then with probability at least 1—e 92Vn),
the matriz X satisfies Assumption A with sparsity level s = 2.

See Appendix D for the proof.
3.4. Lower bound for local descent methods

For any least-squares cost with a coordinate-wise separable regularizer, Theo-
rem 1 establishes the existence of at least one “bad” local minimum such that
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the associated prediction error is lower bounded by 1/y/n. One might argue
that this result could be overly pessimistic, in that the adversary is given too
much power in choosing local minima. Indeed, the mere existence of bad local
minima need not be a practical concern unless it can be shown that a typical
optimization algorithm will frequently converge to one of them.

Steepest descent is a standard first-order algorithm for minimizing a convex
cost function [3, 5]. However, for nonconvex and non-differentiable loss func-
tions, it is known that the steepest descent method does not necessarily yield
convergence to a local minimum [14, 40]. Although there exist provably con-
vergent first-order methods for general nonsmooth optimization (e.g., [27, 23]),
the paths defined by their iterations are difficult to characterize, and it is also
difficult to predict the point to which such an algorithm eventually converges.

In order to address a broad class of methods in a unified manner, we begin
by observing that most first-order methods can be seen as iteratively and ap-
proximately solving a local minimization problem. For example, given a stepsize
parameter n > 0, the method of steepest descent iteratively approximates the
minimizer of the objective over a ball of radius 7. Similarly, the convergence
of algorithms for nonconvex optimization is based on the fact that they guar-
antee decrease of the function value in the local neighborhood of the current
iterate [27, 23]. We thus study an iterative local descent algorithm taking the
form:

gt e in  L(6:; )\, 3.7
" pedlip ) o

where 7 > 0 is a given radius, and By(n;0) : = {0 € R? | ||§ — 6!]|2 < n} is the
ball of radius i around the current iterate. If there are multiple points achieving
the optimum, the algorithm chooses the one that is closest to 6%, resolving any
remaining ties by randomization. The algorithm terminates when there is a
minimizer belonging to the interior of the ball By (n; 0%)—that is, exactly when
6*+! is a local minimum of the loss function.

It should be noted that the algorithm (3.7) defines a powerful algorithm—one
that might not be easy to implement in polynomial time—since it is guaranteed
to return the global minimum of a nonconvex program over the ball Ba(n; 6%).
In a certain sense, it is more powerful than any first-order optimization method,
since it will always decrease the function value at least as much as a descent
step with stepsize related to 7. Since we are proving lower bounds, these obser-
vations only strengthen our result. We impose two additional conditions on the
regularizers:

(iv) BEach component function p; is continuous at the origin.
(v) There is a constant H such that |p(z) — p}(¥)| < H|z — &| for any pair
x,Z € (0,00).

Assumptions (i)-(v) are more restrictive than assumptions (i)-(iii), but they are
satisfied by many popular penalties. As illustrative examples, for the #;-norm,
we have H = 0. For the SCAD penalty, we have H = 1/(a — 1), whereas
for the MCP regularizer, we have H = 1/b. Finally, in order to prevent the
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update (3.7) being so powerful that it reaches the global minimum in one single
step, we impose an additional condition on the stepsize, namely that

B TozT
1 < min {B, m}, where B =< %. (3.8)

It is reasonable to assume that the stepsize bounded by a time-invariant con-
stant, as we can always partition a single-step update into a finite number of
smaller steps, increasing the algorithm’s time complexity by a multiplicative
constant. On the other hand, the O(1/+/n) stepsize is achieved by popular first-
order methods. Under these assumptions, we have the following theorem, which
applies to any regularizer p that satisfies Assumptions (i)-(v).

Theorem 3. For any pair (n,d) such that d > n > max{4, (7)?log(n), (£)43,
and any sparsity level k > 2, there is a design matriz X € R™*? satisfying the
column normalization condition (2.2) such that

(a) The update (3.7) terminates after a finite number of steps T at a vector
0 = 0T+ that is a local minimum of the loss function.

(b) Given a random initialization 6° ~ N(0,7*I4x4), the local minimum satis-
fies the lower bound

1, .~ 1
sup E inf—||X9—X9*||g] > coRy/ ogn
0*€Bo(k)NBy (R) LA20M n

Part (a) shows that the local descent method always returns a local minimizer.
For convex loss functions, any local minimum is a global minimum, thus the
algorithm is able to exactly compute the Lasso estimator. As a consequence, the
prediction error established by Proposition 2, namely o R+/log(d)/n, provides an
upper bound on the prediction error for the family of local descent algorithms.
It matches the lower bound in Part (b) up to a constant factor whenever llggi =
O(1).

Theorem 3 shows that local descent methods based on a random initialization
do not lead to local optima that achieve the fast rate. This conclusion provides
stronger negative evidence than Theorem 1, since it shows that bad local minima
not only exist, but are difficult to avoid.

3.5. Simulations

In the proof of Theorem 1 and Theorem 3, we construct specific design matrices
to make the problem hard to solve. In this section, we apply several popular
algorithms to the solution of the sparse linear regression problem on these “hard”
examples, and compare their performance with the ¢5-based estimator (1.3).
More specifically, focusing on the special case n = d, we perform simulations for
the design matrix X € R™*" used in the proof of Theorem 3. It is given by

X = [blkdiag {viA, Vi, ..., v/nA} |,

n/2 copies
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prediction error

f---Lasso
—--SCAD
—=MCP
—Baseline
10' 10° 10°

problem dimension n

F1G 2. Problem scale n wversus the prediction error E[%HX(@\—O*)H%] The ezpectation is
computed by averaging 100 independent runs of the algorithm. Both the sample size n and
the prediction error are plotted on a logarithmic scale.

where the sub-matrix A takes the form

= C9S(a) B .COS(OZ) ., where a = arcsin(n~'/4).
sin(e)  sin(«)
Given the 2-sparse regression vector §* = (0.5,0.5,0, .. .,0), we form the re-
sponse vector y = X0* + w, where w ~ N (0, I,xn)-

We compare the £y-based estimator, referred to as the baseline estimator, with
three other methods: the Lasso estimator [37], the estimator based on the SCAD
penalty [16] and the estimator based on the MCP penalty [41]. In implementing
the £y-based estimator, we provide it with the knowledge that k = 2, since the
true vector 6* is 2-sparse. For Lasso, we adopt the MATLAB implementation [1],
which generates a Lasso solution path evaluated at 100 different regularization
parameters, and we choose the estimate that yields the smallest prediction error.
For the SCAD penalty, we choose a = 3.7 as suggested by Fan and Li [16]. For
the MCP penalty, we choose b = 2.7, so that the maximum concavity of the
MCP penalty matches that of the SCAD penalty. For the SCAD penalty and the
MCP penalty (and recalling that d = n), we studied choices of the regularization

weight of the form A = C'y/ IO@% for a pre-factor C' to be determined. As shown

in past work on nonconvex regularizers [25], such choices of A lead to low ¢s-
error. By manually tuning the parameter C' to optimize the prediction error,
we found that C' = 0.1 is a reasonable choice. We used routines from the GIST
package [20] to optimize these nonconvex objectives.

By varying the sample size over the range 10 to 1000, we obtained the results
plotted in Figure 2, in which the prediction error E[1 [ X (6 — 6*)||3] and sample
size n are both plotted on a logarithmic scale. The performance of the Lasso,
SCAD-based estimate, and MCP-based estimate are all similar. For all of the
three methods, the prediction error scales as 1/+/n, as confirmed by the slopes
of the corresponding lines in Figure 2, which are very close to 0.5. In fact,
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by examining the estimator’s output, we find that in many cases, all three
estimators output § = 0, leading to the prediction error (X (0 —6%)||3 = ﬁ
Since the regularization parameters have been chosen to optimize the prediction
error, this scaling is the best rate that the three estimators are able to achieve,
and it matches the theoretical prediction of Theorem 1 and Theorem 3.

In contrast, the fp-based estimator achieves a substantially better error rate.
The slope of the corresponding line in Figure 2 is very close to 1. It means that
the prediction error of the £y-based estimator scales as 1/n, thereby matching
the theoretically-predicted scaling (1.4).

4. Proofs

We now turn to the proofs of our theorems. In each case, we defer the proofs of
more technical results to the appendices.

4.1. Proof of Theorem 1

For a given triplet (n, o, R), we define an angle o := arcsin (711/7 %), where

sn € [1,+/logn] is a scaling factor (depending on n) to be specified later. Then
we define a two-by-two matrix

cos(a) —cos()
sin(a)  sin(«) } (4.12)
Using the matrix A € R2*? as a building block, we construct a design matrix
X € R™?, Without loss of generality, we may assume that n is divisible by
two. (If n is not divisible by two, constructing a (n — 1)-by-d design matrix
concatenated by a row of zeros only changes the result by a constant.) We then
define the matrix

X = [blkdiag{\/ﬁA, VA, ... \/nA} 0} € R™X4, (4.1D)

n/2 copies

where the all-zeroes matrix on the right side has dimensions n x (d — n). It
is easy to verify that the matrix X defined in this way satisfies the column
normalization condition (2.2).

Next, we prove the lower bound (3.2a). For any integers i, j € [d] with ¢ < j,
let 0; denote the " coordinate of 8, and let 6;. ; denote the subvector with entries
{0;,...,0;}. Since the matrix A appears in diagonal blocks of X, we have

n/2
. ]- *\ (12 . * 2
}\gf QSUP EHX(H -0z = )1\%% sup Z ‘|A(0(2i—1):2i - 0(2i—1):2i)”27 (4.2)
€O, 0€eO, j=1

and it suffices to lower bound the right-hand side of the above equation.
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For the sake of simplicity, we introduce the shorthand B := 47{, and define

the scalars
~v; = min{pe;—1(B), p2:(B)} foreachi=1,...,n/2.

Furthermore, we define
(ai, w(2i71):2i>

0 = (cosa,sm'a) ?f v = p2i_1(B) and Wl = '
(—cosa,sina) if v, = pe;(B) Vn
(4.3a)

Without loss of generality, we may assume that v; = rr[la/x]{%} and 7y; = p2;—1(B)
1€(n/2

for all ¢ € [n/2]. If this condition does not hold, we can simply re-index the
columns of X to make these properties hold. Note that when we swap the
columns 27 — 1 and 2i, the value of a; doesn’t change; it is always associated
with the column whose regularization term is equal to 7;.

Finally, we define the regression vector §* = [£ £ 0 ... 0] € R% Given
these definitions, the following lemma lower bounds each term on the right-hand

side of equation (4.2).

Lemma 1. For any A > 0, there is a local minimum é\,\ of the objective function
L(0; \) such that L[| X (05 — 6*)||3 > T\ + Ty, where

[|wi:2]2

Jn
n/2 2

Ty = ;11{3/2 <wl < B] (BT - /\71)+. (4.4b)

Ty = H[Am > 4B(sin®(a)R + )} sin2(a)(R — 2B)2  and  (4.4a)

Moreover, if the reqularizer p is convex, then every minimizer 0y satisfies this
lower bound.

See Appendix B for the proof of this claim.

Using Lemma 1, we can now complete the proof of the theorem. It is conve-
nient to condition on the event £ : = {||wi.2f|, < & }. Since ||w1:2||3 /o? follows
a chi-square distribution with two degrees of freedom, we have P[£] > 0. Con-
ditioned on this event, we now consider two separate cases:

Case 1: First, suppose that Ay; > (s,0)?/n. In this case, we have

||w1:2||2} S 168n0 ( Spno I o > _ (SnO')2

4B{ sin®(@) R + < M1,

NG Jn \32vn | 320m n

and consequently

2
- SnO 8577,0 SnUR
T+ 1> T =sin(a)(R - 2B)3 = o (R VU > = 1280
+
(4.5a)

The last inequality holds because we assumed n > (160/R)? log(n), and as a con-
sequence, the radius R is lower bounded by R/2 > 8c+/log(n)/n > 8s,0/+/n.
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Case 2: Otherwise, we may assume that Ay; < (s,,0)%/n. In this case, we have

s 3(sn0)?
Ti+Ty>To =) [(B/2<w,<B)—"~*. 4.5b
1+12 212 ; ( / S W = ) n ( )
Combining the two lower bounds (4.5a) and (4.5b), we find
. 1 * (12
E |inf sup —|| X0 — X0 Hz‘g
A2 TECN n
/2
) snOR ¢ 3(sn0)?
>E I[B/2 <w: < B/2] —~ 4.
> E |min 128\/57;[/7%7 2= ; (4.6)

T3

where we have used the fact that {w;}fz/ > are independent of the event €. To
lower bound the right-hand side, we partition the integer set {1,2,...,n/2}
into m := |n3/*| disjoint subsets, such that each subset contains at least

|n/(2m)] integers. Let these subsets be called Sy, ..., Sy,. Using the inequality
min {a, Sz b,} >3 min{%a, > ies, bi}, valid for scalars a and {0},
we see that

m 9 4 ) 7 ,
;>3 P ZH[ 51 < sna] >1 min{ n/(2m)] s,0R 3(s,0) }7
Jj=1

5, n/2 128y/n n

where we have used the definition B := =222
Since w} ~ N (0,02 /n), we have
P[2s,0/vn < w) < 4s,0/v/n] = ®(—2s,) — P(—4s,),

where ®(-) is the CDF of the standard normal distribution. For any ¢t > 0, the
function ® is sandwiched [15] as

(t_l _ t—3)€—t2 t—le—t2

v s

By choosing s,, = max{1, ¢;y/logn} with a sufficiently small universal constant
c1, we guarantee that ®(—2s,,) — ®(—4s,) > con~ /4 for a universal constant

ca > 0. Since |S;| = Q(n'/*), there is a universal constant ¢z > 0 such that
]P’[Ziesj H[2f/"ﬁ" <wj < 45#"] > 1] > c3. Putting together the pieces, we have
shown that

n nl/4

1 1 1 2
E |inf sup —|| X6 — X0*||3| > P[£]T3 > cmin} oR Og(n)7 og(n)o .
A0 96@)\ n

The assumption n > (R/o)* implies that the first-term on the right-hand side
is smaller than the second term. Hence we obtain the desired lower bound.
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4.2. Proof of Theorem 2

The proof involves four positive constants, denoted by Cy, Cs, C5 and Cy, whose
precise values are specified in later parts of the proof. The constant C; € (0, 1]
is used to define the quantity B := C, - n~'/2, which specifies a cut-off point
used in the argument. More precisely, for each index set J; € {J1,..., i}, we
let
7i = min{p;(B)}

be the minimum value of p;(B) within the index set. In other words, the penalty
at point B for coordinates J; is lower bounded by ;. As a shorthand notation, let
i* be the index such that v+ = max;cp,,{7:}; that is, the index where the lower
bounds reach the maximal value. Throughout this proof, we write the index set
Ji= and the quantity ~;~ simply by J and . As additional shorthand notations,
let TI(-) represent the orthogonal operator that projects onto the column space
of matrix X, and let II;(-) represent the orthogonal operator that projects onto
the column space of matrix X ;.

For every index i # ¢*, by definition we can find an index j from the index
set J; such that p;(B) = ;. The set of these m — 1 indices is denoted by I.
The largest singular value of matrix X; is upper bounded by that of the matrix
X(um , J,), and by the condition (c) of Assumption A, bounded by O(n'/?). Thus,
the largest singular value of X is at most Ln'/? for some constant L.

The constant Cy will be chosen in the interval (0,1] to define the true vector
0*. The condition (a) of Assumption A shows that there is a vector u € R®
satisfying |[ul; = 1 and || XT X uls = O(n'/?). Based on this vector u, we
construct the ground truth vector 0* by setting 0% := Cou and 6* ; := 0. This
choice ensures that response vector y satisfies the linear equation y = Cy X ju+w.

Finally, the constants C3 and Cj are used to define two events that play an
important role in the proof. Recalling that r denotes the rank of matrix X, we
define the events

&= {IMw)3 <2r and ) <5}, and
Ey = {there exists I’ C I such that | X w| > Cynt/?
for any ¢ € I' and |I'| > C4m}.

At high level, the remainder of the proof consists of the following steps:

e First, we condition on the event & N &, and split the analysis into two
cases, depending on whether Ay > 1/n or Ay < 1/n;
e Second, we prove that the event & N & holds with positive probability.

Recall that the definition of -y relies on the constant C;. In fact, we can choose a
concrete value for the constant C; such that whenever Ay > 1/n (referred to as
Case I), the prediction error is lower bounded by n~1/2. This claim is formalized
in the following lemma:
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Lemma 2. Assume that the event & holds. There is a setting of the constant
Cy € (0,1] such that if Ay > 1/n holds, then there is a local minimum 6 of the

objective function that satisfies %HX(@\— 0|13 = Q(n=1/?).

See Appendix E for the proof of this claim.

Once the constant C; is chosen so that the guarantee of Lemma 2 holds, our
next step is to choose the other constants Co, C's and Cy so that the prediction
error is also lower bounded by n='/2 in the alternative case Ay < 1/n (referred
to as Case II). From here onwards, we fix the choice

1 LCy
C3i= — + —
3 C, + 5
As for the constants (Cy,Cy), our proof exploits the fact that no matter how
we choose the value of Cjy, there is always an setting of Cs (possibly depending
on C4) such that the lower bound on the prediction error holds. This fact is
formalized in the following lemma.

Lemma 3. Assume that £ N Ey holds. Then, given an arbitrary value Cyq > 0,
there is a setting of the constant Cy € (0, 1] such that if \y < 1/n, then the global
minimizer 0 of the objective function satisfies L] X (0 — %) = Q(n=1/2).

We give the proof of this claim in Appendix E. In conjunction, Lemmas 2 and 3
guarantee that, with appropriate choices of the constants, the prediction error
is lower bounded as Q(n~'/2) in both Case I and Case II.

Our final step is to ensure that the event £, NE> holds with a positive constant
probability. Recalling that the constant Cy has not been chosen, we use this
remaining degree of freedom to control this probability, as formalized in the
following:

Lemma 4. Given an arbitrary value C3 > 0, there is a constant p > 0 and an
assignment for Cy > 0 such that P(E1 N &) > p.

Note that our choice of constant Cy, made to ensure that the conclusion of
Lemma 4 holds, depends on that of C3, because both C3 and C4 appear in the
definition of event &;. Finally, based on the value of Cy, we choose C5 to be the
constant that makes Lemma 3 hold. Putting all pieces together, we conclude
that

E | inf sup ~|X(6—0")[3] > 2n~Y2) - P(E 1 &) = 02,
A20 OGé)\ n

which completes the proof of the theorem.
4.3. Proof of Theorem 3

The proof of Theorem 3 is conceptually similar to the proof of Theorem 1, but
differs in some key details. We begin with the definitions
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_V5n0 and B := Sn—g,
n/4/R Vn

where s, € [1,y/logn] is a scaling factor to be specified later. Given our as-
sumption n > log(n)(40/R)?, note that we are guaranteed that the inequalities
sin(a)) < 1/2 and 2B < 20+/log(n)/n < R/2 hold. We then define the matrix
A € R?*2 and the matrix X € R"*? by equations (4.1a) and (4.1b).

o ;= arcsin <

4.3.1. Proof of part (a)

Let {6'}:2, be the sequence of iterates generated by equation (3.7). We pro-
ceed via proof by contradiction, assuming that the sequence does not terminate
finitely, and then deriving a contradiction. We begin with a lemma.

Lemma 5. If the sequence of iterates {0'}$2, is not finitely convergent, then it
is unbounded.

We defer the proof of this claim to the end of this section. Based on Lemma 5,
it suffices to show that, in fact, the sequence {0!}?°, is bounded. Partitioning
the full vector as 6 := (61.,, 0n+1:4), we control the two sequences {61.,,}72, and

{e'fl—i-l:d}?iO'

Beginning with the former sequence, notice that the objective function can
be written in the form

) L 2 -
L(O:2) = —lly = Xrnbrnll3 + ; Api(60:),

where X7, represents the first n columns of matrix X. The conditions ((4.1a))
and ((4.1b)) guarantee that the Gram matrix X7, X1, is positive definite, which
implies that the quadratic function 01, — ||y — X1.,01.,||3 is strongly convex.
Thus, if the sequence {6}, }7°, were unbounded, then the associated cost se-
quence {L(0% \)}52, would also be unbounded. But this is not possible since
L(6%; \) < L(6% ) for all iterations t = 1,2, .... Consequently, we are guaran-
teed that the sequence {6%.,,}7°, must be bounded.

It remains to control the sequence {6 ;.;}72,. We claim that for any i € {n+
1,...,d}, the sequence {|0f]}?°, is non-increasing, which implies the bounded-
ness condition. Proceeding via proof by contradiction, suppose that |0f| < |0§+1|
for some index i € {n+1,...,d} and iteration number ¢ > 0. Under this condi-
tion, define the vector

g O i A
Tooe ifj=i

Since p; is a monotonically non-decreasing function of |z|, we are guaranteed
that L(0'T1; \) < L(6'F1; \), which implies that **! is also a constrained min-
imum point over the ball By(n; 6%). In addition, we have

168 = 0|2 = [0 — 0"l — 107 — 07 | <,
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so that 5;“ is strictly closer to #*. This contradicts the specification of the
algorithm, in that it chooses the minimum closest to 6¢.

Proof of Lemma 5: The final remaining step is to prove Lemma 5. We
first claim that ||§% — 6'||s > n for all pairs s < t. If not, we could find some
pair s < t such that || — 6¢||a < 5. But since ¢ > s, we are guaranteed that
L(0%;)\) < L(65F1; ). Since 0511 is a global minimum over the ball By(n; 6°)
and [6° — 6%||2 < n, the point 6" is also a global minimum, and this contradicts
the definition of the algorithm (since it always chooses the constrained global
minimum closest to the current iterate).

Using this property, we now show that the sequence {6'}2° is unbounded.
For each iteration ¢t = 0,1,2.. ., we use B! = Ba(1/3; 0") to denote the Euclidean
ball of radius 7/3 centered at 6. Since ||§° — 6*||2 > 7 for all s # t, the balls
{B*}%2, are all disjoint, and hence there is a numerical constant C' > 0 such
that for each T' > 1, we have

T T
Vol( U, IB%"‘) = Z vol(B') = C Z ne.
t=0 t=0

Since this volume diverges as T — oo, we conclude that the set B : = U B!
must be unbounded. By construction, any point in B is within 7/3 of some ele-
ment of the sequence {6?}9°, so this sequence must be unbounded, as claimed.

4.8.2. Proof of part (b)

We now prove a lower bound on the prediction error corresponding the local
minimum to which the algorithm converges, as claimed in part (b) of the theorem
statement. In order to do so, we begin by introducing the shorthand notation

Vi = min{ sup py;_q1(u), sup pgz(u)} for each i = 1,...,n/2.
u€(0,B] u€(0,B]

Then we define the quantities a; and w} by equations (4.3a). Similar to the proof
of Theorem 1, we assume (without loss of generality, re-indexing as needed) that
vi = sup ph,_;(u) and that v; = max {v;}.

we (0. 5] i€n/2]

Consider the regression vector 6* : = [% % 0o --- 0]. Since the matrix

A appears in diagonal blocks of X, the algorithm’s output 0 has error

n/2

. 1 o *\ (2 . o * 2
igfo ﬁ”X(G -0z = igfo; ||A(9(2i—1):2i - 9(2¢—1);2¢) 2. (4.7)

Given the random initialization 6°, we define the events

[|wi:2]2

&= {max{@?,ﬂg}SO and §B} and & ::{/\'yl>23in2(a)R+5B},
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as well as the (random) subsets

Sy = {z €{2,...,n/2} | I < wf}%l — B and |U\J/QHZ < B}, and (4.8a)

. . 9 Woi—1 |wa; |
= < — < .
Sy {z € {2, n/2} | 250%(@)R+58 < ZU=t — Band X < B}
(4.8D)

Given these definitions, the following lemma provides lower bounds on the de-
composition (4.7) for the vector 6 after convergence.

Lemma 6. (a) If &g N &1 holds, then ||A ((91 20— 073 > 54”\‘/’5

(b) For any index i € S1, we have | A (921-,1;% — 03 _1.0:) |13 > 3200

See Appendix F for the proof of this claim.

Conditioned on event &, for any index i € Sg, either the event & N &; holds,
or we have

W2i—1 B and w2 <B

vn vn

which means that ¢ € S; holds. Applying Lemma 6 yields the lower bound

M1 < 2sin?(a)R 4+ 5B <

WS s O'R 52 o? /
. . * 2 . n
i%% ;:1 [ A0(2i-1):2i A9(2i71):2iH2 > I[&] mln{ § I[i € S }

The random variables I[&] and {I[i € Sg]}[n/ are mutually independent.
Plugging in the definition of quantity B, it is easy to see that P[&] is lower
bounded by a universal constant ¢y > 0, so that

n/2
E{gfoZHAQ(m 1):2i — A9(21 1) 21” }
. (SnoR 5202 /2] )
> COE[mln{ 4”\/5 " o lz:; I[i € S2]}} (4.9)

The right-hand side of inequality (4.9) takes the same form as that of the right-
hand side of inequality (4.6). Thus, we can follow the steps in the proof of
Theorem 1 to lower bound this term. Each event ¢ € Sy is the intersection
of two independent events wg;—1 > 8s,0 and |we;| < s,o. Recall that both
wa;—1 and wy; have the distribution N(0,02). In the proof of Theorem 1, we
have shown that by choosing s,, := max{1,cy/log(n)} for a sufficiently small
universal constant ¢; > 0, the first event happens with probability at least
ca/n'/*, where ¢ > 0 is a universal constant. The second event happens with
probability at least P[|we;| < o] > 0.68. Therefore, the event i € Sp happens
with probability at least c3n~'/4 for some universal constant cs > 0.
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Having lower bounded the probability of events ¢ € S,, we lower bound the
right-hand side of inequality (4.9) using the same argument that we used for
lower bounding the right-hand side of inequality (4.6), which implies

n/2

: - log(n)
* 2

Ehgfo '2—1 140 2i—1):2i — A9(2i71):2i||2} 2 coRy\[ ——,

for a universal constant ¢ > 0. This completes the proof.

5. Discussion

In this paper, we have demonstrated a fundamental gap in sparse linear re-
gression: the best prediction risk achieved by a class of M-estimators based on
coordinate-wise separable regularizers is strictly larger than the classical min-
imax prediction risk, achieved for instance by minimization over the f{y-ball.
This gap applies to a range of methods used in practice, including the Lasso
in its ordinary and weighted forms, as well as estimators based on nonconvex
penalties such as the MCP and SCAD penalties.

Several open questions remain, and we discuss a few of them here. When the
penalty function p is convex, the M-estimator minimizing function (2.1) can be
understood as a particular convex relaxation of the fyp-based estimator (1.3).
It would be interesting to consider other forms of convex relaxations for the
{p-based problem. For instance, Pilanci et al. [31] show how a broad class of
lo-regularized problems can be reformulated exactly as optimization problems
involving convex functions in Boolean variables. This exact reformulation allows
for the direct application of many standard hierarchies for Boolean polynomial
programming, including the Lasserre hierarchy [24] as well as the Sherali-Adams
hierarchy [35]. Other relaxations are possible, including those that are based on
introducing auxiliary variables for the pairwise interactions (e.g., vi; = 6:6;),
and so incorporating these constraints as polynomials in the constraint set. We
conjecture that for any fixed natural number ¢, if the t-th level Lasserre (or
Sherali-Adams) relaxation is applied to such a reformulation, it still does not
yield an estimator that achieves the fast rate (1.4). Since a t*"-level relaxation
involves O(d") variables, this would imply that these hierarchies do not contain
polynomial-time algorithms that achieve the classical minimax risk. Proving or
disproving this conjecture remains an open problem.

Finally, when the penalty function p is concave, concurrent work by Ge et
al. [19] shows that finding the global minimum of the loss function (2.1) is
strongly NP-hard. This result implies that no polynomial-time algorithm com-
putes the global minimum unless NP = P. The result given here is comple-
mentary in nature: it shows that bad local minima exist, and that local descent
methods converge to these bad local minima. It would be interesting to extend
this algorithmic lower bound to a broader class of first-order methods. For in-
stance, we suspect that any algorithm that relies on an oracle giving first-order
information will inevitably converge to a bad local minimum for a broad class
of random initializations.
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Appendix A: Fast rate for the bad example of Dalalyan et al. [12]

In this appendix, we describe the bad example of Dalayan et al. [12], and show
that a reweighted form of the Lasso achieves the fast rate. For a given sample size
n > 4, they consider a linear regression model y = X0* 4+ w, where X € R"x2m
with m = n — 1, and the noise vector w € {—1,1}" has i.i.d. Rademacher
entries (equiprobably chosen in {—1,1}). In the construction, the true vector *
is 2-sparse, and the design matrix X € R"*?™ is given by
1T
x=valtn o gl
m><m _Im><m

where 1,, € R™ is a vector of all ones. Notice that this construction has n =
m+ 1.

In this appendix, we analyze the performance of the following estimator

fe arg mln —||X9 yll3 + )\Z 16;] + |0mti)- (A1)
=2

It is a reweighted form of the Lasso based on ¢;-norm regularization, but one
that imposes no constraint on the first and the (m -+ 1)-th coordinate. We claim
that with an appropriate choice of A, this estimator achieves the fast rate for
any 2-sparse vector 6*.

Letting 6 be a minimizer of function (A.1), we first observe that no mat-
ter what value it attains, the minimizer always chooses 91 and 0m+1 so that
(XH) .2 = y1.2. This property occurs because:

e There is no penalty term associated with 91 and 9m+1
e By the definition of X, changes in the coordinates 01 and 9m+1 only affect
the first two coordinates of X0 by the additive term

i 1 I A01
&1 —a 0m+1
Since the above 2-by-2 matrix is non-singular, there is always an assign-

ment to (01, 9m+1) so that (X9)1 o —y1.2 = 0.

Thus, only the last n — 2 coordinates of X0 — 1 might be non-zero, so that we
may rewrite the objective function (A.1) as

1. .~ AN ~
~1X0 = lI3 + A D10+ i)
=2

= 5 (WA = Vi~ 5+ A+ i) (A.2)

=2
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The function (A.2) is not strictly convex so that there are multiple equivalent
solutions. Essentially, we need to break symmetry by choosing to vary one of
0; or O+, for each i € {2,...,m}. Without loss of generality, we assume that
§m+2 = §m+3 == §2m =0, so that the equation is simplified as

1 =N m =N =N 1 m =N .
~[|X0 = yl3+ A (8] +18nri) = = D (Vb = 9)? +AGD) - (A3)

=2 =2

Moreover, with this choice, we can write the prediction error as

n

3

~ 1, \ 2 1 .
R(6) := —[| X0 — X0"|}; = ~ += > (Vb - =05 (A4
=2

The first term on the right-hand side is obtained from the fact ||(X8 — X6*)1.2]|2
= |lw1.2]|3 = 2, recalling that the set-up assumes that the noise elements takes
values in {—1,1}.

The right-hand side of equation (A.3) is a Lasso objective function with de-
sign matrix \/n(;,—1)x (m—1)- The second term on the right-hand side of equa-
tion (A.4) is the associated prediction error. By choosing a proper A and using
the fact that 6* is 2-sparse, it is well-known that the prediction error scales as
(9(10%), which corresponds to the fast rate. (Here we have recalled that the
dimension of the Lasso problem is m — 1 =n — 2.)

Appendix B: Proof of Lemma 1

Given our definition of X in terms of the matrix A € R?*2, it suffices to prove
the two lower bounds

1A(O3)1:2 — A0 13

> H[A% > 4B(sin?() R + ”w\;%”% sin?(a)(R —2B)2  and, (B.la)

[ A(ON)2i—1:20 — A05; 104113
BQ
zﬂ[ogw;gB}(T—mp fori =2,3,...,n/2. (B.1b)

In the proofs to follow, it is convenient to omit reference to the index 1.
In particular, viewing the index i as fixed a priori, we let u and u* be short-
hand representations of the sub-vectors (0x)2i—1,2i, and 65, ; 5;, respectively.
We introduce the normalized noise € := wy;—1.2;/ v/n. By our construction of
the design matrix X in terms of A, the vector 5,\ is a local minimizer of the
objective function if and only if @ is a local minimum of the following loss:

C(u; A) = || Au — Aw” — €[5 + Apai—1(ur) + Ap2i(u2),

where this statement should hold for each i € [n/2]. Hence, it suffices to find a
local minimum of ¢(u; A) such that the bounds (B.1a) and (B.1b) hold.
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B.1. Proof of inequality (B.1a)

If \y; < 4B(sin*(a)R + ||g]|2), then the lower bound (B.1a) is trivial, and in
particular, it holds for @ := arg min, £(u; A).

Otherwise, we may assume that \y; > 4B(sin?(a)R + ||¢||2). In this case (i =
1), we have u* = (R/2, R/2). Defining the vectors v* := Au* = (0,sin(a)R) and
w = (0,0), we have

(s \) = || AT — v* — €3 + Ap1 (1) + Ap2(tiz) = |[v* +¢ll3. (B.2)
We claim that

ulenan Luy N) > L(u; M), (B.3)

where U := {u € R? | |ui| < B and |uz| < B}, and 9U denotes its boundary. If
p is a convex function, then the lower bound (B.3) implies that any minimizers
of the function £(-; \) lie in the interior of U. Otherwise, it implies that at least
one local minimum-—say @—lies in the interior of U. Since u; < B and 1y < B,
we have the lower bound

1A@)1:2 = AB7ol15 = | AT — v* |5 = cos®(a) (@ —Tiz)* + sin’() (R — @ — Ts)°

> sin®(a) (R — Uy — 2)? > sin?(a)(R—2B)2,
which completes the proof.

It remains to prove the lower bound (B.3). For any u € 90U, we have

_ NG )
Uu; A) = [|[Au = v* = €l|3 + Ap1 (1) + Ap2(2) > [ Au+ 0™ + €] + I
(i)
> || +ell3 + 2w + )T Au 4 M. (B.4)
Inequality (i) holds since either @; or uy is equal to B, and min{p; (B), p2(B)} > 7
by definition, whereas inequality (ii) holds since ||a + b[|3 > ||b]|3 + 2b a. We no-
tice that

. * T > f * _
Jnf 2(v"+e) Au > inf {2(07, Au) = 2ell2 [ Aull}

= inan {2 sin?(a) R(uy +uz) — 2||€||2\/C052(a)(u1 —ug)2 + sin’(a)(ug + u2)2}

> —4B(sin*(a)R + ||¢||2).

Combining this lower bound with inequality (B.4) and the bound
M1 > 4B(sin ()R + |e]|2)

yields the claim (B.3).
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B.2. Proof of inequality (B.1b)

Fori=2,3,...,n/2, consider u* = (0,0) and recall the vector a; = (cos «, sin ),
as well as our assumption that

P%(B).

¥i = p2i—1(B)/B < B

Define the vector @ := (ale,0) and let & = arg min,cg2 £(u; A) be an arbitrary
global minimizer. We then have

| AT —el|3 < || AT —e||3 + Ap1 (tr) + Ap2(T2) < [|AU —€]|3 + Ap1 (1) + Ap2(Ti2),

since the regularizer is non-negative, and % is a global minimum. Using the
definition of u, we find that

1A — e||3 < llaiafe — €[l + Apr(aie) = [le]l3 — (af €)® + Ap1(af e),
where the final equality holds since a;al defines an orthogonal projection. By

the triangle inequality, we find that || A7 — €||2 > ||]|3 — ||A%]|3, and combining
with the previous inequality yields

1AT3 > (af'e)® = Aps(afe). (B.5)

Now if B/2 < a”e < B, then we have p;(ale) < pi(B) =v; < 1. Substituting
this relation into inequality (B.5), we have

| At — elj3 > I(B/2 < af'e < B) (B*/4 = n) .,

which completes the proof.

Appendix C: Proof of Corollary 1

Here we provide a detailed proof of inequality (3.4a). We note that inequal-
ity (3.4b) follows by an essentially identical series of steps, so that we omit the
details.

Let m be an even integer and let X, € R™*™ denote the design matrix
constructed in the proof of Theorem 1. In order to avoid confusion, we rename
the parameters (n,d, R) in the construction (4.1b) by (n/,d’, R’), and set them
equal to

(n',d R = (m,m, min{%,%}), (C.1)

where the quantities (k,n, R,o) are defined in the statement of Corollary 1,
and the scaling factor s,, := c1+/logm was defined in the proof of Theorem 1.
Note that X, is a square matrix, and according to equation (4.1b), all of its
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eigenvalues are lower bounded by (ml/
is lower bounded by ,/m~.

Using the matrix X,, as a building block, we now construct a larger design
matrix X € R™*" that we then use to prove the corollary. Let m be the great-
est integer divisible by two such that km < n. We may construct the n x n
dimensional matrix

X = blkdiag{ nmXpm, - .o/ X s \/ﬁln,km} € R, (C.2)

k copies

I‘%’"")lﬂ By equation (C.1), this quantity

where I,k is the (n — km)-dimensional identity matrix. It is easy to verify
the matrix X satisfies the column normalization condition. Since all eigenvalues
of X, are lower bounded by /m7, we are guaranteed that all eigenvalues of X
are lower bounded by /n7y. Thus, the matrix X satisfies the v-RE condition.

It remains to prove a lower bound on the prediction error, and in order to do
80, it is helpful to introduce some shorthand notation. Given an arbitrary vector
u € R", for each integer i € {1,...,k}, we let ug;) € R™ denote the sub-vector
consisting of the ((¢# — 1)m + 1)-th to the (im)-th elements of vector u, and
we let u(,41) denote the sub-vector consisting of the last n — km elements. We
also introduce similar notation for the function p(z) = p1(z1) + -+ + pn(zn);
specifically, for each i € {1,...,k}, we define the function pg;) : R™ — R via
pei)(0) = Z;nﬂ Pli—1ym+35(0)-

Using this notation, we may rewrite the cost function as:

L(0; \) Z (||\/n/ Xmbiy — yeiyll3 + n/\P(i)(Q(i))) + h(0(k41)),

where h is a function that only depends on 6 1). If we define 921,) = /n/mb;

as well as p’(i) (0) := 2 p@y(y/m/nb), then substituting them into the above ex-
pression, the cost function can be rewritten as

k
m 1
GO 2) = 23 (Xl = w13+ Aol (0 ) + h(V/m/n Gy )):
i=1
Note that if the vector 8 is a local minimum of the function 6 — L(0; \), then the
rescaled vector €' := /n/m 6 is a local minimum of the function 8 — G(0'; \).
Consequently, the sub-vector 92@‘) must be a local minimum of the function

1
EHXmeE) Y@ ||2+P ) (003))- (C.3)

Thus, the sub-vector 5? 2 is the solution of a regularized sparse linear regression
problem with design matrix X,,.
Defining the rescaled true regression vector (0*)' := y/n/m 6*, we can then
write the prediction error as
1 ~ £\ 112 1 b * N * 2
IX@ =63 = > (X @y — @))IB) + Wiy — B3

i=1
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k
> TS (X By~ (6B (C4)

=1

Consequently, the overall prediction error is lower bounded by a scaled sum
of the prediction errors associated with the design matrix X,,. Moreover, each
term %HXm(QEi) - (0*)'(1))”% can be bounded by Theorem 1.

More precisely, let Q(X, 2k, R) denote the left-hand side of inequality (3.4a).
The above analysis shows that the sparse linear regression problem on the de-
sign matrix X and the constraint 8* € By(2k) NB;(R) can be decomposed into
smaller-scale problems on the design matrix X,, and constraints on the scaled
vector (0*)’. By the rescaled definition of (6*)’, the constraint 6* € By(2k) "B (R)
holds if and only if (8*) € By(2k) NB1(y/n/mR). Recalling the definition of the
radius R’ from equation (C.1), we can ensure that (60*) € Bo(2k)NB;(y/n/mR)
by requiring that (9*)21.) € By(2)NB; (R') for each index ¢ € {1,...,k}. Combin-
ing expressions (C.3) and (C.4), the quantity Q(X, 2k, R) can be lower bounded
by the sum

k

> O(Xm 2, R)). (C.5a)

i=1

Q(X,2k,R) >

m
n

By the assumption of the corollary, we have
m = |n/k] > max{4, 0)? logm, (2)4),
o

satisfying the sample size assumption of Theorem 1. Thus, Theorem 1 implies

1 2] vnl
O Xm,2,R)>coR OB _ /mind Z ogn’ ofynlogn
m 16ym km

} ., (C.5b)

where the second equality follows from our choce of R’ from equation (C.1), and
uses the fact that logm = log|n/k| > log[(2n)'/?] = Q(logn). Combining the
lower bounds (C.5a) and (C.5b) completes the proof.

Appendix D: Proof of Proposition 3

Throughout this proof, if an event holds with probability at least 1 — e=¢V7"
for some universal constant ¢ > 0, then we say that this event holds with high
probability. It is clear that if there are poly(n) events which hold with high
probability, then these events simultaneously hold with high probability.

Note that each column X, (j € [d]) follows the n-dimensional normal dis-
tribution N(0, an) The squared norm of \/§Xj follows a chi-square dis-
tribution with n degrees of freedom. The concentration of chi-square random
variables [see, e.g. 13, Lemma 2.2] implies that 2||X;||3 is bounded by 2n with
high probability, so that X satisfies the column normalization condition with
high probability. In addition, the rank of matrix X is equal to n'/2 almost surely.
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By the definition of the matrix X, the vectors Xo;,_1 and Xs; are correlated,
but independent from all other columns. Since all columns are joint Gaussian
vectors, we assume that there is an n-by-d matrix W, where each entry has the
standard normal distribution, such that

1 1 p=1/2)1/2 (] _ p—1/2)1/2
Xoi—1:2i = Wai—1.2;B  where B := NG ( 371/4) ( _7:171/4)

(D.1)

It is easy to verify that the vector Xs; 1 2; written in this way has mean zero
and covariance matrix A. As a consequence, the matrix X can be written in the
form

X =W -diag(B, B,...,B).
———
d/2 copies

In order to verify that the conditions (a), (b) and (c) hold, we choose s :=
2 and let J; := {2i — 1,2i} for i = 1,...,d/2. For each ¢ € [d/2], let u :=
(1/2,—1/2) be a vector of unit ¢1-norm, then equation (D.1) implies that

1
X7 Xy u= BTWzTi—lzzi(ﬁnﬂMWzi)
_ nTVA T — 02 RWE L Way + n | Wy 13
2 (A —n YR WEL Woy — 0T Wal|3]

In order to bound the inner product Wi, | Ws;, we note that it can be written
as

Wai—1

Waroalls- (2L
H 21 1||2 ||W2i71||2’

Wai ).

The first term is bounded by O(nl/ 2) with high probability due to the concen-
tration of chi-square random variables [13]. The second term satisfies a standard
normal distribution, bounded by O(n'/*) with high probability. Thus the inner
product is bounded by O(n?/*) with high probability. In addition, the squared
norm ||Wy;||3 is bounded by O(n) with high probability. Combining these facts,
we find that || X7 X ull2 is bounded by O(n'/?) with high probability, thus
condition (a) holds.

For each i € [d/2], Let S and S’ be the column space of X, and X_,,
respectively. For any unit vector v € S and v' € S’, let TI(-) be the projection
operator onto the space S/, then we have (v,v) = (II(v),v') < [|[II(v)]|2. To
upper bound the right-hand side, we let {b,...,bs} be an orthogonal basis of
the space S. Then the vector v can be represented by v := >7_, a;b; with the
constraint Y ;_; a? = 1. This representation implies that

Z aiH(bi)

ITL(v)[l2 =

<Y [ TI(Di)]Jo-
2 i=1
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Notice that each b; is an n-dimensional random unit vector that is independent
of the space S’. Dasgupta and Gupta [13, Lemma 2.2] prove that [|TI(b;)||2
is bounded by 2(d/n)'/? with probability at least 1 — e“? for some universal
constant ¢ > 0. Consequently, the inner product (v, v') is bounded by 2(sd/n)'/?
with high probability. Plugging in d = n'/? verifies condition (b).

In order to verify condition (c), we use the concentration of chi-square ran-
dom variables [13] to establish that %HXng = (1) with high probability.
Since d = n'/?, Rudelson and Vershynin [34] show that the singular values
of matrix W lie in the interval [$(n!/? — nl/4), 2(n'/2 4+ nl/4)] with probabil-
ity at least 1 — e~ for a universal constant ¢ > 0. On the other hand, the
singular values of matrix B lie between Q(n~'/4) and O(1). Combining these
facts, inequality (D.1) implies that the singular values of matrix ﬁX are lower

bounded by Q(n~1/*) and upper bounded by O(1) with high probability. These
properties establish condition (c).

Appendix E: Auxiliary results for Theorem 2

In this appendix, we prove lemmas that were used in the proof of Theorem 2.

E.1. Proof of Lemma 2

Consider the subset U := {# € R? | ||0s]lcc < B}, and let OU denote its
boundary. Recall our previous definition B := C} -n~ /2, where C is a constant
to be specified.

The remainder of our argument consists of showing that the objective func-
tion has a local minimum in the interior of the subset U, such that the prediction
error on this local minimum is lower bounded by Q(n~1/2). To this end, we define
a vector:

_ o1
0 € arg min ||y — X0[|3 + Ap(0),

The minimizer 6 lies on the boundary of subset U so that its satisfies |0/« = B.
We define another vector 6 belonging to the interior of subset U:

Let 51 =0 and g,J =0_j.

The vectors 0 and 6 differ only at the coordinates indexed by set J. We make
the following claim:

Claim 1. If we choose B = Cy -n~'/? for a sufficiently small constant C, €
(0,1], then we have

1 1 1
—|ly = X0|5 < =y — X0|3 + —.
n n n
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We defer the proof of Claim 1 to the end of this section and focus on its
consequences. If Claim 1 holds, then we have

1 = ~ 1 - -
(Slly = X013 +20(@)) = (S lly = X3 + Ao @)
1 ~ 1 — _
= —|ly — X053 — |y — X0|% -
~lly = X013 — —lly — X3 — A (D)
<~ = Aps(0) <

The last inequality follows since there is an index j € J such that |§j| = B, and
as a consequence p;(0) > p;(B) > min;e {p;(B)} = 7.

Thus, as long as Ay > 1/n, the objective function value of 0is strictly smaller
than any objective value on the boundary of set U. It implies that there is a
local minimum inside the region U. Let 6 € U be such a local minimum. Let
A := 0—0* be a shorthand notation. The prediction error on this local minimum

is equal to

1 0 *Y (|2 1 2 2

X0 = 0113 = = (IX A3 + 1 X-sAg I} +2(Xs 85, Xy ).
Note that the vectors X ;A ; and X_;A_; are in the column space of X; and
X_, respectively. By the condition (b) of Assumption A, there is a constant ¢
such that

2(X5A7, X gA_ ) <en VXA o - [ X-gA o

—1/4

If n > ¢*, then we have cn < 1, and as a consequence,

Lo~ 1 _
X @ - 03 > 5 (1K A + 1X-sA-s13) > Q™) - A3 (E1)

The last inequality holds since the condition (c) of Assumption A guarantees
that the smallest singular value of matrix X is lower bounded by Q(n~'/4).
Plugging in the definition of the vector A, we find that

1 L, 1671 = 165111
Vs Vs YO
Recall that ||0%|l1 = C5 is a positive constant, and 165]ly < sB = O(n=1/2).
Thus, for any sample size n greater than a sufficiently large constant, the differ-

ence ||6%|1 — ||§JH1 is lower bounded by Ca/2, so that we have |[|A ||z = Q(1).
Combining this lower bound with inequality (E.1) completes the proof.

A2 > [As][ = =070l >

Proof of Claim 1: In order to prove the claim, we first prove that the norm
of X_;6_; is bounded. More concretely, we prove that

IX_sB_sllz = OV 4 71/%) = O(172). (E.2)
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Recall that @ minimizes the objective function on the boundary. If we replace
the coordinates of 6_; by zeros, then the new vector stays in OU, so that the
objective function won’t decrease. As a consequence, we have

1 — — _ 1 _ _
EHZJ — X0|13+ Aoy (0) + Ap—s(0) < EHZ/*XJ@J —X_;0[3 + Ao (0) + Ap—;(0).

Recalling that Ap_;(6) > 0 = Ap_;(0), this inequality ensures that
ly = X0l2 < lly — Xs0,]l2.

Note that II(-) is the orthogonal projection operator onto the column space of
matrix X. Since the vectors y — X6 and y — X ;0 ; differ only in the column
space of matrix X, we have

IT(y) — X0, — X_50_sll2 < |T(y) — X0,
= [ X_s0_sll2 — |T(y) — X 0,2 < [[H(y) — X,0,]2
= | X_s0_sl2 < 2|1(y) — X ;0,2 (E.3)

Plugging the equation y = X0* + w into inequality (E.3), and using the fact

that || X ;0|2 < djed [X;0;]l2 < sBn'/? = C;s, we obtain

1X-s8-sllz < 2(ITL(w)]l2 + | X6° |z + Chs). (E.4)

The event &; implies ||[TI(w)||2 = (2r)'/2, which bounds the first term on the
right-hand side. For the second term, we notice that it is bounded by O(nl/ 4,
since

1X0713 = CF - llu” X7 Xyullz < [lull2 - | XT Xull2 = O(n'/?). (E.5)

In the above deductions, the first inequality uses the fact that Co < 1, and the
final bound uses condition (a) from Assumption A. Combining inequalities (E.4)
and (E.5) with the conditions s = O(1), r = Q(n'/?) and C; < 1, we obtain the
upper bound (E.2).

Given inequality (E.2), we are ready to prove Claim 1. We expand the differ-
ence of the prediction errors as follows:

1 ~ 1 — 2 — _ 1.
—[ly — X035 — =lly — X053 = =(X,0,, X0* +w—X_;0_;) — —[X0,[3
n n n n
2 — _
< E<XJ6J,X9*+U)—X_J0_J>. (E.6)
It suffices to show that the inner product on the right-hand side is bounded by
1/2. Indeed, the inner product is the sum of three inner products: (X ;6 7, X6*),

(X707, w) and (X;0;, X_;0* ;). Their absolute values are bounded by:

(X0, X07) [ < [10]l2 - [1XT X yull2
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(X8, w)| < [ X8Iz - 1Ly (w) ]2,
(X505, X507 ;)] <O 2) X402 [IIX-s0-sl2-

The operator II;(-) represents the projection onto the column space of matrix
X ;. The third inequality holds since X ;0; and X_ ;0" ; belong to the column
space of matrix X; and X_; respectively, then the condition (b) of Assump-
tion A implies the upper bound.

Recall that [|0;]]s < sB = Cisn~'/2 and || X ;0|2 < sBn'/? = C;s. The
condition (a) of Assumption A implies || X7 X juls = O(n'/?), so that the first
inner product term is upper bounded by:

(X075, X0%)| < Cy-O(1).

The event & implies [|II;(w)]l2 < s'/2 = O(1), which further implies that
[(Xs0,w)] < Cp-O(1). Finally, inequality (E.2) upper bounds the term
|X_70_1|2 by O(r/?), and hence

(X,0,,X_,07 )| <Cy-0().

Consequently, as long as we choose a sufficiently small constant C7, the inner
product on the right-hand side of inequality (E.6) is at most 1/2, which estab-
lishes the upper bound of Claim 1.

E.2. Proof of Lemma 3

In order to prove the lemma, we establish the existence of a specific regression
vector 6 such that the norm of y — X6 is substantially smaller than that of y.
This property is formalized by the following claim:

Claim 2. Under the event & N &, there is a subset r C I of cardinality
m' > Cym, as well as a vector € R? with ||01/||oc < B and 0_p = 0 such that

ly — X013 < [lyll3 —2m".

We defer the proof of Claim 2 to the end of this section. Assuming Claim 2, we
use the properties of the vector 8 to show that the M-estimator will overfit the
empirical loss whenever Ay < 1/n.

Let O be a global minimizer of the objective function. Using the non-negativity
of the penalty term and the properties of the vectors § and 0, we find that

~

1 ~ 1 ~ 1 — —
—ly = XI3 < ~lly — X0+ Ao(B) < —lly = XTI + 2o(B)

1

2m/
— 2 J—
Ly

IN

+ Ap(6).

n

Since [|0;]|co < B and Ay < 1/n, we have

/

M@ <A pi(B) <m/ny <

n
iel’
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Combining the above two inequalities, we find that

1 ~ 1 m’
Sy — X602 < = 2, E.7
Ly xd13 < Lz - (.7

Let II(-) be the operator that projects onto the column space of matrix X.

Since the vectors y — X6 and y only differ in the column space of X, inequal-
ity (E.7) implies ||TI(y) — X6||3 < ||II(y)||3 — m/. Combining this bound with

the triangle inequality, we have

m’ m’

—— > .
()2 + ITI(y) — X0l — 2[T(»)ll2
(E.8)

1X8]2 > T(y)[l2 — [T(y) — X8> >

Since y = X6* +w, the norm ||II(y)||2 is bounded by ||II(w)]|2 + || X 0*||2. For the
first term of this upper bound, the event & implies ||[TI(w)|s < 2r'/2. For the
second term, we have shown that || X0* |y = O(n'/*) in inequality (E.5). Thus,
the norm ||TI(y) ||z is bounded by O(r'/? 4 n'/4). From the scaling r = Q(n'/?)
given byAssumption A, it is bounded as ||TI(y)||2 = O(r'/?). As a consequence,
we have

IX0]2 > Q(r=Y2) - m’ = Q(r'/?) = Q(n'/4).

In order to lower bound the prediction error, we observe that by triangle in-
equality, we have the lower bound

1X0 = 0%) ]2 = 1X0])2 — | X0 l2.

Since we have lower bounded ||X§||2, it suffices to upper bound || X6*||2. Using
condition (a) of Assumption A, the square of this norm is at most

1X6°13 = CF - lu" XT Xgull2 < C3 - [lull2 - [|XT Xyull2 = C3 - O(n'?).

Consequently, we have || X6*||2 = Cy - O(n'/2), where the constant hidden by
the big-O notation is independent of Cs. The lower bound on || X6)|2, according
to the above proof, is independent of Cy as long as Ca < 1. Thus, if we choose a
sufficiently small Co, then the term || X60*| 2 will be smaller than half of || X8|,
so that the prediction error ||X(§— 60*)||2 will be lower bounded as Q(n'/4),
which establishes the claim.

Proof of Claim 2: Let 6 be an arbitrary vector satisfying the following con-

ditions: |0/ ]|cc < B and 6_p = 0. For any index set I’ C I, let m’ indicate the

cardinality of I’. The largest singular value of matrix X is bounded by that of

the matrix X;. It is bounded by Ln!/2, as shown in the proof of Theorem 2.
Plugging in these facts, we find that

ly — X613 — [ly]3 = 1 X 0021 — 2 (X167.3)
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< L*B*m'n—2-(Xp0p,y)
:LC’%m/—2~ <X[/9[/,y>. (E9)

The inner product (X/0p,y) on the right-hand side is equal to Y, 07 XT'y.

Now suppose that we set

iel’

0; := B -sign(X]w) for each i€ I'.

With these choices, the inner product (X0, y) is equal to Y, |XTy|. The
event & implies that there exists an index set I’ with cardinality m’ > Cym,

such that 3,/ | XTy| > Csm/n'/2. This implies that

<XI’61'7 y> 2 BC3m/nl/2.
Substituting the definitions of B and Cj yields

LC3m/

(Xpbp,y) >m' + 5

By combining this lower bound with inequality (E.9), we find that
ly — X013 — llyll3 < —2m’,

which completes the proof.

E.3. Proof of Lemma /4

Since w € R™ is a Gaussian vector and II is a degree r projection matrix,
the squared norm ||II(w)||3 follows a chi-square distribution with 7 degrees of
freedom. Thus, from standard results on x2-concentration [13], we have

P(HH(w)HS < 2r) > 1),

Let II;, = II — II; be the operator that projects onto the subspace that is
orthogonal to the column space of X ;. We decompose the vector II(w) into
wy := Iy(w) and w := II; (w). By the property of the multivariate normal
distribution, the vector w) is independent of the vector w, . Since the squared
norm |lwy||3 satisfies a chi-square distribution with s degrees of freedom, it
satisfies ||w)[]2 < s with probability at least 1/2. Thus event & holds with
probability at least 1/2 — e~ ("),

Assuming the random event |jwy|l2 < s, we lower bound the probability of
event &. For each index i € I, the inner product X! w can be decomposed
by X! w = X]w + X wy. Since I NJ = 0, The vectors wy and X; belong
to the column space of X; and X_; respectively, so that the condition (b) of
Assumption A implies

X wy] < O™ - 1Xil2 - [lwy 2.
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Plugging in the upper bounds || X;||2 < n'/2 and [lwy|2 < s = O(1), there is a
constant D such that [XTw| < Dn=1/4.

On the other hand, the second term X[ w is a zero-mean Gaussian with vari-
ance |11, (X;)||3. The variance is equal to || X;||3 — ||TL;(X;)||3. By condition (c)
in Assumption A, we have || X;||3 = 2(n). On the other hand, by condition (b)
in Assumption A, we have

1 (X:)

L5 (X3)l2 = <m

X) = 04 - X[l = O/,

Combining the pieces yields
L (X013 = 1X613 = L (X013 = Q(n) — O(n'/?).

Thus, if the sample size n is greater than a sufficiently large constant, then the
variance of the random variable X7 w is lower bounded by Q(n).

Let o; denote the random event that | X w,| > C3nt/2 + D - nt/4, Since
XTw, is a normal random variable with {2(n) variance, the probability of g; is
lower bounded by a positive constant g. If event p; holds, then as a consequence
we have

X7 w| > | X wy | — [X]wy| > Csn'/2. (E.10)

Since P(g;) is lower bounded by ¢, the expectation E[}, ;I(of)] is upper
bounded by (1 — ¢)(m —1). By Markov’s inequality, for any constant o > 0, we
have

B[Yuen < L2205y
el

Setting « := 1 — ¢/2 implies that with probability at least ¢/2, the following
inequality holds:

SHe) < Lim-1) & Yle)zyl -1 (E1)

iel 1-4q/2 il —q

If inequality (E.11) holds, then combining with the lower bound (E.10) implies

that there are at least 5 (m — 1) indices in I such that | XTw| > C3n'/2. This

implies that event & holds with constant C, = ﬁ for any m > 2.

In summary, conditioning on the event |[wy|l2 < s, inequality (E.11) holds
with probability at least ¢/2, which is a sufficient condition for the event &s.
Note that whether inequality (E.11) holds is determined by the random variable
w, independent of w). Putting all pieces together, the probability that event
&1 N &; holds is lower bounded by:

P(&1 N &) = P([(w)[I3 < 2r, [lwyl2 < 5, &2)
> P(wyllz < s, €2) — P(|TH(w)|3 > 2r)
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=P([wyllz < 5) P(& | w2 < 5) = P(|L(w)]]3 > 27)
S1 4 —am,
2 2
If r is greater than a sufficiently large constant, then this probability is lower
bounded by a positive constant p := ¢/8.

Appendix F: Proof of Lemma 6

Similar to the proof of Lemma 1, it is convenient to omit reference to the index
i. We let u* and u* be shorthand notation for the sub-vectors 65; ; ,;, and
03; 1 2:> respectively. We introduce the normalized noise € := wg;_1,2i/v/n. By
our construction of the design matrix X and the update formula (3.7), the vector
u! satisfies the recursion

u'tt € argmin f(u;\), (F.1a)
lu—utll2<p
where 3 := ||u!*? — ut||s < 7 and the loss function takes the form
(w; N) = || Au — Au* — |3 +Ap2i_1(u1) + Apa; (uz). (F.1b)
~— ————
=T

This statement holds for each ¢ € [n/2]. Hence, it suffices to study the update
formula (F.1a).

F.1. Proof of part (a)

For the case of i = 1, we assume that the event £ N &; holds. Consequently, we
have max{u,u3} <0, ||g||2 < B and Ay, > 2sin*(a)R+5B. The corresponding
regression vector is u* = (R/2, R/2). Let us define

b1 € arg max p9;—1(u) and by € arg max po;(u).
1 €arg max py 1(u) 2 gue(oyB]ﬂz( )

Our assumption implies ph, ;(b1) > 11 and ph;(b2) > v1. We claim that
ul, < by, < B for k=1,2 and for all iterations ¢t = 0,1,2,.... (F.2)
If the claim is true, then we have

14015 — AB7 513 = cos®(a) (uf — uh)? + sin*(a) (R — uj — uj)?
> sin®(a) (R — v} —ub)? > sin?(a)(R - 2B)%

spnoR

W

where the final inequality follows from substituting the definition of o, and using
the fact that 2B < R/2. Thus, it suffices to prove the claim (F.2).
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We prove the claim (F.2) by induction on the iteration number ¢. It is clearly
true for ¢ = 0. Assume that the claim is true for a specific integer t > 0, we
establish it for integer ¢ 4+ 1. Our strategy is as follows: suppose that the vector
u!™! minimizes the function £(u;\) inside the ball {u : |[ju — u'||s < B}. Then,
the scalar ut™" satisfies

ultt = argmin f(z) where f(z) := £((x,ulT); \).
@[ (zus ™) —ut |2 <8

Let us now calculate the generalized derivative [11] of the function f at ut™'. Tt
turns out that

cither w!t <w! <by, or Of(ul™) N (—o0,0] # 0. (F.3)
Otherwise, there is a sufficiently small scalar 6 > 0 such that
(it = 6,us™) —u'lla < B and  fuf*! —8) < f(uf™),

contradicting the fact that u’i“ is the minimum point. In statement (F.3), if

the first condition is true, then we have uiﬂ < b1. We claim that the second
condition also implies uﬁ“ < b;.

In order to prove the claim, we proceed via proof by contradiction. Suppose
to the contrary that u/™ > b; and 9f(ul™) N (—00,0] # 0. Note that the
function f is differentiable for all > 0. In particular, for u’i“ > b1, we have

oT
1o t4+1\ / t+1
™) = Dy byt + Apgi1(ui")

= —2(sin®(a)R + ale) + 2ul™ — 2(1 — 2sin?())ubt™ + Nph,_; (ulth),
(F.4)

where we have introduced the convenient shorthand a; = (cos(a), sin(«)). Now
make note of the inequalities

1 —2sin?(a) < lale < ||z, utt > by and Wbt <wub + B < by + 8.
Using these facts, equation (F.4) implies that
Flur™) > —2sin*(@) R — 2llell2 + 2(bs — b2 — B) + Aph;_ (ug*').  (F.5)
Recall that by, by € [0, B], and also using the fact that
py(uith) > pi(b1) — BH > 71 — BH,
we find that

(Wit > —2sin?(@)R — 2||g|l2 — 2(B + B) + A(v1 — BH).
—92gin?

>
Z (Q)R*QHEHQ *3B+>\’)’1. (FG)
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Here the second inequality follows since f < n < min{B, /\%} Since the in-
equalities ||¢]ls < B and \y; > 2sin?(a)R + 5B holds, inequality (F.6) implies
that f’ (uﬁ“) > 0. But this conclusion contradicts the assumption that

Af(utth) N (=00, 0] # 0.

Thus, in both cases, we have uﬁ“ < by.
The upper bound for ut;‘l can be proved following the same argument. Thus,
we have completed the induction.

F.2. Proof of part (b)

Recall the definition (4.8b) of So. For the case of i = 2,3,...,n/2, we assume
that the event ¢ € Sy holds. Consequently, we have €1 > Ay; + B and |eo| < B
as well as our assumption that

sup  ph;q(u) =i < 7.
u€(0,B]

The corresponding regression vector is u* = (0, 0). Let @ be the stationary point
to which the sequence {u}$°, converges. We claim that

%

cos?(a)(ty — Uz)? + sin® () (U + Ug)? > ok (F.7)

DO

If the claim is true, then by the definition of the loss function, we have

%

[ A2 1.0 — AG5;_1.9]l5 = cos®() (@1 — W2)” + sin®(a) (W + U2)? > —.

DO
—~ O

This completes the proof of part (b). Thus, it suffices to prove the claim (F.7).
In order to establish the claim (F.7), we notice that @ is a local minimum of
the loss function £(-; \). Define the functions

fi(@) :=U((z,u2); A), and  fo(z) := £((Ur, x); A),

corrresponding to the coordinate functions in which one argument of £(-; A) to
be either s or ;. Since 4 is a local minimum of the function £(-; A), the scalar
U, must be a local minimum of f1, and the scalar 5 must be a local minimum of
fa. Consequently, the zero vector must belong to the generalized derivative [11]
of f1 and fa, which we write as 0 € 9f1(u1) and 0 € Of2(u2). We use this fact
to prove the claim (F.7).

Calculating the generalized derivatives of f; and fo, we have

1
5)\91 = cos(a)ey + sin(a)es — Uy

+ (1 — 2sin®())iy  for some gy € Opai_1 (). (F.8)
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1
5)\92 = —cos(a)e; + sin(a)eg — Us
+ (1 —2sin®())u;  for some gy € Opai(Ta). (F.9)

We compare the signs of @y and . If sign(@;) = sign(us), then by the def-

inition of the penalty function, we have sign(g1) = sign(g2). Let 8 := glnggz.
We multiply equation (F.8) by 1 — 8 and multiply equation (F.9) by 3, then

subtract the first equation by the second. Doing so yields that
(Wy — Ta) + 2sin®()((1 — B)ty — fy) = cos(a)e; + sin(a)(1 — 28)es.

The absolute value of the left-hand side is upper bounded by |u; — ua| +
2sin®(a)|(1 — B)tdz — Biy]. Since we have sin(a) < 1/2, sign(d;) = sign(ts)
and 8 € [0,1], it is further upper bounded by |u; — Usa| + sin(«)|@; + Ua|. On
the other hand, since €1 > Ay; + B and |ea]| < B hold, the absolute value of
the right-hand side is lower bounded by (cos(a) — sin(«))B. Putting the pieces
together, we have

|ty — Ua| + sin(«)|ay + Uz| > (cos(a) — sin(a))B.
Combining with the relation a® + b* > 1(a + b)?, we obtain:
cos?(a) (U — U)? + sin’(a) (U + Us)?

> —(cos(a)|ty — | + sin(a) |y + 1a|)?

1
2
> % cos?(a)(cos(a) — sin(a))?B2.

Then combining with the fact sin(a) < 1/2, we obtain:
cos? () (U — 12)? + sin?(a) (U + u2)? > 0.05 B2. (F.10)

Next, we consider the case when sign(u;) # sign(uz). For this case, if the
absolute value of u; is greater than B, then we have

cos®(a) (@ — fiz)? > cos(a) (@) > %BQ. (F.11)

Otherwise, we assume |u1| < B, and consequently

lg1] < sup ph;q(u) =7 <.
u€e(0,B]
With this inequality, equation (F.8) implies that
| cos(a)eq + sin(a)eg — @y + (1 — 2sin®(@))d:| < ==,

and consequently:

|(Tiy — 1) — 2sin? ()T > cos(a)e; — sin(a)|ea| — ==
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Notice that the signs of us — U1 and 2 sinz(a)ﬂg are equal, and the former term
has a greater absolute value than the later, whence we have the upper bound
|(tg — 1y) — 2sin’(a)Uy| < |ty — U1|. As a result, we have:

~ . A

|Gy — @y > cos(a)er — sin(a)|es| — %

In order to lower bound the right-hand side, we use the conditions €1 > Ay, + B
and |e2| < B, and combine with the fact that sin(a) < 1/2. Doing so yields

cos? () (U — 12)? > cos?(a)(cos(a) — sin(a))*B? > 0.1 B2 (F.12)

Combining inequalities (F.10), (F.11), and (F.12) completes the proof.
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