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Abstract

We consider random walk with bounded jumps on a hypercubic lattice of arbitrary
dimension in a dynamic random environment. The environment is temporally in-
dependent and spatially translation invariant. We study the rate functions of the
level-3 averaged and quenched large deviation principles from the point of view of
the particle. In the averaged case the rate function is a specific relative entropy,
while in the quenched case it is a Donsker-Varadhan type relative entropy for Markov
processes. We relate these entropies to each other and seek to identify the minimizers
of the level-3 to level-1 contractions in both settings. Motivation for this work comes
from variational descriptions of the quenched free energy of directed polymer models
where the same Markov process entropy appears.
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1 Introduction

After surveying the background of the present work, this introductory section de-
scribes the random walk in a dynamic random environment (RWDRE) model and then
some general notions such as large deviation principles and the point of view of the
particle. The section concludes with an overview of the rest of the paper.
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Large deviations and entropy for RWDRE

1.1 Background

This paper studies an entropy function for Markov processes that appears in random
medium models. We give here some background motivation. A much-studied model
is the random path in a random potential model, also called the polymer model. The
random environment ω comes from a probability space (Ω,S,P) with an ergodic group
action {Tx}x∈Zd . The random path is a classical random walk (Xk)k≥0 on Zd whose law
is independent of the environment. The potential V (ω, z) is a function of ω and a step z
of the random walk. A key quantity is the limiting quenched free energy

g(V ) = lim
n→∞

n−1 logERW0

[
e
∑n−1
k=0 V (TXkω,Xk+1−Xk)

]
(1.1)

where ERW0 is the expectation of the random walk and ω is fixed. The limit exists for
P-almost every ω under hypotheses on the moments of V and the degree of mixing of P.

The limit g(V ) can be calculated only in a handful of exactly solvable models that
exist only in 1 + 1 dimension. More generally, properties of g(V ) have remained an
insurmountable problem. This question includes the positive temperature version of the
question of understanding limit shapes of stochastic growth models such as first- and
last-passage percolation. The latter question has also remained insurmountable since
the origins of the subject over 50 years ago, except for a few exactly solvable models in
1 + 1 dimension. For surveys of models of type (1.1), see [10, 16].

Our article [43] introduced two variational formulas for g(V ). Let p(z) be the jump
kernel of the underlying random walk. The first formula

g(V ) = inf
F
P- ess sup

ω
log
∑
z

p(z)eV (ω,z)+F (ω,z) (1.2)

expresses g(V ) as an infimum over the L1(P) closure of gradients F (ω, z) = f(Tzω)−f(ω),
which we called the space of cocycles. Since this formula is not the topic of the present
paper, we refer to [24, 43, 44] for precise definitions.

The second formula gives g(V ) as the dual of an entropy adapted to the point of view
of the particle:

g(V ) = sup
{
Eµ[V ]−H(µ) : µΩ � P, Eµ[V −] <∞

}
. (1.3)

The supremum is over probability measures µ on Ω× {steps} with a natural invariance
property and with a P-absolutely continuous Ω-marginal µΩ. The entropy is given by

H(µ) =

∫
Ω

∑
z

µ(dω, z) log
µ(z |ω)

p(z)
. (1.4)

Formula (1.3) was proved in [43], and this formulation is Theorem 7.5 in [24].
Article [24] extended these formulas from positive to zero temperature, that is, to

last-passage percolation models. The goal is to shed light on g(V ) and limit shapes
through the variational formulas. The relationship between formulas (1.2) and (1.3) is
well understood presently only for directed polymers in weak disorder (Examples 3.7
and 7.7 in [24]) and in periodic environments (Section 8 in [24]).

Here is a brief overview of the current state of the study of these formulas. The
cocycle variational formula (1.2) has been studied in several subsequent papers while
the entropy formula (1.3) has received no serious attention before the present paper.
[44] shows that (1.2) always has a minimizer and uses the minimizer(s) to characterize
weak and strong disorder of directed polymers. [27] proves the existence of Busemann
functions for the exactly solvable 1+1 dimensional log-gamma polymer and shows
that these provide minimizing cocycles for (1.2) and also a limiting polymer measure
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Large deviations and entropy for RWDRE

for infinite paths. [25, 26] construct the minimizing cocycles for the 2-dimensional
corner growth model with general i.i.d. weights and use these to investigate Busemann
functions, geodesics and the competition interface. These notions have become central
in the field of random medium models over the last twenty years, beginning with the
work of Newman in the early 1990s on the geodesics of first-passage percolation [34].

In the current paper we begin the study of the entropy (1.4). This entropy is the
level-2 projection of an entropy that appears in the rate function of a level-3 quenched
large deviation principle (LDP) for RWDRE. (See (2.2) and Theorem 2.2 in Section 2.)
In fact, it was shown in [43] that the rate function of the induced LDP at level-2 (via
contraction) is the convex dual of the map h 7→ g(h+ V )− g(V ), with V as in (1.8). We
study the entropy in this large deviations context. In particular, we consider its relation
to the entropy that serves as the rate function for a level-3 averaged LDP.

The point-to-point version of the quenched free energy (1.1) is

g(V, ξ) = lim
n→∞

n−1 logERW0

[
e
∑n−1
k=0 V (TXkω,Xk+1−Xk), Xn = [nξ]

]
(1.5)

defined for ξ in the convex hull of the support of the kernel p(z), and where [nξ] is a
lattice point that approximates nξ under certain constraints (see [41]) and is reachable
from the origin in n steps. The entropy variational formula now takes the form

g(V, ξ) = sup
{
Eµ[V ]−H(µ) : µΩ � P, Eµ[V −] <∞, Eµ[Z1] = ξ

}
(1.6)

where Z1 is the step variable under distribution µ. Formula (1.6) was proved in [41] for
a directed walk in an i.i.d. environment and a local potential V ∈ Ld+ε(P) for ε > 0. This
formulation is Theorem 7.6 in [24].

Minimizing entropy under a mean step condition Eµ[Z1] = ξ as in (1.6) is also done
in the level-3 to level-1 contraction in large deviation theory. For this reason the main
focus of the present paper is to study these contractions, both averaged and quenched.
The averaged contraction can be understood completely. Then we seek to characterize
when the averaged and quenched contractions lead to the same level-1 rate function and
have the same minimizers.

The quenched rate function is hard to study. It begins with an entropy of a familiar
type. But this entropy is corrected in a singular manner to account for the environment
distribution P, and then regularized again to be lower semicontinuous. The opaqueness
of the l.s.c. regularization makes it difficult to analyze examples. By simplifying the
situation so that the environment varies only temporally we can describe fully also
the quenched contraction. We discover that the connection between the averaged and
quenched rate functions can break down rather spectacularly. This part of the paper
illuminates earlier large deviation work by Comets [8] and one of the authors [2, 47]
that appears in the equilibrium statistical mechanics of disordered Gibbs measures.

The present paper studies only random walk in a dynamic random environment while
connections to polymer models are left for future work. Our results in Section 3 begin
with the level-3 averaged LDP from the point of view of the particle and the existence of
the relevant limiting specific relative entropy. After understanding the contraction from
the level-3 to level-1 averaged LDP we turn to study the quenched rate functions.

1.2 The model

Consider the d-dimensional hypercubic lattice Zd with an arbitrary d ∈ N = {1, 2, . . .}.
Fix a finite R ⊂ Zd with at least two elements and let

P = {q : R → [0, 1] :
∑
z∈R

q(z) = 1} (1.7)
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Large deviations and entropy for RWDRE

denote the set of probability measures on R. Elements of Ω = PZ×Zd are called space-
time environments and they are of the form ω = (ωi,x)(i,x)∈Z×Zd . Each ω ∈ Ω defines a
time-inhomogeneous discrete-time Markov chain (Xi)i≥0 on Zd for which X0 = 0 and the
transition probability from state x to y at time i is

πi,i+1(x, y |ω) =

{
ωi,x(y − x) if y − x ∈ R,

0 otherwise.

If ω is randomly sampled from a probability distribution P on (Ω,S) rather than being
deterministic, then (Xi)i≥0 is a random walk (RW) in a dynamic (or space-time) random
environment, which we abbreviate as RWDRE. Here, S is the Borel σ-algebra with
respect to (w.r.t.) the product topology on Ω.

RWDRE induces a probability measure P0(dω, dz) = P(dω)Pω0 (dz) on the space ΩN =

Ω×RN of environments and walks (starting at the origin). Here, z = (zi)i≥1 ∈ RN is a
sequence of steps, and Pω0 is the quenched path measure defined by

Pω0 (z1, . . . , zn) =

n−1∏
i=0

πi,i+1(xi, xi+1 |ω), n ≥ 1, x0 = 0 and xi+1 = xi + zi+1.

The marginal of P0 on RN is called the averaged path measure and also denoted by P0

whenever no confusion occurs. E, E0 and Eω0 stand for expectation under P, P0 and Pω0 ,
respectively. In general, we will write Eµ[f ] or 〈f, µ〉 for the integral of a function f

against a probability measure µ.
Denote the entire spatial environment at a given time i ∈ Z by ω̄i = (ωi,x : x ∈ Zd). Let

(T sy )y∈Zd be the group of spatial translations, defined by (T sy ω̄i)x = ωi,x+y for x, y ∈ Zd.
Throughout the article, we will make the following underlying assumptions.

• Temporal independence: (ω̄i)i∈Z are independent and identically distributed (i.i.d.)

under P with a common distribution Ps on PZd , i.e., P = (Ps)
⊗Z. (The subscript of

Ps stands for “spatial”.)

• Spatial translation invariance: Ps is invariant under (T sy )y∈Zd .

These two conditions are of course satisfied when (ωi,x)(i,x)∈Z×Zd are i.i.d. However,
restricting to that special case would not change the statements or the proofs of our
results in this paper (except those in Section 3.7 on spatially constant environments).
Moreover, it should be relatively straightforward to adapt our results to various discrete-
time continuous-space models (such as RWDRE onRd considered in [4, 29]) where spatial
independence is not applicable. Note in particular that we do not assume ergodicity
under spatial translations.

For the averaged results, the only condition we impose on the one-step range R
of the walk is 2 ≤ |R| < ∞. (|R| is the number of elements in the set R. The case
|R| = 1 is trivial.) We will assume without loss of generality that P(ω0,0(z) > 0) > 0 for
z ∈ R. (Otherwise, we can replace R by {z ∈ R : P(ω0,0(z) > 0) > 0}.) Our quenched
results will require various ellipticity conditions which we will indicate as needed in their
statements. These ellipticity conditions will be compared in Remark 3.13.

As the name suggests, RWDRE is a variant of the much-studied random walk in a
random environment (RWRE) model (see [53] for a survey). In fact, (i,Xi)i≥0 can be
viewed as a directed RWRE on Zd+1 because its component in the direction of (1, 0, . . . , 0)

is strictly increasing. This directedness simplifies certain aspects of the analysis of the
model. Most notably, RWDRE under the averaged measure P0 is a classical RW on Zd

with transition probabilities q̂(z) = E[ω0,0(z)] > 0. In particular, the strong law of large
numbers (LLN) and Donsker’s invariance principle (IP) hold for the averaged walk. Since
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Large deviations and entropy for RWDRE

any P0-almost sure statement holds Pω0 -almost surely for P-a.e. ω, there is no need for a
separate strong LLN for the quenched walk. On the other hand, an averaged IP does not
a priori imply a quenched one. Nevertheless, for the i.i.d. case, there is an IP under Pω0
for P-a.e. ω [38]. In stark contrast to these limit theorems, for (undirected) RWRE the
validity of even the LLN is an open problem in the i.i.d. case when d ≥ 3. See [3, 6] for
two of the best sufficient conditions in the literature.

Finally, RWDRE is a special case of the random path in a random potential model (on
Zd+1) that we described in Section 1.1 with

V (Ti,xω, z) = log

(
ωi,x(z)

p(z)

)
(1.8)

for every ω ∈ Ω, i ∈ Z, x ∈ Zd and z ∈ R. The limiting quenched free energy g(V ) for this
choice of potential is trivially zero. However, it is not g(V ) but the map h 7→ g(h+V )−g(V )

and certain variants of it that play a central role in describing the large deviation behavior
of these models (see [43, Theorem 3.1] for details).

1.3 Large deviation principles, the point of view of the particle, and empirical
measures

Recall that a sequence (Qn)n≥1 of Borel probability measures on a topological space
X is said to satisfy a large deviation principle (LDP) with (exponential scale n and) rate
function I : X→ [0,∞] if I is lower semicontinuous, and for any measurable set G,

− inf
x∈Go

I(x) ≤ lim inf
n→∞

1

n
logQn(G) ≤ lim sup

n→∞

1

n
logQn(G) ≤ − inf

x∈G
I(x).

Go is the topological interior of G and G its topological closure. See [14, 15, 42] for
general background regarding large deviations.

In the context of RWDRE, the LDP for (P0(Xn/n ∈ · ))n≥1 is nothing but Cramér’s
theorem for classical multidimensional RW (see, e.g., [42, Chapter 4]), with rate function
I1,a : Rd → [0,∞] given by

I1,a(ξ) = sup
ρ∈Rd

{〈ρ, ξ〉 − log φa(ρ)} = (log φa)∗(ξ), (1.9)

the convex conjugate of the logarithm of the moment generating function

φa(ρ) =
∑
z∈R

q̂(z)e〈ρ,z〉, (1.10)

where 〈·, ·〉 denotes inner product. This is an averaged LDP, hence the subscript a. (The
other subscript of I1,a stands for level-1 which is explained two paragraphs below.)
Establishing the analogous quenched LDP for (Pω0 (Xn/n ∈ · ))n≥1 and identifying the
rate function is more arduous. It involves considering certain empirical measures from
the point of view (POV) of the particle which we introduce next.

Define space-time translations (Tj,y)(j,y)∈Z×Zd on Ω by (Tj,yω)i,x = ωi+j,x+y. Then,
(Ti,Xiω)i≥0 is a discrete-time Markov chain taking values in Ω, and its transition proba-
bility from state ω to state ω′ is given by

π̄(ω′|ω) =
∑

z∈R:T1,zω=ω′

π0,1(0, z |ω).

Every limit theorem about this so-called environment Markov chain implies a correspond-
ing limit theorem for the walk. This general and robust approach was first introduced in
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Large deviations and entropy for RWDRE

the context of diffusion processes with random coefficients [35] and was later success-
fully adapted to RWRE (see for example [31, 30, 13, 36, 39, 50]).

In light of the previous paragraph, the large deviation behavior of RWDRE can be
analyzed via various statistics of either the walk itself or the environment Markov chain.
Among these statistics, the empirical velocity Xn/n is the coarsest one, and hence its
large deviation analysis is referred to as level-1. Finer statistics are provided by the
occupation measure

Ln =
1

n

n−1∑
i=0

δTi,Xiω

which records the environments seen from the POV of the particle. The pair-empirical
measure

L2
n =

1

n

n−1∑
i=0

δTi,Xiω,Zi+1

goes one step further by essentially keeping track of the pairs of consecutive environ-
ments that the particle sees. (In the Markov chain literature, the pair-empirical measure
typically refers to 1

n

∑n−1
i=0 δTi,Xiω,Ti+1,Xi+1

ω which is measurable w.r.t. our choice of L2
n.)

Pairs can be replaced with `-tuples for any ` ≥ 2 to define more detailed empirical mea-
sures. Large deviations of each of these empirical measures are called level-2. Finally,
level-3 involves the so-called empirical process

L∞n =
1

n

n−1∑
i=0

δTi,Xiω, θiZ. (1.11)

Here and throughout, Z = (Zi)i≥1 denotes the sequence of steps Zi = Xi −Xi−1 of the
random path (Xi)i≥0, and θ is the forward shift on sequences, i.e., (θZ)j = Zj+1 for every
j ∈ N. Under the topology of weak convergence of measures, the empirical process
contains precisely the same information as all of the empirical measures for `-tuples
combined. Level-1,2,3 large deviations for Markov processes were established (under
certain conditions) in a series of papers by Donsker and Varadhan [18, 19, 20]. The level
terminology was introduced later in [22].

1.4 Further notation for steps, environments and σ-algebras

Throughout, for any bi-infinite sequence z̄ = (. . . , z−2, z−1, z0, z1, z2, . . .) ∈ RZ of steps
and any pair of indices −∞ < i ≤ j <∞, we write

zi,j = (zi, zi+1, . . . , zj), zi,∞ = (zi, zi+1, zi+2, . . .) and z−∞,j = (. . . , zj−2, zj−1, zj).

We also use z = z1,∞ and z̄ = z−∞,∞. Similarly, for any environment ω = (ω̄i)i∈Z and any
pair of indices −∞ < k ≤ ` <∞,

ω̄k,` = (ω̄k, ω̄k+1, . . . , ω̄`), ω̄k,∞ = (ω̄k, ω̄k+1, ω̄k+2, . . .) and ω̄−∞,` = (. . . , ω̄`−2, ω̄`−1, ω̄`).

We use this notation to introduce the σ-algebras

Ai,jk,` = σ{ω̄k,`−1, Zi+1,j} and Sk,` = σ{ω̄k,`−1}

on appropriate spaces, for −∞ ≤ i < j ≤ ∞ and −∞ ≤ k < ` ≤ ∞. The reason for the
indexing convention is that the distribution of step Zn+1 is part of environment ω̄n. Note
also that A0,∞

−∞,∞ and A−∞,∞−∞,∞ are the Borel σ-algebras (w.r.t. the product topology) on
ΩN = Ω×RN and ΩZ = Ω×RZ, respectively. For any σ-algebra F , the space of bounded
and F -measurable functions is denoted by bF .
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Large deviations and entropy for RWDRE

1.5 Content and organization of the article

Section 2 reviews previous results on large deviations for RWDRE. The new results
are in Section 3. The paper is organized so that the results of Section 3.n are proved in
Section 3 + n. Section 3 concludes with remarks and open problems. The following list
summarizes the results (with proofs in the indicated sections):

(i) level-3 averaged LDP for the joint environment-path Markov chain (Section 4);

(ii) analysis of the averaged contraction from level-3 to level-1 (Section 5);

(iii) alternative formula for the level-3 quenched rate function (Section 6);

(iv) relationship of level-3 averaged and quenched rate functions (Section 7);

(v) characterizations of the equality of level-1 rate functions (Section 8);

(vi) minimizers of quenched contractions from level-3 to level-1 (Section 9);

(vii) spatially constant environments (Section 10).

2 Summary of previous results on large deviations

Recall from the Introduction that the level-1 averaged LDP, i.e., the LDP for the
sequence

(
P0

(
Xn
n ∈ ·

))
n≥1

, is simply the multidimensional Cramér theorem with the
rate function I1,a given in (1.9), whereas the statement and the proof of its quenched
counterpart is relatively technical. In fact, it is more convenient to first present the
level-3 quenched LDP for the environment Markov chain, and we will proceed in this
order.

Let S denote the temporal shift operator from the POV of the particle. It acts on
ΩN = Ω ×RN via S(ω, z) = (T1,z1ω, θz), and on ΩZ = Ω ×RZ via S(ω, z̄) = (T1,z1ω, θz̄).
On ΩZ S is invertible. We can write Sk(ω, z̄) = (Tk,xkω, θ

kz̄) for all k ∈ Z, with this
convention: bi-infinite paths x� through the origin and sequences z̄ ∈ RZ are bijectively
associated to each other by

x0 = 0, xk = −
0∑

i=k+1

zi and x` =
∑̀
i=1

zi for k < 0 < `. (2.1)

Remark 2.1. The empirical process L∞n defined in (1.11) satisfies

∫
f dL∞n =

1

n

n−1∑
i=0

f ◦ Si

for every f ∈ bA0,∞
−∞,∞. In particular,∣∣∣∣∫ (f ◦ S) dL∞n −

∫
f dL∞n

∣∣∣∣ ≤ 2‖f‖∞
n

.

Thus, L∞n is an asymptotically S-invariant element of M1(ΩN) for P-a.e. ω and every
realization of Z ∈ RN.

For any S-invariant µ ∈M1(ΩN), let

(i) µ̄ be the unique S-invariant extension of µ to ΩZ,

(ii) µ̄− the restriction of µ̄ to A−∞,0−∞,∞, and

(iii) πµ̄0,1(0, z |ω, z−∞,0) = µ̄(Z1 = z | A−∞,0−∞,∞)(ω, z−∞,0) for every z ∈ R.
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Large deviations and entropy for RWDRE

Define µ̄− × π and µ̄− × πµ̄ on A−∞,1−∞,∞ by

(µ̄− × π)(dω, dz−∞,1) = µ̄−(dω, dz−∞,0)π0,1(0, z1 |ω)cR(z1) and

(µ̄− × πµ̄)(dω, dz−∞,1) = µ̄−(dω, dz−∞,0)πµ̄0,1(0, z1 |ω, z−∞,0)cR(z1),

respectively. Here, cR =
∑
z∈R δz is the counting measure on R. Note that µ̄− × πµ̄ is

simply the restriction of µ̄ to A−∞,1−∞,∞. Let Hq(µ) denote the entropy of µ̄− × πµ̄ relative

to µ̄− × π on A−∞,1−∞,∞, i.e.,

Hq(µ) = HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × π)

=

∫
µ̄−(dω, dz−∞,0)

∑
z∈R

πµ̄0,1(0, z |ω, z−∞,0) log

(
πµ̄0,1(0, z |ω, z−∞,0)

π0,1(0, z |ω)

)
. (2.2)

Projecting this entropy to A0,1
−∞,∞ and replacing π0,1(0, z |ω) with a constant jump kernel

p(z) gives the entropy (1.4) discussed in the Introduction.

The rate function of the level-3 quenched LDP is obtained via the following modifica-
tion of Hq. For any µ ∈M1(ΩN), denote its Ω-marginal by µΩ, and set

HS
q,P(µ) =

{
Hq(µ) if µ is S-invariant and µΩ � P,

∞ otherwise.
(2.3)

HS
q,P is convex but not lower semicontinuous, and the double convex conjugate (HS

q,P)∗∗

of HS
q,P gives its lower semicontinuous regularization (see [42, Theorem 4.17]).

Theorem 2.2 (Level-3 quenched LDP). Assume

∃ p > d+ 1 such that E[| logω0,0(z)|p] <∞ for every z ∈ R. (2.4)

Then, for P-a.e. ω, the sequence (Pω0 (L∞n ∈ · ))n≥1 satisfies an LDP with rate function
I3,q :M1(ΩN)→ [0,∞] given by

I3,q(µ) = (HS
q,P)∗∗(µ).

This result is a special case of the level-3 quenched LDP we established in [43] for
a class of models including both directed and undirected RWRE with a rather general
but technical condition on the environment measure. We show in Proposition A.2 in
Appendix A that this technical condition holds in our current setting under the ellipticity
assumption (2.4).

Since the empirical velocity

Xn

n
= EL

∞
n [Z1] =

∫
z1L
∞
n (dω, dz)

is a bounded and continuous function of the empirical process, the level-1 quenched
LDP follows immediately from Theorem 2.2 via the contraction principle (see, e.g., [42,
Chapter 3]).

Corollary 2.3 (Level-1 quenched LDP). Assume (2.4). Then, for P-a.e. ω, the sequence(
Pω0
(
Xn
n ∈ ·

))
n≥1

satisfies an LDP with rate function I1,q : Rd → [0,∞] given by

I1,q(ξ) = inf{I3,q(µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ}. (2.5)

After the appearance of [43], the level-1 quenched LDP was established in [7] using
an alternative method involving the subadditive ergodic theorem, under the stronger
assumption of

uniform ellipticity: ∃ c > 0 such that P(ω0,0(z) ≥ c) = 1 for every z ∈ R. (2.6)
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Originally developed in [48] for undirected RWRE, this second method is less technical
and it avoids empirical measures, but does not give a formula for the rate function I1,q.

Let D := conv(R) denote the convex hull of R, and ξ∗ :=
∑
z∈R q̂(z)z stand for the

LLN velocity of the walk. The following proposition lists some elementary facts regarding
the level-1 averaged and quenched rate functions. We provide its proof in Appendix B
for the sake of completeness.

Proposition 2.4. Assume (2.4). Then, the following hold.

(a) I1,a and I1,q are convex and continuous on D.

(b) I1,a(ξ) ≤ I1,q(ξ) ≤ max{E[| logω0,0(z)|] : z ∈ R} <∞ for every ξ ∈ D.

(c) I1,a(ξ) = 0 iff I1,q(ξ) = 0 iff ξ = ξ∗.

(d) I1,a(z) < I1,q(z) for every z ∈ R that is an extreme point of D (unless ω0,0(z) is
deterministic).

Under additional assumptions, the following further results have been obtained
regarding the comparison of the level-1 averaged and quenched rate functions in relation
with the spatial dimension.

Theorem 2.5. Assume that

(ωi,x)(i,x)∈Z×Zd are i.i.d.,

the environment is uniformly elliptic (see (2.6)), and (2.7)

the walk is nearest-neighbor, i.e., R = U := {±e1, . . . ,±ed}.

Then, the following hold at the indicated spatial dimensions.

(a) (d = 1) I1,a(ξ) < I1,q(ξ) for all ξ ∈ D \ {ξ∗}, see [52, Theorem 1.5].

(b) (d = 2) I1,a(ξ) < I1,q(ξ) for all ξ ∈ D in a punctured neighborhood of ξ∗, see [52,
Theorem 1.6].

(c) (d ≥ 3) I1,a(ξ) = I1,q(ξ) for all ξ ∈ D in a neighborhood of ξ∗, see [49, Theorem 2].

Examining the proofs given in the references reveals that the last two conditions in
(2.7) can be replaced with somewhat weaker versions. However, the spatial indepen-
dence of the environment is crucial to the proofs and cannot be relaxed much.

There are other previous results on large deviations for RWDRE such as the ones in
[49] regarding the analysis of the averaged and quenched contractions from level-3 to
level-1, but we prefer to mention them in later parts of this paper because they will be
either covered by our new results or used in the proofs.

Our temporal independence assumption excludes various concrete models such as
RW on particle systems. Level-1,2,3 quenched LDPs for such models (which satisfy
uniform ellipticity (2.6)) are covered in [43], but averaged LDPs are open in general. See
[1] for level-1 averaged and quenched LDPs for RW on one-dimensional shift-invariant
attractive spin-flip systems. Article [28] proves a level-1 LDP for a variant of the RWDRE
model where there is mutual influence between the particle and the environment. Finally,
for previous results on large deviations for RWRE and closely related models, see [51,
Section 2], [37] and [43, Section 1.3], and the references therein.

3 Results

3.1 Level-3 averaged LDP

For any S-invariant µ ∈M1(ΩN), the specific relative entropy

h(µ |P0) = lim
`→∞

1

`
H0,`(µ |P0) = sup

0<`<∞

1

`
H0,`(µ |P0) (3.1)
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exists, where

Hk,`(µ |P0) := HAk,`k,`
(µ |P0) = sup

f∈bAk,`k,`

{Eµ[f ]− logE0[ef ]} (3.2)

is the entropy of µ relative to P0 on Ak,`k,`. The existence of the limit and the identity in
(3.1) follow from superadditivity and the independence built into P0, and will be justified
in Section 4.

Our first result in this paper is the averaged counterpart of Theorem 2.2. Note that it
requires only the temporal independence and spatial translation invariance conditions
which we assume throughout the paper (see Section 1.2).

Theorem 3.1 (Level-3 averaged LDP). The sequence (P0(L∞n ∈ · ))n≥1 satisfies an LDP
with rate function

I3,a :M1(ΩN)→ [0,∞]

given by

I3,a(µ) =

{
h(µ |P0) if µ is S-invariant,

∞ otherwise.
(3.3)

Remark 3.2. The appearance of S-invariance in (2.3) and (3.3) is natural, as observed
in Remark 2.1. Every S-invariant µ ∈M1(ΩN) arises in the following way. Consider ΩZ

as the product space (PZd×R)Z with generic variable (ω, z̄) = (ω̄i, zi+1)i∈Z and temporal
shift mapping (τ(ω, z̄))i = (ω̄i+1, zi+2). Let ν be a τ -invariant probability measure on ΩZ.
Recalling (2.1), let µ̄ ∈ M1(ΩZ) be the distribution of the sequence (T s−xi ω̄i, zi+1)i∈Z
under ν, and finally let µ be the marginal of µ̄ on ΩN obtained by dropping the nonpositive
steps z−∞,0.

P0 is not S-invariant (on A0,∞
−∞,∞), but there is a unique S-invariant probability mea-

sure P∞0 on ΩZ that agrees with P0 on A0,∞
0,∞ (see Lemmas 4.2 and 4.3). The LDP of

Theorem 3.1 is valid also for the distributions (P∞0 (L∞n ∈ · ))n≥1 and will in fact be proved
first for these.

Similar to Corollary 2.3, the contraction principle gives the following (infinite-
dimensional) variational formula for the level-1 averaged rate function:

I1,a(ξ) = inf{I3,a(µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ}. (3.4)

Since (1.9) is a much simpler formula than (3.4), the significance of the latter lies not
in providing a numerical value for I1,a(ξ), but in the questions it raises regarding the
minimizer(s) of this variational formula, which we pursue next.

3.2 Minimizer of the averaged contraction

Recall from (1.9) that the level-1 averaged rate function I1,a is the convex conjugate
of the logarithm of the moment generating function φa defined in (1.10). We have not
assumed that D has nonempty interior. Consequently I1,a is not necessarily differentiable,
and instead of its gradient we have to work with the set-valued subdifferential ∂I1,a(ξ).
Facts from convex analysis and proofs of some of the claims below are collected in
Appendix C.

Let ξ ∈ ri(D), the relative interior of D. By basic convex analysis, every ρ ∈ ∂I1,a(ξ)

maximizes in (1.9), that is,
I1,a(ξ) = 〈ρ, ξ〉 − log φa(ρ).

I1,a is differentiable at ξ if and only if ∂I1,a(ξ) is a singleton if and only if dim(D) = d. In
general ∂I1,a(ξ) is a nonempty affine subset of Rd parallel to the orthogonal complement
of the affine hull of R. From this last point it follows that any ρ ∈ ∂I1,a(ξ) can be used
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below to define a measure µξ ∈ M1(ΩN): for −∞ < k ≤ 0 < ` <∞ and a test function
f ∈ bA0,`

k,`, ∫
f(ω, z)µξ(dω, dz) := E0

[
e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k(ω,Z)

]
. (3.5)

Proposition 5.1 in Section 5 provides basic properties of µξ, beginning with its well-
definedness.

The second result in this paper identifies µξ as the unique minimizer of the averaged
contraction from level-3 to level-1.

Theorem 3.3. For every ξ ∈ ri(D), µξ is the unique minimizer of the variational formula
(3.4) of the averaged contraction from level-3 to level-1.

Measure µξ was introduced in [49, Definition 1] with different notation and under
the stronger assumptions in (2.7). Theorem 3.3 follows from an adaptation of [49,
Theorem 1] which roughly says that, conditioned on {Xn/n ≈ ξ}, the empirical process
L∞n converges to µξ under P0. See Proposition 5.3 for the precise statement.

Next we start analyzing the structure of the averaged contraction minimizer µξ ∈
M1(ΩN). First of all, µξ is S-invariant (see Proposition 5.1(a)). Using the notation
introduced in Section 2, let µ̄ξ be the unique S-invariant extension of µξ to ΩZ, and

πµ̄
ξ

0,1(0, z |ω, z−∞,0) = µ̄ξ(Z1 = z | A−∞,0−∞,∞)(ω, z−∞,0)

for z ∈ R.

Proposition 3.4. For every ξ ∈ ri(D), j ≥ 0, and z ∈ R,

µ̄ξ(Zj+1 = z | A−∞,j−∞,∞)(ω, z−∞,j) = µξ(Z1 = z |S0,∞)(Tj,xjω). (3.6)

Hence, the quenched walk under µ̄ξ is Markovian, and its transition kernel

πξ0,1(0, z |ω) := µξ(Z1 = z |S0,∞)(ω) = πµ̄
ξ

0,1(0, z |ω, z−∞,0) (3.7)

is S0,∞-measurable.

We denote the Ω-marginal of µξ by µξΩ. The proof of Proposition 3.4 in Section 5
shows that, by martingale convergence, the transition kernel in (3.7) is given by

πξ0,1(0, z |ω) = lim
n→∞

Eω0 [e〈ρ,Xn〉, Z1 = z]

Eω0 [e〈ρ,Xn〉]
, µξΩ-a.s., (3.8)

for any ρ ∈ ∂I1,a(ξ). The following result provides a characterization of the absolute
continuity of µξΩ in terms of a structural representation of πξ0,1 involving a Doob h-
transform.

Theorem 3.5. For every ξ ∈ ri(D), consider the following statements.

(i) There exists a function u ∈ L1(Ω,S0,∞,P) such that P(u > 0) = 1 and

πξ0,1(0, z |ω) = π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

u(T1,zω)

u(ω)
(3.9)

for every ρ ∈ ∂I1,a(ξ).
(ii) µξΩ � P on S0,∞.

Then, (i) =⇒ (ii). Conversely, if

∃ z′ ∈ R such that P(ω0,0(z′) > 0) = 1, (3.10)

then (ii) =⇒ (i). Furthermore, whenever (i) holds, u is equal (up to a multiplicative

constant) to
dµξΩ
dP

∣∣∣
S0,∞

.
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The proof that (i) implies (ii) in Theorem 3.5 is adapted from that of [44, Lemma
4.1] which is concerned with disorder regimes of directed random walks in random
potentials. The other implication follows from (3.8) under the mild ellipticity condition
(3.10) which ensures that µξΩ and P are in fact mutually absolutely continuous on S0,∞.
For closely related results on directed polymers and ballistic (undirected) RWRE, see
[12, Proposition 3.1] and [51, Theorem 3.3], respectively.

Remark 3.6. When we choose ξ to be the LLN velocity ξ∗ =
∑
z∈R q̂(z)z, we can take

ρ = 0 because ∇ log φa(0) = ξ∗ which is equivalent to 0 ∈ ∂I1,a(ξ∗) (see (C.2) in Appendix

C). Then (3.8) shows that πξ
∗

0,1(0, z |ω) = π0,1(0, z |ω), the original kernel, and in (3.9) we

can take u ≡ 1. Thus µξ
∗

Ω = P on S0,∞, which is also evident directly from the definition
of µξ

∗
in (3.5).

When d ≥ 3 and the conditions in (2.7) hold, it was shown by one of the authors [49,
Theorem 4] that statements (i) and (ii) in Theorem 3.5 are true not only at ξ = ξ∗ but
also for ξ sufficiently close to ξ∗, and in this case u ∈ L2(Ω,S0,∞,P).

3.3 Modified variational formulas for the quenched rate functions

Recall from (2.3) that the formula given in Theorem 2.2 for the level-3 quenched
rate function I3,q involves absolute continuity w.r.t. P (on S). This formula is valid for
a general class of RWRE models. However, in the case of RWDRE, as we have seen in
Proposition 3.4 and Theorem 3.5, the relevant σ-algebra is S0,∞. Therefore, we next
provide appropriately modified formulas for I3,q and I1,q which will be central to some of
our subsequent results. Define

HS,+
q,P (µ) =

{
Hq(µ) if µ is S-invariant and µΩ � P on S0,∞,

∞ otherwise.
(3.11)

Theorem 3.7. Assume (2.4). Then, for every µ ∈M1(ΩN),

I3,q(µ) = (HS,+
q,P )∗∗(µ). (3.12)

Corollary 3.8. Assume (2.4). Then, for every ξ ∈ ri(D),

I1,q(ξ) = inf{(HS,+
q,P )∗∗(µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ} (3.13)

= inf{Hq(µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ, µ is S-inv., µΩ � P on S0,∞}. (3.14)

Example 3.9. The need for Theorem 3.7 is justified by the fact that HS
q,P(µ) = HS,+

q,P (µ)

does not hold in general. The following counterexample is adapted from [5]. Assume
(2.7) and the following extra condition on the law of the environment:

P (ω0,0(z) > ω0,0(z′) for every z′ ∈ U \ {z}) =
1

2d

for every z ∈ U . Consider a new transition kernel π′ defined by

π′0,1(0, z |ω) =

{
1 if ω0,0(z) > ω0,0(z′) for every z′ ∈ U \ {z},
0 otherwise.

For P-a.e. ω, the quenched walk under this new kernel is deterministic, the law of the
environment Markov chain (Ti,Xiω)i≥0 converges weakly to a π′-invariant probability
measure Q on Ω (see [5, Proposition 1.4]), Q = P on S0,∞, but Q ⊥ P on S (see [5,
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Proposition 1.5]). Define an S-invariant µ ∈ M1(ΩN) by setting πµ̄0,1(0, z |ω, z−∞,0) =

π′0,1(0, z |ω) and µΩ = Q. Then, HS
q,P(µ) =∞, but (2.4) ensures that

HS,+
q,P (µ) = Hq(µ) = E

[∑
z∈U

π′0,1(0, z |ω) log

(
π′0,1(0, z |ω)

π0,1(0, z |ω)

)]
<∞.

3.4 Decomposing the level-3 averaged rate function

The level-3 averaged and quenched LDPs hold with rate functions I3,a and I3,q given
in (3.3) and (3.12), respectively. Note that I3,a(µ) ≤ I3,q(µ) for every µ ∈M1(ΩN). This
follows from Jensen’s inequality applied to the convex conjugates of the rate functions,
and is shown in Corollary 3.11 for the sake of completeness. How are these two rate
functions related beyond this basic inequality? The following theorem provides a partial
answer. Additional remarks follow in Section 3.8.

Theorem 3.10. For every S-invariant µ ∈M1(ΩN),

h(µ |P0) = hS0,∞(µΩ |P) +Hq(µ), (3.15)

where

hS0,∞(µΩ |P) = lim
n→∞

1

n
HS0,n(µΩ |P).

Theorem 3.10 is an application of the chain rule for relative entropy (see [17, Lemma
4.4.7]). It does not require any ellipticity condition. HS0,n

(µΩ |P) is the entropy of µΩ

relative to P on S0,n, and hS0,∞(µΩ |P) is the specific relative entropy whose existence
is shown in the proof of Theorem 3.10.

Corollary 3.11. Assume (2.4). Then, for every S-invariant µ ∈M1(ΩN),

Hq(µ) ≤ I3,a(µ) = h(µ |P0) = hS0,∞(µΩ |P) +Hq(µ)

≤ I3,q(µ) = (HS,+
q,P )∗∗(µ) ≤ HS,+

q,P (µ).

The outermost inequality Hq(µ) ≤ HS,+
q,P (µ) in Corollary 3.11 holds by definition (3.11),

yet it is still important. Indeed, if Hq(µ) = HS,+
q,P (µ), then all of the inner inequalities are

equalities, too. We will use this simple observation below in the proof of Corollary 3.14.

3.5 Equality of the averaged and quenched rate functions

Proposition 2.4 and Theorem 2.5 summarized what is known about the equality of
I1,a(ξ) and I1,q(ξ). The following result complements this picture by providing three
characterizations of I1,a(ξ) = I1,q(ξ), each of which involve µξ ∈ M1(ΩN) (defined in
(3.5) for ξ ∈ ri(D)) or its Ω-marginal µξΩ.

Theorem 3.12. Assume (2.4). For every ξ ∈ ri(D), consider the following statements.

(i) I1,a(ξ) = I1,q(ξ).

(ii) I1,q(ξ) = Hq(µ
ξ).

(iii) (HS,+
q,P )∗∗(µξ) = Hq(µ

ξ).

(iv) hS0,∞(µξΩ |P) = 0.

Then, (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv). Moreover, if

∃ δ > 0 such that E[ω0,0(z)−δ] <∞ for every z ∈ R, (3.16)

then (iv) =⇒ (i) and hence all four statements are equivalent.
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Remark 3.13. The ellipticity conditions that appear in the statements of our results are
related as follows:

(3.16) =⇒ (2.4) =⇒ (3.10).

They are all strictly weaker than uniform ellipticity (2.6).

Regarding the equality of the level-3 averaged and quenched rate functions, the
following result provides a sufficient condition. It is also noteworthy that under the
stronger condition of uniform ellipticity, the entropy HS0,n

(µΩ |P) can grow at most
sublinearly for the absolutely continuous marginals of S-invariant measures.

Corollary 3.14. Assume (2.4). Then, for every S-invariant µ ∈ M1(ΩN) such that
µΩ � P on S0,∞,

I3,a(µ) = I3,q(µ) = Hq(µ).

Furthermore, if we strengthen (2.4) to uniform ellipticity (2.6), then every S-invariant
µ ∈M1(ΩN) such that µΩ � P on S0,∞ satisfies hS0,∞(µΩ |P) = 0.

3.6 Minimizers of the quenched contractions

Recall from Theorem 3.3 that, for every ξ ∈ ri(D), µξ is the unique minimizer of
the averaged contraction (3.4) from level-3 to level-1. Finding the minimizers of the
quenched contractions (3.13) and (3.14) is more difficult in general. The following result
treats the case where the level-1 rate functions are equal.

Theorem 3.15. Assume (2.4). For every ξ ∈ ri(D):

(a) if I1,a(ξ) = I1,q(ξ), then

I1,a(ξ) = I1,q(ξ) = (HS,+
q,P )∗∗(µξ) = Hq(µ

ξ), (3.17)

and µξ is the unique minimizer of the quenched contraction (3.13);

(b) if µξΩ � P on S0,∞, then (3.17) holds, and µξ is the unique minimizer of the
quenched contractions (3.13) and (3.14).

Remark 3.16. Theorem 3.15(b) is not vacuous or trivial (see Remark 3.6). A similar
result (regarding level-2 to level-1 contractions for ξ close to ξ∗) was previously obtained
for certain ballistic (undirected) RWREs on Zd with d ≥ 4 (see [51, Theorem 3.9]).

The lower semicontinuity of (HS,+
q,P )∗∗ and the compactness of the set {µ ∈M1(ΩN) :

Eµ[Z1] = ξ} ensure that the quenched contraction (3.13) always has a minimizer. On the
other hand, there is currently no general existence result for minimizers of the quenched
contraction (3.14). See Section 3.8 for further remarks.

3.7 Spatially constant environments

We illustrate our results in a simplified setting where the spatial variation of the
environment is removed. The quenched process Z is now a process of independent but
not identically distributed variables. LDPs for such processes were originally established
in [2, 8, 47], motivated in part by their application to the equilibrium statistical mechanics
of disordered lattice systems such as the Ising or Curie-Weiss models with random fields
or coupling constants. (Some of these large deviation results have been reproduced in
Chapter 15 of the textbook [42].) The novelty we provide here is the identification of the
averaged and quenched contraction minimizers. We find that many properties such as
equality of averaged and quenched rate functions and minimizers fail.

Take a Borel probability measure λ on P (defined in (1.7)). Let (q̄i)i∈Z be sampled

from PZ according to λ⊗Z. Define ω ∈ Ω = PZ×Zd by setting

ωi,x = q̄i for every i ∈ Z and x ∈ Zd. (3.18)
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This induces a probability measure P on (Ω,S). Environments under P are temporally
i.i.d. and spatially constant. Hence, P is invariant but not ergodic under the spatial
translations (T sy )y∈Zd .

For ρ ∈ Rd and ω ∈ Ω, define

W (ρ, ω) = Eω0 [e〈ρ,Z1〉].

Observe that E[W (ρ, ω)] = φa(ρ). For the sake of eliminating trivial cases where the
environment is effectively deterministic, we assume that

P(W (ρ, ω) = φa(ρ)) < 1 unless φa(ρ) = e〈ρ,ξ
∗〉. (3.19)

The condition φa(ρ) = e〈ρ,ξ
∗〉 is the same as ρ ∈ ∂I1,a(ξ∗) (Proposition C.3 in Appendix C).

We start our study by giving a simple formula for the level-1 quenched rate function
and showing that it is not equal to the averaged one at any atypical velocity.

Proposition 3.17. Assume (2.4) and (3.18). Then, for every ξ ∈ D,

I1,q(ξ) = sup
ρ∈Rd
{〈ρ, ξ〉 − E[logW (ρ, ω)]} ≥ sup

ρ∈Rd
{〈ρ, ξ〉 − logE[W (ρ, ω)]} = I1,a(ξ). (3.20)

If ξ ∈ ri(D) \ {ξ∗} and (3.19) holds, then the inequality in (3.20) is strict.

Remark 3.18. In Proposition 3.17, we assume (2.4) in order to apply Corollary 2.3. In
fact, when the environment is spatially constant, a weaker ellipticity condition is suffi-
cient for the level-1 quenched LDP, but we do not pursue such technical improvements
here.

Next we present the structure of the unique minimizer µξ (defined in (3.5)) of the
averaged contraction (3.4) (see Theorem 3.3). For ρ ∈ Rd and ω ∈ Ω let

u1(ρ, ω) =
W (ρ, ω)

φa(ρ)
.

Proposition 3.19. Assume (3.18). Then, for every ξ ∈ ri(D), the pairs (ω̄i, Zi+1)i≥0 are
i.i.d. under µξ. The Ω-marginal µξΩ and the Markov transition kernel πξ0,1 of µξ are given
by

dµξΩ
dP

∣∣∣∣∣
S0,n

(ω) =

n−1∏
i=0

u1(ρ, Ti,0ω) and πξ0,1(0, z |ω) = π0,1(0, z |ω)
e〈ρ,z〉

W (ρ, ω)
,

for any ρ ∈ ∂I1,a(ξ). If ξ 6= ξ∗ and (3.19) holds, then µξΩ 6� P on S0,∞, and πξ0,1 is not
obtained from π0,1 via a Doob h-transform as in (3.9).

The simultaneous lack of absolute continuity and Doob h-transform are consistent
with Theorem 3.5. Now that we have simple formulas for µξΩ and πξ0,1, we can compute

hS0,∞(µξΩ |P) and Hq(µ
ξ).

Proposition 3.20. Assume (3.18). Then, for every ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ),

hS0,∞(µξΩ |P) = E[u1(ρ, ω) log u1(ρ, ω)] and

Hq(µ
ξ) = 〈ρ, ξ〉 − log φa(ρ)− E[u1(ρ, ω) log u1(ρ, ω)].

If ξ 6= ξ∗ and (3.19) holds, then hS0,∞(µξΩ |P) > 0.

Proposition 3.20 implies that

hS0,∞(µξΩ |P) +Hq(µ
ξ) = 〈ρ, ξ〉 − log φa(ρ) = I1,a(ξ) = h(µξ |P0)

for every ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ), which is consistent with Theorem 3.10.
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Large deviations and entropy for RWDRE

Since the environments are spatially constant, under the quenched conditioning on
ω the Ω-marginal of the empirical process L∞n of (1.11) is a deterministic measure that
converges to P. Consequently the quenched rate must blow up at measures with the
“wrong” Ω-marginal. This was observed in [8, Theorem III.1] and [47, Theorem 3.4].

Proposition 3.21. Assume (2.4) and (3.18). For every µ ∈ M1(ΩN), if µΩ 6= P, then
I3,q(µ) =∞. Consequently, if (3.19) holds, then

(HS,+
q,P )∗∗(µξ) = HS,+

q,P (µξ) =∞

for every ξ ∈ ri(D) \ {ξ∗}.
If (2.4), (3.18) and (3.19) hold, then it follows from Propositions 3.17, 3.20 and 3.21

that all four statements in Theorem 3.12 are false for every ξ ∈ ri(D) \ {ξ∗}, which is
consistent with their equivalence.

Proposition 3.21 shows in a striking way how the alteration of the entropy Hq can
completely remove the averaged minimizers µξ from the effective domain of the quenched
rate function. In particular, µξ cannot be a minimizer of the quenched contractions (3.13)
or (3.14). Our final result identifies the minimizer(s) of these quenched contractions.

For ξ ∈ ri(D) define νξ ∈M1(ΩN) by setting

νξ(dω, dz1,n) = P(dω)

n−1∏
i=0

{
π0,1(0, zi+1 |Ti,0ω)

e〈ρ,zi+1〉

W (ρ, Ti,0ω)

}
(3.21)

for every n ∈ N, where ρ ∈ ∂I1,q(ξ).
Proposition 3.22. Assume (2.4) and (3.18). Then, for every ξ ∈ ri(D):

(a) νξ is well-defined and S-invariant;

(b) Eν
ξ

[Z1] = ξ;

(c) (HS,+
q,P )∗∗(νξ) = Hq(ν

ξ) = I1,q(ξ); and

(d) νξ is the unique minimizer of the variational formulas (3.13) and (3.14) of the
quenched contractions from level-3 to level-1.

The Ω-marginal of νξ is νξΩ = P, which is consistent with Proposition 3.21. The transi-

tion kernels of µξ (see Proposition 3.19) and νξ are both of the form π0,1(0, z |ω) e〈ρ,z〉

W (ρ,ω) ,

but defined using ρ ∈ ∂I1,a(ξ) and ρ ∈ ∂I1,q(ξ), respectively.

3.8 Additional remarks and open problems

3.8.1 Minimizers of the contractions

For every ξ ∈ ri(D), Theorem 3.3 identifies µξ as the unique minimizer of the averaged
contraction (3.4) from level-3 to level-1. When I1,a(ξ) = I1,q(ξ), Theorem 3.15 says that
µξ is also the unique minimizer of the quenched contraction (3.13). Moreover, if µξΩ � P

on S0,∞ (see Remark 3.6 for examples), then µξ is the unique minimizer of the quenched
contraction (3.14), too. In the latter case, Theorem 3.5 gives a representation for the
Markov transition kernel πξ0,1 of the quenched walk under µξ via a Doob h-transform.

When I1,a(ξ) < I1,q(ξ), identifying the minimizers (if any) of the quenched contractions
(3.13) and (3.14) or saying anything about their structure is an open problem in general.
Note that (3.13) always has a minimizer (see Remark 3.16). In contrast, we expect that
(3.14) has no minimizers when the environment (ωi,x)(i,x)∈Z×Zd is i.i.d., but this is yet to
be shown. On the other hand, in the case of spatially constant environments, Proposition
3.22 provides the unique minimizer of both of these quenched contractions.

In a recent article [44], we obtained results on the existence and identification of
minimizers of variational formula (1.2) for the quenched free energy of random paths
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in random potentials and the counterpart of this variational formula for the so-called
annealed free energy

logE
[
ERW0

[
eV (·, Z1)

]]
in the directed i.i.d. case. These results cover the averaged and quenched logarithmic
moment generating functions

log φa(ρ) = logE0[e〈ρ,Z1〉] and Λ1,q(ρ) = lim
n→∞

1

n
logEω0 [e〈ρ,Xn〉] (3.22)

for RWDRE. (In general, the term averaged refers to first dividing a quenched expectation
by the quenched partition function and then taking the P-expectation of the quotient,
whereas annealed refers to first taking the P-expectation of a quenched expectation
and then dividing by the P-expectation of the quenched partition function. However,
there is no difference between them in the RWDRE setting since ERW0

[
eV (ω,Z1)

]
= 1

for every ω ∈ Ω by (1.8).) The functions in (3.22) are the convex conjugates of I1,a
and I1,q, respectively, by Varadhan’s lemma. In future work, we hope to combine these
previous results with the current ones and thereby deepen our understanding of the
large deviation behavior of RWDRE.

3.8.2 Connecting the rate functions

How the averaged and quenched rate functions are related to each other is an important
question in the study of processes in random environments. For example, at level-
1, obtaining an expression for I1,a in terms of I1,q would provide us with valuable
information regarding how the path and the environment conspire towards the realization
of atypical velocities. This question is answered with variational formulas in [9] for one-
dimensional nearest-neighbor classical RWRE under the i.i.d. environment assumption
and in [23] for the exactly solvable corner growth model with random parameters. It
is an open problem for example for RWRE in higher dimensions or under more general
conditions.

In the context of RWDRE, Theorem 3.10 provides a partial answer to the aforemen-
tioned question at level-3 since it connects I3,a(µ) = h(µ |P0) with I3,q(µ) = (HS,+

q,P )∗∗(µ)

only indirectly via Hq(µ). This reduces the original question to understanding the varia-
tional expression (HS,+

q,P )∗∗(µ)−Hq(µ), which is one of our goals for future work. So far,

we know that this difference is nonnegative (see Corollary 3.11), and equal to zero at µξ

if and only if I1,a(ξ) = I1,q(ξ) (see Theorem 3.12).

3.8.3 Equality of the rate functions

When I1,a(ξ) = I1,q(ξ) at an atypical velocity ξ ∈ ri(D)\{ξ∗}, the walk is solely responsible
(in the exponential scale) for the occurrence of the rare event {Xn/n ≈ ξ} under the
joint measure P0. Theorem 3.12 makes this precise by the statement hS0,∞(µξΩ |P) = 0.

Theorem 2.5 lists the previous results regarding the equality of the level-1 rate
functions. The decisive statement for d = 1 is believed to be true also for d = 2. In
contrast, recalling Proposition 2.4 (a,d), both C = {ξ ∈ D : I1,a(ξ) = I1,q(ξ)} and D \ C
have nonempty interiors when d ≥ 3. Hence, there is a phase transition at the boundary
of C, and we would like to analyze the structure of µξ when ξ ∈ ∂C. The characterizations
in Theorem 3.12 can potentially shed light on this problem.

Theorem 3.15(b) provides a sufficient condition for I1,a(ξ) = I1,q(ξ), namely µξΩ � P

on S0,∞. Whether this condition is also necessary for I1,a(ξ) = I1,q(ξ) is an important
open problem which is related to the existence of the critical (i.e., strong but not very
strong) disorder regime for directed polymers. See [44, Section 1.3] for details including
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the general definitions of the weak, strong and very strong disorder regimes. When
specialized to the RWDRE setting and notation, the environment is said to manifest

(i) weak disorder if µξΩ � P on S0,∞ (see Remark 3.6 for examples),

(ii) strong disorder if µξΩ 6� P on S0,∞, and

(iii) very strong disorder if
dµξΩ
dP

∣∣∣
S0,n

decays exponentially to zero as n→∞ (equivalently

I1,a(ξ) < I1,q(ξ)).

Here, ξ is a multidimensional analog of inverse temperature (since ρ ∈ ∂I1,a(ξ) appears
in the exponent inside the expectation on the RHS of (3.5)), with the LLN velocity ξ∗

corresponding to infinite temperature. It is tempting to connect this problem of critical
disorder with the previous one regarding the structure of µξ at the boundary of C, but
we refrain from proposing any conjectures.

4 Level-3 averaged LDP from the point of view of the particle

We start this section with an important point regarding the relative entropies
Hk,`(µ |P0) defined in (3.2). We will refer to this point below in the proof of Theorem 3.1.

Remark 4.1. It is not necessarily the case that Hk,`(µ |P0) = H0,`−k(µ |P0) holds for
S-invariant µ ∈ M1(ΩN) and 0 < k < `. This is because the distribution of (ω̄i, Zi+1)

under P0 changes with i. Here is an example: The simplest S-invariant probability
measure on ΩN is of the product type

µ(dω, dz) =
⊗
i∈Z

ν(dω̄i)⊗
⊗
j∈N

α(zj).

Take ν(dω̄i) = Ps(dω̄i) and α = δz for some fixed z ∈ R. Then,

Hi,i+1(µ |P0) = −E[log
∑
x

P0(Xi = x)πi,i+1(x, x+ z |ω)].

Proof of Theorem 3.1. We will transform the problem into a level-3 LDP for an i.i.d.
sequence on the space ΩZ = Ω×RZ. First, we define the measure on ΩZ that will give
the desired i.i.d. sequence.

Recall the definition (2.1) xi = −
∑0
j=i+1 zj of the backward path (xi)i≤0. For n ∈ N,

let

ϕω−n(z−n+1,0) =

−1∏
i=−n

πi,i+1(xi, xi+1 |ω) =

−1∏
i=−n

π0,1(0, zi+1 |Ti,xiω).

Note that ϕω−n(z−n+1,0) is not a probability distribution on vectors z−n+1,0 because it
does not sum up to one. Set

fn(ω) =
∑

z−n+1,0∈Rn
ϕω−n(z−n+1,0) =

∑
x∈Zd

P
T−n,−xω
0 (Xn = x). (4.1)

On the σ-algebra A−n,∞−n,∞, we define a measure P̃ (−n) by setting

P̃ (−n)(dω̄−n,∞, dz−n+1,m) = P(dω̄−n,∞)ϕω−n(z−n+1,0)Pω0 (z1,m)

m∏
i=−n+1

cR(zi)

for every m ∈ N. Here, cR denotes the counting measure on R.
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Lemma 4.2. (P̃ (−n))n∈N are consistent probability measures and hence they induce a
probability measure P∞0 on ΩZ.

Proof. For every m,n ∈ N and every test function f ∈ bA−n,m−n,∞,∫
P̃ (−n−1)(dω̄−n−1,∞, dz−n,m)f(ω̄−n,∞, z−n+1,m)

=

∫
P(dω̄−n−1,∞)

∑
z−n,m

ϕω−n−1(z−n,0)Pω0 (z1,m)f(ω̄−n,∞, z−n+1,m)

=

∫
P(dω̄−n,∞)

∑
z−n+1,m

ϕω−n(z−n+1,0)Pω0 (z1,m)f(ω̄−n,∞, z−n+1,m)

×
∫
Ps(dω̄−n−1)

∑
z−n

π0,1(0, z−n |T−n−1,x−n−z−nω) (4.2)

=

∫
P(dω̄−n,∞)

∑
z−n+1,m

ϕω−n(z−n+1,0)Pω0 (z1,m)f(ω̄−n,∞, z−n+1,m)

×
∫
Ps(dω̄−n−1)

∑
z−n

π0,1(0, z−n |T−n−1,x−nω) (4.3)

=

∫
P̃ (−n)(dω̄−n,∞, dz−n+1,m)f(ω̄−n,∞, z−n+1,m).

Here, (4.2) uses the temporal independence of the environment, whereas (4.3) follows
from exchanging the order of the last integral and sum, recalling the spatial translation
invariance assumption, and restoring the order of the last integral and sum. Taking
f ≡ 1, we similarly get∫

P̃ (−n)(dω̄−n,∞, dz−n+1,m) =

∫
P̃ (−1)(dω̄−1,∞, dz0,m)

=

∫
P(dω̄0,∞)

∑
z1,m

Pω0 (z1,m)×
∫
Ps(dω̄−1)

∑
z0

π0,1(0, z0 |T−1,0ω) = 1.

We conclude that (P̃ (−n))n∈N are consistent probability measures.

Recall that (T sy )y∈Zd are spatial translations defined by (T sy ω̄j)x = ωj,x+y for j ∈ Z
and x, y ∈ Zd. We use these translations to introduce the so-called slab variables

sj = (T sxj ω̄j , zj+1) , j ∈ Z. (4.4)

This choice of terminology comes from viewing RWDRE in Zd as a directed RWRE in
Zd+1. Note that sj is centered at the point xj on the path. In this sense, the slab variables
are adapted to the POV of the particle. Equivalently, they satisfy sj = s0 ◦ Sj for j ∈ Z.
For any pair of indices −∞ < k ≤ ` <∞, we write sk,` = (sk, sk+1, . . . , s`).

Lemma 4.3. P∞0 is S-invariant and the slab variables (sj)j∈Z are i.i.d. under P∞0 .

Proof. This is an immediate consequence of the following induction steps. Let E∞0 stand
for expectation under P∞0 . For −n < 0 < m,

E∞0 [f(s−n,m−1)g(sm)] =
∑

z−n+1,m+1

E
[
ϕω−n(z−n+1,0)Pω0 (z1,m)f((T sxj ω̄j , zj+1)−n≤j≤m−1)

× π0,1(0, zm+1 |Tm,xmω)g(T sxm ω̄m, zm+1)
]
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=
∑

z−n+1,m+1

E
[
ϕω−n(z−n+1,0)Pω0 (z1,m)f((T sxj ω̄j , zj+1)−n≤j≤m−1)

]
× E

[
π0,1(0, zm+1 |Tm,xmω)g(T sxm ω̄m, zm+1)

]
= E∞0 [f(s−n,m−1)]E0[g(ω̄0, Z1)]

by temporal independence and spatial translation invariance, where f and g are test
functions on appropriate spaces. Similarly,

E∞0 [g(s−n)f(s−n+1,m)] =
∑

z−n+1,m+1

E
[
π0,1(0, z−n+1 |T−n,x−nω)g(T sx−n ω̄−n, z−n+1)

× ϕω−n+1(z−n+2,0)Pω0 (z1,m+1)f((T sxj ω̄j , zj+1)−n+1≤j≤m)
]

=
∑

z−n+1,m+1

E
[
π0,1(0, z−n+1 |T−n,x−nω)g(T sx−n ω̄−n, z−n+1)

]
× E

[
ϕω−n+1(z−n+2,0)Pω0 (z1,m+1)f((T sxj ω̄j , zj+1)−n+1≤j≤m)

]
=
∑
z

E
[
π0,1(0, z |ω)g(ω̄0, z)

]
×
∑

z−n+2,m+1

E
[
ϕω−n+1(z−n+2,0)Pω0 (z1,m+1)f((T sxj ω̄j , zj+1)−n+1≤j≤m)

]
= E0[g(ω̄0, Z1)]E∞0 [f(s−n+1,m)].

Denote the full sequence of slab variables by s̄ = (sj)j∈Z and let τ be the temporal
shift on these sequences, defined by (τ s̄)j = sj+1. With this notation, the empirical
process induced by the slab variables is

Lslabn =
1

n

n−1∑
i=0

δτ is̄.

The LDP for Lslabn under P∞0 is an instance of the well-known Donsker-Varadhan level-3
LDP for sequences of i.i.d. random variables taking values in Polish spaces, see, e.g.,
[42, Chapter 6]. We state this result as Proposition 4.4 below, after some preparation for
providing a formula for the corresponding rate function.

We can glue together the environment components of the slab variables to form an
ω′ ∈ Ω with ω̄′j = T sxj ω̄j for j ∈ Z, and thereby identify the space of slab sequences with
ΩZ. (For the sake of convenience, we will write ω instead of ω′.) This identification
already factors in the POV of the particle, and the shift τ acts on (environment, path)
pairs simply by (

τ(ω̄·, z·+1)
)
j

= (ω̄j+1, zj+2).

In other words, the sequence s̄ can be thought of as a bijective map on ΩZ. It induces
a τ -invariant distribution P∞0 ◦ s̄−1 on this space. Since the σ-algebras Ak,`k,` are now
regarded as being generated by the i.i.d. slab variables sj , the problem with shifting
relative entropy (cf. Remark 4.1) disappears. For τ -invariant probability measures Q on
ΩZ, the specific relative entropy

h(Q |P∞0 ◦ s̄−1) = lim
`→∞

H0,`(Q |P∞0 ◦ s̄−1)

`
= sup
−∞<k<`<∞

Hk,`(Q |P∞0 ◦ s̄−1)

`− k
(4.5)

exists by a standard superadditivity argument (see [42, Theorem 6.7]).
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Proposition 4.4. The sequence (P∞0 (Lslabn ∈ · ))n≥1 satisfies an LDP with rate function
Islab :M1(ΩZ)→ [0,∞] given by

Islab(Q) =

{
h(Q |P∞0 ◦ s̄−1) if Q is τ -invariant,

∞ otherwise.

Next, we transform this LDP into one for the empirical measures

LZn =
1

n

n−1∑
i=0

δTi,Xiω , θiZ̄ =
1

n

n−1∑
i=0

δSi(ω , Z̄).

The inverse of the map (ω, z̄) 7→ s̄ is γ : ΩZ → ΩZ that acts on slabs via

(γ(ω̄·, z·+1))j = (T s−xj ω̄j , zj+1), j ∈ Z.

Note that

S ◦ γ = γ ◦ τ

and LZn = Lslabn ◦ γ−1. A probability measure Q on ΩZ is S-invariant iff Q′ = Q ◦ γ is
τ -invariant. Apply the contraction principle to the LDP in Proposition 4.4 with the map
Q′ = Q ◦ γ 7→ Q onM1(ΩZ). This gives an LDP for (P∞0 (LZn ∈ · ))n≥1 with rate function

IZ(Q) =

{
h(Q ◦ γ |P∞0 ◦ γ) if Q is S-invariant,

∞ otherwise.

Since γ acts bijectively on any collection of adjacent slabs that includes the zeroth slab
and hence preserves Ak,`k,`-measurability for k ≤ 0 < `,

Hk,`(Q ◦ γ |P∞0 ◦ γ) = Hk,`(Q |P∞0 ).

Thus, using (4.5), we can define a specific relative entropy for S-invariant Q by restricting
the intervals [k, `) to include 0:

h(Q |P∞0 ) = lim
`→∞

H0,`(Q |P∞0 )

`
= sup
−∞<k≤0<`<∞

Hk,`(Q |P∞0 )

`− k
= h(Q ◦ γ |P∞0 ◦ γ). (4.6)

The statement of the LDP we have established is simplified as follows.

Proposition 4.5. The sequence (P∞0 (LZn ∈ · ))n≥1 satisfies an LDP with rate function
IZ :M1(ΩZ)→ [0,∞] given by

IZ(Q) =

{
h(Q |P∞0 ) if Q is S-invariant,

∞ otherwise.

As the last step, we transform this LDP into the one we want. Denote the natural
ΩZ → ΩN projection by Φ(ω, z̄) = (ω, z). We can think of the empirical process L∞n
(introduced in (1.11)) as a function from ΩZ intoM1(ΩN) by replacing L∞n with L∞n ◦ Φ.
We drop the projection from the notation since the coordinates of θiz = zi+1,∞ are defined
on ΩZ as well as on ΩN. The contraction principle gives an LDP for (P∞0 (L∞n ∈ · ))n≥1

with rate function I∞3,a :M1(ΩN)→ [0,∞] defined by

I∞3,a(µ) =

{
h(µ̄ |P∞0 ) if µ is S-invariant,

∞ otherwise.
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Recall that, for any S-invariant µ on ΩN, µ̄ denotes the unique S-invariant extension of µ
to ΩZ. By the S-invariance of both µ̄ and P∞0 , the entropies can be shifted to nonnegative
levels so that

Hk,`(µ̄ |P∞0 ) = H0,`−k(µ̄ |P∞0 ) = H0,`−k(µ |P0) for k ≤ 0 < `.

The first equality above follows from the observation that f 7→ f ◦ S−k and g 7→ g ◦ Sk
are bijections between bAk,`k,` and bA0,`−k

0,`−k for k ≤ 0 < `. (However, this is not the case
when 0 < k < `, cf. Remark 4.1.) The second equality is valid because µ̄ and µ (resp. P∞0
and P0) agree at nonnegative times. Comparing (3.1) and (4.6), we conclude that I∞3,a is
equal to the level-3 averaged rate function I3,a defined in (3.3).

It remains to transfer the LDP from (P∞0 (L∞n ∈ · ))n≥1 to (P0(L∞n ∈ · ))n≥1 separately
for lower and upper bounds. This works easily because (i) weak topology onM1(ΩN) is
determined by finite-dimensional distributions, (ii) the dependence of L∞n on environ-
ments at negative times vanishes as n→∞, and (iii) the measures P0 and P∞0 agree on
environments and steps at nonnegative times. We leave the routine details to the reader.
This completes the proof of Theorem 3.1.

5 Minimizer of the averaged contraction

We start by listing some properties of the measure µξ which was introduced in (3.5)
for ξ ∈ ri(D).

Proposition 5.1. For every ξ ∈ ri(D):

(a) µξ is well-defined and S-invariant;

(b) the slab variables (s`)`≥0 are i.i.d. under µξ;

(c) Eµ
ξ

[Z1] = ξ;

(d) H0,`(µ
ξ |P0) = `I1,a(ξ) for every ` ∈ N; and

(e) I3,a(µξ) = h(µξ |P0) = I1,a(ξ).

Remark 5.2. At the LLN velocity ξ∗, the RHS of (3.5) gets simplified since 0 ∈ ∂I1,a(ξ∗),
and we deduce that µξ

∗
= P0 on A0,∞

0,∞. (They are not equal on A0,∞
−∞,∞, cf. Remark 3.2.)

Moreover, the S-invariant extension µ̄ξ
∗ ∈ M1(ΩZ) of µξ

∗
is equal to the measure P∞0

which was defined in Lemma 4.2. Therefore, Proposition 5.1(a,b) generalize Lemma 4.3.

Proof of Proposition 5.1. Fix an arbitrary ξ ∈ ri(D).

(a) We prove in Theorem C.2(b) from Appendix C that 〈ρ, z〉 − log φa(ρ) = 〈ρ′, z〉 −
log φa(ρ′) for every ρ, ρ′ ∈ ∂I1,a(ξ) and z ∈ R. Therefore, the RHS of (3.5) is
well-defined. In order to conclude that µξ is well-defined, it remains to show (for
−∞ < k ≤ 0 < ` < ∞ and f ∈ bA0,`

k,`) that the RHS of (3.5) does not change if we
replace (i) k by k − 1 or (ii) ` by `+ 1.

(i) Since f ◦ S−k+1 ∈ bA−k+1,`−k+1
1,`−k+1 ,

E0[e〈ρ,X`−k+1〉−(`−k+1) log φa(ρ)f ◦ S−k+1]

=
∑
z∈R

E
[
π0,1(0, z |ω)e〈ρ,z〉−log φa(ρ)E

T1,zω
0 [e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k]

]
=
∑
z∈R

q̂(z)e〈ρ,z〉−log φa(ρ)E0[e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k]

= E0[e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k]

by temporal independence and spatial translation invariance.
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(ii) Similarly, since f ◦ S−k ∈ bA−k,`−k0,`−k ,

E0[e〈ρ,X`−k+1〉−(`−k+1) log φa(ρ)f ◦ S−k]

=
∑
x

E
[
Eω0 [e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k, X`−k = x]

×
∑
z∈R

π0,1(0, z |T`−k,xω)e〈ρ,z〉−log φa(ρ)

]
=
∑
x

E0[e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k, X`−k = x]
∑
z∈R

q̂(z)e〈ρ,z〉−log φa(ρ)

= E0[e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k].

Finally, regarding the S-invariance of µξ, observe that f ◦S ∈ bA1,`+1
k+1,`+1 ⊂ bA

0,`+1
k+1,`+1

and ∫
f ◦ Sdµξ = E0[e〈ρ,X(`+1)−(k+1)〉−((`+1)−(k+1)) log φa(ρ)(f ◦ S) ◦ S−(k+1)]

= E0[e〈ρ,X`−k〉−(`−k) log φa(ρ)f ◦ S−k] =

∫
fdµξ.

(b) For every ` ∈ N,

Eµ
ξ

[f(s0,`−1)g(s`)] = E0[e〈ρ,X`+1〉−(`+1) log φa(ρ)f(s0,`−1)g(s`)]

=
∑
x

E
[
Eω0 [e〈ρ,X`〉−` log φa(ρ)f(s0,`−1), X` = x]

×
∑
z∈R

π0,1(0, z |T`,xω)e〈ρ,z〉−log φa(ρ)g(T sx ω̄`, z)

]
=
∑
x

E0[e〈ρ,X`〉−` log φa(ρ)f(s0,`−1), X` = x]

× E

[∑
z∈R

π0,1(0, z |T`,xω)e〈ρ,z〉−log φa(ρ)g(T sx ω̄`, z)

]
=
∑
x

E0[e〈ρ,X`〉−` log φa(ρ)f(s0,`−1), X` = x]

× E

[∑
z∈R

π0,1(0, z |ω)e〈ρ,z〉−log φa(ρ)g(ω̄0, z)

]
= Eµ

ξ

[f(s0,`−1)]Eµ
ξ

[g(s0)],

where f (resp. g) is a test function on ` (resp. 1) slab variable(s).

(c) Eµ
ξ

[Z1] = E0[e〈ρ,Z1〉−log φa(ρ)Z1] = ∇ log φa(ρ) = ξ (see (C.2) in Appendix C for the
last equality.)

(d) For every ` ∈ N,

H0,`(µ
ξ |P0) = `H0,1(µξ |P0) = `E0[e〈ρ,Z1〉−log φa(ρ)(〈ρ, Z1〉 − log φa(ρ))]

= `(〈ρ, ξ〉 − log φa(ρ)) = `I1,a(ξ),

where the first and third equalities use (b) and (c), respectively. (See (C.2) in
Appendix C for the last equality.)

(e) This is immediate from (a) and (d).
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The main ingredient in the proof of Theorem 3.3 is the following result.

Proposition 5.3. For every ξ ∈ ri(D), ε > 0, ` ∈ N and f ∈ bA0,`
−`,`,

lim sup
δ→0

lim sup
n→∞

1

n
logP0

(
|
∫
f dL∞n −

∫
fdµξ| > ε

∣∣∣∣ |Xn

n
− ξ| < δ

)
< 0.

This result is essentially [49, Theorem 1] which is stated there under the assump-
tions in (2.7) which are more stringent than our current assumptions. For the sake of
completeness and convenience, we provide below a streamlined adaptation of the proof
to our setting.

Proof of Proposition 5.3. Let g = f −
∫
fdµξ. Then,∫

f dL∞n −
∫
fdµξ =

∫
g dL∞n =: 〈g, L∞n 〉.

By a standard change-of-measure argument and the level-1 averaged LDP, we see that
for any s > 0,

lim sup
n→∞

1

n
logP0(〈g, L∞n 〉 > ε | |Xn

n
− ξ| < δ)

≤ lim sup
n→∞

1

n
logP0(〈g, L∞n 〉 > ε , |Xn

n
− ξ| < δ)− lim inf

n→∞

1

n
logP0(|Xn

n
− ξ| < δ)

≤ lim sup
n→∞

1

n
logE0[e〈ρ,Xn〉, 〈g, L∞n 〉 > ε , |Xn

n
− ξ| < δ]− 〈ρ, ξ〉+ I1,a(ξ) + |ρ|δ

≤ lim sup
n→∞

1

n
logE0[e〈ρ,Xn〉−n log φa(ρ), 〈g, L∞n 〉 > ε] + |ρ|δ (5.1)

≤ lim sup
n→∞

1

n
logE0[e〈ρ,Xn〉−n log φa(ρ)+ns〈g,L∞n 〉]− sε+ |ρ|δ, (5.2)

where (5.1) and (5.2) follow from (C.2) in Appendix C and the exponential Chebyshev
inequality, respectively. Let Gj = g ◦ Sj for 0 ≤ j ≤ n− 1 and note that

E0[e〈ρ,Xn〉−n log φa(ρ)+ns〈g,L∞n 〉] = E0[e〈ρ,Xn〉−n log φa(ρ)+s
∑n−1
j=0 Gj ]

≤
2`−1∏
i=0

E0[e〈ρ,Xn〉−n log φa(ρ)+2`s(Gi+G2`+i+G4`+i+··· )]1/2` (5.3)

holds by Hölder’s inequality under e〈ρ,Xn〉−n log φa(ρ)dP0.
For 0 ≤ i ≤ 2`− 1, let c be the largest integer such that 2c`+ i ≤ n− 1. For n ≥ 4`,

E0[e〈ρ,Xn〉−n log φa(ρ)+2`s(Gi+G2`+i+···+G2(c−1)`+i+G2c`+i)]

=
∑
x

E
[
Eω0 [e〈ρ,X(2c−1)`+i〉−((2c−1)`+i) log φa(ρ)+2`s(Gi+G2`+i+···+G2(c−1)`+i), X(2c−1)`+i = x]

× E
T(2c−1)`+i,xω
0 [e〈ρ,Xn−(2c−1)`−i〉−(n−(2c−1)`−i) log φa(ρ)+2`sG` ]

]
(5.4)

=
∑
x

E0[e〈ρ,X(2c−1)`+i〉−((2c−1)`+i) log φa(ρ)+2`s(Gi+G2`+i+···+G2(c−1)`+i), X(2c−1)`+i = x]

× E0[e〈ρ,Xn−(2c−1)`−i〉−(n−(2c−1)`−i) log φa(ρ)+2`sG` ] (5.5)

= E0[e〈ρ,X(2c−1)`+i〉−((2c−1)`+i) log φa(ρ)+2`s(Gi+G2`+i+···+G2(c−1)`+i)]

× E0[e〈ρ,Xn−(2c−1)`−i〉−(n−(2c−1)`−i) log φa(ρ)+2`sG` ]

= · · · = E0[e〈ρ,X`+i〉−(`+i) log φa(ρ)+2`sGi ]
(
E0[e〈ρ,X2`〉−2` log φa(ρ)+2`sG` ]

)c−1

(5.6)

× E0[e〈ρ,Xn−(2c−1)`−i〉−(n−(2c−1)`−i) log φa(ρ)+2`sG` ].
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Some explanation is in order: Since g ∈ bA0,`
−`,`, each term in the sum in (5.4) is

the P-expectation of the product of two random variables that are measurable w.r.t.
S−∞,(2c−1)`+i and S(2c−1)`+i,∞, respectively. Hence, (5.5) follows from the temporal
independence and spatial translation invariance of the environment. The repeated
application of this argument gives (5.6).

The boundedness of f (and, hence, of g) allows us to control the first and last
expectations in (5.6). Therefore,

lim
n→∞

1

n
logE0[e〈ρ,Xn〉−n log φa(ρ)+2`s(Gi+G2`+i+···+G2(c−1)`+i+G2c`+i)]

=
1

2`
logE0[e〈ρ,X2`〉−2` log φa(ρ)+2`sG` ].

Recalling (5.3), we deduce the following inequality:

lim sup
n→∞

1

n
logE0[e〈ρ,Xn〉−n log φa(ρ)+ns〈g,L∞n 〉] ≤ 1

2`
logE0[e〈ρ,X2`〉−2` log φa(ρ)+2`sG` ] =: ζ(s).

Note that ζ(0) = 0 and

ζ ′(0) = E0[e〈ρ,X2`〉−2` log φa(ρ)G`] =

∫
gdµξ =

∫
fdµξ −

∫
fdµξ = 0.

Therefore, ζ(s) = o(s) as s→ 0, and it follows from (5.2) that

lim sup
δ→0

lim sup
n→∞

1

n
logP0(〈g, L∞n 〉 > ε | |Xn

n
− ξ| < δ) < 0.

Combining this inequality with the analogous one for −f (and, hence, −g), we obtain the
desired result.

Proof of Theorem 3.3. We checked in Proposition 5.1(e) that µξ is a minimizer of (3.4).
It remains to rule out other minimizers. For every ν ∈ M1(ΩN) such that ν 6= µξ and
Eν [Z1] = ξ, there exist ε > 0, ` ∈ N and f ∈ bA0,`

−`,` such that

ν ∈ {µ ∈M1(ΩN) : |
∫
fdµ−

∫
fdµξ| > ε, |Eµ[Z1]− ξ| < δ}

for every δ > 0, which is an open set. Therefore,

−I3,a(ν) ≤ lim inf
n→∞

1

n
logP0

(
|
∫
f dL∞n −

∫
fdµξ| > ε , |Xn

n
− ξ| < δ

)
≤ lim sup

n→∞

1

n
logP0

(
|
∫
f dL∞n −

∫
fdµξ| > ε

∣∣∣ |Xn

n
− ξ| < δ

)
+ lim sup

n→∞

1

n
logP0(|Xn

n
− ξ| ≤ δ)

≤ lim sup
n→∞

1

n
logP0

(
|
∫
f dL∞n −

∫
fdµξ| > ε

∣∣∣ |Xn

n
− ξ| < δ

)
− inf{I1,a(ξ′) : |ξ′ − ξ| ≤ δ}

by the level-3 and level-1 averaged LDPs. Taking limit superior as δ → 0 gives −I3,a(ν) <

−I1,a(ξ) by Proposition 5.3. Thus ν cannot be a minimizer.

Proof of Proposition 3.4. Fix ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ). Let

αn(ω, z) =
Eω0 [e〈ρ,Xn〉, Z1 = z]

Eω0 [e〈ρ,Xn〉]
.
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Let m,n ≥ 1 and j ≥ 0. The calculation below shows that

αn(Tj,xjω, z) = µ̄ξ(Zj+1 = z | A−m,j−m,j+n)(ω, z−m+1,j). (5.7)

Take a test function f ∈ bA−m,j−m,j+n. Then, by S-invariance of µ̄ξ, the definition (3.5) of µξ,
and two uses of the Markov property of the quenched walk,∫

f(ω,Z−m+1,j)αn(Tj,Xjω, z) dµ̄
ξ =

∫
f(Tm,Xmω,Z1,m+j)αn(Tm+j,Xm+jω, z) dµ

ξ

= E0

[
f(Tm,Xmω,Z1,m+j)αn(Tm+j,Xm+jω, z) e

〈ρ,Xm+j+n〉−(m+j+n) log φa(ρ)
]

= E0

[
f(Tm,Xmω,Z1,m+j) e

〈ρ,Xm+j〉−(m+j) log φa(ρ)

×αn(Tm+j,Xm+j
ω, z)E

Tm+j,Xm+j
ω

0

[
e〈ρ,Xn〉−n log φa(ρ)

]]
= E0

[
f(Tm,Xmω,Z1,m+j) e

〈ρ,Xm+j〉−(m+j) log φa(ρ)E
Tm+j,Xm+j

ω

0

[
e〈ρ,Xn〉−n log φa(ρ), Z1 = z

]]
= E0

[
f(Tm,Xmω,Z1,m+j)1{Zm+j+1 = z} e〈ρ,Xm+j+n〉−(m+j+n) log φa(ρ)

]
=

∫
f(Tm,Xmω,Z1,m+j)1{Zm+j+1 = z} dµξ =

∫
f(ω,Z−m+1,j)1{Zj+1 = z} dµ̄ξ.

This verifies (5.7). Let m→∞ in (5.7). Martingale convergence yields

αn(Tj,xjω, z) = µ̄ξ(Zj+1 = z | A−∞,j−∞,j+n)(ω, z−∞,j).

For the case j = 0, by the S0,n-measurability of αn(·, z),

αn(ω, z) = µ̄ξ(Z1 = z | A−∞,0−∞,n)(ω, z−∞,0)

= µξ(Z1 = z |S0,n)(ω).

In the last expression above µ̄ξ can be replaced with µξ since the statement does not
involve the backward path. Combining the last two displays gives, for j ≥ 0 and n ≥ 1,

µ̄ξ(Zj+1 = z | A−∞,j−∞,j+n)(ω, z−∞,j) = µξ(Z1 = z |S0,n)(Tj,xjω). (5.8)

As n→∞ martingale convergence yields (3.6). The remainder of Proposition 3.4 follows
from this.

For every ξ ∈ ri(D),

dµξΩ
dP

∣∣∣∣∣
S0,n

(ω) = Eω0 [e〈ρ,Xn〉−n log φa(ρ)] =: un(ρ, ω) (5.9)

is a positive martingale on (Ω,S0,∞,P). Throughout the paper, we will sometimes
suppress ρ and simply write un or un(ω) whenever it does not lead to any confusion.

Proof of Theorem 3.5. (i) =⇒ (ii): Summing both sides of (3.9) over z ∈ R, we see that

u ∈ L1(Ω,S0,∞,P) satisfies

u(ω) =
∑
z∈R

π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)
u(T1,zω) =

∑
z∈R

Eω0 [e〈ρ,Z1〉−log φa(ρ), Z1 = z]u(T1,zω).

Iterating this identity n ≥ 1 times, we deduce that

u(ω) =
∑
x

un(ρ, ω, x)u(Tn,xω), (5.10)
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where
un(ρ, ω, x) = Eω0 [e〈ρ,Xn〉−n log φa(ρ), Xn = x]. (5.11)

Taking the conditional expectation of both sides of (5.10), we get

E[u |S0,n](ω) =
∑
x

un(ρ, ω, x)E[u ◦ Tn,x] = E[u]un(ρ, ω)

by temporal independence and spatial translation invariance. Since P(u > 0) = 1, we
have E[u] > 0. Therefore, as n→∞,

un =
E[u |S0,n]

E[u]
→ u

E[u]

P-a.s. and in L1(Ω,S0,∞,P) (see [21, Theorem 5.5.6]). We conclude that µξΩ � P on
S0,∞, and

dµξΩ
dP

∣∣∣∣∣
S0,∞

=
u

E[u]
.

(ii) =⇒ (i): Let u =
dµξΩ
dP

∣∣∣
S0,∞

. Note that E[u] = 1 and hence P(u = 0) < 1. We will first

show that (3.10) implies P(u = 0) = 0.
By martingale convergence, un → u P-a.s. It follows immediately from the Markov

property and the definition in (5.11) that

um+n(ρ, ω) =
∑
x

un(ρ, ω, x)um(ρ, Tn,xω)

for every m,n ∈ N. Sending m→∞, we deduce (5.10). In particular,

u(ω) ≥ un(ρ, ω, nz)u(Tn,nzω)

for every z ∈ R. If (3.10) holds, then ∃ z′ ∈ R such that un(ρ, ω, nz′) > 0 for every n ∈ N.
Therefore,

{ω : u(ω) = 0} ⊂
∞⋂
n=1

{ω : u(Tn,nz′ω) = 0}. (5.12)

By our temporal independence and spatial translation invariance assumptions, the Ω-
valued process (Tn,nz′ω)n≥1 is stationary and ergodic under P. Since P(u = 0) < 1, we
apply the ergodic theorem and deduce that, for P-a.e. ω, there exists an n ∈ N such that
u(Tn,nz′ω) > 0, i.e., the RHS of (5.12) is a P-null set. Consequently, P(u = 0) = 0.

Finally, we derive (3.9): For P-a.e. ω and every z ∈ R,

πξ0,1(0, z |ω) = µξ(Z1 = z |S0,∞)(ω) = lim
n→∞

µξ(Z1 = z |S0,n)(ω) (5.13)

= lim
n→∞

Eω0 [e〈ρ,Xn〉−n log φa(ρ), Z1 = z]

Eω0 [e〈ρ,Xn〉−n log φa(ρ)]

= lim
n→∞

π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

E
T1,zω
0 [e〈ρ,Xn−1〉−(n−1) log φa(ρ)]

Eω0 [e〈ρ,Xn〉−n log φa(ρ)]

= lim
n→∞

π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

un−1(T1,zω)

un(ω)
(5.14)

= π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

u(T1,zω)

u(ω)
.

Note that the second equality in (5.13) follows from martingale convergence under µξΩ
which is mutually absolutely continuous with P since P(u > 0) = 1.
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6 Modified variational formulas for the quenched rate functions

Since
⋃
j∈NA

0,j
−j,∞ is an algebra that generates A0,∞

−∞,∞ on ΩN, we can fix a sequence

(fj)j∈N of test functions fj ∈ bA0,j
−j,∞ that separateM1(ΩN) and satisfy ‖fj‖∞ = 1. For

every µ ∈M1(ΩN) and ` ∈ N, the set

Gµ,` =
{
ν ∈M1(ΩN) : |〈fj , µ〉 − 〈fj , ν〉| < `−1 for 1 ≤ j ≤ `

}
is a weakly open neighborhood of µ. Note that ∩`∈NGµ,` = ∩`∈NGµ,` = {µ}. The
following result gives the lower bound in Theorem 3.7.

Theorem 6.1. Assume that

E[| logω0,0(z)|] <∞ for every z ∈ R. (6.1)

Then, for every ` ∈ N and every S-invariant µ ∈M1(ΩN) such that µΩ � P on S0,∞,

lim inf
n→∞

1

n
logPω0 (L∞n ∈ Gµ,`) ≥ −Hq(µ). (6.2)

Proof. The proof uses a strategy involving a change-of-measure, Jensen’s inequality, and
the ergodic theorem, which is standard for obtaining LDP lower bounds for Markov
chains, and has been successfully carried out in the context of (undirected) RWRE (see
[46, 50, 40] for the level-1,2,3 quenched LDPs). In fact, keeping future applications in
mind, the level-3 quenched LDP lower bound was derived in [40, Section 4] in full detail
and without using the assumption that the walk is undirected. In particular, the lower
bound of the LDP in Theorem 2.2 is covered by [40, Section 4], which readily implies
that (6.2) holds for every S-invariant µ ∈M1(ΩN) such that µΩ � P (on S). Therefore,
to prove Theorem 6.1, we need to replace S with S0,∞. Since the walk is directed in
time, this modification requires only two minor changes in the proofs in [40, Section 4].
Below we go over the whole argument for the sake of completeness, point out the two
differences, and provide references for further details.

Step 1. For every ` ∈ N, denote the marginal of P0 on Ω` = Ω × R` by P (`)
0 . Let

η̄i = (Ti,Xiω,Zi+1,i+`), i ≥ 0. Then, under Pω0 ( · |Z1,` = z1,`), (η̄i)i≥0 is a Markov chain
with state space Ω` and transition kernel

π(`)(S+
z η | η) = π0,1(0, z |T`,x`ω).

Here and throughout, η = (ω, z1,`) ∈ Ω` and S+
z : Ω` → Ω` : (ω, z1,`) 7→ (T1,z1ω, z2,`, z) for

z ∈ R.

For every S-invariant µ ∈ M1(ΩN), let µΩ and µΩ`
denote the marginals of µ on Ω

and Ω`, respectively, and define

π(`)
µ (S+

z η | η) = µ(Z`+1 = z | η̄0 = η)

which can be viewed as the transition kernel of a Markov chain with state space Ω`.
Since µ is S-invariant, µΩ`

is an invariant measure for π(`)
µ . Moreover, if µΩ � P on S0,∞

and

π(`)
µ (S+

z η | η) > 0 for µΩ`
-a.e. η and every z ∈ R, (6.3)

then µΩ`
is an ergodic invariant measure for π(`)

µ and mutually absolutely continuous with

P
(`)
0 on A0,`

0,∞. This follows from a minor modification of [40, Lemma 4.1] (see Remark
6.2 below).
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Step 2. Let Pη (resp. Pµη ) stand for the law of the Markov chain (η̄i)i≥0 with initial

state η̄0 = η and transition kernel π(`) (resp. π(`)
µ ). Observe that

Pω0 (L∞n ∈ Gµ,`) =
∑

z1,`∈R`
Pω0 (Z1,` = z1,`)P

ω
0 (L∞n ∈ Gµ,` |Z1,` = z1,`)

=
∑

z1,`∈R`
Pω0 (Z1,` = z1,`)Pη(L`n ∈ G

(`)
µ,`)

≥
∑

z1,`∈R`
Pω0 (Z1,` = z1,`)Pη(L̃`n ∈ G̃

(`)
µ,`) (6.4)

for n ≥ 4`2, where

L`n =
1

n

n−1∑
i=0

δTi,Xiω,Zi+1,i+`
=

1

n

n−1∑
i=0

δη̄i ∈M1(Ω`), L̃`n =
1

n− `

n−1∑
i=`

δη̄i ∈M1(Ω`),

G
(`)
µ,` =

{
ν ∈M1(Ω`) : |〈fj , µΩ`

〉 − 〈fj , ν〉| < `−1 for 1 ≤ j ≤ `
}

and

G̃
(`)
µ,` =

{
ν ∈M1(Ω`) : |〈fj , µΩ`

〉 − 〈fj , ν〉| < (2`)−1 for 1 ≤ j ≤ `
}
.

The inequality in (6.4) is needed in our case because (ω, z1,`) = η 7→ Pη(L̃`n ∈ G̃
(`)
µ,`) is

A0,`
0,∞-measurable whereas η 7→ Pη(L`n ∈ G

(`)
µ,`) is not.

Step 3. If µΩ � P on S0,∞ and (6.3) holds, then for P (`)
0 -a.e. η, we change the

measure from Pη to Pµη , apply Jensen’s inequality (with the logarithm function), send

n→∞, use the ergodicity of µΩ`
for π(`)

µ , and thereby deduce that

lim inf
n→∞

1

n
logPη(L̃`n ∈ G̃

(`)
µ,`) ≥ lim

n→∞

1

n
logPµη (L̃`n ∈ G̃

(`)
µ,`)−H(µΩ`

× π(`)
µ |µΩ`

× π(`))

= −HA−`,1−∞,∞
(µ̄− × πµ̄ | µ̄− × π) ≥ −HA−∞,1−∞,∞

(µ̄− × πµ̄ | µ̄− × π) = −Hq(µ).

For further details regarding this step, see [40, Lemma 4.2]. The desired bound (6.2)
now follows from (6.4).

Step 4. If µΩ � P on S0,∞ but (6.3) fails to hold, we introduce a µ̂ ∈M1(ΩN) of the
form µ̂(dω, dz) = P(dω)⊗ p⊗N(dz) for some (deterministic) p ∈ P such that p(z) > 0 for
every z ∈ R. Note that

Hq(µ̂) = E

[∑
z∈R

p(z) log

(
p(z)

ω0,0(z)

)]
<∞ (6.5)

by (6.1). (In fact, this is the only point in the proof where (6.1) is fully used.) We replace
µ with µε = (1− ε)µ+ εµ̂ which is an element of the open set Gµ,` for sufficiently small
ε > 0. Since µ̂ is S-invariant, its marginal µ̂Ω`

on Ω` is an invariant measure for the
transition kernel

π
(`)
µ̂ (S+

z η | η) = µ̂(Z`+1 = z | η̄0 = η) = p(z) > 0.

The Ω`-marginal µεΩ`
of µε is an invariant measure for a transition kernel π(`)

µε (suitably

defined as a combination of π(`)
µ and π(`)

µ̂ ) which satisfies the analog of (6.3). For further
details regarding this step, see [40, Proof of the lower bound in Theorem 3.1, page 224].
Therefore, µεΩ`

and P (`)
0 are mutually absolutely continuous on A0,`

0,∞, and for P (`)
0 -a.e. η,

lim
n→∞

1

n
logPη(L̃`n ∈ G̃

(`)
µ,`) ≥ −Hq(µε) ≥ −(1− ε)Hq(µ)− εHq(µ̂).

The last inequality follows from the convexity of the relative entropy Hq. Finally, we send
ε to 0, and recall (6.4) to deduce (6.2) as in Step 3.
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Remark 6.2. In Step 1 of the proof of Theorem 6.1, we cited [40, Lemma 4.1] which
assumes that µΩ � P (on S), which is equivalent to µΩ`

� P
(`)
0 on A0,`

−∞,∞ since
P(ω0,0(z) > 0) = 1 for every z ∈ R by (6.1). In that paper, the mutual absolute continuity

of µΩ`
and P (`)

0 is established by showing that f =
dµΩ`

dP
(`)
0

satisfies

1{f(ω,z1,`)>0} ≤ 1{f(T`+1,x`+z
ω,z̃1,`)>0}

for P-a.e. ω, every z1,`, z̃1,` ∈ R` and z ∈ R, and then using the ergodicity of P under

(T1,z)z∈R to argue that P (`)
0 (f > 0) = 1. Using this, the ergodicity of µΩ`

for π(`)
µ follows

from a similar argument.

If µΩ � P on S0,∞, then we replace f =
dµΩ`

dP
(`)
0

with g =
dµΩ`

dP
(`)
0

∣∣∣∣
A0,`

0,∞

in the proof

of [40, Lemma 4.1]. This modification causes no complications since the negative
environment levels ω̄−∞,−1 do not play any role. For example, the function (ω, z1,`) 7→
g(T`+1,x`+zω, z̃1,`) is measurable w.r.t. A0,`

`+1,∞ ⊂ A
0,`
0,∞ for every z̃1,` ∈ R` and z ∈ R.

We are now ready to verify the modified variational formula for the level-3 quenched
rate function.

Proof of Theorem 3.7. It follows immediately from the definitions in (2.3) and (3.11) that
HS,+
q,P (µ) ≤ HS

q,P(µ) for every µ ∈M1(ΩN). Therefore,

(HS,+
q,P )∗∗(µ) ≤ (HS

q,P)∗∗(µ) = I3,q(µ). (6.6)

On the other hand, Theorem 6.1 and the upper bound in the level-3 quenched LDP
(Theorem 2.2) give

−HS,+
q,P (µ) ≤ lim inf

n→∞

1

n
logPω0 (L∞n ∈ Gµ,`) ≤ lim sup

n→∞

1

n
logPω0 (L∞n ∈ Gµ,`) ≤ − inf

ν∈Gµ,`
I3,q(ν)

for every ` ∈ N. Sending `→∞, we get

I3,q(µ) ≤ HS,+
q,P (µ)

since I3,q is lower semicontinuous and ∩`∈NGµ,` = {µ}, and then deduce that

I3,q(µ) = (I3,q)
∗∗(µ) ≤ (HS,+

q,P )∗∗(µ). (6.7)

Finally, we put (6.6) and (6.7) together to obtain the desired equality (3.12).

Proof of Corollary 3.8. For every ξ ∈ D, the variational formula

I1,q(ξ) = inf{(HS,+
q,P )∗∗(µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ}

follows immediately from Theorem 3.7 by the contraction principle. Define

Ĩ1,q(ξ) = inf{HS,+
q,P (µ) : µ ∈M1(ΩN), Eµ[Z1] = ξ}

which is equal to the RHS of (3.14). Ĩ1,q(ξ) <∞ because we can choose p to have mean ξ
in the measure µ̂ in (6.5). Since HS,+

q,P is convex (which readily follows from the convexity

of Hq), Ĩ1,q is convex on D and hence continuous on ri(D). For every ξ ∈ ri(D),

I1,q(ξ) = lim
δ→0

inf{I1,q(ξ′) : ξ′ ∈ D, |ξ′ − ξ| < δ}

= lim
δ→0

inf{(HS,+
q,P )∗∗(µ) : µ ∈M1(ΩN), |Eµ[Z1]− ξ| < δ}

= lim
δ→0

inf{HS,+
q,P (µ) : µ ∈M1(ΩN), |Eµ[Z1]− ξ| < δ}

= lim
δ→0

inf{Ĩ1,q(ξ′) : ξ′ ∈ D, |ξ′ − ξ| < δ} = Ĩ1,q(ξ)

by the fact that (HS,+
q,P )∗∗ is the lower semicontinuous regularization of HS,+

q,P (see [42,
Theorem 4.17]) and {µ ∈M1(ΩN) : |Eµ[Z1]− ξ| < δ} is an open set.
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7 Decomposing the level-3 averaged rate function

Proof of Theorem 3.10. Observe that, for 1 ≤ k ≤ n,

P0(Zk = z | A0,k−1
0,n )(ω̄0,n−1, z1,k−1) = πk−1,k(xk−1, xk−1 + z |ω) = π0,1(0, z |Tk−1,xk−1

ω).

If µ ∈M1(ΩN) is S-invariant, then

H0,n(µ |P0) = HA0,n
0,n

(µ |P0)

= HA0,n−1
0,n

(µ |P0) +

∫
H
(
µ(Zn = · | A0,n−1

0,n )
∣∣π0,1(0, · |Tn−1,xn−1

ω)
)
µ(dω̄0,n−1, dz1,n−1)

= HA0,n−1
0,n

(µ |P0) +

∫
H
(
µ̄(Z1 = · | A−n+1,0

−n+1,1 )
∣∣π0,1(0, · |ω)

)
µ̄(dω̄−n+1,0, dz−n+2,0)

= HA0,n−1
0,n

(µ |P0) +HA−n+1,1
−n+1,1

(µ̄− × πµ̄ | µ̄− × π)

by the chain rule for relative entropy. We can apply the chain rule repeatedly and thereby
successively remove all the z-coordinates from the first relative entropy on the RHS. The
general step is, for 1 ≤ k ≤ n− 1,

H0,n(µ |P0) = HA0,k
0,n

(µ |P0) +
n∑

j=k+1

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π)

= HA0,k−1
0,n

(µ |P0) +

∫
H
(
µ(Zk = · | A0,k−1

0,n )
∣∣π0,1(0, · |Tk−1,xk−1

ω)
)
µ(dω̄0,n−1, dz1,k−1)

+

n∑
j=k+1

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π)

= HA0,k−1
0,n

(µ |P0) +

∫
H
(
µ̄(Z1 = · | A−k+1,0

−k+1,n−k+1 )
∣∣π0,1(0, · |ω)

)
µ̄(dω̄−k+1,n−k, dz−k+2,0)

+

n∑
j=k+1

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π)

= HA0,k−1
0,n

(µ |P0) +

n∑
j=k

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π).

When all z-coordinates have been removed, we end up with this identity:

H0,n(µ |P0) = HS0,n
(µΩ |P) +

n∑
j=1

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π). (7.1)

Lemma 7.1. If µ ∈M1(ΩN) is S-invariant, then

lim
n→∞

1

n

n∑
j=1

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π) = HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × π) = Hq(µ). (7.2)

Proof. The relative entropy on the RHS of (7.2) is an upper bound on each term in the
sum on the LHS. On the other hand, if simultaneously j ↗∞ and n− j ↗∞, then

HA−j+1,1
−j+1,n−j+1

(µ̄− × πµ̄ | µ̄− × π)→ HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × π),

which implies the desired result.

Continuing with the proof of Theorem 3.10, we have seen in Section 4 that the specific
relative entropy

h(µ |P0) = lim
n→∞

1

n
H0,n(µ |P0)
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exists. In combination with (7.1) and Lemma 7.1, this implies that the limit

hS0,∞(µΩ |P) = lim
n→∞

1

n
HS0,n

(µΩ |P)

exists, and satisfies
h(µ |P0) = hS0,∞(µΩ |P) +Hq(µ).

Proof of Corollary 3.11. For every S-invariant µ ∈M1(ΩN),

I3,a(µ) = h(µ |P0) = hS0,∞(µΩ |P) +Hq(µ) ≥ Hq(µ)

by Theorems 3.1 and 3.10. Moreover, if (2.4) holds, then from Theorem 3.7 and a basic
property of the double convex conjugate (see [42, Proposition 4.10]),

I3,q(µ) = (HS,+
q,P )∗∗(µ) ≤ HS,+

q,P (µ).

It remains to show that I3,a(µ) ≤ I3,q(µ). Define

Λ3,a(f) = lim
n→∞

1

n
logE0[en〈f,L

∞
n 〉] and Λ3,q(f) = lim

n→∞

1

n
logEω0 [en〈f,L

∞
n 〉] (7.3)

for every continuous f ∈ bA0,∞
−∞,∞ and P-a.e. ω. By Varadhan’s lemma (see, e.g., [42,

Section 3.2]) these limits exist and are convex conjugates of the rate functions:

Λ3,a(f) = (I3,a)∗(f) and Λ3,q(f) = (I3,q)
∗(f).

Then I3,a(µ) ≤ I3,q(µ) follows from

Λ3,q(f) = E

[
lim
n→∞

1

n
logEω0 [en〈f,L

∞
n 〉]

]
= lim
n→∞

E

[
1

n
logEω0 [en〈f,L

∞
n 〉]

]
≤ lim
n→∞

1

n
logE0[en〈f,L

∞
n 〉] = Λ3,a(f).

8 Equality of the averaged and quenched rate functions

Throughout this section, we assume (2.4) which ensures that the quenched LDPs
hold. Again by Varadhan’s lemma the limit

Λ1,q(ρ) = lim
n→∞

1

n
logEω0 [e〈ρ,Xn〉] (8.1)

exists for every ρ ∈ Rd and P-a.e. ω, and satisfies

Λ1,q(ρ) = (I1,q)
∗(ρ) = sup

ξ∈D
{〈ρ, ξ〉 − I1,q(ξ)}. (8.2)

We have seen in Proposition 2.4(b) (and its proof in Appendix B) that I1,a(ξ) ≤ I1,q(ξ) and
Λ1,q(ρ) ≤ log φa(ρ) for every ξ ∈ D and ρ ∈ Rd.
Lemma 8.1. For every ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ),

I1,a(ξ) < I1,q(ξ) if and only if Λ1,q(ρ) < log φa(ρ).

Proof. For every ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ), if Λ1,q(ρ) < log φa(ρ), then

I1,a(ξ) = 〈ρ, ξ〉 − log φa(ρ) < 〈ρ, ξ〉 − Λ1,q(ρ) ≤ sup
ρ′∈Rd

{〈ρ′, ξ〉 − Λ1,q(ρ
′)} = I1,q(ξ).

Here, the first equality is shown in (C.2) from Appendix C, and the last equality follows
from the convexity of I1,q (see Proposition 2.4(a)).
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Conversely, if I1,a(ξ) < I1,q(ξ), then the continuity of I1,q on D (see Proposition 2.4(a))
implies that

Λ1,q(ρ) = sup
ξ′∈D
{〈ρ, ξ′〉 − I1,q(ξ′)} = 〈ρ, ξ′′〉 − I1,q(ξ′′)

≤ 〈ρ, ξ′′〉 − I1,a(ξ′′) ≤ 〈ρ, ξ〉 − I1,a(ξ) = log φa(ρ) (8.3)

for some ξ′′ ∈ D. If ξ′′ = ξ, then the first inequality in (8.3) is strict; if ξ′′ 6= ξ, then the
second inequality in (8.3) is strict by (C.2).

Recall un(ρ, ω, x) from definition (5.11). When ρ is understood we can drop it from
the notation. The next theorem is adapted from [11, Theorem 3.3] which is concerned
with upper bounds for the free energy of directed polymers in random environments.

Theorem 8.2. For every ρ ∈ Rd,

Λ1,q(ρ)− log φa(ρ) ≤ inf

{
1

tm
logE

[∑
x

um(ρ, ·, x)t

]
: t ∈ (0, 1), m ∈ N

}
.

Proof. It follows from the definition of un(ω) = un(ρ, ω) in (5.9) and the Markov property
of the quenched walk that

un(ω) =
∑
x∈Zd

un(ω, x) and un1+n2
(ω) =

∑
x1,x2

un1
(ω, x1)un2

(Tn1,x1
ω, x2 − x1).

For every ρ ∈ Rd, t ∈ (0, 1), and m,n ≥ 1,

E

[
1

n
log unm

]
= E

[
1

tn
log(unm)t

]

= E

 1

tn
log

( ∑
x1,...,xn

um(·, x1)um(Tm,x1 ·, x2 − x1) · · ·um(T(n−1)m,xn−1
·, xn − xn−1)

)t
≤ E

[
1

tn
log

( ∑
x1,...,xn

um(·, x1)tum(Tm,x1 ·, x2 − x1)t · · ·um(T(n−1)m,xn−1
·, xn − xn−1)t

)]

≤ 1

tn
logE

[ ∑
x1,...,xn

um(·, x1)tum(Tm,x1
·, x2 − x1)t · · ·um(T(n−1)m,xn−1·, xn − xn−1)t

]

=
1

tn
log

(
E

[∑
x

um(·, x)t

])n
=

1

t
logE

[∑
x

um(·, x)t

]

by the temporal independence and spatial translation invariance assumptions. Sending
n→∞ and using the bounded convergence theorem, we get

m(Λ1,q(ρ)− log φa(ρ)) = lim
n→∞

1

n
log unm = lim

n→∞
E

[
1

n
log unm

]
≤ 1

t
logE

[∑
x

um(·, x)t

]
.

Corollary 8.3. For every ξ ∈ ri(D) and ρ ∈ ∂I1,a(ξ), if there exist t ∈ (0, 1) and m ∈ N
such that

f(t) := E

[∑
x

um(ρ, ·, x)t

]
< 1,

then I1,a(ξ) < I1,q(ξ).
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Proof. This follows immediately from Lemma 8.1 and Theorem 8.2.

We need two additional lemmas before giving the proof of Theorem 3.12. In fact, the
second one is part of Theorem 3.15, but we state and prove it separately here to avoid
circular reasoning (we will later use Theorem 3.12 in the proof of Theorem 3.15).

Lemma 8.4. Let µ and λ be probability measures with finite relative entropy given by

H(µ |λ) = sup
g
{Eµ[g]− logEλ[eg]}

with supremum over bounded measurable functions g. Then for any event A,

λ(A) ≥ exp
{
−µ(A)−1

(
H(µ |λ) + log 2

)}
. (8.4)

Proof. Assume µ(A) > 0 for otherwise the inequality is trivially true. Then also λ(A) > 0

because finite entropy implies µ � λ. Take g = (− log λ(A)) · 1A in the variational
formula.

Lemma 8.5. Assume (2.4). If I1,a(ξ) = I1,q(ξ), then

I1,q(ξ) = (HS,+
q,P )∗∗(µξ),

and µξ is the unique minimizer of the quenched contraction (3.13).

Proof. If I1,a(ξ) = I1,q(ξ), then for every ν ∈M1(ΩN) such that ν 6= µξ and Eν [Z1] = ξ,

I1,q(ξ) = I1,a(ξ) < I3,a(ν) ≤ I3,q(ν) = (HS,+
q,P )∗∗(ν)

by Theorem 3.3 and Corollary 3.11. Hence, ν is not a minimizer of the quenched
contraction (3.13). However, the compactness of {µ ∈ M1(ΩN) : Eµ[Z1] = ξ} and the
lower semicontinuity of (HS,+

q,P )∗∗ guarantee that there is a minimizer. This implies the
desired result.

Proof of Theorem 3.12. ¬(iv) =⇒ ¬(i) : Observe that

HS0,n
(µΩ |P) = E[un log un] =

∑
x

E[un(·, x) log un(·, x)]− E
[
un
∑
x

un(·, x)

un
log

un(·, x)

un

]
≤
∑
x

E[un(·, x) log un(·, x)]− E[un] log

(
1

(cn)d

)
(8.5)

=
∑
x

E[un(·, x) log un(·, x)] + d log(cn).

Here, we used the following facts: the entropy −
∑
pi log pi of a discrete probability

distribution with a finite support is dominated by that of the uniform distribution (with
the same support); and (cn)d is a crude upper bound for the number of distinct endpoints
of paths of length n started at the origin (with steps in R).

If hS0,∞(µξΩ |P) > 0, then HS0,n
(µξΩ |P) grows linearly in n. From (8.5) we take the

weak consequence that there exists an m ≥ 1 such that
∑
xE
[
um(·, x) log um(·, x)

]
> 0.

The desired result I1,a(ξ) < I1,q(ξ) follows from Corollary 8.3 which is applicable since
f(1) = 1 and

f ′(1) =
∑
x

E
[
um(·, x) log um(·, x)

]
> 0.

(i) ⇐⇒ (ii) : If (i) is true, then so is (iv) by the previous part. Therefore,

I1,q(ξ) = I1,a(ξ) = I3,a(µξ) = hS0,∞(µξΩ |P) +Hq(µ
ξ) = Hq(µ

ξ)
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by Proposition 5.1(e) and Corollary 3.11, and hence (ii) is true. Conversely, if (ii) is true,
then

I1,q(ξ) = Hq(µ
ξ) ≤ I3,a(µξ) = I1,a(ξ) ≤ I1,q(ξ)

by Corollary 3.11, Proposition 5.1(e) and Proposition 2.4(b), and hence (i) is true.

(i) ⇐⇒ (iii) : If (i) is true, then so is (iv) by the first part. Therefore,

(HS,+
q,P )∗∗(µξ) = I1,q(ξ) = I1,a(ξ) = I3,a(µξ) = Hq(µ

ξ) ≤ (HS,+
q,P )∗∗(µξ)

by Lemma 8.5, Proposition 5.1(e) and Corollary 3.11, and hence (iii) is true. Conversely,
if (iii) is true, then

I3,q(µ
ξ) = I3,a(µξ) = I1,a(ξ) ≤ I1,q(ξ) ≤ I3,q(µξ)

by Corollary 3.11, Proposition 5.1(c,e), Proposition 2.4(b) and (2.5), and hence (i) is true.

¬(i) =⇒ ¬(iv) : Assume (3.16). Theorem D.1 in Appendix D gives the concentration
inequality

P
(
| log un − E[log un]| ≥ nε

)
≤ 2 exp(−cn)

with a constant c = c(ε) > 0. If I1,a(ξ) < I1,q(ξ), then

lim
n→∞

1

n
E[log un] = Λ1,q(ρ)− log φa(ρ) < 0

by Lemma 8.1, with ρ ∈ ∂I1,a(ξ). Therefore, there is a δ > 0 such that for large enough n,

P(un ≥ 1
2 ) = P(log un ≥ − log 2) ≤ P

(
log un ≥ −nδ

)
≤ 2 exp(−cn). (8.6)

On the other hand,

µξΩ(un ≥ 1
2 ) = 1− µξΩ(un <

1
2 ) = 1− E

[
un1{un< 1

2}

]
≥ 1

2 .

Applying Lemma 8.4 with µ = µξΩ, λ = P and A = {un ≥ 1
2} on S0,n, we see that (8.4)

becomes

P(un ≥ 1
2 ) ≥ exp

{
−2
(
E[un log un] + log 2

)}
. (8.7)

Combining (8.6)–(8.7) shows that E[un log un] grows linearly in n, which contradicts
hS0,∞(µξΩ |P) = 0.

Proof of Corollary 3.14. If µ ∈ M1(ΩN) is S-invariant and µΩ � P on S0,∞, then
HS,+
q,P (µ) = Hq(µ) by (3.11). Therefore, I3,a(µ) = I3,q(µ) = Hq(µ) by Corollary 3.11.

In fact, the second equality follows directly from the lower semicontinuity of Hq:

HS,+
q,P (µ) = Hq(µ) ≤ (HS,+

q,P )∗∗(µ) ≤ HS,+
q,P (µ).

Under uniform ellipticity (2.6), if µ is S-invariant and µΩ � P on S0,∞, then

Hq(µ) ≤
∑
z∈R

EµΩ [| logω0,0(z)|] ≤ |R|| log c| <∞,

and h(µ |P0) = I3,a(µ) = Hq(µ) can be canceled from (3.15) to give hS0,∞(µΩ |P) = 0.
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9 Minimizers of the quenched contractions

Proof of Theorem 3.15. Fix an arbitrary ξ ∈ ri(D). If I1,a(ξ) = I1,q(ξ), then (3.17) follows
immediately from Theorem 3.12, and we have shown in Lemma 8.5 that µξ is the unique
minimizer of the quenched contraction (3.13). This concludes the proof of part (a).

If µξΩ � P on S0,∞, then recall from the proof of Theorem 3.5 that un(ω) =

Eω0 [e〈ρ,Xn〉−n log φa(ρ)] converges to u(ω) =
dµξΩ
dP

∣∣∣
S0,∞

(ω) for P-a.e. ω, and P(u > 0) = 1.

Therefore,

Λ1,q(ρ)− log φa(ρ) = lim
n→∞

1

n
log un(ω) = lim

n→∞

1

n
log u(ω) = 0.

We deduce from Lemma 8.1 that I1,a(ξ) = I1,q(ξ), and part (a) is applicable. Since µξ is

S-invariant and Eµ
ξ

[Z1] = ξ (see Proposition 5.1(a,c)), it is a minimizer of the quenched
contraction (3.14).

It remains to show that (3.14) has no minimizers other than µξ. To this end, consider
any S-invariant ν ∈M1(ΩN) such that ν 6= µξ, Eν [Z1] = ξ, and νΩ � P on S0,∞. Observe
that

I1,q(ξ) < (HS,+
q,P )∗∗(ν) = Hq(ν)

by part (a) and Corollary 3.14. This concludes the proof of part (b).

10 Spatially constant environments

Proof of Proposition 3.17. The quenched walk Xn is now a sum of independent steps
Zi ∼ q̄i−1, and so, by the strong LLN, for P-a.e. ω,

Λ1,q(ρ) = lim
n→∞

1

n
logEω0 [e〈ρ,Xn〉] = lim

n→∞

1

n

n−1∑
i=0

logW (ρ, Ti,0ω) = E[logW (ρ, ω)].

Therefore, the first equality in (3.20) follows from (8.2) and the convexity of I1,q (see
Proposition 2.4(a)), and the rest from Jensen’s inequality and (1.9).

Assume (3.19). Let ξ ∈ ri(D) \ {ξ∗} and ρ ∈ ∂I1,a(ξ). Then ρ /∈ ∂I1,a(ξ∗) by (C.2) from
Appendix C. Consequently by Proposition C.3 the inequality in (3.19) holds and gives

Λ1,q(ρ) = E[logW (ρ, ω)] < logE[W (ρ, ω)] = log φa(ρ) (10.1)

by Jensen’s inequality. This implies I1,a(ξ) < I1,q(ξ) by Lemma 8.1.

Proof of Proposition 3.19. Recall from Proposition 5.1(b) that the slab variables (si)i≥0

(defined in (4.4)) are i.i.d. under µξ for every ξ ∈ ri(D). Since the environments are
spatially constant, the slab variables are simply (ω̄i, Zi+1)i≥0.

By definition (5.9), for every ρ ∈ ∂I1,a(ξ),

dµξΩ
dP

∣∣∣∣
S0,n

(ω) = un(ρ, ω) = Eω0 [e〈ρ,Xn〉−n log φa(ρ)]

=

n−1∏
i=0

W (ρ, Ti,0ω)

φa(ρ)
=

n−1∏
i=0

u1(ρ, Ti,0ω).

(10.2)

Therefore, by the limit in (5.14),

πξ0,1(0, z |ω) = lim
n→∞

π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

un−1(ρ, T1,0ω)

un(ρ, ω)

= π0,1(0, z |ω)
e〈ρ,z〉

φa(ρ)

1

u1(ρ, ω)
= π0,1(0, z |ω)

e〈ρ,z〉

W (ρ, ω)
.

(10.3)
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If ξ 6= ξ∗ and (3.19) holds, then for P-a.e. ω,

lim
n→∞

1

n
log un(ρ, ω) = lim

n→∞

1

n

n−1∑
i=0

log u1(ρ, Ti,0ω) = E[log u1(ρ, ω)] < logE[u1(ρ, ω)] = 0

by the strong LLN and Jensen’s inequality. In particular, un(ρ, ω) → 0 as n → ∞, and
µξΩ 6� P on S0,∞.

Under the same assumptions, if πξ0,1 satisfied (3.9) for some u ∈ L1(Ω,S0,∞,P) such
that E[u] = 1 and P(u > 0) = 1, then comparison with (10.3) gives

u(ω) = u1(ρ, ω)u(T1,0ω).

Iterating this identity, we get

u(ω) =

n−1∏
i=0

u1(ρ, Ti,0ω)u(Tn,0ω) = un(ρ, ω)u(Tn,0ω).

Therefore, for P-a.e. ω, E[u |S0,n](ω) = un(ρ, ω) → u(ω) > 0 as n → ∞, which is a
contradiction.

Proof of Proposition 3.20. Equality hS0,∞(µξΩ |P) = E[u1(ρ, ω) log u1(ρ, ω)] comes from
(10.2).

Substitute the second-last formula of (10.3) into (2.2) and use the independence of
(ω̄i, Zi+1)i≥0 under µξ:

Hq(µ
ξ) = Eµ

ξ

[
log

(
πξ0,1(0, Z1 |ω)

π0,1(0, Z1 |ω)

)]
= Eµ

ξ

[
log

(
e〈ρ,Z1〉−log φa(ρ)

u1(ρ, ω)

)]
= Eµ

ξ

[〈ρ, Z1〉]− log φa(ρ)− Eµ
ξ

[log u1(ρ, ω)]

= 〈ρ, ξ〉 − log φa(ρ)− E[u1(ρ, ω) log u1(ρ, ω)].

The last equality used Proposition 5.1(c).
If ξ 6= ξ∗ and (3.19) holds, then P(u1(ρ, ω) = 1) < 1 for every ρ ∈ ∂I1,a(ξ) while

E[u1(ρ, ω)] = 1. Strict convexity of u 7→ u log u gives

hS0,∞(µξΩ |P) = E[u1(ρ, ω) log u1(ρ, ω)] > 0.

Proof of Proposition 3.21. Under the quenched measure Pω0 , the Ω-marginal of L∞n is
now a deterministic measure n−1

∑n−1
i=0 δTi,Xiω = n−1

∑n−1
i=0 δTi,0ω that converges weakly

to P, for P-a.e. ω. Hence the rate I3,q(µ) must be infinite if µΩ 6= P.
By Proposition 3.19, if ξ ∈ ri(D) \ {ξ∗} and (3.19) holds, then µξΩ 6� P on S0,∞.

Therefore, HS,+
q,P (µξ) =∞ by definition (see (3.11)), and I3,q(µξ) = (HS,+

q,P )∗∗(µξ) =∞ by
(3.12) and the paragraph above.

Proof of Proposition 3.22. Fix an arbitrary ξ ∈ ri(D).

(a) We prove in Theorem C.4(b) in Appendix C that 〈ρ, z〉 − logW (ρ, ω) = 〈ρ′, z〉 −
logW (ρ′, ω) for every ρ, ρ′ ∈ ∂I1,q(ξ), z ∈ R and P-a.e. ω. Therefore, the RHS of
(3.21) is well-defined, and so is νξ by consistency. Taking the POV of the particle,
νξ induces a Markov chain on Ω with transition kernel π̄ν̄

ξ

(ω′|ω) = 1{T1,0ω}(ω
′),

for which the Ω-marginal νξΩ = P of νξ is an invariant measure. Therefore, νξ is
S-invariant.
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(b) Recall (C.3) and (C.5) from Appendix C and observe that

Eν
ξ

[Z1] = E

[∑
z∈R

q̄0(z)
e〈ρ,z〉z

W (ρ, ω)

]
= E

[
Eω0 [e〈ρ,Z1〉Z1]

Eω0 [e〈ρ,Z1〉]

]
= E[∇ logW (ρ, ω)] = ∇Λ1,q(ρ) = ξ.

(c) (HS,+
q,P )∗∗(νξ) = Hq(ν

ξ) by Corollary 3.14 since νξ is S-invariant and νξΩ = P. Similar
to the proof of Proposition 3.20,

Hq(ν
ξ) = Eν

ξ

[
log

(
πν̄

ξ

0,1(0, Z1 |ω)

π0,1(0, Z1 |ω)

)]
= Eν

ξ

[
log

(
e〈ρ,Z1〉

W (ρ, ω)

)]
= Eν

ξ

[〈ρ, Z1〉]− Eν
ξ
Ω [logW (ρ, ω)] = 〈ρ, ξ〉 − E[logW (ρ, ω)] = I1,q(ξ),

where ρ ∈ ∂I1,q(ξ), and the fourth equality uses part (b). See (C.3) in Appendix C
for the last equality.

(d) We know from part (c) that νξ is a minimizer of (3.13) and (3.14). Take any
S-invariant µ ∈M1(ΩN) such that Eµ[Z1] = ξ.

(i) If µ is a minimizer of (3.13), then µΩ = P by Proposition 3.21, and hence
(HS,+

q,P )∗∗(µ) = Hq(µ) by Corollary 3.14.

I1,q(ξ) = Hq(µ) = HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × π)

=

∫
µ̄−(dω, dz−∞,0)

∑
z∈R

πµ̄0,1(0, z |ω, z−∞,0) log

(
πµ̄0,1(0, z |ω, z−∞,0)

π0,1(0, z |ω)

)

=

∫
µ̄−(dω, dz−∞,0)

∑
z∈R

πµ̄0,1(0, z |ω, z−∞,0) log

(
πµ̄0,1(0, z |ω, z−∞,0)

πν̄
ξ

0,1(0, z |ω)

)
+ Eµ[〈ρ, Z1〉]− EµΩ [logW (ρ, ω)]

= HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × πν̄

ξ

) + 〈ρ, ξ〉 − E[logW (ρ, ω)]

= HA−∞,1−∞,∞
(µ̄− × πµ̄ | µ̄− × πν̄

ξ

) + I1,q(ξ).

Therefore, πµ̄0,1(0, z |ω, z−∞,0) = πν̄
ξ

0,1(0, z |ω) for µ̄−-a.e. (ω, z−∞,0) and z ∈ R. Since

µΩ = νξΩ = P, we conclude that µ = νξ.

(ii) If µ is a minimizer of (3.14), then µΩ � P on S0,∞, therefore (HS,+
q,P )∗∗(µ) =

Hq(µ) by Corollary 3.14, which implies that µ is a minimizer of (3.13), and the
previous part is applicable.

Appendices

A Sufficient condition for the level-3 quenched LDP

The following definition is adapted from [43, Section 2] to our specific space-time
setting and notation. Let c = max{|z|1 : z ∈ R}. Here and below, | · |1 denotes the
`1-norm.

Definition A.1. A function g : Ω→ R is said to be in class L if g ∈ L1(Ω,S,P) and

lim sup
ε→0

lim sup
n→∞

max

 1

n

∑
0≤j≤εn

|g ◦ Ti+j,x+jz| : 0 ≤ i ≤ n, |x|1 ≤ ci

 = 0 P-a.s. (A.1)

for every z ∈ R.
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The level-3 quenched LDP we have established in [43, Sections 3& 4] covers RWDRE
subject to the following conditions: (i) P is stationary and ergodic under the family of
shifts (T1,z)z∈R; and (ii) the function

ω 7→ log π0,1(0, z |ω) = logω0,0(z)

is in class L for every z ∈ R. The first condition is satisfied thanks to the temporal
independence of the environment. (In fact, P is stationary and ergodic under T1,z for
each z ∈ R.) Therefore, to prove Theorem 2.2 (under the ellipticity assumption (2.4)), it
suffices to show the following result.

Proposition A.2. If a Borel measurable function g0 : PZd → R satisfies∫
|g0(ω̄0)|pdPs(ω̄0) <∞ (A.2)

for some p > d+ 1, then g : Ω→ R defined by ω 7→ g(ω) := g0(ω̄0) is in class L.

Proof. Since constant functions are in class L, we can assume without loss of generality
that E[g] = 0. It suffices to show a modified version of (A.1), namely,

lim sup
n→∞

max
(i,x)∈Aεn

1

n

∑
0≤j≤2εn

|g ◦ Ti+j,x+jz| = 0 P-a.s. (A.3)

for every ε > 0, where Aεn is a thinned out subset of {(i, x) ∈ Z×Zd : 0 ≤ i ≤ n, |x|1 ≤ ci}
of size |Aεn| ≤ C1n

dε−1 with some constant C1 = C1(c, d).
For each (i, x) ∈ Aεn, the summands in

∑
0≤j≤2εn |g ◦ Ti+j,x+jz| are i.i.d. Therefore, for

every δ > 0,

P

 ∑
0≤j≤2εn

|g ◦ Ti+j,x+jz| ≥ nδ

 ≤ C2(nδ)−pεn

by (A.2) and the Fuk-Nagaev inequality (see [33, Corollary 1.8]), where C2 = C2(p) is
some constant and n is sufficiently large (depending on p, δ, ε). Hence,

P

 max
(i,x)∈Aεn

∑
0≤j≤2εn

|g ◦ Ti+j,x+jz| ≥ nδ

 ≤ C1n
dε−1C2(nδ)−pεn = C1C2δ

−pnd+1−p

by a union bound.
Consider the subsequence nm = mγ with some γ > (p− d− 1)−1. Then,

∞∑
m=1

C1C2δ
−p(nm)d+1−p <∞

and

lim sup
m→∞

max
(i,x)∈Aεnm

1

nm

∑
0≤j≤2εnm

|g ◦ Ti+j,x+jz| ≤ δ P-a.s.

by the Borel-Cantelli lemma. This bound generalizes to the full sequence, too, since
limm→∞

nm+1

nm
= 1. Finally, sending δ → 0 implies (A.3).

B Elementary facts regarding the level-1 rate functions

Proof of Proposition 2.4. (a) I1,a = (log φa)∗ and I3,q = (HS
q,P)∗∗ are convex conjugates

and hence convex. I1,q is defined in (2.5) via contraction, and therefore it is convex, too.
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Since the rate functions I1,a and I1,q are lower semicontinuous on their domain D, they
are in fact continuous on D, see [45, Theorem 10.2].

(b) Recall from (8.1) that

Λ1,q(ρ) := lim
n→∞

1

n
logEω0 [e〈ρ,Xn〉]

for every ρ ∈ Rd. Varadhan’s lemma gives Λ1,q(ρ) = (I1,q)
∗(ρ). Observe that

Λ1,q(ρ) = E

[
lim
n→∞

1

n
logEω0 [e〈ρ,Xn〉]

]
≤ lim
n→∞

1

n
logE0[e〈ρ,Xn〉] = log φa(ρ)

by the bounded convergence theorem and Jensen’s inequality. Thus, for every ξ ∈ D,

I1,a(ξ) = (log φa)∗(ξ) = sup
ρ∈Rd
{〈ρ, ξ〉 − log φa(ρ)}

≤ sup
ρ∈Rd
{〈ρ, ξ〉 − Λ1,q(ρ)} = (Λ1,q)

∗(ξ) = I1,q(ξ)

by (1.9) and the convexity of I1,q.
For every z ∈ R, the level-1 quenched LDP upper bound gives

−I1,q(z) ≥ lim sup
n→∞

1

n
logPω0 (Xn = nz) ≥ lim sup

n→∞

1

n
log

n−1∏
i=0

πi,i+1(iz, (i+ 1)z |ω)

= lim
n→∞

1

n

n−1∑
i=0

log π0,1(0, z |Ti,izω) = E[logω0,0(z)].

The desired bound follows from (2.4) and the convexity of I1,q.
(c) I1,a(ξ∗) = I1,q(ξ

∗) = 0 by the LLN. log φa is analytic onRd and hence I1,a = (log φa)∗

is strictly convex on ri(D). Therefore, 0 < I1,a(ξ) ≤ I1,q(ξ) for every ξ 6= ξ∗ by part (b),
which proves the desired implications.

(d) For every z ∈ R, the level-1 averaged LDP upper bound gives

−I1,a(z) ≥ lim sup
n→∞

1

n
logP0(Xn = nz) ≥ lim

n→∞

1

n
log(q̂(z))n = log q̂(z) = logE[ω0,0(z)].

If z is an extremal point of D, then for every ε > 0,

−I1,q(z) ≤ lim inf
n→∞

1

n
logPω0

(
|Xn

n
− z| < ε

)
≤ (1− cε)E[logω0,0(z)] +O(ε).

Here, the first inequality is an instance of the level-1 quenched LDP lower bound. The
second inequality follows from three observations: (i) the event

{
|Xnn − z| < ε

}
consists

of enO(ε) paths, (ii) each path contains at least (1− cε)n many z-steps for some constant
c = c(R), and (iii) the probabilities of these z-steps are i.i.d. by assumption. Sending
ε→ 0, we deduce that

−I1,q(z) ≤ E[logω0,0(z)] < logE[ω0,0(z)] ≤ −I1,a(z)

by Jensen’s inequality (unless ω0,0(z) is deterministic).

C Subdifferentials of the level-1 rate functions

The convex hull and the affine hull of the finite set R ⊂ Zd are defined as

D = conv(R) =

{∑
z∈R

λ(z)z : λ(z) ∈ [0, 1] for every z ∈ R,
∑
z∈R

λ(z) = 1

}
and

M = aff(R) =

{∑
z∈R

λ(z)z : λ(z) ∈ R for every z ∈ R,
∑
z∈R

λ(z) = 1

}
,

respectively. The relative interior ri(D) is the interior of D in the relative topology of M .
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Recall from Appendix B that the functions I1,a and log φa (resp. I1,q and Λ1,q) are
convex conjugates of each other. The subdifferential ∂I1,a(ξ) of I1,a at ξ ∈ D is defined as

∂I1,a(ξ) = {ρ ∈ Rd : I1,a(ξ′) ≥ I1,a(ξ) + 〈ρ, ξ′ − ξ〉 for every ξ′ ∈ D}. (C.1)

∂I1,q(ξ), ∂Λ1,q(ρ) and ∂ log φa(ρ) are defined similarly. Note that log φa is a smooth
function, therefore

∂ log φa(ρ) = {∇ log φa(ρ)}

at every ρ ∈ Rd (see [45, Theorem 25.1]).

Theorem C.1. If ξ ∈ ri(D), then ∂I1,a(ξ) and ∂I1,q(ξ) are nonempty and convex. For
every ρ ∈ Rd,

ρ ∈ ∂I1,a(ξ) ⇐⇒ I1,a(ξ) + log φa(ρ) = 〈ρ, ξ〉 ⇐⇒ ξ = ∇ log φa(ρ) (C.2)

and
ρ ∈ ∂I1,q(ξ) ⇐⇒ I1,q(ξ) + Λ1,q(ρ) = 〈ρ, ξ〉 ⇐⇒ ξ ∈ ∂Λ1,q(ρ). (C.3)

Proof. These statements are special instances of [45, Theorems 23.4 and 23.5]. (Note
that convexity is clear from the definition of subdifferentials.)

There is a unique linear subspace L of Rd, given by L := M −M = {ξ−ξ′ : ξ, ξ′ ∈M},
that is parallel to M , i.e., M = ξ + L for every ξ ∈ M (see [45, Theorem 1.2]). Set
dim(D) = dim(L), where dim denotes dimension. Let L⊥ be the orthogonal complement
of L in Rd.

Theorem C.2. For every ξ ∈ ri(D):

(a) ∂I1,a(ξ) is an affine set that is parallel to L⊥, i.e., ∂I1,a(ξ) = ρ + L⊥ for every
ρ ∈ ∂I1,a(ξ).

(b) 〈ρ, z〉 − log φa(ρ) = 〈ρ′, z〉 − log φa(ρ′) for every ρ, ρ′ ∈ ∂I1,a(ξ) and z ∈ R.

(c) dim(D) + dim(∂I1,a(ξ)) = d.

(d) I1,a is differentiable at ξ if and only if dim(D) = d.

Proof.

(a) That ρ+L⊥ ⊂ ∂I1,a(ξ) for any ρ ∈ ∂I1,a(ξ) follows immediately from definition (C.1)
because 〈ρ′, ξ′ − ξ〉 = 0 for all ξ, ξ′ ∈ D and ρ′ ∈ L⊥.

Conversely, suppose ρ′ /∈ L⊥. Then 〈ρ′, z〉 is not constant over z ∈ R, and

〈ρ′,J(∇ log φa)(ρ)ρ′〉 = E0[e〈ρ,Z1〉−log φa(ρ)〈ρ′, Z1〉2]− E0[e〈ρ,Z1〉−log φa(ρ)〈ρ′, Z1〉]2 > 0

by Jensen’s inequality. Here, J denotes the Jacobian and J(∇ log φa)(ρ) is the
Hessian matrix of log φa at ρ. Therefore, ∇ log φa(ρ+ ερ′) 6= ξ for sufficiently small
ε > 0, and hence ρ + ερ′ 6∈ ∂I1,a(ξ) by (C.2). Since ∂I1,a(ξ) is convex, we deduce
that ρ+ ρ′ 6∈ ∂I1,a(ξ).

(b) If ρ, ρ′ ∈ ∂I1,a(ξ), then ρ − ρ′ ∈ L⊥ by part (a), and so 〈ρ − ρ′, z′〉 is constant over
z′ ∈ R. Consequently, for any particular z ∈ R,

〈ρ, z〉 − log φa(ρ) = 〈ρ− ρ′ + ρ′, z〉 − log
∑
z′∈R

q̂(z′)e〈ρ−ρ
′+ρ′,z′〉

= 〈ρ′, z〉 − log
∑
z′∈R

q̂(z′)e〈ρ
′,z′〉 = 〈ρ′, z〉 − log φa(ρ′).

(C.4)

(c) dim(D) + dim(∂I1,a(ξ)) = dim(L) + dim(L⊥) = d by part (a).
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(d) This follows from part (c) and [45, Theorem 25.1].

The next proposition states some properties of ∂I1,a(ξ∗) where ξ∗ =
∑
z∈R q̂(z)z is

the LLN velocity. It is used in conjunction with assumption (3.19) for results on spatially
constant environments.

Proposition C.3. For every ρ ∈ Rd, the following are equivalent:

(i) φa(ρ) = e〈ρ,ξ
∗〉;

(ii) ρ ∈ ∂I1,a(ξ∗);

(iii) 〈ρ, z〉 = 〈ρ, ξ∗〉 for every z ∈ R.

Proof. For every ρ ∈ Rd,

log φa(ρ) = log
∑
z∈R

q̂(z)e〈ρ,z〉 ≥
∑
z∈R

q̂(z)〈ρ, z〉 = 〈ρ, ξ∗〉

by Jensen’s inequality, and equality holds if and only if 〈ρ, z〉 is constant over z ∈ R. This
proves the equivalence of (i) and (iii).

Observe that ∇ log φa(0) =
∑
z∈R q̂(z)z = ξ∗. Therefore, 0 ∈ ∂I1,a(ξ∗) by (C.2), and

∂I1,a(ξ∗) = L⊥ by Theorem C.2. The equivalence of (ii) and (iii) now follows since
{z − ξ∗ : z ∈ R} spans L.

When the environment is spatially constant, recall from (10.1) that

Λ1,q(ρ) = E[logW (ρ, ω)].

In particular, it is a smooth function and

∂Λ1,q(ρ) = {∇Λ1,q(ρ)} (C.5)

at every ρ ∈ Rd. In this case, the following quenched version of Theorem C.2 holds, with
the same proof.

Theorem C.4. Assume (2.4) and (3.18). Then, for every ξ ∈ ri(D):

(a) ∂I1,q(ξ) is an affine set that is parallel to L⊥, i.e., ∂I1,q(ξ) = ρ + L⊥ for every
ρ ∈ ∂I1,q(ξ).

(b) 〈ρ, z〉 − logW (ρ, ω) = 〈ρ′, z〉 − logW (ρ′, ω) for all ρ, ρ′ ∈ ∂I1,q(ξ), z ∈ R and P-a.e. ω.

(c) dim(D) + dim(∂I1,q(ξ)) = d.

(d) I1,q is differentiable at ξ if and only if dim(D) = d.

D A concentration inequality

Consider a random walk on Zd starting at the origin whose steps are independent and
uniformly distributed on R. Denote the corresponding path measure (resp. expectation)
by P̂0 (resp. Ê0). For any ρ ∈ Rd, define a function η : Ω×R → R by

η(ω, z) = 〈ρ, z〉+ log(|R|π0,1(0, z |ω)).

With this notation,

un(ω) = Eω0 [e〈ρ,Xn〉−n log φa(ρ)] = Ê0[e
∑n−1
i=0 (η(Ti,Xiω,Zi+1)−log φa(ρ))].

This representation enables one to study RWDRE via techniques developed in the context
of directed polymers (see [10] for a survey). For instance, the following result is an
adaptation of a concentration inequality by Liu and Watbled for the quenched free energy
of directed polymers (see [32, Section 6]).
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Theorem D.1. Assume (3.16). Then, for every ρ ∈ Rd and ε > 0, ∃ c = c(ρ, ε) > 0 such
that

P
(
| log un − E[log un]| ≥ nε

)
≤ 2 exp(−cn).

Proof. We can write log un−E[log un] as a sum of (S0,i+1)0≤i≤n−1 martingale differences:

log un − E[log un] =

n−1∑
i=0

Vn,i, with Vn,i = Ei+1[log un]− Ei[log un],

where Ei[ · · · ] is shorthand for E[ · · · |S0,i].

Lemma D.2. For every 0 ≤ i ≤ n− 1 and t ∈ R,

Ei[exp(tVn,i)] ≤ K(t) :=

{(
supz∈RE[e−|t|η(0,0,z)]

) (
supz∈RE[eη(0,0,z)]|t|

)
if |t| < 1;(

supz∈RE[e−|t|η(0,0,z)]
) (

supz∈RE[e|t|η(0,0,z)]
)

if |t| ≥ 1.

Proof. Set

en,i = exp

 ∑
0≤j≤n−1, j 6=i

(η(Tj,Xjω,Zj+1)− log φa(ρ))

 , un,i = Ê0[en,i].

Since Ei+1[log un,i] = Ei[log un,i], we have

Vn,i = Ei+1

[
log

un
un,i

]
− Ei

[
log

un
un,i

]
. (D.1)

For every x ∈ Zd and z ∈ R, define

η̄(i, x, z) = exp(η(Ti,xω, z)− log φa(ρ)), α(i, x, z) =
Ê0[en,i1{Xi=x,Zi+1=z}]

un,i
.

Then, ∑
x∈Zd

∑
z∈R

α(i, x, z) = 1 and
un
un,i

=
∑
x∈Zd

∑
z∈R

α(i, x, z)η̄(i, x, z).

By (D.1), Jensen’s inequality and the fact that S0,i ⊂ S0,i+1, we get

Ei[exp(tVn,i)] = exp

(
−tEi

[
log

un
un,i

])
Ei

[
exp

(
tEi+1

[
log

un
un,i

])]
≤ Ei

[(
un
un,i

)−t]
Ei

[(
un
un,i

)t]
. (D.2)

If t < 0 or t ≥ 1, then the function u→ ut is convex; therefore Jensen’s inequality gives

(
un
un,i

)t
=

∑
x∈Zd

∑
z∈R

α(i, x, z)η̄(i, x, z)

t

≤
∑
x∈Zd

∑
z∈R

α(i, x, z)(η̄(i, x, z))t.

For every x ∈ Zd and z ∈ R, the random variables η̄(i, x, z) and α(i, x, z) are measurable
w.r.t. σ{ωi} and σ{ωj : 0 ≤ j ≤ n− 1, j 6= i}, respectively. Since these two σ-algebras are
independent and the latter one contains S0,i, we get

Ei[α(i, x, z)(η̄(i, x, z))t] = Ei[α(i, x, z)]E[(η̄(i, x, z))t] = Ei[α(i, x, z)]
E[etη(0,0,z)]

(φa(ρ))t
.
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Hence, for t < 0 or t ≥ 1,

Ei

[(
un
un,i

)t]
≤ sup
z∈R

E[etη(0,0,z)]

(φa(ρ))t
.

If t ∈ (0, 1), then the function u→ ut is concave; therefore Jensen’s inequality gives

Ei

[(
un
un,i

)t]
≤
(
Ei

[
un
un,i

])t
≤ sup
z∈R

(
E[eη(0,0,z)]

)t
(φa(ρ))t

.

The desired result follows from plugging these bounds in (D.2).

Continuing with the proof of Theorem D.1, recall the ellipticity assumption (3.16).
Lemma D.2 implies

Ei[exp(δ|Vn,i|)] ≤ Ei[exp(δVn,i)] + Ei[exp(−δVn,i)] ≤ 2K(δ).

Since E[e−δη(·,z)] =
(
|R|e〈ρ,z〉

)−δ
E[ω0,0(z)−δ], we deduce that K(δ) < ∞. A suitable

generalization of the Azuma-Hoeffding inequality (see [32, Theorem 2.1]) gives

E
[
eδt(log un−E[log un])

]
≤ exp

(
2nK(δ)t2

1− t

)
for every t ∈ (0, 1). Therefore,

P
(
| log un − E[log un]| ≥ nε

)
≤ exp

(
−nεδt+

2nK(δ)t2

1− t

)
by the exponential Chebyshev inequality. The desired result is obtained by optimizing
over t ∈ (0, 1).
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