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Abstract

We obtain the Brownian net of [24] as the scaling limit of the paths traced out by
a system of continuous (one-dimensional) space and time branching and coalescing
random walks. This demonstrates a certain universality of the net, which we have not
seen explored elsewhere. The walks themselves arise in a natural way as the ances-
tral lineages relating individuals in a sample from a biological population evolving
according to the spatial Lambda-Fleming-Viot process. Our scaling reveals the effect,
in dimension one, of spatial structure on the spread of a selectively advantageous
gene through such a population.
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1 Introduction

The Brownian net, introduced in [24], arises as the scaling limit of a system of
branching and coalescing random walk paths. It extends, in a natural way, the Brownian
web, which originated in the work of [1]. In the Brownian web there is no branching. It
can be thought of as the diffusive limit of a system of one-dimensional coalescing random
walk paths, one started from each point of the space-time (diamond) lattice. Informally,
the web is then a system of coalescing Brownian paths, one started from each space-time
point. The Brownian web was formulated in [15] as a random variable taking its values
in the space of compact sets of paths, equipped with a topology under which it is a
Polish space. In this framework, the powerful techniques of weak convergence become
available and as a result the Brownian web emerges as the limit of a wide variety of
one-dimensional coalescing systems; e.g. [13], [20]. This points to a certain ‘universality’
of the Brownian web.

In the Brownian net, each path has a small probability (tending to zero in the scaling
limit) of branching in each time step. The limiting object is (even) more difficult to
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The Brownian net and selection in the SΛFVS

visualise than the Brownian web, as there will be a multitude of paths emanating from
each space-time point. Nonetheless, [24] shows that it can be characterised through the
systems of ‘left-most’ and ‘right-most’ paths from each point, each of which itself forms
a Brownian web (with drift). Motivated by the study of perturbations of one-dimensional
voter models, [19] shows that, by starting from systems of random walks that branch,
coalesce and die on the diamond lattice, the Brownian net can be extended still further to
include a killing term. However, we have not seen the ‘universality’ of the Brownian net
explored. Our main result, Theorem 3.5, is a contribution in this direction. It establishes
an appropriate scaling under which the paths traced out by a system of branching and
coalescing continuous time and space random walks in one spatial dimension converges
to the Brownian net.

The original motivation for our work was a question of interest in population genetics:
when will the action of natural selection on a gene in a spatially structured population
cause a detectable trace in the patterns of genetic variation observed in the contemporary
population? We deal with the most biologically interesting case of a population evolving in
a two-dimensional spatial continuum in [6]. Our work in this paper uncovers some of the
rich mathematical structure underlying mathematical models for biological populations
evolving in one-dimensional spatial continua. In particular, we study the systems of
interacting random walks that, as dual processes (corresponding to ancestral lineages of
the model), describe the relationships, across both time and space, between individuals
sampled from those populations.

It is natural to ask whether the model of [19] has a biological interpretation. It does:
killing corresponds to a mutation term. This was observed by [24] (c.f. [7]). However, in
view of the technical challenges to be overcome to handle the additional killing term,
even on a diamond lattice, we do not explore this further here.

Our starting point will be the Spatial Λ-Fleming-Viot process with selection (SΛFVS)
which (along with its dual) was introduced and constructed in [10]. The dynamics of both
the SΛFVS and its dual are driven by a Poisson Point Process of events (which model
reproduction in the population) and will be described in detail in Section 2. Roughly,
each event prescribes a region in which reproduction takes place. A proportion υ of the
population in the affected region is replaced by offspring of a single parent. We shall
refer to υ as the impact of the event. In the absence of selection, the dual process of
ancestral lineages is a modification of the ‘Poisson trees’ of [13]. With selection, our
dual follows ‘potential’ ancestral lineages, which introduces a branching mechanism,
with the rate of branching determined by the presence of lineages in a region, but
not increasing with their density. Our main result, Theorem 3.5, is that in one spatial
dimension and when the impact υ = 1 (which prevents ancestral lineages from jumping
over one another), when suitably scaled the system of branching and coalescing ancestral
lineages converges to the Brownian net.

Without selection, the corresponding objects converge (after scaling) to the Brownian
web. In that setting, we believe (and [4] provides strong supporting evidence) that the
random walks can even be allowed to jump over one another and the only effect on the
limiting object is a simple scaling of time (given by one minus the crossing probability of
‘nearby’ paths). This would mirror the results of [20], in which systems of coalescing
non-simple random walks with crossing paths are shown to converge to the Brownian
web. When we try to include selection in this limit, allowing paths to cross has a more
complicated effect, as we illustrate through simulations in Section 7. It is an intriguing
open question to explain the pictures that we present there.

In [10], scaling limits of the SΛFVS were considered in which the local population
density tends to infinity. In that case, the classical Fisher-KPP equation and its stochastic
analogue can be recovered. The dual process of branching and coalescing lineages con-
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The Brownian net and selection in the SΛFVS

verges to branching Brownian motion, with coalescence of lineages at a rate determined
by the local time that they spend together. In this article we are interested in a very
different regime, in which coalescence of lineages is instantaneous on meeting.

Although our result owes a lot to the existing literature, the continuum setting
introduces some new features. In particular, some care is needed in extending the
self-duality of the systems of branching and coalescing simple random walks that appear
in [24] to an ‘approximate’ self-duality of the càdlàg walks in continuous time and space
that are considered here.

In Section 2 we introduce the SΛFVS and its dual before providing a heuristic
explanation for our scaling. In Section 3 we provide a self-contained account of the
necessary background on the Brownian web and net. Our main result is then stated
formally in Theorem 3.5, which is proved in Sections 4-6. Finally, Section 7 presents
a brief numerical exploration of the effect of allowing the random walk paths of the
dual process to cross on the positions at time one of the left-most and right-most paths
emanating from a point.
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2 The SΛFVS and its dual

In this section we introduce the set of branching and coalescing paths with which
our main result is concerned. They arise as the dual to a special instance of the SΛFVS.
The reader familiar with the SΛFVS can safely refer to Definition 2.2 (and the three lines
preceding it) for notation, take note of Remark 2.3, and then skip to Section 3.

2.1 The SΛFVS

The Spatial Λ-Fleming-Viot process (SΛFV) without selection was introduced in
[8, 2]. In fact the name does not refer to a single process, but rather to a framework
for modelling the dynamics of frequencies of different genetic types found within a
population that is evolving in a spatial continuum. It is distinguished from the classical
models of population biology in that reproduction is based on ‘events’ rather than
individuals. This introduces density dependence into reproduction in such a way that the
clumping and extinction which plagues classical models is overcome, whilst the model
remains analytically tractable. For a survey of the SΛFV we refer to [3].

There are very many different ways in which to introduce selection into the SΛFV.
Here we adapt the approach typically adopted to introduce selection into the Moran
model of classical population genetics. A full motivation of this approach can be found in
[10], to which we refer the reader.

We suppose that the population is divided into two genetic types, which we denote
a and A, and is evolving in a geographical space which is modelled by R. It will be
convenient to index time by the whole of R. At each time t, the population will be
represented by a random function {wt(x), x ∈ R} defined, up to a Lebesgue null set of
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R, by

wt(x) := proportion of type a at spatial position x at time t.

A construction of an appropriate state space for x 7→ wt(x) can be found in [25]. Using
the identification∫

R

{
w(x)f(x, a) + (1− w(x))f(x,A)

}
dx =

∫
R×{a,A}

f(x, κ)M(dx, dκ),

this state space is in one-to-one correspondence with the space Mλ of measures on
R× {a,A} with ‘spatial marginal’ Lebesgue measure, which we endow with the topology
of vague convergence. By a slight abuse of notation, we also denote the state space of
the process (wt)t∈R byMλ.

Definition 2.1 (One-dimensional SΛFV with selection (SΛFVS)). Fix R ∈ (0,∞) and
υ ∈ (0, 1] and let µ be a finite measure on (0,R]. Further, let Π be a Poisson point process
on R×R× (0,∞) with intensity measure

dx⊗ dt⊗ µ(dr). (2.1)

The one-dimensional spatial Λ-Fleming-Viot process with selection (SΛFVS) driven
by (2.1) is theMλ-valued process (wt)t∈R with dynamics given as follows.

If (x, t, r) ∈ Π, a reproduction event occurs at time t within the closed interval
[x− r, x+ r]. With probability 1− s the event (x, t, r) is neutral, in which case:

1. Choose a parental location z uniformly at random within (x−r, x+r), and a parental
type, κ, according to wt−(z), that is κ = a with probability wt−(z) and κ = A with
probability 1− wt−(z).

2. For every y ∈ [x− r, x+ r], set wt(y) = (1− υ)wt−(y) + υ1{κ=a}.

With the complementary probability s, (x, t, r) corresponds to a selective event within
[x− r, x+ r] at time t, in which case:

1. Choose two distinct ‘potential’ parental locations z, z′ independently and uniformly
at random within (x− r, x+ r), and at each of these locations ‘potential’ parental
types κ, κ′, according to wt−(z), wt−(z′) respectively.

2. For every y ∈ [x − r, x + r] set wt(y) = (1 − υ)wt−(y) + υ1{κ=κ′=a}. Declare the
parental location to be z if κ = κ′ = a or κ = κ′ = A and to be z (resp. z′) if
κ = A, κ′ = a (resp. κ = a, κ′ = A).

In fact this is a very special case of the SΛFVS introduced in [10], and even more
special than those constructed in [9], but it already provides a rich class of models. We
use the assumption that µ has bounded support in Section 4, but it is far from necessary
for the construction of the process. The assumption that parental locations are sampled
uniformly from (−r, r) has become standard in the literature, but at no point do we use
it; our proofs work equally well for any symmetric distribution on (−r, r). The parameter
υ is often refered to as the ‘impact’ of the event. It can be loosely thought of as inversely
proportional to the local population density. For our rigorous results we shall take υ = 1,
meaning that during a reproduction event, all individuals in the affected region are
replaced.
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2.2 The dual process of branching and coalescing lineages

Our primary concern in this paper is the dual process of the SΛFVS, a system of
branching and coalescing paths that encodes all the potential ancestors of individuals in
a sample from the population.

When there is no selection, the dual contains only coalescing random walks, and
each such walk corresponds to the ancestral lineage ` of some individual; meaning that `
traces out the locations in space-time occupied by the ancestors of that individual.

If selection is present, then, at a selective event, we cannot determine the genetic
types of the potential ancestors of the event (and hence the type and location of the actual
ancestor) without looking further into the past. To avoid intractable non-Markovian
dynamics, in this case we define a dual which traces all the locations in space-time which
could have contained ancestors of a sample S from the contemporary population. This
leads to a system of branching and coalescing random walks, tracing all the potential
ancestral lineages.

The dynamics of the dual are driven by the same Poisson point process of events, Π,
that drove the forwards in time process. The distribution of this Poisson point process is
invariant under time reversal and so we shall abuse notation by reversing the direction
of time when discussing the dual.

We suppose that at time 0 (which we think of as ‘the present’) we sample k individuals
from locations x1, . . . , xk, and we write ξ1

t , . . . , ξ
Nt
t , for the locations of the Nt potential

ancestral lineages that make up our dual at time t before the present.

Definition 2.2 (Branching and coalescing dual). Fix R ∈ (0,∞). Let Π be a Poisson point
process on R×R× (0,∞) with intensity measure

dx⊗ dt⊗ µ(dr)

where µ is a finite measure on (0,R]. The branching and coalescing dual process (Ξt)t≥0

is the
⋃
n≥1R

n-valued Markov process with dynamics defined as follows: At each event
(x, t, r) ∈ Π, with probability 1− s, the event is neutral:

1. for each i such that ξit− ∈ [x − r, x + r], mark the ith lineage with probability υ,
independently over i and of the past;

2. if at least one lineage is marked, all marked lineages disappear and are replaced
by a single lineage (the ‘parent’ of the event), whose location at time t is drawn
uniformly at random from within (x− r, x+ r).

With the complementary probability s, the event is selective:

1. for each i such that ξit− ∈ [x − r, x + r], mark the ith lineage with probability υ,
independently over i and of the past;

2. if at least one lineage is marked, all marked lineages disappear and are replaced
by two lineages (the ‘potential parents’ of the event), whose (almost surely distinct)
locations are drawn independently and uniformly from within (x− r, x+ r).

In both cases, if no lineage is marked, then nothing happens.

A potential ancestral lineage is any path obtained by following the locations of
potential ancestors of an individual in the sample; whenever the potential ancestor
corresponding to the current position of the lineage is marked in an event, the path
jumps to the location of the potential parent of the event (if the event is neutral) or to
the location of (either) one of the potential parents (if the event is selective). Of course
there are now many such paths corresponding to each individual in the sample.
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Remark 2.3. If we take the impact υ = 1, then paths of the dual process cannot cross
one another. We will impose this condition for our main result.

This dual process is the SΛFVS analogue of the Ancestral Selection Graph (ASG),
introduced in the companion papers [16] and [18], which describes all the potential
ancestors of a sample from a population evolving according to the Wright-Fisher diffusion
with selection. Duality of this type can be expressed in several different ways, but
perhaps the simplest is the statement that the ASG is the moment dual of the diffusion.
To establish the analogous duality for the SΛFVS, we would need to be able to identify
E[
∏n
i=1 wt(xi)] for any choice of points x1, . . . , xn ∈ R. The difficulty is that the SΛFVS

wt(x) is only defined at Lebesgue almost every point x and so we have to be satisfied
with a ‘weak’ moment duality.

Proposition 2.4 (Proposition 2.2 of [10]). The spatial Λ-Fleming-Viot process with
selection is dual to the process (Ξt)t≥0 in the sense that for every k ∈ N and ψ ∈
C(Rk) ∩ L1(Rk), we have

Ew0

[ ∫
Rk

ψ(x1, . . . , xk)

{ k∏
j=1

wt(xj)

}
dx1 . . . dxk

]

=

∫
Rk

ψ(x1, . . . , xk)E{x1,...,xk}

[ Nt∏
j=1

w0

(
ξjt
)]
dx1 . . . dxk. (2.2)

In fact, a stronger form of this duality holds, in which the forwards in time process of
allele frequencies and the process of potential ancestors of a sample are realised on the
same probability space through a lookdown construction; see [25] for the case without
selection and [9] for the general case.

From now on
forwards in time refers to forwards for the dual process,

i.e. the reversal of that in Definition 2.1.

2.3 The scaling

We shall keep the impact of each reproduction event (i.e. the parameter υ) fixed,
but we rescale the strength s of selection. In addition we perform a diffusive rescaling
of time and space. For our main result we require υ = 1, but the heuristic argument
presented here and the numerical experiments of Section 7, suggest that there should be
a non-trivial limit for any fixed υ ∈ (0, 1). Let us now describe the appropriate rescaling.
The stages of our rescaling are indexed by n ∈ N.

Recall that µ is a finite measure on (0,R]. For each n ∈ N, define the measure µn by
µn(A) = µ(n1/2A), for all Borel subsets A of R. At the nth stage of the rescaling, our
rescaled dual is driven by the Poisson point process Πn on R×R× [0,∞) with intensity

n1/2 dx⊗ ndt⊗ µn(dr). (2.3)

The
√
n in front of dx arises since the rate at which centres of events fall in an interval

of length l in the rescaled process is the rate at which they fall in an interval of length√
nl in the unscaled process. Each event of Πn, independently, is neutral with probability

1− sn and selective with probability sn, where sn = α/
√
n for some α ∈ (0,∞). Thus, the

nth rescaling of our dual process is precisely Definition 2.2 with (2.3) in place of (2.1).
Although not obvious for the SΛFVS itself, when considering the dual process it is not

hard to understand why the scaling above should lead to a non-trivial limit. If we ignore
the selective events, then each ancestral lineage follows a compound Poisson process
and rescales to a (linear time change of) Brownian motion. Now, consider what happens
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at a selective event. The two new lineages are born at a separation of order 1/
√
n. If we

are to ‘see’ both lineages in the limit then they must move apart to a separation of order 1

(after which they might, possibly, coalesce back together). Ignoring possible interactions
with other lineages, the probability that a pair of lineages achieves such a separation is
of order 1/

√
n. Therefore, in order to obtain a non-trivial limit (which differs from that in

the absence of selection) we need O(
√
n) such branches per scaled unit of time, so we

take nsn = α
√
n or sn = α/

√
n. (This argument can also be used to identify the correct

scaling of sn in order to obtain a non-trivial limit in higher dimensions, see [6].)
Evidently we can extend the duality of Proposition 2.4 to lineages that are sampled

at different times. For each point p = (x, t) ∈ R2, we think of an individual living at (x, t)

and, at the nth stage of the rescaling, construct the set P↑n(p) of the potential ancestral
lineages of the individual at p. (The reason for the uparrow in the notation will become
clear in Section 4.1.) Thus P ↑n(p) is a set of branching and coalescing paths. Our main
result will concern the limit when we consider the union of such sets of paths as p ranges
over a countable dense set of space-time points.

3 The Brownian net

In order to state a precise result, we must introduce the Brownian net and, in
particular, the state space in which convergence takes place. A short introduction to
the Brownian web and net is provided in this section. For a detailed survey of the
surrounding literature, see [22].

Once again, the reader familiar with this area can note our modification of the usual
state space (detailed in Section 3.1) and Remark 3.1 for terminology, and then skip to
the statement of our main result, which can be found in Section 3.3.

3.1 The state space

We now introduce the state space for our processes. Since our branching and
coalescing paths are only càdlàg (not continuous), to capture the convergence of P↑n(p)

we will need a modification of the state space (introduced by [15]) that is commonly used
for the Brownian web and net.

For s ∈ [−∞,∞], we set

D[s] =
{
f : [s,∞]→ [−∞,∞] ; f is càdlàg on [s,∞] ∩ (−∞,∞)

}
.

For f ∈ D[s], it will be convenient to define σ(f) = σf = s to be the first time at which f
is defined. We set

M =
⋃

t∈[−∞,∞]

D[t]. (3.1)

For each s ∈ [−∞,∞] and f ∈ D[s] we define a function f̄ as follows. Let κt =

tanh−1(t) and note that κ is an order preserving homeomorphism between [−1, 1] and
[−∞,∞]. (The specific choice of the function tanh is a convention in the literature. We
use the symbol κ in place of tanh to denote a change of time rather than rescaling of
space.) Then if f ∈M we define

f̄(t) =
tanh(f(κt))

1 + |κt|
(3.2)

for t ∈ [κ−1(σf ), 1]. It follows immediately that f̄ is càdlàg.
In Section 5.1 we define a generalization ρ of the Skorohod metric that acts on càdlàg

paths with possibly different starting times. We show (in Section 5.2) that

dM (f1, f2) = ρ(f̄1, f̄2) ∨ | tanh(σf1
)− tanh(σf2

)| (3.3)
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Figure 1: Self duality of systems of coalescing random walks on the diamond
lattice that converge to the Brownian web. The blue arrows represent the forwards
in time coalescing random walks, while the red arrows represent the backwards in time
dual.

is a pseudo-metric on M . In standard fashion, from now on we implicitly work with
equivalence classes of M and, with mild abuse of notation, treat (M,dM ) as a metric
space. In view of (3.2), the intuition for (3.3) is that convergence in (M,dM ) can be
described as local Skorohod convergence of the paths plus convergence of the starting
times.

If we restrict to continuous paths and replace ρ with the usual L∞ distance, then
we recover the space (M̃, d

M̃
) introduced by [15], see (5.21). Convergence in the corre-

sponding metric on continuous paths can be described as locally uniform convergence of
paths plus convergence of starting times.

We define the set K(M) of compact subsets of M , equipped with the Hausdorff metric,
m, and including the empty set ∅ as an isolated point. We show (in Section 5.2) that
(M,dM ) is complete and separable; the space K(M) inherits these properties. Similarly,
we write K(M̃) for the space of all compact subsets of M̃ .

3.2 The Brownian web and net

Arratia [1] was the first to observe that the Brownian web exhibits a self-duality.
It is most easily understood by first considering the prelimiting system of coalescing
simple random walks, one started from each point of the diagonal space-time lattice.
As illustrated in Figure 1, one can think of each path in the prelimiting system as the
concatenation of a series of arrows, representing the jump made by the path out of each
point of Z at each time t ∈ Z, and there is then a natural dual system of arrows (on
the dual lattice), pointing in the opposite direction of time, which ‘fills out the gaps’
between the walkers forwards in time. It is not hard to convince oneself that the law
of the resultant system of backwards paths is equal to that of the forwards system,
rotated by 180 degrees about the origin (0, 0). Under diffusive rescaling, the forwards
and backwards systems converge jointly to a pair (W, Ŵ), known as the double Brownian
web, in which W is the Brownian web and the dual web Ŵ has the same law as W
rotated by 180 degrees.

[24] showed how to obtain an analogue of the Brownian web, which they dubbed the
Brownian net, as the scaling limit of the paths traced out by a system of branching and
coalescing simple random walks. If there is a branch at (x, t), then the random walker
at point x at time t has two offspring which it places at (x− 1) and (x+ 1), so that the
space-time point (x, t) is connected by paths to each of (x − 1, t + 1) and (x + 1, t + 1).
In order to obtain a non-trivial limit, the branching probability of each path in each
time step is scaled to be O(1/

√
n), corresponding exactly to the scaling in the dual to

EJP 22 (2017), paper 39.
Page 8/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP61
http://www.imstat.org/ejp/


The Brownian net and selection in the SΛFVS

the SΛFVS; that is at the nth stage of the rescaling the probability that two paths, one
stepping left and one stepping right, emanate from a given point is ζ/

√
n.

In contrast to the Brownian web, the Brownian net will have a multitude of paths
coming out of each space-time point. The key to its characterisation is that it has
a well-defined left-most and right-most path, which we denote lz and rz respectively,
emanating from each point z = (x, t) ∈ R2 and these determine what is called a left-right
Brownian web. Essentially, the set of left-most (resp. right-most) paths form a Brownian
web with a leftwards (resp. rightwards) drift. Thus, for any deterministic pair of k-
tuples of points (z1, . . . , zk), (z′1, . . . , z

′
k′), the left-most paths lz1 , . . . , lzk are distributed as

coalescing Brownian motions with drift ζ to the left, and the right-most paths rz′1 , . . . rz′k′

are distributed as coalescing Brownian motions with drift ζ to the right.
Before we can fully describe the Brownian net, we must explain how a left-most path

lz = l(x,s) and a right-most path rz′ = r(x′,s′) interact. Their joint evolution after time
s ∨ s′ is the unique weak solution to the left-right stochastic differential equation

dLt = ξ1{Lt 6=Rt}dB
l
t + ξ1{Lt=Rt}dB

c
t − ζdt,

dRt = ξ1{Lt 6=Rt}dB
r
t + ξ1{Lt=Rt}dB

c
t + ζdt,

(3.4)

where Blt, B
r
t and Bct are independent standard Brownian motions and if s < t then

Ls ≤ Rs ⇒ Lt ≤ Rt. [24] proved (weak) existence and uniqueness of the solution to this
system.

A straightforward extension of (3.4) is sufficient to specify the joint distribution of any
finite collection of left-right paths, which are known as left-right coalescing Brownian
motions.

Remark 3.1. In [24] the drift parameter ζ of the left-right stochastic differential equation
used to construct the Brownian net is allowed to vary but the diffusion constant, ξ2, of
the Brownian motions is always taken to be one. Applying a linear time change to their
construction yields general ξ2 and we will use such webs and nets (and results from
elsewhere extended trivially to apply to them) without further comment. We shall refer
to the Brownian net corresponding to the left-right system (3.4) as the net with drift ζ
and diffusion constant ξ2.

It remains to give a rigorous characterization of the Brownian net. One last ingredient
is required.

Definition 3.2. Let α : [σα,∞)→ R and α′ : [σα′ ,∞)→ R be paths. We say α crosses α′

from left to right at time t ∈ R if there exists t− < t and t+ > t such that α(t−)−α′(t−) < 0

and α(t+)− α′(t+) > 0 and t = inf{s ∈ (t−, t+) ; (α(t−)− α′(t−))(α(s)− α′(s)) < 0}.
We define a crossing of α′ by α from right to left analogously. We say that α crosses

α′ if it does so from either left to right or right to left.

Given two paths α and α′ which cross at say, time t, we can define a new path g by
following α up until time t, and subsequently following α′. This procedure is known as
hopping from α to α′ at the (crossing) time t. Given a set P of paths, Hcross(P ) is defined
to be the set of paths obtained by hopping a finite number of times between paths within
P .

Definition 3.3 ([24]). The Brownian net N is the K(M̃) valued random variable whose
distribution is uniquely determined by the following properties:

1. For each deterministic z ∈ R2, almost surely N contains a unique left-most path lz
and a unique right-most path rz.

2. For any finite deterministic set of points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2, the collection of

paths lz1 , . . . , lzk , rz′1 , . . . , rz′k′
has the distribution of a family of left-right coalescing

Brownian motions.
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Figure 2: A wedge. In the notation of (3.5), the path r̂ is in X̂r
n, and the path l̂ is in X̂ l

n.
The last time at which both paths are defined is s, in this case given by σ(l̂); r̂(s) < l̂(s)

and, tracing backwards in time, T is the first time at which r̂ = l̂. The wedge is the
shaded region.

3. For any deterministic dense countable sets Dl,Dr ⊆ R2,

N = Hcross({lz ; z ∈ Dl} ∪ {rz ; z ∈ Dr}).

The proof of our main result rests on verifying the conditions of Theorem 3.4, which
provides criteria under which a sequence of processes converges to the Brownian net.
It is obtained by combining Theorem 6.11 and Remark 6.12 of [22]. To state it, we
require the notion of a wedge. Let (X̂ l

n) and (X̂r
l ) be two random sets of paths such

that their rotations by 180 degrees about (0, 0) are K(M̃) valued random variables. Take
l̂ ∈ X̂ l

n and r̂ ∈ X̂r
n, defined on time intervals (−∞, σ(l̂)] and (−∞, σ(r̂)] respectively. We

write s = σ(l̂) ∧ σ(r̂) for the largest time at which both paths are defined. Suppose that
r̂(s) < l̂(s) and define T := sup{t < s : r̂(t) = l̂(t)} to be the first time time the paths meet
(as we trace backwards in time). We call the open set

W (r̂, l̂) := {(x, u) ∈ R2 : T < u < s, r̂(u) < x < l̂(u)} (3.5)

a wedge. This set is illustrated in Figure 2. We say that a path π started at time σπ enters
W from the outside if there exists σπ ≤ u < t such that (π(u), u) /∈ W and (π(t), t) ∈ W .
Here, W denotes the closure of W .

Theorem 3.4 (Theorem 6.11, Remark 6.12 of [22]). Let (X l
n) and (Xr

n) be two sequences
of K(M̃) valued random variables. Let (X̂ l

n) and (X̂r
l ) be two random sets of paths such

that their rotations by 180 degrees about (0, 0) are K(M̃) valued random variables. Set
Xn = Hcross(X l

n ∪Xr
n) and X̂n = Hcross(X̂ l

n ∪ X̂r
n).

Suppose that:

(A ) Paths in X l
n (resp. Xr

n) do not cross. No path in Xn crosses a path of X l
n from right

to left, and no path in Xn crosses a path of Xr
n from left to right. No path in X l

n

crosses a path of X̂ l
n, and no path of Xr

n crosses a path of X̂r
n.

(B) For any k ∈ N, and any (z1, . . . , z2k) ⊆ R×R there exists a convergent sequence

(ln,1, . . . , ln,k, rn,1, . . . ,n,k ),

where ln,i ∈ X l
n, rn,i ∈ Xr

n, whose limit (in distribution, in M̃2k, as n → ∞) is a
collection of left/right coalescing Brownian motions started at (z1, . . . , z2k).
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(C ) Whenever k ∈ N and l̂n ∈ X̂ l
n and r̂n ∈ X̂r

n are such that (l̂n, r̂n) converges (in M̃2,
in distribution, as n → ∞) to left/right Brownian motions (l̂, r̂), the first meeting
time of l̂n with r̂n also converges in distribution to the first meeting time of l̂ with r̂.

(D) Paths of Xn do not enter wedges of X̂n from the outside.

Then, Xn converges (in K(M̃), in distribution) to the Brownian net.

3.3 Statement of the main result

We are finally in a position to give a formal statement of our result. Recall from
Section 2.3, that P ↑n(p) is the set of potential ancestral lineages of the individual at
p ∈ R2 at the nth stage of our rescaling.

Let (Dn)n∈N be an increasing sequence of countable subsets of R2 such that, for each
n, Dn is locally finite, and as n→∞ the set Dn becomes everywhere dense.

We define A (Dn) =
⋃
p∈Dn

P↑n(p). The set A (Dn) contains the potential ancestral
lineages of all p ∈ Dn. However, A (Dn) is not an element of K(M), since it is not a
closed subset of M , and so at the very least we should consider its closure. This requires
that we augment A (Dn) to also include ancestral lineages f that extend backwards in
time until time −∞, and we define f(−∞) = 0 for such f . We include∞ in the domain
of each path f by defining f(∞) = 0. Additionally, define the boundary paths

B = {f(·) = −∞ ; σf ∈ [−∞,∞]} ∪ {f(·) =∞ ; σf ∈ [−∞,∞]}. (3.6)

We then set P↑n(Dn) = A (Dn) ∪ B. Lemma 6.4 shows that P↑n(Dn) is an element of K(M).
Recall from Definition 2.2 that υ is the probability that an ancestral lineage that lies

in [x − r, x + r] at time t− is affected by the event (x, t, r) and that sn = α/
√
n is the

probability (at the nth stage of our rescaling) that an event is selective. Our main result
is the following.

Theorem 3.5. Let υ = 1. As n→∞, P↑n(Dn) converges weakly to N in K(M) where, in
the terminology of Remark 3.1, N denotes the Brownian net with drift

ζ =
2

3
α

∫ R
0

r2µ(dr), (3.7)

and diffusion constant

ξ2 =
4

9

∫ R
0

r3µ(dr). (3.8)

The proof of Theorem 3.5 can be found in Sections 4-6. It rests heavily on the theory
of the Brownian web and net, in particular on Theorem 3.4. We will now place this result
in the context of existing work and outline some of the additional difficulties that are
encountered in our setting.

Consider, first, what would happen in the absence of selection. Our dual process
reduces to a system of coalescing random walks and, as proved in [4], after a diffusive
rescaling one recovers a system of (instantaneously) coalescing Brownian motions. If we
set υ = 1 and take the centre of the event, rather than a randomly chosen point, as the
location of the parent, then this corresponds to the process of ‘trajectoires d’exploration’
of [17], who constructs a stochastic flow of maps by considering the dual started from
every space-time point in the plane. If we specialise still further so that all events have
radius 1 and we start ‘exploration paths’ only from the centre of each reproduction
event then we recover a càdlàg version of the Poisson trees of [14]. By interpolation we
recover the Poisson trees themselves. In [13] (see [12] for a more detailed account) it is
shown that under a diffusive rescaling the Poisson trees converge to the Brownian web.
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Figure 3: Complications. The diagram on the left illustrates the way in which paths
can both coalesce and branch through the same event. The second diagram presents a
case of multiple collisions in a ‘neutral’ event.

Even with the simplification υ = 1, our prelimiting process is considerably more
complex than that considered in [24]. When lineages are covered by the same neutral
reproduction event, they coalesce. In particular, more than two lineages can coalesce in
a single event. At selective events, when we must trace two potential parents, we can
see either just branching or, if more than one lineage lies in the region affected by the
event, a combination of branching and coalescence (see Figure 3).

Further complications compared to systems of branching and coalescing simple
random walks arise since (a) our ancestral lineages jump at random times and the
displacement caused by such jumps is random; and (b) the motion of distinct ancestral
lineages becomes dependent when they are within distance 2R of each other.

In spite of the additional complexity, it still makes sense to talk about left-most and
right-most paths and this will be the key to our analysis. In fact (b) can be handled
through elementary arguments; it turns out that the time periods during which ancestral
lineages are ‘nearby but not coalesced’ are too brief to affect the limit.

In order to overcome (a), we must identify a dual system of (backwards in time)
branching and coalescing lineages. At first sight, it is far from obvious that such a dual
exists; in contrast to previous work, our pre-limiting systems will not be self-dual. We
will construct a dual system with the property that, in contrast to Figure 1, after rotation
by 180 degrees, although, separately, left-most and right-most paths in the dual have the
same distribution as their forwards counterparts, the joint distributions of the forwards
and backwards systems differ. The dual, which is defined in Section 4.1.1 is illustrated
in Figure 4.

4 Convergence of left/right paths

We now turn to the proof of our main result. Recall that we take υ = 1 so that if a
lineage is in the interval covered by an event then it is necessarily affected by it.

4.1 Paths and arrows

In order to discuss the self-dual systems of branching and coalescing lineages that
converge to the Brownian net, we must be precise about what we mean by ‘branching-
coalescing paths’ and, in particular, have a notation for keeping track of the direction of
time. We shall follow [15] in using segments of paths called arrows. Loosely speaking,
paths are formed by concatenating arrows. A path (or an arrow) is an R-valued function
whose domain is a subinterval of R. If a path/arrow is forwards (resp. backwards), then
‘moving along it’ means moving along the image of the path forwards (resp. backwards)
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with respect to the usual (resp. reversed) order on the time domain. We shall use ↑ to
denote forwards and ↓ to denote backwards paths.

For a < b < c, the concatenation of forwards paths f : [a, b) → R and g : [b, c) → R

refers to the function h : [a, c) → R which is equal to f on [a, b) and equal to g on [b, c).
Concatenation of backwards paths is defined analogously.

When we are following a backwards path or arrow we interchange left and right,
in the same way as left and right interchange if we reverse the direction in which we
walk. For clarity, we reserve the terms north, south, east and west for global directions
associated to the plane R2 and use the terms right and left for local directions whose
frame of reference depends on the direction in which we are travelling.

4.1.1 Forwards and backwards paths

Recall from Section 2.3 that Πn denotes the Poisson point process that drives the system
of branching and coalescing paths at the nth stage of our rescaling. We refer to each
(x, t, r) ∈ Πn as an event affecting the set {t} × [x − r, x + r] or, equivalently, affecting
each point y ∈ [x− r, x+ r] at time t. The east- and west-most points of this event are
(x+ r, t) and (x− r, t) respectively. To each (y, s) ∈ (−∞,∞)×R we associate a unique
forwards arrow (pointing due north) and a unique backwards arrow (pointing due south),
defined as follows. Let

T ↑y,s = inf{t ; ∃(x, t, r) ∈ Πn, y ∈ [x− r, x+ r], t ≥ s},
T ↓y,s = sup{t ; ∃(x, t, r) ∈ Πn, y ∈ [x− r, x+ r], t ≤ s},

be the times of the first event (non-strictly) north of (y, s) and the first event (non-strictly)
south of (y, s), respectively, that affects the point y. Let ? ∈ {↑, ↓}. An arrow starting at
(y, s) is simply a path α?y,s : [s, T ?y,s)→ R defined to be the constant function α?y,s(u) = y.
We shall call the event (x, t, r) ∈ Πn that defines T ?y,s the finishing event of αy,s. It must
be that limu↑T?

y,s
(α(u), u) = (y, T ?y,s) ∈ [x− r, x+ r]× {t}.

For each ? ∈ {↑, ↓}, we can now associate two important sets of paths to each point
(y, s). Let us first consider the forwards paths. The set P↑n(y, s) is best described in
words; it is the set of paths that are obtained by following the arrow α↑y,s out of (y, s) and
then, every time we finish an arrow, following a new arrow that starts from (one of) the
(potential) parent(s) of the finishing event of αy,s. In other words, the forwards paths
from (y, s) correspond precisely to the set of potential ancestral lineages of an individual
who lived at the point y at time s, that we described in Section 2.3. We include time∞
into the domain of each such forwards path, and set the location at time∞ to be 0.

The set P ↓n(y, s) of backwards paths is also best described in words. It is the set of
paths obtained by first following the arrow α↓y,s out of (y, s) and then, every time we

finish an arrow α↓y′,s′ :

1. If the finishing event of αy′,s′ is neutral with, parent at v, then

(a) if y′ ≤ v, follow the arrow out of the west-most point of the finishing event of αy′,s′ ,

(b) if y′ > v, follow the arrow out of the east-most point of the finishing event of αy′,s′ .

2. If the finishing event of αy′,s′ is selective with potential parents at v < v′ then

(a) if y′ < v, follow the arrow out of the west-most point of the finishing event of αy′,s′ ,

(b) if y′ > v′, follow the arrow out of the east-most point of the finishing event of αy′,s′ ,

(c) if y′ ∈ [v, v′], a path can follow either one of the arrows out of the east-most/west-
most points of the finishing event of αy′,s′ .
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N

S

EW

Figure 4: The movement of forwards and backwards paths (illustrated as interpolated arrows)
about a selective event (left) and a neutral event (right). The events are shown as finely dotted
horizontal lines and the (potential) parent(s) as small circles. Forwards paths travel northwards and
backwards paths travel southwards, according to the compass shown between the two diagrams.

In analogy to forwards paths, we include time −∞ into the domain of each such back-
wards path, and set the location at time −∞ to be 0. See Figure 4 for an illustration of
the forwards and backwards paths.

In keeping with our previous notation, for each forwards/backwards path f , we write
σ(f) = σf , for the time at which it starts.

4.1.2 Interpolated paths and arrows

We wish to exploit the existing theory of Brownian webs and nets, which was developed
in a setting restricted to continuous paths, and so we shall approximate the systems of
(càdlàg) forwards and backwards paths of the last subsection by corresponding systems
in which the jumps have been interpolated. This is achieved in [13] simply by taking
paths that interpolate between the starting points of arrows. However, in our situation
such interpolation would result in arrows which cross each other and, worse, would pass
through reproduction events that did not previously affect them. Instead, we adopt a
‘just in time’ approach to our interpolation: we find small non-overlapping intervals of
time and space about each event in which to interpolate.

Lemma 4.1. Let n ∈ N. For each p = (x, t, r) ∈ Πn and each ε > 0 define the set

Bε(x, t, r) = {(y, s) ∈ R2 ; |x− y| ≤ r, |t− s| ≤ ε}.

Almost surely, there exists a map Υ : Πn → (0,∞) such that the sets (BΥ(p)(p))p∈Πn
are

distinct.

Proof. This follows essentially immediately since Πn has finite intensity; consequently
the set of time coordinates of points of Πn, restricted to any strip [−K,K]×R× [−R,R],
where K ∈ R, has (almost surely) no limit point.

Let f↑ ∈ P↑(y, s) and let α↑y,s : [s, T ↑y,s)→ R be one of the forwards arrows that make
up f↑. Let p = (x, t, r) denote the finishing event of α↑y,s (so that, in particular, T ?y,s = t

a.s.). Suppose that α′ is the next arrow in f↑ and write z = α′(T ↑y,s) for its starting point.
We say that α̃↑y,s : [s, t)→ R is the interpolated arrow of α↑y,s if both

1. α̃↑y,s(u) = α↑y,s(u) for all u ≤ T ↑y,s −Υ(p), and

2. α̃↑y,s(u) is linear on [T ↑y,s −Υ(p), t) and limu↑t α̃
↑
y,s(u) = z.
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Note that the interpolation of an arrow depends on the path f in which it is contained.
Given a forwards or backwards path f ∈ P↑n(y, s), we define the continuous path f̃

to be the concatenation of the interpolations of the arrows within f , and additionally
setting f(∞) = 0 for forwards paths and f(−∞) = 0 for backwards paths. We define

P̃↑n(y, s) = {f̃ ; f ∈ P↑n(y, s)}

and define the set of interpolated backwards paths P̃↓n(y, s) in analogously. Of course,
interpolated paths are close to their equivalent non-interpolated paths.

Lemma 4.2. Let (y, s) ∈ R2 and let f ∈ P↑n(y, s). Then supt∈(σf ,∞) |f(t)−f̃(t)| < 2Rn−1/2.
The analogous estimate holds for backwards paths.

Proof. Note that σf = σf̃ . By definition, in the notation of Lemma 4.1, f(u) = f̃(u)

unless u is such that (f(u), u) ∈ BΥ(x,t,r)(x, t, r) for some (x, t, r) ∈ Πn. When (f(u), u) ∈
BΥ(x,t,r)(x, t, r) we have |f(u)−f̃(u)| ≤ 2r. Since, by definition of Πn we have r ≤ Rn−1/2,
this completes the proof.

4.1.3 Left-most and right-most paths

We now associate to each (y, s) four special paths.

Definition 4.3. Left-most and right-most forward and backward paths are defined as
follows.

1. The left-most forward path from (y, s) is the element of P↑n(y, s) obtained by choos-
ing the (forwards) arrow with the west-most potential parent, whenever a choice is
available.

2. The right-most forward path from (y, s) is the element of P↑n(y, s) obtained by
choosing the (forwards) arrow with the east-most potential parent, whenever a
choice is available.

3. The left-most backward path from (y, s) is the element of P↓n(y, s) obtained by
choosing the (backwards) arrow from the east-most point of the finishing event
whenever a choice is available.

4. The right-most backward path from (y, s) is the element of P↓n(y, s) obtained by
choosing the (backwards) arrow from the west-most point of the finishing event,
whenever a choice is available.

We will sometimes shorten ‘left-most’ and ‘right-most’ to l-most and r-most.
For D ⊆ R2, † ∈ {↑, ↓} and ? ∈ {l, r} we define

Q?,†n (D) = {f ; f = f?y,s is the † -most path of some (y, s) ∈ D}.

Recall from Section 3.3 that, in order to exploit the compactness properties of our state
space, we must also include some extra paths, corresponding to ancestral lineages that
extend backwards in time until −∞. First, we say that a path f : R → R is an infinite
extender of Q↑,†n (D) if there exists a sequence (fm)∞m=1 ⊆ Q↑,†n (D) and a sequence (tm)

such that tm ↓ −∞ and f(t) = fm(t) for all m and t ≥ tm. We make the corresponding
definition for Q↓,†n (D) and, for ? ∈ {↑, ↓} and † ∈ {l, r} we define Q?,†,infn (D) to be the set
of infinite extenders of Q?,†n (D). Recall also the boundary paths B defined in (3.6). Then,
define

P?,†n (D) = Q?,†n (D) ∪Q?,†,infn (D) ∪ B, (4.1)

and P̃?,†n (D) = {f̃ ; f ∈ P?,†(D)} to be the corresponding sets of interpolated paths.
We now verify Condition (A ) of Theorem 3.4. Recall, from Definition 3.2 what it

means for two paths to cross.
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Lemma 4.4. Let D be any subset of R2 and let n ∈ N. Let † ∈ {l, r} and ? ∈ {↑, ↓}. Then,
almost surely:

1. For all f↑ ∈ P↑,†n (D) and f↓ ∈ P↓,†n (D), the paths f↑ and f↓ do not cross.

2. For all f?, g? ∈ P?,†(D), the paths f? and g? do not cross.

Further, the same results hold for interpolated paths f↑ ∈ P̃↑,†n (D) and f↓ ∈ P̃↓,†n (D).

Proof. In the first case, note that two forwards paths can only cross if they are first
coalesced and are then subsequently affected by the same selective reproduction event.
In the second case, note that a forward path can only cross a backwards path if both are
affected by a common event. In both cases, the fact that crossing cannot occur is then
an easy consequence of the definitions (or see Figure 4).

Remark 4.5. A forwards left-most path can cross a backwards right-most path, and a
forwards right-most path can cross a backwards left-most path. Similarly, a forwards
left-most path can cross a forwards right-most path (if they are both affected by the same
selective event), and a backwards right-most path can cross a backwards left-most path.

Although not immediately obvious from the definition, the next lemma is a helpful
feature of our construction.

Lemma 4.6. A forwards left- (resp. right-) most path has the same distribution as a
backwards left- (resp. right-) most path which has been rotated by 180 degrees.

Proof. The proof is based on the movements of paths affected by reproduction events,
which is depicted in Figure 4. It suffices to consider the case of left-most paths; the case
of right-most paths then follows by symmetry.

First observe that the rate at which an event falls on (an arrow in) a path has the
same distribution whether we look forwards or backwards in time and, when an event
falls on a (forwards or backwards) path, the spatial position of the path will be uniformly
distributed over the region affected by the event. Let us denote that position by V . Thus
if the event corresponds to p = (x, t, r), then V is uniformly distributed on [−r, r].

Consider a left-most forwards path affected by a neutral event. The path jumps to
the position of the parent, which we denote by U . Thus, on the event V < U our path
jumps a distance U − V to the left, and on the event U > V it jumps a distance V − U to
the right.

Now consider the left-most backwards path. Retaining the notation above, at a
neutral event, on the event V < U the path jumps to the west-most endpoint, which,
once rotated by 180 degrees becomes a jump to the right of size V − (−r). On the other
hand, on the event V > U , the path jumps to the east-most endpoint, which upon rotation
becomes a leftwards jump of magnitude r − V .

Conditional on V < U , V is uniform on (−r, U), so U − V d
= V − (−r). Similarly,

conditional on V > U , V is uniform on (U, r) and V −U d
= r− V . Therefore, if we restrict

to only neutral events, forwards left-most paths and backwards left-most paths rotated
by 180 degrees have the same distribution.

Next, consider a selective event. We use a similar argument. The two potential
parents are sampled uniformly from the event. We denote their positions by U1 <

U2. Combined with V , we now have three independent uniformly distributed random
variables on [−r, r]. Let us write them in ascending order as U (1), U (2), U (3). The
following events may occur:

(a) V = U (1), in which case U1 = U (2), so the path makes a rightwards jump of
magnitude U1 − V ;
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(b) V 6= U (1), in which case U1 = U (1), so the path makes a leftwards jump of magnitude
V − U1.

Note that we are not concerned by the value of U2, since we are interested in a left-most
path. For a left-most backwards path, again at a selective event, the following events
may occur:

(a) V = U (1), in which case the path jumps to the west end-point of the event, a jump
which after rotation by 180 degrees becomes a rightwards jump of magnitude
V − (−r);

(b) V 6= U (1), in which case the path jumps to the east end-point of the event, a jump
which after rotation by 180 degrees becomes a leftwards jump of magnitude r − V .

Again, because we consider a left-most path we are not concerned by the value of U2.
We now compare the jumps in the (a) cases. Conditional on V < U1, V is uniformly

distributed on (−r, U1) and thus (as in the neutral case) V −U1
d
= V − (−r). Similarly, for

the (b) cases, conditional on U1 < V , V is uniformly distributed on (U1, r) and thus (also

as in the neutral case) V − U1
d
= r − V . Thus the left-most forwards path and the rotated

left-most backwards paths have the same distribution, which completes the proof.

Remark 4.7. 1. Note that Lemma 4.6, with the same proof, remains true when the
parent locations are sampled according to any symmetric distribution on (−r, r).

2. In previous work on the Brownian web and net, there is a strict self-duality in the
prelimiting systems. Here, we see a new feature. Although separately the left and
right-most paths have the same distributions forwards and backwards in time, their
joint distribution differs. As can be seen in Figure 4, our backwards paths branch
less frequently than forwards ones, but when they do branch, they make larger
jumps.

Recall the state space K(M) defined in Section 3.1. The space K(M) is an appropriate
space in which to consider convergence of sets of (branching/coalescing) forwards paths,
but it is not suitable for backwards paths. To remedy this, if P is a set of backwards paths
then we define −P = {f̂ ; f ∈ P}, where f̂ : [−σf ,∞]→ [−∞,∞] given by f̂(t) = −f(−t)
is the rotation of f by 180 degrees. Thus, −P ∈ M is a set of forwards paths. With a
slight abuse of notation, if fn is a sequence of backwards paths and f is a backwards
path, we will say fn → f in M if f̂n → f̂ in M . Similarly, if Pn is a sequence of sets of
backwards paths and P is a set of backwards paths we write Pn → P in K(M) to mean
that −Pn → −P in K(M). We apply the same terminology to interpolated paths.

4.2 Convergence of a pair of left/right paths

We must ultimately verify that any limit point of our combined systems of left and
right-most paths will satisfy condition (B) of Theorem 3.4. As a first step, in this
subsection we take the limit of a pair of paths, comprising one left-most path and one
right-most path started at some time s (which, since Πn is homogeneous in both space
and time, we may, without loss of generality, take to be zero) and show that it satisfies the
system (3.4). Our approach mirrors that in [24], and as far as possible we shall adhere
to their notation. With this in mind, let Ln and Rn denote respectively the left-most and
right-most forwards paths associated to the points (yn,l, 0) and (yn,r, 0). We assume that
the sequences of starting points converge to (yl, 0) and (yr, 0) respectively.

Remark 4.8. A straightforward modification (in order to take into account the selective
events and the resulting drift of the left and right-most paths) of Lemma 4.1 in [4] shows
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that the pair (Ln, Rn) stopped when it first enters the ‘coalesced’ state converges in
distribution to a pair of independent Brownian motions with drift ±ζ, stopped when they
first meet. In particular, the first meeting times also (jointly) converge.

Following [24], using their Lemma 2.2, when L0 ≤ R0 there is a one-to-one corre-
spondence between weak solutions of (3.4) and solutions of the system

dLs = ξdBlSs
+ ξdBcCs

− ζds, (4.2)

dRs = ξdBrSs
+ ξdBcCs

+ ζds, (4.3)

s = Ss + Cs, (4.4)

0 =

∫ s

0

1{Ls < Rs}dCs, (4.5)

where Bl, Br and Bc are independent standard one dimensional Brownian motions. The
infinitesimal variance ξ2 of the Brownian motion and the drift ζ depend on α and µ

and are given by (3.8) and (3.7) respectively. The solution (Ls, Rs) to this system is a
CR2 [0,∞) valued process.

In the case R0 < L0, according to (3.4) both Rs and Ls evolve as independent
Brownian motions, with drift ±ζ, until they meet. Thus, in view of Remark 4.8, it suffices
to treat the case of L0 ≤ R0, where L0 = yl and R0 = yr.

The essence of (4.2)-(4.5) is that, once Ls and Rs meet, they will accumulate non-
trivial time together as a result of a sticky interaction (see Proposition 2.1 in [24] for
details). As part of the proof of their Lemma 2.2, [24] show that Ss =

∫ s
0
1{Lu < Ru}du

and Cs =
∫ s

0
1{Lu = Ru}du.

Proposition 4.9. Let T ∈ (0,∞). As n → ∞, (Lns , R
n
s )s∈[0,T ] converges weakly to

(Ls, Rs)s∈[0,T ]) in the sense of DR2 [0, T ] valued processes.

The analogous result for interpolated paths, which we denote by (L̃n, R̃n), follows
easily:

Corollary 4.10. Let T ∈ (0,∞). As n → ∞, (L̃ns , R̃
n
s )s∈[0,T ] converges weakly to

(Ls, Rs)s∈[0,T ]) in the sense of CR2 [0, T ] valued processes.

Proof. By Lemma 4.2, the weak convergence of Proposition 4.9 also holds (in DR2 [0, T ])
when (Ln, Rn) is replaced by (L̃n, R̃n). Since the space of continuous paths with the
supremum topology is continuously embedded in the space of càdlàg paths with the
Skorohod topology, it follows that the same convergence holds in CR2 [0, T ].

The remainder of this subsection is devoted to the proof of Proposition 4.9. We begin
by breaking down the evolution of the pair (Lns , R

n
s ) into several different pieces. At time

s ≥ 0, we say Lns and Rns are

coalesced if Lns = Rns ,

nearby if Lns 6= Rns and |Lns −Rns | ≤
2R
n1/2

,

separated if |Lns −Rns | >
2R
n1/2

.

For s ≥ 0 we set

Cns =

∫ s

0

1{Lnu, Rnu are coalesced}du,

Nn
s =

∫ s

0

1{Lnu, Rnu are nearby}du, (4.6)

Sns =

∫ s

0

1{Lnu, Rnu are separated}du,
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and we note that Cns +Nn
s + Sns = s.

We define sequences of stopping times to track the changes of state of (Ln, Rn) during
[0, T ]. Firstly,

τn,C1 = inf{s ≥ 0 ; (Lns , R
n
s ) are coalesced};

τn,Ck = inf{s ≥ τn,Ck−1 ; (Lns , R
n
s ) are coalesced, (Lns−, R

n
s−) are not coalesced}.

Similarly, we define sequences τn,Nk and τn,Sk for ‘re-entrance’ times of (Lnr , R
n
s ) to the

states of ‘nearby’ and ‘separated’ respectively. It is easily seen that each τn,Ck , τn,Nk , τn,Sk

is a stopping time and (Ln, Rn) is strong Markov.
Each jump of (Ln, Rn) is caused by one or both lineages being affected by a single

event of Πn. If (Ln, Rn) is coalesced immediately before this event then the event affects
both Ln and Rn, whereas if they are separated the event affects only one of the two. The
motion is more complicated when (Ln, Rn) is in the nearby state, when events can affect
one or both lineages, but we shall see that the time spent in that state is negligible as
we pass to the limit.

In order to identify the limiting objects, it is convenient to isolate the parts of the
motion that contribute to the drift from those that contribute to the martingale terms
in (4.2) and (4.3). The decomposition we make is not unique. Our particular choice
highlights the fact that the martingale part of the motion of lineages is driven by neutral
events, while the drift can be attributed to selection.

First we are going to define three random walks, from which we can build (Ln, Rn)

when we are in the coalesced or separated states. To understand the origin of these,
first suppose that a lineage is hit by a neutral event. When this happens, the position,
y, of the lineage is uniformly distributed on the region affected by the event and it will
jump to the position z of the parent, which is also uniformly distributed on the region.
Neutral events fall according to a Poisson Point Process with intensity

n1/2dx⊗ n(1− sn)dt⊗ µn(dr),

so they hit y at rate

Kn = n(1− sn)

∫ ∞
−∞

∫ ∞
0

∫ r

−r
1{y ∈ [x− r, x+ r]} dxµn(dr)n1/2dx

= 2n(1− sn)

∫ ∞
0

rµ(dr). (4.7)

We define V n to be a symmetric random walk driven by a Poisson Point Process with
intensity

n(1− sn)dt⊗ 2rµ(dr).

At an event (t, r), the walk jumps with displacement J1/
√
n where

P [J1 ∈ A] = P [Zr − Ur ∈ A] , (4.8)

and Ur and Zr are independent uniform random variables on [0, 2r].
Now consider the motion due to selective events. If the pair is coalesced immediately

before the event, then their position is uniformly distributed on the affected region and
the left-most path will jump with displacement z1 − y and the right-most path jumps with
displacement z2 − y where z1 < z2 are the (uniformly distributed) positions of the two
potential parents of the event. If the pair (Ln, Rn) is separated, then only one of them
will be affected by any given event. Selective events fall with intensity

n1/2dx⊗ nsndt⊗ µn(dr).
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We define a random walk (Dn,−, Dn,+), whose jumps are driven by a Poisson Point
Process with intensity

nsndt⊗ 2rµ(dr).

At an event (t, r), Dn,− jumps with displacement (Z1 − Y )/
√
n and Dn,+ jumps with

displacement (Z2 − Y )/
√
n where Z1 = min{U1, U2} and Z2 = max{U1, U2} with U1, U2

and Y independent uniformly distributed random variables on [0, 2r].

Lemma 4.11. As n→∞, V n converges weakly to ξB where B is a standard Brownian
motion and

ξ2 =
4

9

∫ R
0

r3µ(dr).

Proof. Evidently J1 has mean zero and, conditional on r, its variance is 4r2 times the
variance of the minimum of two independent uniform random variables on [0, 1]. Thus,
conditional on r, the variance of J1 is 2r2/9. The lemma now follows from the Functional
Central Limit Theorem (see, for example, [11], Section 7.1).

Now consider Dn,±.

Lemma 4.12. Let T > 0. As n→∞, (Dn,−, Dn,+) converges weakly to the deterministic
process s 7→ (−ζs, ζs) where

ζ =
2

3
α

∫ R
0

r2µ(dr).

Proof. Since these walks experience jumps of size O(1/
√
n) at rate

2nsn

∫ R
0

rµ(dr) = 2α
√
n

∫ R
0

rµ(dr), (4.9)

which is proportional to
√
n, we see that we have a strong law rescaling. In the notation

above, conditional on r, E[Z2 − Y ] = −E[Z1 − Y ] = r
3 . By the law of large numbers as

n→∞, (Dn,−, Dn,+) converges weakly to the deterministic process s 7→ (−ζs, ζs), with
ζ as in the statement of the lemma.

When (Ln, Rn) is coalesced, its jumps have the same distribution as (V n +Dn,−, V n +

Dn,+). When (Ln, Rn) is separated, its jumps have the same distribution as (V n,l +

Dn,l,−, V n,r +Dn,r,+) where V n,l, V n,r are independent copies of V n and Dn,l,−, Dn,r,+

are independent and with the same distribution as Dn,−, Dn,+ respectively. When Ln

and Rn are nearby the evolution is more complicated; in fact in this case the joint jump
distribution depends on |Ln −Rn|. Happily, because of Lemma 4.15 (see below), we will
not need to describe the evolution in this case explicitly and we will denote it simply by
(Nn,l

s ,Nn,r
s ).

Since (Ln, Rn) is always in exactly one of the states ‘coalesced’, ‘nearby’, and ‘sepa-
rated’, and using spatial and temporal homogeneity of Πn, it follows from the above that
we can represent the dynamics of (Ln, Rn) in terms of three independent copies of the
triple (V n, Dn±) which we denote (V n,α, Dn,α,±) with α ∈ {c, l, r}:

Lns = Ln0 + V n,lSn
s

+Dn,l,−
Sn
s

+Nn,l
Nn

s
+ V n,cCn

s
+Dn,c,−

Cn
s

, (4.10)

Rns = Rn0 + V n,rSn
s

+Dn,r,+
Sn
s

+Nn,r
Nn

s
+ V n,cCn

s
+Dn,c,+

Cn
s

, (4.11)

s = Cns +Nn
s + Sns , (4.12)

0 =

∫ s

0

1{Rnu > Lnu}dCnu . (4.13)

Of course the ‘clocks’ (Cn, Sn, Nn) are coupled with the random walks V n,α and Dn,α,±.

EJP 22 (2017), paper 39.
Page 20/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP61
http://www.imstat.org/ejp/


The Brownian net and selection in the SΛFVS

Our next task is to prove that the time spent in the ‘nearby’ state is negligible. We
require two preliminary estimates on the time between changes of state. The first says
that each visit to the nearby state lasts at most O(1/n) units of time. The second estimate
says that visits to the coalesced state last O(1/

√
n) units of time. This will limit the

possible number of such visits in the time interval [0, T ] to be O(
√
n) and since, moreover,

the number of visits to the nearby state before the pair visits the coalesced state is O(1),
this in turn allows us to control the number of visits to the nearby state.

Lemma 4.13. Let k ∈ N and let τ ′k′ be the next state change after τn,Nk . Then the random

variables (τ ′k′ − τ
n,N
k )k∈N are an independent sequence and there exists A ∈ (0,∞), not

dependent on k, such that

E
[
τ ′k′ − τ

n,N
k

]
≤ A

n
.

Further, there exists q > 0, not dependent on k, such that the probability that (Ln, Rn) is
coalesced at τ ′k′ is greater than q.

Proof. Independence is clear since the jumps determining the distinct τ ′k′ − τ
n,N
k are

driven by disjoint collections of events of Πn. If (Ln, Rn) are nearby they must either be
at a distance smaller than 3

2R/
√
n, or at a distance between 3

2R/
√
n and 2R/

√
n. In the

first scenario, the probability that they coalesce through the the next event that affects
either of them is bounded away from 0. In the second scenario, the probability that the
next event that affects either of them brings them closer than 3

2R/
√
n is also bounded

away from 0. This guarantees that the probability that (Ln, Rn) is coalesced at τ ′k′ is
bounded below by some q > 0. On the other hand, if the walkers are at a distance in
( 3

2R/
√
n, 2R/

√
n), the probability that they separate at the next step is strictly positive.

Thus the number of jumps until they either coalesce of separate has finite mean and
since events affect them at rate O(n) the result follows.

Lemma 4.14. Let k ∈ N and let τ ′′k′′ be the next state change after τn,Ck . Then the

random variables (τ ′′k′′ − τ
n,C
k )k∈N are an i.i.d. sequence and there exists A′ ∈ (0,∞), not

dependent on k, such that

E
[
τ ′′k′′ − τ

n,C
k

]
≥ A′√

n
.

Proof. This is trivial, since any jump out of the coalesced state is due to a selective event
and the rate at which these occur is given by (4.9).

Lemma 4.15. Fix T > 0 and let Nn
T denote the total time spent in the nearby state up to

time T . Then Nn
T → 0 in probability as n→∞.

Proof. The idea is simple. Since CT ≤ T , using Lemma 4.14, the number of visits to the
coalesced state in [0, T ] has mean at most T

√
n/A′. But by Lemma 4.13, the expected

number of visits to the coalesced state is at least q times the expected number of visits
to the nearby state. Thus the expected number of visits to the nearby state is at most
T
√
n/(qA′) and since, again by Lemma 4.13, each has expected duration at most A/n,

E[NT ] ≤ TA/(qA′
√
n) and the result is proved.

Since Ln and Rn evolve as V n + Dn,− and V n + Dn,+ respectively, both converge
individually and so their joint law is tight. Moreover, since Cn, Nn and Sn are continuous
increasing processes, with rate of increase bounded by one, their joint law is also tight.
Evidently we now have that

(Lns , R
n
s , V

n,l
s , V n,rs , V n,cs , Dn,l,−

s , Dn,r,+
s , Dn,c,−

s , Dn,c,+
s , Cns , N

n
s , S

n
s )s≥0
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is tight and by passing to a subsequence we may assume that it converges weakly to
some limiting process

(Ls, Rs, ξB
l
s, ξB

r
s , ξB

c
s,−ζs, ζs,−ζs, ζs, Cs, 0, Ss)s≥0,

where Bl, Br and Bc are independent (by construction). Here, Lemma 4.15 gives that
Nn
s → 0. By Skorohod’s Representation Theorem, by passing to a further subsequence

if necessary, we can assume that the convergence is almost sure. We claim that the
limit (Ls, Rs, Cs, Ss)s≥0 then satsifies (4.2-4.5). Indeed, letting n → ∞ in (4.10), (4.11)
and (4.12) we obtain precisely (4.2), (4.3) and (4.4). Note that here the term Nn,†

Nn
s

vanishes as an easy consequence of Nn
s → 0.

Obtaining (4.5) from (4.13) requires a little more work (because the function x 7→
1{x > 0} is not continuous), but we need only adapt the approach of [24]. For each
δ > 0 let ρδ be a continuous non-decreasing function such that ρδ(u) = 0 for u ∈ [0, δ] and
ρδ(u) = 1 for u ∈ [δ,∞). Using (4.13) we have

0 =

∫ T

0

1{Rns > Lns }dCns

=

∫ T

0

1

{
Rns − Lns >

2R
n1/2

}
dCns +

∫ T

0

1

{
Rns − Lns ∈

(
0,

2R
n1/2

]}
dCns

≥
∫ T

0

ρδ(R
n
s − Lns )dCns ≥ 0,

provided that δ ≥ 2R/
√
n. For such n we thus have

∫ T
0
ρδ(R

n
s − Lns )dCns = 0 and letting

n → ∞ we obtain
∫ T

0
ρδ(Rs − Ls)dCs = 0 for all δ > 0. Letting δ → 0 we obtain∫ T

0
1{Rs > Ls}dCs = 0 which is (4.5).
This completes the proof of Proposition 4.9.

Remark 4.16. An entirely analogous proof gives convergence of a pair of backwards
right and left-most paths to left/right Brownian motions. In view of Remark 4.8, this
convergence occurs jointly with convergence of their first meeting time. That the
constants ξ and ζ are unchanged follows from Lemma 4.6.

5 Spaces of càdlàg paths

In this section, we construct the space K(M), which is the càdlàg path equivalent of
the state space introduced by [15] for the Brownian web (and later used in [24] for the
net).

5.1 Skorohod paths with different domains

We begin by studying the space

G = {g : [σg, 2]→ [−1, 1] ; g is càdlàg, σg ∈ [−1, 1], g is constant on [1, 2]} .

We wish to treat G as a space of paths with a Skorohod-like topology, but since paths in G
can have different domains, we must extend the usual approach. We refer to Chapter 3,
Section 12 of [5] and Chapter 3, Section 5 of [11], upon which our arguments are heavily
based, for the standard theory of the Skorohod topology.

For g, h ∈ G, let Λ′[g, h] denote the set of strictly increasing bijections from [σg, 2]→
[σh, 2]. We define Λ[g, h] to be the subset of λ ∈ Λ′[g, h] for which

γg,h(λ) = sup
σg≤t<s≤2

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ <∞.
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For such g, h, λ we define

d(g, h, λ) = sup
t∈[σg,2]

|g(t)− h(λ(t))|.

and

ρ(g, h) = inf
λ∈Λ[g,h]

(
γg,h(λ) ∨ d(g, h, λ)

)
. (5.1)

Our main aim in this subsection is to show that G is a complete and separable metric
space under the metric

d(g, h) = ρ(g, h) ∨ |σg − σh|

Intuitively, this says that paths in G converge if their domains converge and, as the
domains become close, the paths also become close (in the Skorohod sense). We take
σg ∈ [−1, 1] and the domain of g ∈ G to be [σg, 2] for technical reasons: if instead we took
the domain [σg, 1], Λ′[g, h] would be empty whenever σh < σg = 1. For s ∈ [−1, 1], we
write G[s] = {g ∈ G : σg = s}.
Remark 5.1. For s ∈ [−1, 1], G[s] is precisely the space of càdlàg paths mapping [s, 2]→
[−1, 1] that are constant on [1, 2]. Moreover, on G[s], ρ coincides with the usual Skorohod
metric.

Lemma 5.2. The space (G, d) is a metric space.

Proof. If d(g, h) = 0 then σg = σh, so by Remark 5.1 we have g = h. For any λ ∈ Λ[g, h],
we have λ−1 ∈ Λ[h, g]. Since

γg,h(λ) = sup
σg≤t<s≤2

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ = sup
σh≤t<s≤2

∣∣∣∣log
s− t

λ−1(s)− λ−1(t)

∣∣∣∣ = γh,g(λ
−1)

and, similarly, d(g, h, λ) = d(h, g, λ−1), we have that d is symmetric.
It remains to prove that d satisfies the triangle inequality, for which it suffices to show

that the triangle inequality holds for ρ. To see this, take f, g, h ∈ G. For λ1 ∈ Λ[f, g] and
λ2 ∈ Λ[g, h] we have λ2 ◦ λ1 ∈ Λ[f, h] and

γf,h(λ2 ◦ λ1) = sup
σf≤t<s≤2

∣∣∣∣log
(λ2 ◦ λ1)(s)− (λ2 ◦ λ1)(t)

λ1(s)− λ1(t)

λ1(s)− λ1(t)

s− t

∣∣∣∣
≤ sup
σg≤t<s≤2

∣∣∣∣log
λ2(s)− λ2(t)

s− t

∣∣∣∣+ sup
σf≤t<s≤2

∣∣∣∣log
λ1(s)− λ1(t)

s− t

∣∣∣∣
= γg,h(λ2) + γf,g(λ1). (5.2)

Similarly,

d(f, h, λ1 ◦ λ2) = sup
t∈[σf ,2]

|f(t)− h(λ2(λ1(t)))|

≤ sup
t∈[σf ,2]

|f(t)− g(λ1(t))|+ sup
t∈[σg,1]

|g(t)− h(λ2(t))|

= d(f, g, λ1) + d(g, h, λ2). (5.3)

Combining (5.2) and (5.3) we have that ρ(f, h) ≤ ρ(f, g) + ρ(g, h), as required.

Lemma 5.3. The space (G, d) is separable.

Proof. Let g ∈ G and suppose σg ∈ (−1, 1). Let (qi) be an increasing sequence in
Q ∩ (−1, 1) such that qi ↑ σg and, for each i, define λi : [qi, 2] → [σg, 2] by setting
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λi(qi) = σg, λi(1) = 1, λi(2) = 2 and taking λi to be linear on [qi, 1] and on [1, 2]. Define
gi ∈ G[qi] by gi(t) = g(λi(t)). Then λ−1 ∈ Λ[g, gi] and

γg,gi(λ
−1
i ) =

∣∣∣∣log
1− qi
1− σg

∣∣∣∣ , d(g, gi, λ
−1
i ) = 0.

Hence d(g, gi)→ 0 as i→∞. By Remark 5.1, for each q ∈ Q ∩ [−1, 1] the space (G[q], ρ)

is separable, hence (G, d) is separable.

Before we address completeness, we recall that the Skorohod topology is often char-
acterized using a metric with respect to which it is not complete; this characterization is
useful primarily because it is easier to work with. The extension to G is as follows.

For g, h ∈ G and λ ∈ Λ′[g, h] define γ′g,h(λ) = supt∈[σg,2] |λ(t)− t|. Then, let

ρ′(g, h) = inf
λ∈Λ′[g,h]

(
γ′g,h(λ) ∨ d(g, h, λ)

)
and define d′(g, h) = |σg − σh| ∨ ρ′(g, h). It can be checked, in similar style to the proof of
Lemma 5.2, that (G, d′) is a metric space.

Lemma 5.4. The metrics d and d′ generate the same topology on G.

Proof. First note that Λ[g, h] ⊆ Λ′[g, h] and, since |x − 1| ≤ e| log x| − 1 for all x > 0, for
λ ∈ Λ[g, h] we have

γ′g,h(λ) = sup
t∈(σg,2]

|t−σg|
∣∣∣∣λ(t)− σg
t− σg

− 1

∣∣∣∣ ≤ sup
t∈(σg,2]

|t−σg|
{∣∣∣∣λ(t)− λ(σg)

t− σg
− 1

∣∣∣∣+ |σh − σg|
}

≤ 3
(
eγg,h(λ) − 1 + |σh − σg|

)
. (5.4)

(We have used that λ(σg) = σh and the continuity of λ at σg.)
Let (gn) ⊆ G and g ∈ G. If d(gn, g) → 0 then it follows readily from (5.4) and the

definitions that d′(gn, g) → 0. It remains to prove the converse; suppose instead that
d′(gn, g)→ 0.

Fix N ∈ N. Since d′(gn, g)→ 0 there exists a sequence λNn ∈ Λ[gn, g] such that

γ′gn,g(λ
N
n ) ∨ d(gn, g, λ

N
n ) ∨ |σgn − σg| → 0 (5.5)

as n→∞. Define τN0 = σg and for k = 1, 2, . . . define

τNk = 2 ∨ inf

{
t > τNk−1 ; |g(t)− g(τNk )| > 1

N

}
(5.6)

up until the first k = kN for which τNk = 2. Since g is càdlàg, (τNk )kNk=0 is a finite, strictly
increasing sequence, and τNkN = 2.

For each n ∈ N, define µNn to be the unique piecewise linear function for which

µNn (τNk ) = (λNn )−1(τNk ) (5.7)

for all k = 0, . . . , kN (and is linear in between those points). Then, µNn ∈ Λ′[g, gn] and,
moreover,

γg,gn(µNn ) = sup
k=1,...,kN

∣∣∣∣∣log
(λNn )−1(τNk )− (λNn )−1(τNk−1)

τNk − τNk−1

∣∣∣∣∣ <∞
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so that µNn ∈ Λ[g, gn]. In fact, since (5.5) implies that limn→∞ λNn (τNk ) = τNk , we have
γg,gn(µNn )→ 0 as n→∞. Further,

sup
t∈[σgn ,2]

∣∣gn(t)− g
(
(µNn )−1(t)

)∣∣
≤ sup
t∈[σgn ,2]

∣∣gn(t)− g
(
λNn (t)

)∣∣+ sup
t∈[σgn ,2]

∣∣g (λNn (t)
)
− g

(
(µNn )−1(t)

)∣∣
≤ d(gn, g, λ

N
n ) + sup

t∈[σg,2]

∣∣g (λNn ◦ µNn (t)
)
− g(t)

∣∣
≤ d(gn, g, λ

N
n ) +

2

N
.

Here, the final line follows from (5.6) and (5.7). Hence, recalling that d(g, gn, µ
N
n ) =

d(g, gn, (µ
N
n )−1), we have d(g, gn, µ

N
n )→ 0 as n→∞.

Combining the above with (5.5), we can choose a strictly increasing sequence
(nN )N∈N of natural numbers such that, for all n ≥ nN ,

γg,gn(µNn ) ≤ 1

N
, d(g, gn, µ

N
n ) ≤ 3

N
, |σgn − σg| ≤

1

N
.

Define κn = µNn for all n ∈ N such that nN ≤ n < nN+1. Then d(gn, g) ≤ γg,gn(κn) ∨
d(g, gn, κn) ∨ |σgn − σg| so d(gn, g)→ 0 as n→∞.

The space (G, d′) is not complete (to see this, note first that by Remark 5.1 and
Example 12.2 of [5], even the space (G[s], d′) is not complete). In order to prove
completeness of (G, d), it will be useful to note that there exists ε? > 0 such that for all
x ∈ [0, ε?), we have

ex − 1 ≤ 2x. (5.8)

Lemma 5.5. The space (G, d) is complete.

Proof. It suffices to show that any Cauchy sequence in (G, d) has a convergent subse-
quence. To this end, let (gk) be a Cauchy sequence in (G, d). Thus σgk is Cauchy, which
implies that σgk → α for some α ∈ [−1, 1].

With mild abuse of notation, we pass to a subsequence (gk) such that for all j ≥ k we
have d(gk, gj) ≤ 2−ke−k−1. Hence, there exists λk ∈ Λ[gk, gk+1] such that, for all k,

γgk,gk+1
(λk) ∨ d(gk, gk+1, λk) ∨ |σgk − α| ≤ 2−k ∧ ε?. (5.9)

For each k, define λ̃k : [−1, 2]→ [−1, 2] to be the function that is equal to λk on [σgk , 2]

and, if σgk > −1, is linear in between λ̃k(−1) = −1 and λ̃k(σgk) = σgk+1
. Note that this

means λ̃k has constant gradient on [−1, σgk ], and that λ̃k is a continuous bijection of
[−1, 2] to itself. Thus, we have

sup
−1≤t≤2

∣∣∣λ̃k(t)− t
∣∣∣ ≤ sup

σgk
≤t≤2

|λk(t)− t|

≤ 3
(
eγgk (λk) − 1 +

∣∣σgk+1
− σgk

∣∣)
≤ 3(2−k+1 + 2−k) = 9 · 2−k. (5.10)

Here, the second line follows from (5.4), and the final line from (5.8) and (5.9).
We now construct the limit of (gk). Define µnk : [σgk , 2]→ [σgn+k

, 2] and µ̃nk : [−1, 2]→
[−1, 2] by µnk = λk+n ◦ . . . ◦ λk+1 ◦ λk, and µ̃nk = λ̃k+n ◦ . . . ◦ λ̃k+1 ◦ λ̃k. By (5.10) we have

sup
t∈[−1,2]

|µ̃n+1
k (t)− µ̃nk (t)| ≤ sup

t∈[−1,2]

|λ̃k+n+1(t)− t| ≤ 9 · 2−k−n.
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The Brownian net and selection in the SΛFVS

It follows that (µ̃nk )∞n=1 is a Cauchy sequence in (C[−1,2][−1, 1], || · ||∞), and hence has
a limit, which we denote by µ̃k. Since the µ̃nk are increasing, it is immediate that
µ̃k(s) ≥ µ̃k(t) for s ≥ t.

We define µk : [σgk , 2]→ [−1, 1] by µk(t) = µ̃k(t). Note that

µk(σgk) = lim
n→∞

λk+n ◦ . . . ◦ λk(σgk) = lim
n→∞

σgk+n+1
= α, (5.11)

µk(2) = lim
n→∞

λk+n ◦ . . . ◦ λk(2) = 2, (5.12)

and also that, from (5.10),

|µk(1)− 1| = lim
n→∞

|µnk (1)− 1| ≤ lim
n→∞

k+n∑
j=k

sup
t∈[σgk

,2]

|λj(t)− t| ≤ 9 · 2−k+2. (5.13)

In similar style to (5.2),

sup
σgk
≤s<t≤2

∣∣∣∣log
µnk (s)− µnk (t)

s− t

∣∣∣∣ ≤ k+n∑
j=k

sup
σgj
≤s<t≤2

∣∣∣∣log
λj(s)− λj(t)

s− t

∣∣∣∣
=
k+n∑
j=k

γgj ,gj+1
(λj)

≤ 2−k+1. (5.14)

Here, to deduce the final line we use (5.9). Letting n→∞ we have

sup
σgk
≤s<t≤2

∣∣∣∣log
µk(s)− µk(t)

s− t

∣∣∣∣ ≤ 2−k+1. (5.15)

Consequently, µk is strictly increasing. Thus from (5.11) and (5.12), we have that
µk : [σgk , 2] → [α, 2] is a strictly increasing bijection. In particular, it has an inverse
µ−1
k : [α, 2]→ [σgk , 2].

The proof now follows the usual strategy. For each k, we define zk : [−1, 2]→ [−1, 2]

by

zk(t) =

{
gk ◦ µ−1

k (t) t ∈ [α, 2]

0 t ∈ [−1, α).

We have

sup
t∈[−1,2]

|zk(t)− zk+1(t)| = sup
t∈[−1,2]

∣∣gk (µ−1
k (t)

)
− gk+1

(
λk(µ−1

k (t))
)∣∣

= sup
σgk
≤t≤2

|gk(t)− gk+1 (λk(t))|

= d(gk, gk+1, λk)

≤ 2−k

Here, the second line follows by definition of µk and the final line follows by (5.9). Thus,
by completeness of R, there exists a function z : [−1, 2]→ [−1, 1] such that

sup
t∈[−1,2]

|zk(t)− z(t)| → 0 (5.16)

as k → ∞. Since each zk is càdlàg, z is càdlàg. By (5.13) and the fact that each gk
is constant on [1, 2], it follows from (5.16) that z is constant on (1, 2], hence by right
continuity z is constant on [1, 2].
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We define g by setting σg = α and g(t) = z(t) on [σg, 2], and note that g ∈ G. We
have shown above that µk is a strictly increasing bijection, hence µk ∈ Λ[gk, g]. Thus,
from (5.16) we have

sup
t∈[σgk

,2]

|gk(t)− g(µk(t))| = sup
t∈[σg,2]

|gk(µ−1
k (t))− g(t)| → 0 as k →∞.

Combining the above equation with (5.15), γgk,g(µk) ∨ d(gk, g, µk) → 0 and since σg =

limk→∞ σgk we have gk → g in (G, d).

5.2 The space (M,dM )

Recall the space M from (3.1) and the notation κt = tanh−1(t). It will sometimes be
useful to write κ(t) = κt. Each f ∈ M corresponds to some f̄ ∈ G, essentially through
the relation (3.2), that is

f̄(t) =
tanh(f(κt))

1 + |κt|
, (5.17)

for t ∈ [κ−1(σf ), 1]. In order to treat f̄ as an element of G we specify that additionally
f̄(t) = 0 for all t ∈ [1, 2]. Note that σf̄ = κ−1(σf ). In this section will use notation from
Section 5.1 without comment.

The map f 7→ f̄ naturally induces a pseudometric on M through the relation

dM (f1, f2) = d(f̄1, f̄2). (5.18)

It follows immediately from Lemmas 5.2 and 5.3 that the set of equivalence classes of M ,
under dM , form a separable metric space. Note that it is necessary to use equivalence
classes, since all f ∈ D[∞] map to the same f̄ ∈ G. From now on we abuse notation
slightly and write (M,dM ) for the metric space of equivalence classes. This defines the
metric dM that appeared in (3.3).

Lemma 5.6. The space (M,dM ) is complete.

Proof. Let (fk) be a Cauchy sequence in (M,dM ). Then (f̄k) is a Cauchy sequence in
(G, d) and by Lemma 5.5 there exists g ∈ G such that f̄k → g. It remains to show that
there exists f ∈M such that f̄ = g, which will in turn follow immediately from (5.17) if
we can show that

|g(t)| ≤ 1

1 + |κt|
(5.19)

for all t ∈ [σg, 1].

Equation (5.19) is readily seen; note that, by Lemma 5.4, f̄k → g implies that
there exists λk ∈ Λ[g, f̄k] such that γ′

g,f̄k
(λk) ∨ d(g, fk, λk) ∨ |σg − σf̄k | → 0. Therefore,

g(t) = limk→∞ f̄k(λk(t)). By (5.17) we have |f̄k(s)| ≤ 1
1+|κs| for all s, hence

|g(t)| ≤ lim sup
k→∞

1

1 + |κ(λk(t))|
. (5.20)

We also have γ′
g,f̄k

(λk)=supt∈[σg,1] |λk(t)−t|→0. Combining this with (5.20) proves (5.19).

Remark 5.7. Note that d′M (f1, f2) = d′(f̄1, f̄2) is a pseudo-metric on M , with the same
equivalence classes as dM . Hence, by Lemma 5.4, d′M generates the same topology on
M as dM .
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If we look at the subset M̃ of M consisting only of continuous functions, with the
metric

d
M̃

(f1, f2) = |σf̄1
− σf̄2

| ∨ sup
t∈[−1,1]

|f̄1(t ∨ σf1
)− f̄2(t ∨ σf2

)| (5.21)

then we recover the space of continuous paths introduced by [15] (with a minor mod-
ification relating to the values of functions at {−∞,∞}, see the appendix of [24] for
details).

We now establish the natural relationship between M and M̃ , which mirrors the
‘usual’ continuous embedding of spaces of continuous paths (with the || · ||∞ metric)
into Skorohod spaces. Recall that K(M) (resp. K(M̃)) denotes the space of all compact
subsets of M (resp.M̃ ).

Lemma 5.8. The space M̃ is continuously embedded in M . Moreover, K(M̃) is continu-
ously embedded in K(M).

Proof. Note that the first statement follows immediately from the second, so we will
prove only the second statement. Recall that the topology generated by the Hausdorff
metric (on K(M)) depends only on the underlying topology (of M ), and not on the
underlying metric. In view of this fact and Remark 5.7, for the duration of this proof we
take the Hausdorff metric on K(M) as that generated by (M,d′M ).

Let Wn,W be subsets of K(M̃) such that Wn → W in K(M̃). By Lemma A.1 the
set W = W ∪

(⋃
n∈NWn

)
is a compact subset of M̃ . A characterization of relative

compactness in M̃ is given in the proof of Lemma 4.6 of [24], based on the Ascoli-
Arzela Theorem (or, for a more detailed treatment, see the appendix of [21]). It follows
immediately from this characterization that the set W̄ = {f̄ ; f ∈ W } is equicontinuous.

Let ε > 0. By equicontinuity, there exists δ > 0 such that |s− t| ≤ δ implies

sup
f̄∈W̄

|f̄(s)− f̄(t)| ≤ ε. (5.22)

Without loss of generality we may choose δ ∈ (0, ε). By definition of the Hausdorff metric,
choose N such that for all n ≥ N ,

sup
g∈Wn

inf
h∈W

d
M̃

(g, h) ≤ δ and sup
g∈W

inf
h∈Wn

d
M̃

(g, h) ≤ δ. (5.23)

By the first equality of (5.23), for any g ∈Wn and n ≥ N , there exists h ∈W such that

|σḡ − σh̄| ≤ δ and sup
t∈[σḡ∨σh̄,2]

|g(t)− h(t)| ≤ δ. (5.24)

Define λḡ : [σḡ, 2]→ [σh̄, 2] by setting λ(σḡ) = σh̄, λ(1) = 1, λ(2) = 2 and linear in between.
Thus λg ∈ Λ′[ḡ, h̄]. For t ∈ [σḡ, 2], we have |t − λg(t)| ≤ |σḡ − σh̄| ≤ δ. This implies that
γ′ḡ(λḡ) ≤ ε and, using (5.22) and (5.24), that

|ḡ(t)− h̄(λḡ(t))| ≤ |ḡ(t)− ḡ(λḡ(t))|+ |ḡ(λḡ(t))− h̄(λḡ(t))| ≤ 2ε.

Thus, d′(ḡ, h̄) ≤ 2ε. Similarly, using the second equality of (5.23), for any g ∈ W and
n ≥ N , there exists h ∈Wn such that d′(ḡ, h̄) ≤ 2ε. We thus have, for all n ≥ N ,

max

(
sup
g∈Wn

inf
h∈W

d′(ḡ, h̄), sup
g∈W

inf
h∈Wn

d′(ḡ, h̄)

)
≤ 2ε. (5.25)

Hence, Wn →W in K(M) as n→∞.

In the interests of brevity, we limit our further development of the space (M,dM ) to
the following two results.
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Lemma 5.9. Let f, g ∈M with σf = σg and supt∈[σf ,∞] |f(t)− g(t)| ≤ r. Then d′M (f, g) ≤
r.

Proof. Since σf = σg, the identity function ι is an element of Λ[f̄ , ḡ]. Note that γf̄ (ι) = 0.
Hence d′M (f, g) ≤ supt∈[σf̄ ,∞] |f̄(t)− ḡ(t)| ≤ supt∈[σf ,2] |f(t)− g(t)| ≤ r, as required.

Lemma 5.10. Let (fm) ⊆M and f ∈M with σfm = σf ∈ (−∞,∞). Then dM (fm, f)→ 0

if (the restrictions of) fm → f in D[σf ,T ](R) for all T ∈ (σf ,∞).

Proof. Note that tanh : [−∞,∞] → [−1, 1] is a contraction. For T ∈ (0,∞), set T̄ =

tanh(T ), and note that tanh restricted to [−T, T ] → [− tanh(T ), tanh(T )] is bi-Lipschitz.
Hence there are constants CT ∈ (0,∞) such that

sup
−T̄≤t<s≤T̄

∣∣∣∣κs − κts− t

∣∣∣∣ ≤ CT , sup
−∞≤s<t≤∞

∣∣∣∣ s− tκs − κt

∣∣∣∣ ≤ 1. (5.26)

Let ε > 0. Let T ∈ (σf ∨ 0,∞) be such that 1
1+T ≤ ε. Thus,

sup
g∈M

sup
t∈[T̄∨σg,2]

|ḡ(t)| ≤ ε. (5.27)

By Theorem 12.1 of [5] there exists M ∈ N such that for all m ≥ M there exists a
continuous strictly increasing λm : [σf , T ]→ [σf , T ] with

sup
t∈[σf ,T ]

|t− λm(t)| ≤ ε

CT
, sup

t∈[σf ,T ]

|f(t)− fm(λm(t))| ≤ ε. (5.28)

Define λ̄m : [σf̄ , T̄ ] → [σf̄ , T̄ ] by λ̄m(t) = κ−1 ◦ λm ◦ κ(t), and note that by (5.28) for all
t ∈ [σf̄ , T̄ ],

|t− λ̄m(t)| ≤ CT |t− λm(t)| ≤ ε, (5.29)

and, by the right hand side of (5.26),

|f̄(t)− f̄m(λ̄m(t))| = 1

1 + |κt|
| tanh(f(κt))− tanh(fm(κ(λ̄m(t)))|

≤ |f(κt)− fm(λm(κt))| ≤ ε (5.30)

Extend λ̄m to ηm : [σf̄ , 2]→ [σf̄ , 2] by setting λ̄m(t) = t for t ≥ T̄ . Then, combining (5.27),
(5.29) and (5.30) we obtain γ′

f̄
(λ̄m) ≤ ε and d′(f̄ , f̄m, λ̄m) ≤ 2ε. It follows that d′(f̄ , f̄m)→

0, so the stated result now follows by Lemma 5.4.

6 Convergence to the Brownian net

6.1 Compactness

In order to use Theorem 3.4, we must verify that our various set of paths really are
subsets of K(M). That is, we need to show that they are compact subsets of M̃ , which is
the content of this subsection. We concentrate on forwards paths; analogous arguments
apply to backwards paths.

We require three preparatory lemmas. The first two of these embody the key features
of the argument; at any given time, within bounded intervals of space, the number of
ancestral lines at distinct spatial locations is finite, and there do not exist ancestral lines
that move arbitrarily fast across space.

Lemma 6.1. Let n ∈ N. Then, almost surely, for all (random) a, b, t ∈ R the set Ea,b,t =

[a, b] ∩ {f(t) ; f ∈ P̃↑n(Dn)} is finite.
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Proof. For fixed deterministic a, b, t, it is easily seen that the set of (y, s) for which s ≤ t,
y ∈ [a, b] and the line {y} × [s, t] is not affected by any reproduction events, is almost
surely bounded (in R2). Thus, since Dn is locally finite, the set Ea,b,t is almost surely
finite. Take countably dense (deterministic) sequences (am), (bm) and (tm) in R; thus
almost surely, for all m1,m2,m3 ∈ N for which am1

< bm2
, the set Eam1 ,bm2 ,tm3

is finite.
The stated result now follows from Lemma 4.1.

Lemma 6.2. Let n ∈ N. Almost surely, there does not exist a (random) sequence
(xm, tm, rm)∞m=1 ⊆ Πn such that supm |tm| <∞, limm→∞ xm =∞ and supm |xm+1−xm| ≤
4Rn.

Proof. Let K ∈ (0,∞). Then, the probability that

Πn ∩
(

[4kRn, 4(k + 1)Rn]× [−K,K]× [0,Rn]
)

= ∅

is positive and does not depend on k. Consequently, the probability that there exists a
sequence (xm, tm, rm)∞m=1 ⊆ Πn such that limm→∞ xm =∞ and supm |xm+1− xm| ≤ 4Rn,
with supm |tm| ≤ K, is zero. Since K was arbitrary, the result follows.

Recall that our ultimate goal is to prove Theorem 3.5, which claims convergence in
distribution. In view of this, from now on we will (abuse notation slightly and) assume
that the conclusions of Lemma 6.2 and 6.1 hold surely.

The next lemma asserts that any convergent sequence of paths that becomes close, in
space, to touching∞ within some bounded interval of time, must converge to a constant
path at∞.

Lemma 6.3. Let n ∈ N. Let (fm)∞m=1 ⊆ P↑n(Dn) be a sequence of paths and suppose
σ(fm) converges to v ∈ [−∞,∞]. Suppose also that there exists a bounded sequence
(tm) with tm ≥ σ(fm) for which fm(tm)→∞ as m→∞.

Let f∞ ∈M be the path defined by σ(f∞) = v and f∞(s) =∞ for all s ∈ [v,∞]. Then
fm → f∞ in M .

Moreover, if instead (fm) ⊆ P̃↑n(Dn), then under the same hypothesis fm → f∞ in M̃ .

Proof. Fix K ∈ (0,∞), large enough that supm |tm| ≤ K, and define x(m∗,K) =

inf{fm(s) ; m ≥ m∗, σ(fm) ≤ s, |s| ≤ K}.
Suppose, for a contradiction, that x(m∗,K) does not tend to ∞ as m∗ → ∞. Then,

there exists X ∈ (−∞,∞) and infinitely many m∗ for which x(m∗,K) ≤ X. For all such
m∗ we have some m ≥ m∗ and |s| ≤ K such that fm(s) ≤ X, and (by our hypothesis)
as m∗ → ∞ we have also fm(tm) → ∞; since fm ∈ P↑(Dn) this is a contradiction to
Lemma 6.2.

So, x(m∗,K) → ∞ as m∗ → ∞. Thus, for any K,X ∈ (−∞,∞) we can find m∗ ∈ N
such that, for all m ≥ m∗ and s ≥ σ(fm) such that |s| ≤ K, we have fm(s) ≥ X. With this
in hand, the stated results follow easily from (5.18) and (5.21).

Recall that, by (4.1), the path f∞ in the statement of Lemma 6.3 is an element of
both P↑(Dn) and P̃↑(Dn). Recall also that, in the notation of (4.1), both these sets also
contain paths that are infinite extenders.

Lemma 6.4. Let ? ∈ {↑, ↓}, † ∈ {l, r} and n ∈ N. Then, P?n(Dn) and P?,†n (Dn) are compact
subsets of M , also P̃?n(Dn) and P̃?,†n (Dn) are compact subsets of M̃ .

Proof. As usual, it suffices to consider the case of forward paths. Since Lemma 6.3, on
which the following argument relies, holds in both M and M̃ , it will suffice to consider
only cases in M . Moreover, the arguments required the case of P↑,†n (Dn) are essentially
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identical to those required for the case P↑n(Dn); thus, we aim to show that P↑n(Dn) is a
sequentially compact subset of (the metric space) M .

Let (fm)∞m=1 ⊆ P↑n(Dn) be a sequence of paths. We must show that (fm) has a
convergent subsequence, with limit in P↑n(Dn).

We now split into several cases.

1. If (σ(fm))m≥1 has a subsequence that converges to∞ then, along this subsequence,
fm converges to the degenerate path f with σf =∞ and f(∞) = 0.

2. If (σ(fm))m≥1 has a bounded subsequence, then consider the sequence xm =

fm(σfm).

(a) If (xm)m≥1 is bounded, then since Dn is locally finite there must be a subse-
quence along which (σ(fm), xm) is eventually constant. Any given ancestral
line moves to one of at most two locations in a reproduction event, thus
(fm)m≥1 has a convergent subsequence; to construct the limit path we suc-
cessively follow parent points that were followed by infinitely many of our
fm.

(b) If (xm)m≥1 is not bounded, then without loss of generality we pass to a subse-
quence and assume that both xm →∞ and σ(fm) converges. It then follows
immediately from Lemma 6.3 that fm converges along this subsequence.

3. If (σ(fm))m≥1 has a subsequence that converges to −∞, then pass to that subse-
quence and set t = supm σ(fm) <∞.

(a) If {m ; |fm(t)| ≤ K} is finite for all K <∞, then essentially the same argument
as in 2(b), reliant on Lemma 6.3, shows that fm has a convergent subsequence.

(b) If, for some K < ∞ the set {m ; |fm(t)| ≤ K} is infinite, then pass to the
subsequence of fm such that |fm(t)| ≤ K. By Lemma 6.1, the set [−K,K] ∩
{fm(t) ; m ∈ N} is finite. Hence, there is some |z| ≤ K through which infinitely
many fm pass. Using the same method as in 2(a), we can construct a path
f : [t,∞] with f(t) = z that is followed by infinitely many fm. So, pass to a
further subsequence and assume fm(s) = f(s) for all s ≥ t.
We extend f backwards in time as follows. From location (z, t), look backwards
in time until the most recent reproduction event (strictly) before t that affected
z, say p = (x, t′, r). By Lemma 6.1, the set {fm(t′−) ; p affects fm,m ∈ N} is
finite. Pick some element z′ of this set, and restrict to fm for which fm(t′−) =

z′. Set f(s) = z for s ∈ [t′, t) set f(s) = z. Then, look back from (z′, t′),
and repeat (in the language of (4.1), f is an ‘infinite extender’). Thus, a
subsequence of (fm)m≥1 converges to f .

Since (σ(fm))m≥1 must have a subsequence that converges in [−∞,∞], at least one
of the above cases occurs. This completes the proof.

6.2 Convergence of multiple left/right paths

We now extend Proposition 4.9 to larger collections of left and right-most paths. Let
N ∈ N. Given a finite set D = {(yi, si) ∈ R2 ; i = 1, . . . , N} of distinct points in R2 and
a function O : {1, . . . , N} → {l, r}, [24], Section 2.2, construct a system of left-right
coalescing Brownian motions started from the points of D. (Recall that two left-most
paths coalesce on meeting, as do two right-most paths, and that (3.4) describes the
interaction between left-most and right-most paths.) We write

P↑(D,O) = {B↑,(yi,si) ; i = 1, . . . , N} (6.1)
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for this system, where B↑,(yi,si) denotes the path of a Brownian motion started from
(yi, si) with diffusion constant ξ2 and drift ζ to the left if O(i) = l and to the right if
O(i) = r.

For each i = 1, . . . , N let dni = (yni , s
n
i ) ∈ R2 be such that dni → di = (yi, si) ∈ R2.

Set D(n) = {dni ; i = 1, . . . , N}. We define the set P↑n(D(n), O) = {f↑1 , . . . , f
↑
N} where

f↑i is the O(i)-most forward path from dni driven by events in Πns and P̃↑n(D(n), O) for
the corresponding space of interpolated paths. Note that both these sets are random
elements of the product space MN .

Lemma 6.5. Let N ∈ N and let D(n), D,O be as above. Then, as n → ∞, P↑n(D(n), O)

converges weakly in MN to P↑(D,O) and P̃↑n(D(n), O) converges weakly in M̃N to
P↑(D,O).

Proof. The argument is essentially identical to that of the proof of Proposition 5.2 of
[24]. The construction of P↑(D,O) in Section 2.2 of [24] is an inductive construction
that views P↑(D,O) as made up of several independent pieces consisting of segments
of either single left-most paths, single right-most paths or a pair of left/right paths.
The same inductive construction breaks down P↑n(D(n), O) into corresponding pieces.
The stopping times used in this construction are continuous functionals on MN with
respect to the law of independent evolutions of paths within each such piece, so the first
part of the lemma follows from Proposition 4.9 and Lemma 5.10. Similarly, P̃↑n(D(n), O)

converges weakly to P̃↑(D,O).

6.3 Proof of Theorem 3.5

We complete the proof of Theorem 3.5 in three steps. Recall that the Brownian net is
denoted by N , and recall the function Hcross defined in Section 3.2.

Lemma 6.6. As n→∞, we have that

Hcross
(
P̃↑,ln (Dn) ∪ P̃↑,rn (Dn)

)
→ N ,

in distribution in K(M̃).

Proof. We verify the conditions (A )-(D) of Theorem 3.4. This theorem is applied with
X†n = P̃↑,†n (Dn) and X̂†n = P̃↓,†n (Dn), where † ∈ {l, r}. By Lemma 6.4, all these sets of
paths are (almost surely) elements of K(M̃) (after rotation by 180 degrees about (0, 0) for
the backwards paths). We define Xn = Hcross(P̃↑,ln (Dn) ∪ P̃↑,rn (Dn)) and similarly for X̂n.

We now check the conditions in turn. For (A ), the required statements about
non-crossing paths are precisely the content of Lemma 4.4. For (B), the required
convergence of multiple left/right paths to left/right Brownian motions is precisely the
content of Lemma 6.5.

We now move on to (C ). If (xn,1, xn,2)→ (x1, x2) and l̂n,r̂n are respectively elements

of P̃↓,ln (Dn), P̃↓,rn (Dn) started at (xn,1, xn,2), then it follows by combining Lemmas 4.10
and Remark 4.16 that (l̂n, r̂n)→ (l̂, r̂) in distribution, where (l̂, r̂) are a pair of left/right
Brownian motions. That the first meeting time of l̂n with r̂n also converges (jointly) in
distribution to the first meeting time of l̂ with r̂ follows from Remark 4.8.

It remains to verify (D). By Lemma 4.4, left-most fowards and left-most backwards
paths cannot cross, and similarly for right-most paths. Therefore, a path of Xn that
enters a wedge W of X̂n from the outside must enter through the southern-most point of
the wedge (i.e. precisely where the two paths r̂ and l̂ defining W meet, in Figure 2). Fix
a wedge W of X̂n and denote this event by EW .

For the event EW to occur, some reproduction event must have a potential parent
situated at the spatial location of the southern-most point of W . The distribution of the
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spatial location of a pre-parent (in a reproduction event occurring at given time) has no
atoms, and thus the distribution of the spatial location of the meeting point of r̂ and l̂

also has no atoms; hence almost surely EW does not occur.
The set X̂n contains countably many paths and thus has at most countably many

wedges. Hence, almost surely the event EW does not occur for any wedge W of X̂n.
Without loss of generality, we may assume this does not occur surely, so as (D) holds.

Lemma 6.7. As n→∞, we have that P̃↑n(Dn) tends in distribution to N

Proof. If a left-most and a right-most path of P̃↑n(Dn) cross, then the point at which they
cross much be within one of the sets BΥ(p)(p) (defined in Lemma 4.1) associated to a
selective event p ∈ Πn. If an interpolated arrow finishes at p, then by definition there
are interpolated arrows ending at both potential parents of p. Consequently, there is a

one to one correspondence, f 7→ f ′ between paths f ∈ Hcross
(
P̃↑,ln (Dn) ∪ P̃↑,rn (Dn)

)
and

paths f ′ ∈ P̃↑(Dn) such that
|f(t)− f ′(t)| ≤ 2Rn (6.2)

for all t ≥ σf = σf ′ , and f(σf ) = f ′(σf ′).

By Lemma 6.4, we have that P̃↑n(Dn) is an element of K(M). Combined with (6.2) this
means that P̃↑n(Dn) has the same limit (in distribution) as Hcross(P̃↑,ln (Dn) ∪ P̃↑,rn (Dn)) as
n→∞. Thus, from Lemma 6.6, P̃↑n(Dn) tends in distribution to N .

To finish, we must upgrade the result of Lemma 6.7 from K(M̃) to K(M), and use
càdlàg paths in place of interpolated paths.

By Lemma 6.4 we have that P̃↑n(Dn) ∈ K(M) for all n. Combining this fact with
Lemma 4.2, and noting that there is a one to one correspondence between paths and
interpolated paths, we obtain from Lemma 6.7 that also P↑n(Dn)→ N in distribution in
K(M). This completes the proof of Theorem 3.5.

7 Simulations

In all the work described in Section 3.3, lineages coalesce instantly on meeting and,
in particular, they cannot ‘jump over’ one another. Our result also requires this property,
which is achieved by setting υ = 1. In the absence of selection, it is shown in [4] that if
instead we fix υ ∈ (0, 1), the scaling limit of the paths relating a finite sample from the
population is a system of coalescing Brownian motions, but with ‘clock’ rate υ (so that
the whole process is slowed down). In particular, we obtain a simple time-change of the
limit for υ = 1.

It is natural to ask what happens when υ < 1 in the presence of selection. Our method
of proof certainly breaks down. In particular, we can no longer trace the left/right most
paths starting from a single point in isolation: because paths can now cross, the current
left-most path may not be affected by an event, whereas another path in the same region
is, and if the parent (or one of the potential parents) of the event is to the left of the
current left-most path, a new line of descent takes over as left-most.

We have been unable to find a rigorous result in this context and so in this brief
section, instead, we present the results of a numerical experiment.

In order to approximate the limiting process, we simulated the system of branching-
coalescing lineages (which was introduced in Section 2.3). In particular, we were
interested in P(υ), the expected position of the right-most ancestor at time 1 of a single
particle, which starts at the origin at time 0. By symmetry the same analysis applies to
the left-most particle.

As a result of the discussion above, and the result of [4], it is natural to ask if P(υ)

varies linearly with υ. It seems that this is not the case, as is shown in the left hand plot
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Figure 5: Right-most potential ancestor. The plot on the left shows P(u), the average
location of the right most ancestor at time 1 of an individual located at the origin at
time 0. Here we take n = 1000 and µ(dr) = δ1. The plot contains 200 data points, each
corresponding to a value of υ ∈ (0, 1], spaced evenly along the horizontal axis. Each data
point is the mean of 2000 independent simulations with the corresponding value of υ.
The plot on the right is a logarithmic plot of the same data.

of Figure 5. Note that this does not remove the possibility that, as n → 0, the SΛFVS
rescales to a Brownian net, but it does imply that the speed of such a limiting net would
not match the speed suggested by the simple time-change in the Brownian web limit of
[4]. As can be seen from the right hand plot of Figure 5, P(υ) is also not of the form
υ−α.

Simulating the SΛFVS when υ = 1 is a quite different task from simulating it when
υ is close to 0. In the former case, it is more efficient to generate reproduction events
by simulating the underlying Poisson Point Process, whereas in the latter case it is
more efficient to track clusters of particles that are close enough to be affected by the
same event and simulate their (correlated) motion directly. Our simulation employs
both methods of event sampling and alternates between them based on which method is
asymptotically more efficient for the given value of υ.

In practice, for smaller values of υ (i.e. closer to 0) larger values of n are needed
to accurately simulate the SΛFVS. It seems very possible that, for υ closer to 0, the
numerics suggested by Figure 5 are not a reflection of the true behaviour as n→∞.

The C++ code which generated the data displayed in Figure 5 can be obtained from
http://www.github.com/nicfreeman1209.

A On compactness

In the proof of Lemma 5.8 we used following result, which is almost certainly known
but for which we were unable to find a reference.

Lemma A.1. Let (M , dM ) be a metric space and let K(M ) be the Hausdorff space of
compact subsets of M . Let (Wn)n∈N be a sequence in K(M ) such that Wn → W∞ ∈
K(M ) as n→∞. Then W = W∞ ∪

(⋃
n∈NWn

)
is a compact subset of M .

Proof. Since M is a metric space, a subset W of M is compact if and only if W is
sequentially compact. Let (wn)n∈N be any sequence in W and define mn = sup{m ∈
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N ∪ {∞} ; wn ∈Wm}. We will construct a convergent subsequence of (wn)n∈N ⊆ W .
If {mn ; n ∈ N} is finite (as an unordered set) then there exists m ∈ N ∪ {∞} such

that wn ∈ Wm eventually, in which case (wn)n∈N has a convergent subsequence by
compactness of Wm. Alternatively, if {mn ; n ∈ N} is infinite then, with slight abuse of
notation, we may pass to a subsequence and assume that mn is strictly increasing to∞.

By definition of the Hausdorff metric, since Wn → W there exists (hn)n∈N ⊆ W∞
such that dM (wn, hn)→ 0 as n→∞. Since W∞ is compact, (hn)n∈N has a convergent
subsequence, and with further slight abuse of notation we pass to this subsequence and
assume that hn → h ∈ W∞ as n→∞. Then dM (wn, h)→ 0 as n→∞, and the proof is
complete.
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