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Abstract

We prove that nearest-neighbor percolation in dimensions d ≥ 11 displays mean-field
behavior by proving that the infrared bound holds, in turn implying the finiteness of
the percolation triangle diagram. The finiteness of the triangle implies the existence
and mean-field values of various critical exponents, such as γ = 1, β = 1, δ = 2. We
also prove sharp x-space asymptotics for the two-point function and the existence of
various arm exponents. Such results had previously been obtained in unpublished
work by Hara and Slade for nearest-neighbor percolation in dimension d ≥ 19, so
that we bring the dimension above which mean-field behavior is rigorously proved
down from 19 to 11. Our results also imply sharp bounds on the critical value of
nearest-neighbor percolation on Zd, which are provably at most 1.31% off in d = 11.
We make use of the general method analyzed in [17], which proposes to use a lace
expansion perturbing around non-backtracking random walk. This proof is computer
assisted, relying on (1) rigorous numerical upper bounds on various simple random
walk integrals as proved by Hara and Slade [25]; and (2) a verification that the
numerical conditions in [17] hold true. These two ingredients are implemented in two
Mathematica notebooks that can be downloaded from the website of the first author.

The main steps of this paper are (a) to derive a non-backtracking lace expansion for
the percolation two-point function; (b) to bound the non-backtracking lace expansion
coefficients, thus showing that the general methodology of [17] applies, and (c) to
describe the numerical bounds on the coefficients.
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1 Introduction

1.1 Motivation

The lace expansion was invented by Brydges and Spencer in 1985 [10] to prove
mean-field behavior for weakly self-avoiding walk. Thereafter, it was extended to self-
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Mean-field behavior for nearest-neighbor percolation in d > 10

avoiding walks (SAW), percolation, and lattice trees and animals [22, 23, 25, 49], and
has become an indispensable tool to prove mean-field behavior of statistical mechanical
models above the so-called upper critical dimension. More recent extensions include
oriented percolation [34, 43, 44], the contact process [33, 47], and the Ising model
[48].

Being a perturbative method in nature, applications of the lace expansion typically
necessitate a small parameter. This small parameter tends to be the degree of the under-
lying base graph. There are two possible approaches to obtain a small parameter. The
first is to work in a so-called spread-out model, where long- but finite-range connections
over a distance L are possible, and we take L large. This approach has the advantage
that the results hold, for L sufficiently large, all the way up to the critical dimension of
the corresponding model. The second approach applies to the simplest and most often
studied nearest-neighbor version of the model. For the nearest-neighbor model, the
degree of a vertex is 2d which then has to be taken large in order to prove mean-field
results. Thus, we need to take the dimension large, and therefore obtain suboptimal
results in terms of the dimension above which the results hold. A seminal exception is
SAW, where Hara and Slade [24] have proved that d ≥ 5 is sufficient for their perturba-
tion analysis to hold, using a computer-assisted method. For SAW, mean-field results are
expected to be false in dimension d = 4. See the work using the renormalization group
to identify the logarithmic corrections to mean-field behavior by Bauerschmidt, Brydges
and Slade in [5] and the references therein. Here, the Green’s function does not have
logarithmic corrections [5], while, e.g., the susceptibility does [6].

For percolation, on the other hand, this methodology was proved to apply in the
nearest-neighbor setting only for d ≥ 19 (see [22, 26]), and makes use of similar computer-
assisted methods as used for SAWs in [25]. These computations were never published.
Through private communication with Takashi Hara, the authors have learned that he
recently obtained a further improvement to d ≥ 15. Hara’s proof is restricted to d ≥ 15,
as it assumes that the heptagon is finite.

These seemingly suboptimal results, where the results are proved to hold for d ≥ 19,
while they are expected to hold for d > 6, have a reason that is quite deep. Indeed, it
is well-known that for mean-field behavior to hold for percolation, it is sufficient that
the so-called triangle condition holds (see e.g., [3, 4]). As we explain in more detail
below, the triangle condition states that a certain sum called the triangle diagram is
finite. However, the current methodology of the lace expansion only applies when the
triangle diagram is sufficiently small. Thus, we can think of d ≥ 19 to be sufficient for the
triangle diagram to be sufficiently small, rather than being finite, and there previously
was no way to prove that the triangle diagram is finite rather than small. In this paper,
we take a first step to prove such a result, by proving that the triangle diagram is finite,
but in the proof working with different diagrams that need to be small. We are able to
do so, since the diagrams that we obtain in our analysis contain loops of at least four
bonds, while the classical lace expansion gives rise to loops that can also contain two
bonds. This allows us to reduce the dimension above which the infrared bound holds
from 19 to 11.

We extend the proof by Hara and Slade so that it applies to d ≥ 11, by using several
novel ideas. The main innovations in our proof are that (i) we perturb around non-
backtracking random walk, rather than simple random walk, so that the lace-expansion
coefficients are significantly smaller than in the classical lace expansion as used by Hara
and Slade in [22]; (ii) our bounds on the lace-expansion coefficients are matrix-based,
so as to profit maximally from the fact that loops consists of at least four bonds in our
expansion; (iii) we use and provide Mathematica notebooks that implement the bounds
and that can be downloaded from the first author’s website. As a side result, our proof
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gives the best bounds on the percolation threshold available in the literature, that are of
independent interest.

Our results prove that the percolation triangle is finite, and thus prove that many
critical exponents exist and take on their mean-field values such as the ones related to
the percolation function (β = 1), to the expected subcritical cluster size (γ = 1) and to
the critical cluster-tail distribution (δ = 2). Further, we prove the sharp asymptotics
of the critical two-point function in x-space, using the results of Hara [21], which in
turn implies the existence of several arm-exponents as proved by Kozma and Nachmias
[39, 40], as well as the existence of the incipient infinite cluster [28, 32]. An overview
about recent results on high-dimensional percolation can be found in [27].

Also our proof is computer assisted, and relies on the following two key ingredients:

(I) Rigorous upper bounds on various simple random walk integrals, as proved by Hara
and Slade in [25], where they also served as a key ingredient in the proof. This part
of the analysis is unchanged compared to the Hara-Slade proof. The crucial reason
why we can use these integrals is that the non-backtracking random walk Green’s
function can be explicitly described in terms of the simple random walk Green’s
function. Our analysis requires us to compute 112 such integrals, corresponding
to convolutions of random walk Green’s functions with itself at various values in
Zd. We further need to compute the number of simple random walks of lengths
up to 10 ending at various values in Zd, as well as related self-avoiding walks
and bond-self-avoiding walks. These bounds are performed in one Mathematica
notebook;

(II) Two other Mathematica notebooks, a first that implements the computations in
our general approach to the non-backtracking lace expansion (NoBLE) in [17],
as well as a notebook that computes the rigorous bounds on the lace-expansion
coefficients provided in the present paper. These notebooks do nothing else
than implement the bounds proved here and in [17], and rely on nothing but many
multiplications, additions as well as diagonalizations of two three-by-three matrices.
These computations could be performed by hand, but the use of the notebooks
tremendously simplifies them.

The fact that our Mathematica notebooks are made publicly available maximizes the
transparancy for the entire community about the status of the proof. Indeed, for one,
the community can verify that the computations performed really are the ones provided
in this paper and in [17], for second, anyone interested can optimize constants so as to
improve bounds on various percolation parameters.

We next introduce the nearest-neighbor percolation model that we investigate, and
state our main results.

1.2 Model

In nearest-neighbor percolation, we set each bond {x, y} ∈ Zd × Zd, with x and
y nearest-neighbors, occupied, independently of all other bonds, with probability p

and vacant otherwise. The corresponding product measure is denoted by Pp with
corresponding expectation Ep. We write {x←→ y} for the event that there exists a path
of occupied bonds from x to y. When the event {x←→ y} occurs we call the vertices x
and y connected. For x ∈ Zd, the set C (x) := {y ∈ Zd | y ←→ x} of vertices connected
to x is called the cluster of x. It is the size and geometry of these clusters that we are
interested in.

Clearly, for p small, C = C (0) is Pp-a.s. finite, whereas for d ≥ 2 and large p, the
percolation probability

θ(p) = Pp(|C | =∞), (1.1)
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i.e., the probability that the cluster C is infinite, is strictly positive. Hence, there exists
some critical value where this probability turns positive (see e.g. [19]). As it turns out, it
is convenient for us to use a different definition of the critical value, as we explain now.
For this, we define the two-point function τp : Zd × Zd → [0, 1] by

τp(x, y) = Pp(x←→ y). (1.2)

By translation invariance, τp(x, y) = τp(0, y − x) ≡ τp(y − x). We further introduce the
susceptibility as

χ(p) =
∑
x∈Zd

τp(x). (1.3)

We define pc, the critical value of p, as

pc(d) = sup {p |χ(p) <∞} . (1.4)

Thus, pc is characterized by the explosion of the expected cluster size. Menshikov [42],
as well as Aizenman and Barsky [2], have proved that this characterization coincides
with the critical value described below (1.1). See also the recent, very short and elegant,
proof of this fact by Duminil-Copin and Tassion [12].

We now discuss the notion of critical exponents. It is predicted that

θ(p) ∼ (p− pc)β as p↘ pc, (1.5)

for some β > 0. The symbol ∼ in (1.5) can have several meanings, and we shall always
mean that the critical exponent exists in the bounded-ratio form, meaning that there
exist 0 < c1 < c2 <∞ such that, uniformly for p ≥ pc,

c1(p− pc)β ≤ θ(p) ≤ c2(p− pc)β . (1.6)

The existence of a critical exponent is a priori unclear, and needs a mathematical proof.
Indeed, the existence of the critical exponent β > 0 is stronger than the continuity of
p 7→ θ(p), which is unknown in general, and is arguably the holy grail of percolation theory.
More precisely, p 7→ θ(p) is clearly continuous on [0, pc), and it is also continuous (and
even infinitely differentiable) on (pc, 1] by the results of [7] (for infinite differentiability
of p 7→ θ(p) for p ∈ (pc, 1], see [45]). Thus, continuity of p 7→ θ(p) is equivalent to the
statement that θ(pc(d)) = 0. The critical exponent γ for the expected cluster size is given
by

χ(p) ∼ (pc − p)−γ , p↗ pc, (1.7)

while the exponent δ ≥ 1 measures the power-law exponent of the critical cluster tail,
i.e.,

Ppc(|C (0)| ≥ n) ∼ n−1/δ, n→∞, (1.8)

the assumption that δ ≥ 1 following from the fact that χ(pc) =∞.

1.3 Results

Our analysis makes heavy use of Fourier analysis. Unless specified otherwise, k
always denotes an arbitrary element from the Fourier dual of the discrete lattice, which
is the torus [−π, π]d. The Fourier transform of a function f : Zd → C is defined by

f̂(k) =
∑
x∈Zd

f(x) eik·x. (1.9)

For two summable function f, g : Zd 7→ R, we let f ? g denote their convolution, i.e.,

(f ? g)(x) =
∑
x∈Zd

f(y)g(x− y). (1.10)
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We note that the Fourier transform of f ?g is given by the product of f̂ and ĝ. In particular,
let D(x) = 1l{|x|=1}/(2d) be the nearest-neighbor random walk transition probability, so
that

D̂(k) =
1

2d

∑
x:|x|=1

eik·x =
1

d

d∑
i=1

cos(ki). (1.11)

The main result of this paper is the following infrared bound:

Theorem 1.1 (Infrared bound). For nearest-neighbor percolation with d ≥ 11, there exist
constants A1(d) and A2(d) such that

τ̂p(k) ≤ A1(d)

χ(p)−1 + p[1− D̂(k)]
and τ̂p(k) ≤ A2(d)

1− D̂(k)
, (1.12)

uniformly for p ≤ pc(d).

Our methods require a detailed analysis of both the critical value as well as the
amplitudes A1(d) and A2(d). As a result, we obtain the following bounds:

Theorem 1.2 (Bounds on critical value and amplitude). For nearest-neighbor percolation
with d ≥ 11, the following upper bounds hold:

d 11 12 13 14 15 20
(2d− 1)pc(d) ≤ 1.01306 1.00857 1.006244 1.00484 1.0039 1.001777

A2(d) ≤ 1.02393 0.9947 0.986 0.98237 0.98085 0.981136

Remarkably, the bound on d 7→ A2(d) is not decreasing, as is usually the case. The
explanation of this may be quite simple. Indeed, for non-backtracking walk (NBW),
A2(d) = (2d− 2)/(2d− 1), which is increasing. Unfortunately, our method does not allow
us to get very close to this value, particularly for low dimensions. This explains why first
d 7→ A2(d) decreases (as we get closer to the NBW constant), after which it increases,
being very close to its NBW counterpart.

In the literature, the following numerical values, as given in Table 1, have appeared
for the percolation critical value. These values indicate that the approximation pc(d) ≈
1/(2d− 1) is already quite good for d ≥ 7, being at most 2% off the reported numerical
values. Also, our estimate for pc(11) is only around 0.62% off the reported numerical
value, the one for pc(13) only 0.16%.

d 7 8 9 10 11 12 13
pc(d) ≈ 0.078675 0.06771 0.05947 0.0531 0.04795 0.04373 0.040188

(2d− 1)pc(d) ≈ 1.02278 1.015626 1.011433 1.00876 1.00694 1.00565 1.0047

Table 1: Numerical values of pc(d) taken from [18, Table I]. Related numerical values
can be found in [35, Table 3.6] and [1].

We next report some consequences of the infrared bound in Theorem 1.1. Aizenman
and Newman [3] prove that γ = 1 in the bounded-ratio sense when the so-called triangle
condition, a condition on the percolation model, holds. The triangle condition states that

4 (pc) =
∑

x,y∈Zd
τpc(0, x)τpc(x, y)τpc(y, 0) <∞. (1.13)

In [4], it was shown that, under the same condition, β = 1 and δ = 2 in the bounded-ratio
sense. Since

4 (pc) = (τpc ? τpc ? τpc)(0) = lim
p↗pc

(τp ? τp ? τp)(0) = lim
p↗pc

∫
(−π,π)d

dk

(2π)d
τ̂3
p (k), (1.14)
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the infrared bound in Theorem 1.1 (which is uniform in p < pc) immediately implies that
the triangle condition holds, and therefore that γ = β = 1, δ = 2:

Corollary 1.3 (Triangle condition and critical exponents). For nearest-neighbor percola-
tion with d ≥ 11, the triangle condition holds. Therefore the critical exponents γ, β and δ
exist in the bounded-ratio sense, and take on the mean-field values γ = β = 1, δ = 2.

We next investigate the asymptotics in x-space of τpc(x) for x large, using the results
of Hara in [21]:

Theorem 1.4 (Two-point function asymptotics). For nearest-neighbor percolation with
d ≥ 11, there exists a constant A(d) such that, as |x| → ∞,

τpc(x) =
adA(d)

|x|d−2
(1 +O(|x|−2/d)), with ad =

dΓ(d/2− 1)

2πd/2
. (1.15)

The proof of Theorem 1.4 follows by verifying that the conditions that Hara poses
in [21], which are formulated in terms of the classical lace expansion, are satisfied. In
particular, these conditions imply that 4(pc) is quite close to 1, which is the contribution
in (1.13) of x = y = 0. We have decided to state Theorem 1.4 explicitly, as it has
major consequences, such as the existence of the incipient infinite cluster (IIC) and the
behavior of random walks on it. We next state these results.

Let F denote the σ-algebra of events. A cylinder event is an event given by conditions
on the states of finitely many bonds only. We denote the algebra of cylinder events by F0.
We define

Px(F ) = P(F | 0←→ x) =
1

τpc(x)
P(F, 0←→ x), F ∈ F . (1.16)

Then, the results on the existence of the IIC in [32, 28] imply that the following theorem
holds:

Theorem 1.5 (Existence of the IIC). Let d ≥ 11 and p = pc. Then, the limit

P∞(F ) = lim
|x|→∞

Px(F ) (1.17)

exists for any cylinder event F . Also, P∞ extends uniquely from F0 to a probability
measure on F .

There is quite some literature investigating the existence of IICs and proving that
different limiting schemes produce the same limiting IIC measure. We refer to [28, 30,
32, 36, 37, 38] for more details. We also note that the existence of the IIC measure as
well as Theorem 1.4 allow for a proof that the Alexander-Orbach conjecture holds for
nearest-neighbor percolation and d ≥ 11, see [39] for more details.

We close this section by identifying two arm-exponents that follow from Theorem 1.4,
using recent proofs by Kozma and Nachmias [39, 40]. For this, we start by introducing
some notation. Fix p = pc and let Br(x) denote the ball of intrinsic radius r from x ∈ Zd.
Thus, y ∈ Br(x) when there exists a path of at most r occupied bonds connecting y to x.
We further write ∂Br(x) = Br(x) \Br−1(x). Kozma and Nachmias [39, 40] have proved
that Theorem 1.4 implies that arm-probabilities decay as inverse powers of r, and have
identified the corresponding critical exponents:

Theorem 1.6 (One-arm exponents). Let d ≥ 11 and p = pc. Then,

Ppc(∂Br(0) 6= ∅) ∼ r−1, and Ppc(0←→ Qcr) ∼ r−2, (1.18)

in the bounded-ratios sense, where Qr = {x ∈ Zd : |x| ≤ r}.
In the next section, we give an overview of the proof of Theorem 1.1.
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2 Overview of the proof

In this section, we give a brief overview of how we derive our main results. We start
by describing the philosophy behind our proof.

2.1 Philosophy of the proof

In this section, we reduce the proof of Theorem 1.1 to three key propositions and a
computer-assisted proof. These ingredients involve

(a) the derivation of the non-backtracking lace expansion (NoBLE) in Proposition 2.1;

(b) the diagrammatic bounds on the NoBLE coefficients in Proposition 2.2;

(c) the analysis presented in [17] to obtain the infrared bound in Theorem 1.1 for all
p ≤ pc for all d ≥ 11, as stated in Proposition 2.4; and

(d) a computer-assisted proof to verify the numerical conditions arising in the analysis
in [17].

These parts are discussed in Sections 2.2-2.5, respectively.
In Sections 3 and 4 we prove parts (a) and (b), respectively. In Section 2.4, we explain

how we obtain part (c) using the analysis of [17], the computer-assisted proof [13] of part
(d) and the results of this paper. For the analysis in the generalized setting [17] we state
assumptions, which we verify for percolation in Sections 2.4, 3.5 and 5.4, respectively.
Part (d) is explained in detail in Section 2.5, where we describe how the necessary
computations are performed in several Mathematica notebooks. The mathematics
behind the notebooks is explained in [17]. The notebooks also include a routine that
verifies whether the numerical assumption on the expansions are satisfied and thereby
verifies whether the analysis of [17] yields the infrared bounds for percolation or not for
a given dimension. Thus, [17] and the notebooks together prove Proposition 2.4. See
also Figure 1 for a visual description of the proof of Theorem 1.1. We prove Theorems
1.4, 1.5 and 1.6 in Section 7 and close this section with a discussion of our method and
results.

In the following, we explain the philosophy behind the non-backtracking lace ex-
pansion (NoBLE), and start by describing simple random walk and non-backtracking
walk.

Simple random walk and non-backtracking walk In the expansion we derive that
the percolation two-point function τp can be viewed as a perturbation of the non-
backtracking walk two-point function. We now define simple and non-backtracking
walk to be able to formalise this connection.

An n-step nearest-neighbor simple random walk (SRW) on Zd is an ordered (n+ 1)-
tuple ω = (ω0, ω1, ω2, . . . , ωn), with ωi ∈ Zd and ‖ωi − ωi+1‖1 = 1, where ‖x‖1 =

∑d
i=1 |xi|.

Unless stated otherwise, we take ω0 = (0, 0, . . . , 0).
We define pn(x) to be the number of n-step SRWs with ωn = x. Then, for n ≥ 1,

pn(x) =
∑
y∈Zd

2dD(y)pn−1(x− y) = 2d(D ? pn−1)(x) = (2d)nD?n(x), (2.1)

where D is the one-step transition probability, see also (1.11), and f?n denotes the n-fold
convolution of a function f . The SRW two-point function is given by the generating
function of pn, i.e., for |z| < 1/(2d),

Cz(x) =

∞∑
n=0

pn(x)zn, and Ĉz(k) =
1

1− 2dzD̂(k)
(2.2)
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Diagrammatic bounds
Propostion 2.2

Figure 1: Structure of the non-backtracking lace expansion.

in x-space and k-space, respectively. We denote the SRW susceptibility by

χSRW(z) = Ĉz(0) =
1

1− 2dz
, (2.3)

for |z| < zc, with critical point zc = 1/(2d).
If an n-step SRW ω satisfies ωi 6= ωi+2 for all i = 0, 1, 2, . . . , n − 2, then we call ω

non-backtracking. In order to analyze non-backtracking walk (NBW), we derive an
equation similar to (2.1). The same equation does not hold for NBW as it neglects the
condition that the walk does not revisit the origin after the second step.

We exclusively use the Greek letters ι and κ for values in {−d,−d+1, . . . ,−1, 1, 2, . . . , d}
and denote the unit vector in direction ι by eι ∈ Zd, e.g. (eι)i = sign(ι)δ|ι|,i.

Let bn(x) be the number of n-step NBWs with ω0 = 0, ωn = x. Further, let bιn(x) denote
the number of n-step NBWs ω with ωn = x and ω1 6= eι. Summing over the direction of
the first step1 we obtain, for n ≥ 1,

bn(x) =
∑

ι∈{±1,...,±d}

bιn−1(x+ eι). (2.4)

Further, we distinguish between the case that the walk visits −eι in the first step or not
to obtain, for n ≥ 1,

bn(x) = b−ιn (x) + bιn−1(x+ eι). (2.5)

The NBW two-point functions Bz and Bιz are defined as the generating functions of bn
and bιn, respectively, i.e., for |z| < 1/(2d− 1),

Bz(x) =

∞∑
n=0

bn(x)zn, Bιz(x) =

∞∑
n=0

bιn(x)zn. (2.6)

1Bear in mind that the first step is to −eι.
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In this paper, we use C2d-valued and C2d × C2d-valued quantities. For a clear distinction
between scalar-, vector- and matrix-valued quantities, we always write C2d-valued func-
tions with a vector arrow (e.g. ~v) and matrix-valued functions with bold capital letters
(e.g. M). We do not use {1, 2, . . . , 2d} as the index set for the elements of a vector or
a matrix, but use {−d,−d + 1, . . . ,−1, 1, 2, . . . , d} instead. Further, for k ∈ [−π, π]d and
negative index ι ∈ {−d,−d+ 1, . . . ,−1}, we write kι = −k|ι|.

We denote the identity matrix by I∈C2d×2d and the all-one vector by~1 = (1, 1, . . . , 1)T ∈
C2d. Moreover, we define the matrices J, D̂(k) ∈ C2d×2d by

(J)ι,κ = δι,−κ and (D̂(k))ι,κ = δι,κeikι . (2.7)

We define the vector ~̂Bz(k) with entries (
~̂
Bz(k))ι =

~̂
Bιz(k) and rewrite (2.4)-(2.5) to

B̂z(k) = 1 + z~1T D̂(−k)
~̂
Bz(k), B̂z(k)~1 = J

~̂
Bz(k) + zD̂(−k)

~̂
Bz(k), (2.8)

Then, as derived in detail in [17, Section 1.2.2],

B̂z(k) =
1

1− z~1T
[
D̂(k) + zJ

]−1
~1
. (2.9)

In turn, using that
[
D̂(k) + zJ

]−1

= 1
1−z2

(
D̂(−k)− zJ

)
, this is equivalent to

B̂z(k) =
1

1− 2dz D̂(k)−z
1−z2

=
1− z2

1 + (2d− 1)z2 − 2dzD̂(k)

=
1− z2

1 + (2d− 1)z2
· Ĉ z

1+(2d−1)z2
(k). (2.10)

The NBW susceptibility is χNBW(z) = B̂z(0) with critical point zc = 1/(2d− 1). The NBW
and SRW critical two-point functions are related by

B̂1/(2d−1)(k) =
2d− 2

2d− 1
Ĉ1/2d(k) =

2d− 2

2d− 1
· 1

1− D̂(k)
. (2.11)

This link allows us to compute values for the NBW two-point function in x- and k-space,
using the SRW two-point function. A detailed analysis of the NBW including a proof that
the NBW, when properly rescaled, converges to Brownian motion can be found in [15].

2.2 Part (a): Non-Backtracking Lace Expansion (NoBLE)

In this section, we explain the shape of the Non-Backtracking Lace Expansion (No-
BLE), which is a perturbative expansion of the two-point function. The aim of the NoBLE
for percolation is to derive equations alike (2.8) for the percolation two-point function
τp(x). This is motivated by the fact that a large part of the interaction present in τp(x)

is due to percolation paths not backtracking. We next explain how we can set this
expansion up, and explain how our proof follows from three main propositions.

Next to the usual two-point function (1.2), we use a slight adaptation of it. For a
direction ι ∈ {±1,±2, . . . ,±d}, we define

τ ιp(x) = Peιp (0←→ x), (2.12)

where we write

Pyp(E) = Pp(E occurs when all bonds containing y are made vacant) (2.13)
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Mean-field behavior for nearest-neighbor percolation in d > 10

for y ∈ Zd and all events E.
Our analysis relies on two expansion identities relating τp(x) and τ ιp(x), which are

perturbations of (2.8). In the following, we drop the subscript p when possible, and
write, e.g., τ(x) = τp(x) and τ ι(x) = τ ιp(x). The NoBLE is formulated in the following
proposition:

Proposition 2.1 (Non-backtracking lace expansion). For every x ∈ Zd, ι, κ ∈ {±1,±2, . . . ,

±d}, and M ≥ 1, the following recursion relations hold:

τ(x) = δ0,x + µp
∑

y∈Zd,κ∈{±1,...,±d}

(δ0,y + Ψκ
M(y))τκ(x− y + eκ) + ΞM(x), (2.14)

τ(x) = τ ι(x) + µpτ
−ι(x− eι) +

∑
y∈Zd,κ∈{±1,...,±d}

Πι,κ
M (y)τκ(x− y + eκ) + ΞιM(x), (2.15)

where

Πι,κ
M (y) =

M∑
N=0

(−1)NΠ(N),ι,κ(y), ΞM(x) = RM(x) +

M∑
N=0

(−1)NΞ(N)(x), (2.16)

Ψκ
M(x) =

M∑
N=0

(−1)NΨ(N),κ(y), ΞιM(x) = RιM(x) +

M∑
N=0

(−1)NΞ(N),ι(x), (2.17)

µp = pP(e1 6∈ C (0) | (0, e1) vacant), (2.18)

with

RM(x) ≤ µp
∑
y∈Zd

κ∈{±1,...,±d}

Ψ(M),κ(y)τκ(x− y + eκ), (2.19)

RιM(x) ≤
∑
y∈Zd

κ∈{±1,...,±d}

Π(M),ι,κ(y)τκ(x− y + eκ). (2.20)

Explicit formulas for the lace-expansion coefficients in (2.16)–(2.17) are given in Section
3.3.

Of course, the precise formulas for the lace-expansion coefficients are crucial for
our analysis to succeed. However, at this stage, we refrain from stating their forms
explicitly, and refer to Section 3.3 instead. We continue by discussing how to bound
these coefficients.

2.3 Part (b): bounds on the NoBLE

In this section, we explain the strategy of proof for bounds on the lace-expansion
coefficients of the NoBLE. We start by rewriting the equations (2.14) and (2.15) to obtain
an explicit equation for τ̂(k).

The NoBLE-equation Using the NoBLE expansion of Proposition 2.1 we now derive
the NoBLE form, which rewrites τ̂(k) in a form that is a perturbation of (2.9). We take
the Fourier transforms of (2.14) and (2.15) to obtain

τ̂(k) = 1 + Ξ̂M(k) + µp
∑
κ

(1 + Ψ̂κ
M(k))e−ik·eκ τ̂κ(k), (2.21)

τ̂(k) = τ̂ ι(k) + µpe
ik·eι τ̂−ι(k) +

∑
κ

Π̂ι,κ
M (k)e−ik·eκ τ̂κ(k) + Ξ̂ιM(k). (2.22)
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Mean-field behavior for nearest-neighbor percolation in d > 10

We write ~̂τ(k) ∈ R2d for the (column-)vector with entries

(~̂τ(k))ι = (τ̂ ι(k)). (2.23)

and note that, by D̂(k)J = JD̂(−k) (see (2.7)) and k−ι = −kι,

eik·eι τ̂−ι(k) =
(
D̂(k)J~̂τ(k)

)
ι
. (2.24)

Defining the vectors ~̂Ψ(k),
~̂
ΞM(k) and the matrix Π̂M(k), with entries

(
~̂
Ψ(k))κ = Ψ̂κ(k), (

~̂
ΞM(k))ι = Ξ̂ιM(k), (Π̂M(k))ι,κ = Π̂ι,κ

M (k), (2.25)

we can rewrite (2.22) as

τ̂(k)~1 = ~̂τ(k) + µpD̂(k)J~̂τ(k) + Π̂M(k)D̂(−k)~̂τ(k) +
~̂
ΞM(k), (2.26)

so that

~̂τ(k) = D̂(k)
[
D̂(k) + µpJ + Π̂M(k)

]−1 ×
(
τ̂(k)~1− ~̂ΞM(k)

)
. (2.27)

In turn, by (2.21), the above gives rise to the relation

τ̂(k) =1 + Ξ̂M(k) + µp(~1 +
~̂
ΨM(k))T D̂(−k)~̂τ(k)

=1 + Ξ̂M(k)− µp(~1 +
~̂
ΨM(k))T

[
D̂(k) + µpJ + Π̂M(k)

]−1~̂
ΞM(k)

+ τ̂(k)µp(~1 +
~̂
ΨM(k))T

[
D̂(k) + µpJ + Π̂M(k)

]−1~1. (2.28)

Thus, we can solve the above equation as

τ̂(k) =
1 + Ξ̂M(k)− µp(~1 +

~̂
ΨM(k))T

[
D̂(k) + µpJ + Π̂M(k)

]−1~̂
ΞM(k)

1− µp(~1 +
~̂
ΨM(k))T

[
D̂(k) + µpJ + Π̂M(k)

]−1~1
. (2.29)

Equation (2.29) is the NoBLE equation, and is the workhorse behind our proof. The goal
of the NoBLE is now to show that (2.29) is indeed a perturbation of (2.9). This amounts

to proving that Ξ̂M(k),~̂ΞM(k), ~̂ΨM(k) and Π̂M(k) are small, which will only be true in
sufficiently high dimensions.

We will show that, for every p < pc(d), the remainder terms RM(x), RιM(x) → 0 as
M → ∞. The content of the second key proposition is that the NoBLE coefficient can
be bounded by combinations of simple diagrams. Simple diagrams are combinations of
two-point functions, alike the triangle defined in (1.13) and the following examples:

(2dp)2(τp ? D ? D ? τp)(eι), sup
x∈Zd : ‖x‖22>2

∑
y∈Zd

‖y‖22τp(y)(τp ? D)(x− y). (2.30)

In Section 4 we prove that we can derive bounds on the NoBLE coefficients:

Proposition 2.2 (Diagrammatic bound on the NoBLE coefficients). For each N ≥ 0 the
NoBLE coefficients Π(N),ι,κ(y), Ξ(N)(x), Ψ(N),κ(y) and Ξ(N),ι(x) can be bounded by a finite
combination of sums and products of simple diagrams.

The explicit form of the bounds in Proposition 2.2 is given in Section 4.3 for N = 0, in
Section 5.2 for N = 1, and in Section 5.3 for N ≥ 2.

As the complete proof of the bounds on the NoBLE coefficients is quite elaborate, we
only sketch the proof. In this paper, we only informally define the building blocks that
we use to bound the coefficients. A complete definition and more details can be found in
the extended version [16].
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Mean-field behavior for nearest-neighbor percolation in d > 10

Remark 2.3 (Matrix-valued bounds). The lace-expansion coefficients describe contribu-
tions created by multiple mutually intersecting paths, which we call loops. In the NoBLE,
these loops require at least 4 bonds by design, as direct reversals are excluded. Lines
can be part of two loops. To optimally use the information that loops contain at least 4
bonds, we distinguish three cases for the length of lines shared by two loops. Then, we
bound the contribution of a loop to the lace-expansion diagram in terms of the lengths
of the lines shared with the previous and preceding loops. We explain this in detail in
Section 5.1, see especially Figures 10 and 11. This gives rise to a bound on the NoBLE
coefficients in terms of a matrix product, as given in Section 5.3 below. In Section 6.1,
we explain how these matrix-valued bounds arise, see especially (6.5). For example, our
proof yields that

Ξ̂(N)

p (0) ≤~P S(Bι)N−1Āι ~P E,

for N ≥ 2, see (5.34), for certain vectors P S, P E and 3 by 3 matrices Āι,Bι. We will
give an interpretation to the elements in these vectors and matrices in Section 5.1.
For our analysis we require a bound on this when summed over N . To compute this
bound numerically, we perform an eigenvector decomposition of ~P S, in terms of the
eigenvectors (~vi)

3
i=1 of Bι with corresponding eigenvalues (λi)

3
i=1. In this decomposition,

we write ~P S =
∑3
i=1 ~vi, so that the eigenvectors used are not normalized.2 Then,

Ξ̂(N)

p (0) ≤
3∑
i=1

~viλ
N−1
i Āι ~P E.

The sum of this over N is computed using the geometric sum, see [17, Section 5.4] for
more details. The order of this bound is to a large extent given by the largest eigenvalue
of Bι. For example, in d = 11,

Bι =

0.0134202 0.0112907 0.0257405

0.0127527 0.0108018 0.0338533

0.028009 0.0260537 0.0401418

 .

with largest eigenvalue λ1 = 0.073. In the classical lace expansion also bounds on the
N th lace-expansion diagram are present that decay exponentially in N , where the base
of the exponent, roughly corresponding to

∑
i,j Bι

i,j , is bounded in terms of a non-trivial
triangle, which we can bound by 0.281. This shows the power of the NoBLE, as well as
the gain achieved by using matrix-valued bounds.

2.4 Part (c): the NoBLE analysis

We start by defining what our so-called bootstrap functions are.

Bootstrap functions For the bootstrap, we use the following functions:

f1(p) := max {(2d− 1)p, cµ(2d− 1)µp} , (2.31)

f2(p) := sup
k∈(−π,π)d

τ̂p(k)

B̂1/(2d−1)(k)
=

2d− 1

2d− 2
sup

k∈(−π,π)d
[1− D̂(k)] τ̂p(k), (2.32)

f3(p) := max
{n,l,S}∈S

supx∈S
∑
y ‖y‖22τp(y)(τ?np ? D?l)(x− y)

cn,l,S
, (2.33)

where cµ > 1 and cn,l,S > 0 are some well-chosen constants and S is some finite set of
indices. Let us now start to discuss the choice of these functions.

2We do not account for the possibility that Bι is not diagonalizable, as numerically this has never occurred
in our applications.
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Mean-field behavior for nearest-neighbor percolation in d > 10

The functions f1 and f3 can been seen as the combinations of multiple functions. We
group these functions together as they play a similar role and are analyzed in the same
way. We do not expect that the value of the bound on the individual functions constituting
f1 and f3 are comparable. This is the reason that we introduce the constants cµ and
cn,l,S .

The value of n is model-dependent. For SAW, we would use only n = 0. For percolation,
we use n = 0, 1, while n = 0, 1, 2 for LT and LA. This can intuitively be understood as
follows. By the x-space asymptotics in (1.15), and the fact that (f ? f)(x) ∼ ‖x‖4−d2 when
f(x) ∼ ‖x‖2−d2 , we have that ‖y‖22τp(y) ∼ (τp ? τp)(y). As a result, this suggests that∑

y

‖y‖22τp(y)(τ?np ? D?l)(x− y) ∼
∑
y

(τp ? τp)(y)(τ?np ? D?l)(x− y) =
(
τ?(n+2)
p ? D?l

)
(x),

(2.34)
so that finiteness of

∑
y ‖y‖22τp(y)(τ?np ? D?l)(x− y) is related to finiteness of the bubble

when n = 0, of the triangle when n = 1 and of the square when n = 2.
The choices of point-sets S ∈ S improve the numerical accuracy of our method. For

example, we obtain much better estimates in the case when x = 0, since this leads
to closed diagrams, than for x 6= 0. For x being a neighbor of the origin, we can
use symmetry to improve our bounds significantly. To obtain the infrared bound for
percolation in d ≥ 11, we use

S =
{
{0, 0,X}, {1, 0,X}, {1, 1,X}, {1, 2,X}, {1, 3,X}, {1, 6, {0}}

}
, (2.35)

with X = {x ∈ Zd : ‖x‖2 > 1}. This turns out to be sufficient for our main results.
We apply a forbidden region or bootstrap argument that is based on three claims:

(i) p 7→ fi(p) is continuous for all p ∈ [1/(2d− 1), pc) and i = 1, 2, 3;

(ii) fi(1/(2d− 1)) ≤ γi holds for i = 1, 2, 3; and

(iii) if fi(p) ≤ Γi holds for i = 1, 2, 3, then, in fact, also fi(p) ≤ γi holds for every
i = 1, 2, 3, where γi < Γi for every i = 1, 2, 3.

Together, these three claims imply that fi(1/(2d − 1) ≤ γi holds for every i = 1, 2, 3

and all p ∈ [1/(2d − 1), pc). This in turn implies the statement of Theorem 1.1 for all
p ∈ [1/(2d− 1), pc).

The continuity in Claim (i) is proven in [17] under some assumption that we explain
and prove below. The proofs of the initialization of the bootstrap in Claim (ii) as well as
the improvement of the bounds in Claim (iii) use the following relations that are also
sketched in Figures 2 and 3, where we write pI = 1/(2d− 1):

(1) simple diagrams can be bounded by a combination of two-point functions, see [17,
Section 4];

(2) the NoBLE coefficients can be bounded by a combination of simple diagrams, see
Section 4;

(3) bounds on the NoBLE coefficients imply bounds on the two-point function, see [17,
Section 2].

Thus, whenever we have numerical bounds on simple diagrams, or on NoBLE coefficients,
or on the two-point function, we can also conclude bounds on the other two quantities.

Using that τpI (x) ≤ BpI (x) with pI = 1/(2d − 1) and that we can compute BpI (x)

numerically, we verify the initialization of the bootstrap in Claim (ii) (i.e., fi(pI) ≤ γi for
i = 1, 2, 3) numerically, see Figure 2.
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Mean-field behavior for nearest-neighbor percolation in d > 10

fi(pI) ≤ γi

Bounds on simple diagrams

Bounds on coefficients

τpI (x) ≤ BpI (x)

Conclude a bound

Figure 2: Initialization of the bootstrap: proof that fi(pI) ≤ γi holds for i = 1, 2, 3. Here
γ1, γ2, γ3 are appropriately and carefully chosen constants.

fi(p) ≤ Γi

fi(p) ≤ γi

Bounds on simple diagrams

Bounds on coefficients

Assume a bound

Conclude a bound

Figure 3: Proof of claim (iii): fi(p) ≤ Γi for i = 1, 2, 3 implies that fi(p) ≤ γi for i = 1, 2, 3.

The proof of Claim (iii) is the most elaborate step of our analysis. Its structure is
shown in Figure 3. We start from the assumption that fi(p) ≤ Γi holds for every i = 1, 2, 3.
The function f1 gives a bound on p and f2 allows us to bound the two-point function in
Fourier space by B̂pI (k), which we can integrate numerically to obtain numerical bounds
on simple diagrams. These, in turn, imply bounds on the NoBLE coefficients, which we
use to compute bounds on the bootstrap functions.

In the case that the computed bounds are small enough, we can conclude that
fi(p) ≤ γi holds and thereby that the improvement of the bounds in Claim (iii) holds.
Whether we can indeed prove that Claim (iii) holds depends on the dimension we are in,
the quality of the bounds and the analysis used to conclude bounds for the bootstrap
function. In high dimensions (e.g. d ≥ 1000) the perturbation is rather small so that it is
relatively easy to prove Claim (iii). Proving the claim in lower dimension is only possible
when the bounds on the lace-expansion coefficients and the analysis are sufficiently
sophisticated. It is here that it pays off to apply the NoBLE compared to the classical
lace expansion.

The third step in the proof of Theorem 1.1 is formalized in the following proposition:

Proposition 2.4 (Successfull application of NoBLE analysis). For nearest-neightbor per-
colation in d ≥ 11, the NoBLE analysis of [17] applies and proves the infrared bound in
Theorem 1.1. In particular, there exist constants Γ1,Γ2,Γ3 and γ1, γ2, γ3 such that, for
every p < pc, the bounds fi(p) ≤ Γi for i = 1, 2, 3 imply that fi(p) ≤ γi for i = 1, 2, 3.

As shown in Figure 3, Proposition 2.4 is proved using the results of Propositions 2.1-
2.2, the analysis of [17] and the computer-assisted proof performed in the Mathematica
notebook that can be found on [13]. To apply the general NoBLE analysis of [17]
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for percolation in d ≥ 11, we need to prove that the assumptions formulated in [17]
hold. We recall these assumptions when we prove them. For example, we now verify
the assumptions on the two-point function τp. In Section 3.5, we verify the symmetry
assumptions on the NoBLE coefficients. The assumption that is most difficult to prove is
the existence of the bounds on the NoBLE coefficients. We prove this in Sections 4– 6.
We give an overview of where to find the bounds on the NoBLE coefficients stated in [17,
Assumptions 4.3] in Section 5.4.

Verification of the assumptions for the general NoBLE analysis in [17] In this
section, we verify the assumptions in [17] that are independent of the NoBLE. Namely,
we prove that [17, Assumptions 2.2, 2.3 and 2.4] hold for percolation:

[17, Assumption 2.2]: at the initial point pI Whenever {0 ←→ x} occurs, there
exists a path of occupied bonds connecting 0 and x. Since such a connecting path is a
non-backtracking walk (NBW),

τp(x) ≤
∞∑
n=0

bn(x)pn = Bp(x), (2.36)

for all p ≤ 1/(2d− 1), which implies [17, Assumption 2.2].

[17, Assumption 2.3]: growth of the two-point function We need to show that
for every x ∈ Zd, the two-point functions p 7→ τp(x) and p 7→ τ ιp(x) are non-decreasing,
differentiable in p ∈ (0, pc). Further, we need to show that for all ε > 0, there exists a
constant cε ≥ 0 such that for all p ∈ (0, pc − ε) and x ∈ Zd \ {0},

d

dp
τp(x) ≤ cε(τp ? D ? τp)(x), and therefore

d

dp
τ̂p(0) ≤ cετ̂p(0)2. (2.37)

Finally, we need to show that for each p ∈ (0, pc), there exists a constant K(p) <∞ such
that

∑
x∈Zd ‖x‖22τp(x) < K(p). We will do this now.

We recall that τp(x) = Pp(0←→ x), so that τp(x) is non-decreasing in p as occupying
a bond can only increase the probability that a path of occupied bonds from 0 to x exists.
The same clearly also holds for τ ιp(x) in (2.12). The differentiability of p 7→ τp(x) is well
known for p ∈ (0, pc) and the bound on the derivative (2.37) is obtained using Russo’s
Formula ([46, Lemma 3] or [19, Theorem 2.25]) and the BK-inequality [8]. As these are
standard arguments in percolation theory we will not comment further on them. The
argument for τ ιp(x) is identical, by considering percolation on the base graph Zd \ {eι}
instead.

To prove the bound on
∑
x∈Zd ‖x‖22τp(x), by [19, Theorem 6.1],

τp(x) ≤ e−σ(p)‖x‖∞ , (2.38)

where ‖x‖∞ = maxdi=1 |xi|, with σ(p) > 0 for every p < pc. From this, we conclude that∑
x ‖x‖22τp(x) ≤ K(p) <∞, which completes the proof of [17, Assumption 2.3].

[17, Assumption 2.4]: continuity of µ̄p and µp In the application of the analysis in
[17], we define µ̄p = p and µp = pPp(e1 6∈ C (0) | (0, e1) vacant). Thus, p 7→ µ̄p clearly is
continuous in p. For µp, we note that the percolation two-point function on the lattice Zd

where the edge {0, eι} is deleted, is also continuous. This can e.g. be seen by modifying
the proof of [17, Assumptions 2.3], given above. Thus, also p 7→ µp is continuous.
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2.5 Part (d): numerical analysis

In this section, we explain how the numerical computations are performed using
Mathematica notebooks that are available from the first author’s homepage.

Simple-random walk computations The procedure starts by evaluating the notebook
SRW. The file computes the number of SRWs and SAWs of a given number of steps ending
at various locations in Zd, using a combinatorial analysis, as well as numerical values
for SRW integrals based on numerical integration of certain Bessel functions. These
computations are performed in [25, Appendix B], and are explained in detail in [17,
Section 5]. The SRW integrals provide rigorous numerical upper bounds on various
convolutions of SRW Green’s functions with themselves, evaluated at various x ∈ Zd. For
the analysis in d = 11, we rely on 112 of such integrals.

Running these programs takes several hours. For this reason, once computed, the
results are saved in two files, SRWCountData.nb and SRWIntegralsData.nb and are
loaded automatically when the notebooks are evaluated a second time for the same
dimension. Alternatively, these two files can also be downloaded directly from the home
page of the first author, and put in one’s own home directory.3

Implementation of the NoBLE analysis for percolation After having computed all
the simple random walk ingredients, we evaluate the notebook General, that implements
the bounds of the NoBLE analysis [17]. After this, we are ready to perform the NoBLE
analysis for percolation by evaluating the notebook Percolation. In the percolation
notebook, we implement all the bounds proved in this paper. The computations in
General and Percolation merely implements the bounds proved in this paper and in
[17], and rely on many multiplications and additions, as well as the diagonalization of 2
three-by-three matrices. These computations could in principle be done by hand (even
though we prefer a computer to do them).

Output of mathematica notebooks After having evaluated the Mathematica note-
books, we can verify whether the analysis has worked with the chosen constants Γ1,Γ2,Γ3.
See Figure 4 for the first output after evaluating the Percolation notebook. Let us now
explain this output in more detail. The green dots mean that the bootstrap has been
successful for the parameters as chosen. When evaluating the notebook, it is possible
that some red dots appear, and this means that these improvements were not successful.
The first 3 dots in the first table are the verifications that fi(1/(2d− 1)) ≤ γi for i = 1, 2, 3.
The next three dots show that the improvement has been successful for all p < pc(11).
The values for Γ1,Γ2,Γ3 are indicated in the first few lines. For example, Γ1 = 1.01306

means that (2d − 1)p ≤ 1.01306. In the verification of the bootstrap improvement, it
turns out that γ1 can be taken to be 1.0130591. Since this it true for all p < pc(11), we
obtain that (2d− 1)pc(11) ≤ 1.0130591. This explains the value in the table in Theorem
1.2. Similarly, Γ2 = 1.076. This implies that A2(11) ≤ 1.07513× 20/21 = 1.02393. Anyone
interested in obtaining improved bounds on pc(d) or A2(d) for d ≥ 11 can play with the
notebook to optimize them. The second table in Figure 4 gives more details on the
improvement of f3(p), which, as indicated in (2.33), consists of several contributions,
over which the maximum is taken. The assumed bound correspond to the constants cn,l,S ,
with S ∈ S in (2.35). The notebook Percolation also includes a routine that optimizes
the choices of Γi and cn,l,S . This makes it easier to find values for which the analysis
works (when these exist).

3In Mathematica, the command $InitialDirectory will tell you what this directory is.
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Mean-field behavior for nearest-neighbor percolation in d > 10

Figure 4: Output of the Mathematica notebook Percolation.

2.6 Structure of the NoBLE proof and related results

Summary of the proof of the infrared bound in Theorem 1.1 We have explained
the proof of the infrared bound in Theorem 1.1. When reviewing the analysis, we
have already seen how delicately the four parts of the proof described on page 7
are intertwined. The expansion in part (a) gives us a characterisation of τ̂p(k) as a
perturbation of B̂µ(k) involving the NoBLE coefficients. The analysis in part (c) allows
us to compute bounds on τ̂p(k) provided that numerical bounds on the coefficients are
available. To obtain such bounds we need to derive diagrammatic bounds, as formulated
in part (b), that bound the NoBLE coefficients by simple diagrams. However, we rely on
bounds on τp to bound such simple diagrams. Thus, we obtain a circular reasoning.

Using the bootstrap argument we can indeed complete the circle, see Figures 2-3,
to obtain a bound on τ̂p(k) for all p ∈ [1/(2d − 1), pc). For the bootstrap argument, we
need to show that fi(pI) ≤ γi, as well as the fact that fi(p) ≤ Γi implies that fi(p) ≤ γi,
for appropriately chosen γi and Γi for all p ∈ (1/(2d− 1), pc). The verification whether
fi(pI) ≤ γi holds for i = 1, 2, 3. Whether we can conclude from fi(p) ≤ Γi for i = 1, 2, 3

that also fi(p) ≤ γi holds for i = 1, 2, 3 requires a computer-assisted proof as indicated
in Section 2.5. Starting from τpI (x) ≤ B1/(2d−1)(x), fi(p) ≤ Γi for i = 1, 2, 3 and explicit
computations of B1/(2d−1)(x), we obtain numerical bounds on simple diagrams. These are
then used to obtain numerical bounds on the NoBLE coefficients, which we in turn use
to verify whether we can actually conclude from fi(p) ≤ Γi for i = 1, 2, 3 that fi(p) ≤ γi
for i = 1, 2, 3 holds.

Combining these steps yields the required results for p ∈ [1/(2d− 1), pc). We obtain
the statement also for p = pc by using that τ̂p(k)/B̂1/(2d−1)(k) and the NoBLE-coefficients
are continuous and uniformly bounded for p ∈ [1/(2d − 1), pc) and left-continuous in
x-space at pc. We explain this in more detail in Section 3.5.

The numerical bounds in Theorem 1.2 As can be observed from Figure 4, after
running the notebook Percolation, we obtain numerical estimates on f1(p) and f2(p)

that are uniform in p ≤ pc(d), which will provide the bounds in Theorem 1.2.

Proof of related results and the classical lace expansion The strategy behind the
proof of our related results in Theorems 1.4 and 1.5 is that we show that the classical lace
expansion actually also converges, and we prove sufficient bounds on the clasical lace-
expansion coefficients to deduce Theorems 1.4 and 1.5 from the literature. Remarkably,
we thus see that for d = 11, we cannot directly prove that the classical lace expansion
converges, but we can prove it after we have obtained sharp estimates on the two-point
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Mean-field behavior for nearest-neighbor percolation in d > 10

function in k-space and on pc(11) using the NoBLE. Theorem 1.6 follows directly from
Theorem 1.4.

2.7 Relations to the literature

Trigonometric approach The improvement of the bootstrap function f3(p) is the most
delicate of the general analysis. In the bootstrap function f3(p), the most important
parameter is n ≥ 0. In (2.34), we have explained that we can think of f3(p) as bounding
various triangle diagrams.

In [9, 29, 50], the use of trigonometric functions has been used successfully to simplify
the traditional lace-expansion analysis. In the trigonometric approach, the analysis is
performed directly in k-space, by using

f̃3(p) = sup
k,l∈(−π,π]d

|τ̂p(k + l) + τ̂p(k − l)− 2τ̂p(k)|
Û(k, l)

, (2.39)

where

Û(k, l) = [1− D̂(l)]
[
Ĉ(k + l)Ĉ(k − l) + Ĉ(k + l)Ĉ(k) + Ĉ(k − l)Ĉ(k)

]
, (2.40)

and related objects, instead of f3(p) in (2.33). We have compared both approaches using
the NoBLE in the thesis of the first author [14]. This comparison shows that the x-space
approach that we describe in this paper is numerically superior, and therefore we have
decided not to describe the competing trigonometric approach.

The analysis that we derive in [17] is powerful and flexible. Both the bounding and
the analysis could be further improved to reduce the dimension even further. However,
we have decided that the necessary effort would not be in relation to the possible gain.
The ideas underlying these bounds are explained in Sections 3-5. The precise definitions
are in [16, Appendix A]. It turns out that our methods no longer work in dimension d = 10.
The main reason is that the improvement of f3(p) becomes problematic. Particularly the
weighted open bubbles become rather large, and as a result, the perturbations become
unmanageable.

Relations to the work of Hara and Slade We close this discussion section by relating
our methods to those of Hara and Slade, which have been explained in full detail for
SAW in [24]. Takashi Hara has been so kind to explain us how it has been precisely
implemented for percolation. The crucial estimates involve the triangle diagram. We can
bound this using f2(p), but typically the constant Γ2 that is used to bound the two-point
function in k-space is rather large, and thus limits the numerical accuracy of the method.
Therefore, both here as well as in the analysis by Hara and Slade, such bounds are being
improved. The main method of Hara and Slade is to improve the bounds on the two-point
function by bounding

τp(x) ≤ τ1/(2d−1)(x) + (p− pI)
d

dp
τp(x). (2.41)

We can obtain a good start by noting that τ1/(2d−1)(x) ≤ B1/(2d−1)(x), which can be
numerically computed and is independent of Γ2. By Russo’s formula,

d

dp
τp(x) ≤ (τp ? τp ? D)(x), (2.42)

which can then be bounded using f2(p). Since this yields a small factor p− pI in front of
these terms, these bounds are smaller than those obtained by using f2(p) immediately.
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However, it does mean that τp is bounded in terms of τp ? τp, which turns a triangle
into a square. For the best possible results, which apply to d ≥ 15, this bound is used
repeatedly leading to heptagons. Since heptagons are only finite for d ≥ 15, this method
cannot be used for d = 11.

Let us comment on the main differences of our approach compared to that of Hara and
Slade. Our NoBLE expansion perturbs around non-backtracking random walk, and thus
explicitly takes immediate reversals into account. As a result, loops arising in the lace-
expansion coefficients consist of at least four bonds. We use a matrix-based approach
to bound the lace-expansion coefficients taking the number of bonds on loops explicitly
into account. This is much more efficient, as it removes the dominant contribution from
the lace-expansion coefficients. In particular, when explicitly taking the length of paths
into account, we bound

τp(x)− δ0,x ≤ 2dpD(x) + 2dp(D ? (τp − δ0))(x). (2.43)

Terms containing D can be computed explicitly, and the factor D in the second term also
significantly reduces the bound. This bound is further improved by noting that the paths
leading to triangles are often mutually disjoint, thus leading to self-repellent triangles.
Also, we extract longer paths than the single-step path in (2.43), and use that these
paths can be taken to be mutually disjoint. Finally, the accuracy is significantly improved
due to the NoBLE expansion, which ensures that all closed paths contain at least 4 steps,
so that our triangles contain more steps than those in the Hara-Slade approach. Apart
from these differences, our method crucially relies on the ideas of Hara-Slade in [24], in
that spatial estimates have been used, the SRW Green’s functions are computed in the
same way, etc. Thus, our work could not have been possible without theirs.

Recently, Chen, Handa, Heydenreich, Kamijima and Sakai [11] have started to
investigate percolation on the high-dimensional body-centered cubic lattice. Here,
the bonds are given by {x, y}, where |xi − yi| = 1 for every i ∈ {1, . . . , d}. Thus, the
degree of this base graph is 2d compared to the degree of the hypercubic lattice, which
is 2d. Therefore, one is tempted to believe that mean-field behavior follows more easily
in lower dimensions. It would be of great interest to verify (either by the classical
lace expansion or the NoBLE) whether mean-field behavior for the body-centered cubic
lattice can be proved for all d ≥ 7. More information on SAW and percolation on the
body-centered cubic lattice is given in [20].

Organization of this paper In Section 3, we perform the NoBLE, and thus prove
Proposition 2.1. In Section 4, we explain how diagrammatic bounds on the NoBLE
coefficients can be obtained. These diagrammatic bounds are phrased in terms of
various building blocks that are informally defined in Section 5. In Section 6, we explain
how such diagrammatic bounds can be obtained, without going in too much detail. In
Section 7, we prove Theorems 1.4, 1.5 and 1.6 using results from the literature.

3 The non-backtracking lace expansion

In this section, we derive the NoBLE and thereby prove Proposition 2.1. We proceed
as follows: In Section 3.1, we introduce the necessary notation, including a specific
restricted two-point function. In Section 3.2, we prove an expansion for this restricted
two-point function. In Section 3.3, we use this expansion to obtain Proposition 2.1.

3.1 Notation

Parts of this section are taken almost verbatim from [31, Section 2]. Fix p ∈ [0, 1]. We
write τ(x) = τp(x) for brevity, and generally drop subscripts indicating dependence on p.
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Mean-field behavior for nearest-neighbor percolation in d > 10

Definition 3.1 (Occurring on and off sets of vertices and bonds).

(i) Given a bond configuration ω and two points x, y ∈ Zd, we say that x and y

are connected, and write x ←→ y, when there exists a path of occupied edges
connecting x and y. Further, we say that x and y are doubly connected, and write
x⇐⇒ y, when there exist two bond-disjoint paths of occupied bonds connecting x
and y. We adopt the convenient convention that x is doubly connected to itself.

(ii) Given a (deterministic or random) set of undirected bonds B and a bond configura-
tion ω, we define ωB, the restriction of ω to B, to be

ωB({x, y}) =

{
ω({x, y}) if {x, y} ∈ B,
0 otherwise,

(3.1)

for every nearest-neighbor pair x, y. In other words, ωB is obtained from ω by
making every bond that is not in B vacant.

(iii) Given a (deterministic or random) set of vertices A, we define B(A) to be the set of
all bonds that have at least one endpoint in A.

(iv) Given a (deterministic or random) set of bonds B and an event E, we say that E
occurs in B, and write {E in B}, if ωB ∈ E. In other words, {E in B} means that E
occurs on the (possibly modified) configuration in which every bond that is not in B
is made vacant. We further say that E occurs off B when E occurs in Bc.

(v) Given a (deterministic or random) set of vertices A and an event E, we say that E
occurs in A, and write {E in A}, when E occurs in B(A). We adopt the convenient
convention that {x←→ x in A} occurs if and only if x ∈ A. We further say that E
occurs off A when E occurs in B(A)c.

(vi) Given a bond configuration and x ∈ Zd, we define C (x) to be the set of vertices to
which x is connected, i.e., C (x) = {y ∈ Zd : x←→ y}. Given a bond configuration
and a bond b, we define C̃ b(x) to be the set of vertices y ∈ C (x) to which x is
connected in the (possibly modified) configuration in which b is made vacant.

(vii) Given a deterministic set of bonds B, we define the probability measure PB by

PB(E) = P(E occurs off B). (3.2)

Regarding this definition we note for all events E and deterministic sets of bonds
B,B′, {

{E off B} off B′
}

= {E off B ∪B′}, (3.3)

and therefore

PB(E off B′) = P(E occurs off B ∪B′). (3.4)

Now we introduce the restricted two-point function, that was already stated in (2.13).
For any point y we define

τyp (x) = Pp(0←→ x off B(y)) = PB(y)
p (0←→ x). (3.5)

As abbreviation we define for ι ∈ {±1, . . . ,±d}

τ ιp(x) = τeιp (x) = Pp(0←→ x off eι). (3.6)

and note that τ ιp(y − x) = Pp(x←→ y off B(x+ eι)).
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Definition 3.2 (Connections through). Given a bond configuration and a set of bonds B ⊆
Zd ×Zd, we say that x is connected to y through B, and write x

B←→ y, if every occupied
path connecting x to y contains at least one bond in B. Given a bond configuration

and a set A ⊆ Zd, we say that x is connected to y through A, and write x
A←→ y, if x is

connected to y through B(A). By convention, x
A←→ x holds if and only if x ∈ A.

In terms of these events, it is clear that, for every set of vertices A ⊆ Zd,

{x A←→ y} = {x←→ y} \ {x←→ y off B(A)}. (3.7)

We can generalize this as follows: For any points w, x, y ∈ Zd and set of bonds B such
that B(w) ⊆ B we know that

{x←→ y off B} = {x←→ y off B(w)} \ {x B←→ y off B(w)}, (3.8)

which implies that

P
(
x←→ y off B

)
= τw−x(y − x)− Pw(x←B−→ y). (3.9)

Using this notation we first prove a general form of the expansion and use it in
Section 3.3 to derive the expansion stated in Proposition 2.1:

Lemma 3.3 (General NoBLE equation). Fix x, y ∈ Zd. Let M ∈ N, A be any deterministic
set of vertices and B be any deterministic set of bonds satisfying that either B ⊆ B(x) or
B = B(A′) for some set of vertices A′ ⊆ Zd. Then there exist ΞB

M , ΨB,κ
M and RB

M such that

PB(x
A←→ y) = ΞB

M(x, y;A) +
∑
w,κ

pΨB,κ
M (x,w;A)τκ(y − w + eκ) +RB

M(x, y;A). (3.10)

The dependence of ΞB
M and ΨB,κ

M on M is given by

ΞB

M(x, y;A) =

M∑
N=0

(−1)NΞB,(N)(x, y;A), ΨB,κ
M (x,w;A) =

M∑
N=0

(−1)NΨB,(N),κ(x,w;A),

(3.11)

with ΞB,(N)(x, y;A) and ΨB,(N),κ(x,w;A) independent of M .

The functions ΞB
M and ΨB,κ

M are the key quantities in the NoBLE, andRB
M is a remainder

term. The alternating signs in (3.11) arise via repeated use of inclusion-exclusion. We
will apply Lemma 3.3 for three choices of bond sets B, namely, B = ∅, B = B(v) for
some v incident to x, and B = {b} for some bond b incident to x. The first and the
last choices satisfy that B ⊆ B(x), the second satisfies the alternative restriction. This
restriction arises since we wish to use the Cutting Lemma (see Lemma 3.5 below), which
is traditionally stated in terms of vertex sets.

The next section is devoted to the proof of Lemma 3.3.

3.2 Expansions for restricted two-point functions

We next define what it means for a bond to be pivotal:

Definition 3.4 (Pivotal bonds). Given a bond configuration, a bond {u, v} (occupied or
not) is called pivotal for the connection from x to y, if (i) either x ←→ u and y ←→ v,
or x ←→ v and y ←→ u, and (ii) y 6∈ C̃ {u,v}(x). Bonds are not usually regarded as
directed. However, it will be convenient at times to regard a bond {u, v} as directed
from u to v, and we will emphasize this point of view by writing (u, v) for a directed bond.
A directed bond (u, v) is pivotal for the connection from x to y, if x←→ u, v ←→ y and
y 6∈ C̃ {u,v}(x). For a directed bond b = (u, v), we denote its starting point by b = u and
its ending point by b = v.
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A

x
b b̄ y

Figure 5: The event E(x, b, y;A) of Lemma 3.5. The shaded regions represent the vertices
in A. There is no restriction on intersections between A and C̃ b(y).

In terms of Definition 3.1, we have the characterization of a pivotal bond for v ←→ y

as

{b pivotal for v ←→ y} = {v b←→ y}

=
{
{v ←→ b, b 6∈ C̃ b(v)} in B(C̃ b(v)) \ {b}

}
∩
{
b←→ y in B(C̃ b(v))c

}
. (3.12)

For a set of vertices A, we define the events

E′(v, y;A) = {v A←→ y} ∩

{
@b′ occupied and pivotal for

v ←→ y such that v
A←→ b′

}
(3.13)

and

E(x, b, y;A) = E′(x, b;A) ∩ {b is occupied and pivotal for x←→ y}. (3.14)

Given a configuration in which x←A−→ y, the cutting bond b is defined to be the first

bond that is pivotal for x←→ y such that x←A−→ b. It is possible that no such bond exists.

By partitioning {x A←→ y} according to the location of the cutting bond (or the lack of a
cutting bond), we obtain

{x A←→ y} = E′(x, y;A)
⋃̇ ⋃̇

b

E(x, b, y;A), (3.15)

which implies that

PB(x
A←→ y) = PB(E′(x, y;A)) +

∑
b

PB(E(x, b, y;A)) (3.16)

= PB(E′(x, y;A)) +
∑
b 6∈B

PB(E(x, b, y;A)),

where the last equality follows from the fact that under PB the event E(x, b, y;A) is
supposed to occur off B. The following lemma is the major tool that we use to derive the
expansion:

Lemma 3.5 (The cutting lemma). Let p < pc(d), x, y ∈ Zd, and A ⊆ Zd. Then, for all
bonds b,

P (E(x, b, y;A)) = pE0

(
1lE′(x,b;A)1l{b6∈C̃ b

0 (x)}P1

(
b←→ y off C̃ b

0 (x)
))
. (3.17)

We emphasize the fact that we deal with two percolation configurations by adding
subscripts 0 and 1, so that the law of C̃ b

0 (x) is described by P0 and C̃ b
0 (x) can be considered

to be deterministic when it appears in events described by P1.

Proof. The lemma is proved e.g. in [50, Lemma 10.1], with the exception that the
indicator b 6∈ C̃ b

0 (x) is absent on the right-hand side there. When b ∈ C̃ b
0 (x), however, we
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have P1(b←→ y off B(C̃ b
0 (x))) ≡ 0, so the statement is also true with the indicator. For

the NoBLE, keeping this indicator is crucial.

We remark here that [50, Lemma 10.1] proves Lemma 3.5 for percolation on all
graphs. As a result, Lemma 3.5 also applies to the measure PB for all deterministic bond
sets B and we obtain that for every p < pc(d), x, y ∈ Zd, set of bonds B, set of vertices A
and bonds b,

PB (E(x, b, y;A)) = pEB0
(

1lE′(x,b;A)1l{b 6∈C̃ b
0 (x)}P

B

1

(
b←→ y off C̃ b

0 (x)
))
. (3.18)

For the probability in the expectation we use (3.3) to see that

PB1
(
b←→ y off C̃ b

0 (x)
)

= P1

(
b←→ y off B(C̃ b

0 (x)) ∪B
)
. (3.19)

To apply Lemma 3.5 once more, we need to consider connections that are off a set of
vertices, while (3.19) instead considers a set of bonds. It is here that we rely on the two
special choices of B that we assumed in Lemma 3.3. Indeed, there we consider either
a set of bonds B such that B = B(A′) for some set of vertices A′ ⊆ Zd, or we consider
B ⊆ B(x). In the latter case, we have that B(C̃ b

0 (x)) ∪ B = B(C̃ b
0 (x)), since x ∈ C̃ b

0 (x).
For this choice of B, for convenience we write A′ = ∅. Considering only the cases of
Lemma 3.3, we conclude

PB1
(
b←→ y off C̃ b

0 (x)
)

= P1

(
b←→ y off C̃ b

0 (x) ∪A′
)
, (3.20)

and now C̃ b
0 (x) ∪A′ is a collection of vertices, as required in Lemma 3.3.

The term in (3.20) denotes the restricted two-point function given the cluster C̃ b
0 (x)

of the outer expectation EB0 . In other words, in (3.18) the inner expectation that defines
P1, effectively introduces a second percolation model on a second graph, which depends
on the original percolation model via the set C̃ b

0 (x). We stress this delicate point here, as
it is also crucial for the further expansion. Combining (3.20) with (3.16) leads to

PB(x
A←→ y) =PB(E′(x, y;A))

+
∑
b 6∈B

pEB0
(

1lE′(x,b;A)1l{b6∈C̃ b
0 (x)}P1

(
b←→ y off C̃ b

0 (x) ∪A′
))
. (3.21)

As in (3.21) the indicator 1lE′(x,b;A) is present we know that only configurations with

b ∈ C̃ b(x) contribute and we can apply (3.9) with B = C̃ b(x) ∪A′ and w = b to obtain:

PB(x
A←→ y) =PB(E′(x, y;A)) +

∑
b 6∈B

pEB0
(

1lE′(x,b;A)1l{b6∈C̃ b
0 (x)}

)
τ b(b, y)

−
∑
b 6∈B

pEB0
(

1lE′(x,b;A)1l{b 6∈C̃ b
0 (x)}P

b
1(b←C̃

b
0 (x)∪A′−−−−−−→ y)

)
(3.22)

=ΞB,(0)(x, y;A) +
∑
κ,w

1l{(w,w−eκ) 6∈B}pΨ
B,(0),κ(x,w;A)τκ(y − w + eκ)

+RB

0 (x, y;A),

where we define

ΞB,(0)(x, y;A) = PB(E′(x, y;A)), (3.23)

ΨB,(0),κ(x,w;A) = 1l{(w,w−eκ) 6∈B}PB(E′(x,w;A) ∩ {w − eκ 6∈ C̃ (w,w−eκ)
0 (x)}), (3.24)

RB

0 (x, y;A) = −
∑
b 6∈B

pEB0
(

1lE′(x,b;A)1l{b 6∈C̃ b
0 (x)}P

b
1

(
b←C̃

b
0 (x)∪A′−−−−−−→ y

))

= −
∑
b

pEB0
(

1lE′(x,b;A)1l{b 6∈C̃ b
0 (x)∪A′}P

b
1

(
b←C̃

b
0 (x)∪A′−−−−−−→ y

))
, (3.25)
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0
b b′

x

Figure 6: A possible configuration appearing in the second stage of the expansion.

where the last equality holds since b 6∈ B, so that also b 6∈ A′ trivially holds. See the text
below (3.19) for details on the choice of B and A′. Further, after this change, we may
remove the restriction b 6∈ B from the sum, since the expectation is trivially zero for
b ∈ B, both when B ⊆ B(x) and when B = B(A′).

This proves Lemma 3.3 for M = 0. To continue the expansion, we use (3.22) and

B(b) ⊆ B(C̃ b
0 (x)) since b ∈ C̃ b

0 (x), to rewrite the factor Pb1(b ←C̃
b
0 (x)∪A′−−−−−−→ y) appearing in

RB
0 (x, y;A) as

Pb1(b←C̃
b
0 (x)∪A′−−−−−−→ y) =Pb1(E′(b, y; C̃ b

0 (x) ∪A′))

+
∑
b1

pEb1
(

1lE′(b,b1;C̃ b
0 (b)∪A′)1l{b1 6∈C̃

b1
1 (b)}

)
τ b1(b1, y)

−
∑
b1

pEb1
(

1lE′(b,y;C̃ b
0 (b)∪A′)1l{b1 6∈C̃

b1
1 (b)∪{b}}P

b1
2

(
b1 ←

C̃
b1
1 (b)∪{b}
−−−−−−−→ y

))
.

(3.26)

We introduce subscripts for C̃ , the expectations and the bonds to indicate to which
expectation they belong. To derive this rewrite first add the restriction b1 6= b, after
which we can remove the restriction b1 6∈ B(b) since otherwise the summand is trivially
zero. For brevity, we write C̃0 = C̃ b0

0 (x) ∪ A′ and C̃i = C̃ bi
i (bi−1) ∪ {bi−1} for i ≥ 1. We

insert (3.26) into RB
0 (x, y;A) and obtain (3.10) for M = 1 with

ΞB,(1)(x, y;A) =
∑
b0

pEB0
(

1lE′(x,b0;A)1l{b0 6∈C̃0}P
b0
1

(
E(b0, y; C̃0)

))
, (3.27)

ΨB,(1),κ(x,w;A) =
∑
b0

pEB0
(

1lE′(x,b0;A)1l{b0 6∈C̃0} (3.28)

× Pb01

(
E′(b0, w; C̃0) ∩ {w − eκ 6∈ C̃ (w,w−eκ)

1 (b0)} ∪ {b0}
))

,

and

RB

1 (x, y;A) =
∑
b0,b1

p2EB0
(

1lE′(x,b0;A)1l{b0 6∈C̃0}E
b0
1

(
1lE′(b0,b1;C̃0)1l{b1 6∈C̃1}P

b1
2

(
b1 ←

C̃1−−→ y
)))

.

(3.29)

This proves Lemma 3.3 for M = 1. We now repeat using (3.26) recursively, for

PbMM+1

(
bM ←

C̃M−−→ y
)

(3.30)

that appears in the remainder term RB
M(x, y;A). This leads to Lemma 3.3 for all M ≥ 0

with ΞB,(N), ΨB,(N),κ and RB
N given in (3.23)-(3.25) for N = 0, in (3.27)-(3.29) for N = 1

and for N ≥ 2 given by
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ΞB,(N)(x, y;A) = pN
∑

b0,...,bN−1

EB0 1lE′(x,b0;A)1l{b0 6∈C̃0}E
b0
1 1lE′(b0,b1;C̃0)1l{b1 6∈C̃1} (3.31)

× Eb12 1lE′(b1,b2;C̃1)1l{b2 6∈C̃2} · · ·E
bN−1
N 1lE′(bN−1,y;C̃N−1),

ΨB,(N),κ(x, y;A) = pN
∑

b0,...,bN−1

EB0 1lE′(x,b0;A)1l{b0 6∈C̃0}E
b0
1 1lE′(b0,b1;C̃0)1l{b1 6∈C̃1} (3.32)

× Eb12 1lE′(b1,b2;C̃1)1l{b2 6∈C̃2} · · ·E
bN−2
N−1 1lE′(bN−2,bN−1;C̃N−2)1l{bN−1 6∈C̃N−1}

× EbN−1
N

(
1lE′(bN−1,y;C̃N−1)1l{y−eκ 6∈C̃

(y,y−eκ)
N (bN−1)∪{bN−1}}

)
,

RB

N(x, y;A) = (−1)N+1pN+1
∑

b0,...,bN

EB0 1lE′(x,b0;A)1l{b0 6∈C̃0} (3.33)

× Eb01 1lE′(b0,b1;C̃0)1l{b1 6∈C̃1} · · ·E
bN−2
N−1 1lE′(bN−2,bN−1;C̃N−2)1l{bN−1 6∈C̃N−1}

× EbN−1
N 1lE′(bN−1,bN ;C̃N−1)1l{bN 6∈C̃N}P

bN
N+1(bN ←

C̃N−−→ y).

Since

PbNN+1(bN ←
C̃N−−→ y) ≤ τ bN (bN , x), (3.34)

it follows from (3.32)–(3.33) that

|RB

N(x, y;A)| ≤
∑
w,κ

ΨB,(N),κ(x,w;A)pτκ(y − w + eκ). (3.35)

When we take M →∞, and assume that limM→∞ |RB
M(x, y;A)| = 0, we arrive at

PB(x
A←→ y) = ΞB(x, y;A) +

∑
w,κ

pΨB,κ(x,w;A)τκ(y − w + eκ), (3.36)

where

ΞB(x, y;A) =

∞∑
N=0

(−1)NΞB,(N)(x, y;A), ΨB,κ(x,w;A) =

∞∑
N=0

(−1)NΨB,(N),κ(x,w;A).

(3.37)
Naturally, the convergence of the expansion needs to be obtained to reach the above
conclusion. This convergence follows from (3.35) and the bounds on ΨB,(N),κ that we
prove in Section 4, by showing that the remainder term RB

N converges to zero. The
expansion developed here is different from the traditional lace expansion as it expands
in terms of τ ι(x) rather than τ(x). This difference causes that the formulas (3.31), (3.32)

and (3.33) involve Ebj−1
j rather than just Ej as in [22]. Further, we explicitly keep the

factors 1l{bj 6∈C̃j}. Finally, the set appearing in the E′ events is now C̃
bj
j (bj−1) ∪ {bj−1},

while in the classical lace expansion C̃
bj
j (bj−1) appears, see e.g. [22].

These differences ensure, as we argue in the following, that each loop in the lace-
expansion coefficients now involve paths of at least four steps, whereas in [22] they
can have length equal to two. By a loop we denote a closed path of occupied bonds.
The involved bonds may be occupied on different percolation configurations enforced
by the events E′ and bj+1 6∈ C̃j . By the parity of the hypercubic lattice, a loop consists
of an even number of steps. On the lattice there exists only one possibility for a two-
step loop, namely, when bj−1 = bj and bj = bj−1. We now argue by contradiction that

bj = bj−1 does not contribute. Let us assume instead that bj = bj−1. Then, since

E′(x, x;A) = {x←A−→ x} = {x ∈ A},

E′(bj−1, bj; C̃j−1) = {bj−1 ∈ C̃j−1}, (3.38)
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which does not contribute to the lace-expansion coefficients, due to the presence of the
indicator 1l{bj−1 6∈C̃j−1}. Thus, indeed, loops in the lace-expansion coefficients consist of
at least four bonds. Due to these differences the largest contributions to the classical
lace-expansion coefficients are not present for the NoBLE lace-expansion coefficients.

3.3 Completion of the NoBLE

In this section, we complete the NoBLE. Lemma 3.3 with B = ∅ (so that trivially
B ⊆ B(0)) and A = {0} yields

τ(x) = Ξ∅
M(0, x; {0}) +

∑
w,κ

pΨ∅,κ
M (0, w; {0})τκ(x− w + eκ) +R∅

M(0, x; {0}). (3.39)

We extract the dominant contribution of Ξ∅
M(0, x; {0}) and Ψ∅,κ

M (0, w; {0}) from this. We
note that Ξ∅,(0)(0, 0; {0}) = 1 and

Ψ∅,(0),κ(0, 0; {0}) = P(−eκ 6∈ C̃ (0,−eκ)(0)) = P(0←→/ − eκ off the bond {0,−eκ}). (3.40)

Define, recalling (3.23)–(3.24) and (3.13),

Ξ(0)(x) = (1− δ0,x)Ξ∅,(0)(0, x; {0}) = (1− δ0,x)P(0⇐⇒ x), (3.41)

Ψ(0),κ(x) =
p

µp
(1− δ0,x)Ψ∅,(0),κ(0, x; {0}) (3.42)

= (1− δ0,x)
p

µp
Pp({0⇐⇒ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}),

with µp = pP(eκ 6∈ C̃ (0,eκ)(0)), and where, in (3.42), we use that C̃ {x,x−eκ}(0) =

C̃ {x,x−eκ}(x) on the event that {0←→ x}. For N ≥ 1, we define

Ξ(N)(x) = Ξ∅,(N)(0, x; {0}), Ψ(N),κ(x) =
p

µp
Ψ∅,(N),κ(0, x; {0}). (3.43)

and use these functions to define

ΞM(x) =

M∑
N=0

(−1)NΞ(N)(x), Ψκ
M(x) =

M∑
N=0

(−1)NΨ(N),κ(x), RM(x) = R∅
M(0, x; {0}).

(3.44)
In this notation, (3.39) becomes

τ(x) = δ0,x + ΞM(x) + µp
∑
w,κ

(δ0,w + Ψκ
M(w))τκ(x− w + eκ) +RM(x). (3.45)

This proves the first relation of the NoBLE in (2.14). To obtain the second relation of the
NoBLE in (2.15), we first define bι = (0, eι) and see that

τ(x)− τ ι(x) = P(0
eι←→ x) = P(0

bι←→ x) + Pbι(0 eι←→ x), (3.46)

where, for a bond b, we abbreviate Pb = P{b}. We investigate both terms separately,

starting with P(0
bι←→ x), with the aim to extract the NBW-like contribution pτ−ι(x− eι).

We see that {0 bι←→ x} = E(0, bι, x; {0}) as it is equivalent to bι being occupied and pivotal
for 0 ←→ x. Thus, we can apply Lemma 3.5, with x = 0, b = bι, y = x and A = {0} to
obtain

P(0
bι←→ x) = pE0

[
1l{eι 6∈C̃ bι

0 (0)}P1(eι ←→ x off C̃ bι
0 (0))

]
. (3.47)
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Next, we analyze P1(eι ←→ x off C̃ bι
0 (0)) within the outside expectation E0. For this we

consider C̃ bι
0 (0) to be a fixed deterministic set. Since 0 ∈ C̃ bι

0 (0), we conclude as in (3.4)
that

P1(eι ←→ x off C̃ bι
0 (0)) = P0

1(eι ←→ x off C̃ bι
0 (0)). (3.48)

Then, we use an inclusion-exclusion argument to rewrite (recall the definition of P0
1 in

(2.13))

P0

1(eι ←→ x off C̃ bι
0 (0)) = P0

1(eι ←→ x)− P0

1(eι
C̃ bι

0 (0)
←→ x) = τ−ι(x− eι)− P0

1(eι
C̃ bι

0 (0)
←→ x),

and obtain

P(0
bι←→ x) = pτ−ι(x− eι)Pbι

(
eι 6∈ C̃ bι

0 (0)
)
− pEbι0

[
1l{eι 6∈C̃ bι

0 (0)}P
0

1(eι
C̃ bι

0 (0)
←→ x)

]
. (3.49)

As C̃ bι
0 (0) is deterministic in the inner probability P0

1, we apply Lemma 3.3 to P0
1(eι

C̃ bι
0 (0)
←→ x)

with B = B(0) and A = C̃ bι
0 (0) to obtain

P(0
bι←→ x) =µpτ

−ι(x− eι)− pEbι0
[
1l{eι 6∈C̃ bι

0 (0)}

(
ΞB(0)

M (eι, x; C̃ bι
0 (0)) +RB(0)

M (eι, x; C̃ bι
0 (0))

) ]
− pEbι0

[
1l{eι 6∈C̃ bι

0 (0)}

∑
w,κ

pΨB(0),κ
M (eι, w; C̃ bι

0 (0))τκ(x− w + eκ)
]
. (3.50)

To deal with Pbι(0 eι←→ x) in (3.46), we directly apply Lemma 3.3 with B = {bι} ⊆ B(0)

and A = {eι} to arrive at

Pbι(0 eι←→ x) = ΞbιM(0, x; {eι}) +
∑
w,κ

pΨbι,κ
M (0, w; {eι})τκ(x− w + eκ) +RbιM(0, x; {eι}).

(3.51)

Combining (3.46), (3.50) and (3.51) concludes the derivation of (2.15), i.e.,

τ(x) = τ ι(x) + µpτ
−ι(x− eι) +

∑
y,κ

Πι,κ
M (y)τκ(x− y + eκ) + ΞιM(x) +RιM(x), (3.52)

with

Ξ(0),ι(x) = Ξbι,(0)(0, x; {eι}), Π(0),ι,κ(x) = pΨbι,(0),κ(0, x; {eι}), (3.53)

Rι0(x) = Rbι0 (0, x; {eι}), (3.54)

and, for N,M ≥ 1,

Ξ(N),ι(x) = Ξbι,(N)(0, x; {eι}) + pEbι0
[
1l{eι 6∈C̃ bι

0 (0)}Ξ
B(0),(N-1)(eι, x; C̃ bι

0 (0))
]
, (3.55)

Π(N),ι,κ(x) = pΨbι,(N),κ(0, x; {eι}) + p2Ebι0
[
1l{eι 6∈C̃ bι

0 (0)}Ψ
B(0),(N-1),κ(eι, x; C̃ bι

0 (0))
]
,(3.56)

RιM(x) = RbιM(0, x; {eι}) + pEbι0
[
1l{eι 6∈C̃ bι

0 (0)}R
B(0)
M−1(eι, x; C̃ bι

0 (0))
]
. (3.57)

Finally, (3.35) together with the above characterization of RM(x) and RιM(x) proves
(2.19)–(2.20).

This completes the derivation of the NoBLE for percolation and thereby the proof of
Proposition 2.1. Further, we have obtained a description of the NoBLE coefficients that
will be the starting point to obtain bounds on them in Section 4.
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3.4 Split of the coefficients of the NoBLE analysis

For the analysis in [17, Section 3], we extract some explicit contributions from the
coefficients, so as to improve the numerical precision of our method. When choosing
the terms to extract we are guided by the intuition that they should be substantial
contributions to the coefficients and that we need to be able to accurately approximate
them numerically. This is usually only possible for contributions created for x = 0 and
‖x‖ = 1, in particular, for x = eι.

Terms with subscripts α correspond to the leading order contributions, while terms
with subscripts R correspond to errors. Further, the subscripts I refer to the extraction
of terms for which ‖x−eκ‖2 ≤ 1 for κ fixed, while the subscripts II refer to the extraction
of terms with ‖x‖2 ≤ 1. Thus, for example,∑
x∈Zd

[1− eik·(x−eκ)]Ψ(0),κ
α,I,p(x) = αI [1− D̂(k)],

∑
x∈Zd

[1− eik·x]Ψ(0),κ
α,II,p(x) = αII [1− D̂(k)],

(3.58)
for some αI , αII . These terms can be incorporated in the random walk contributions,
while other contributions cannot. The terms labeled with I are numerically larger and
contribute to bigger contributions in the analysis of [17]. In this document however we
often focus on the terms with subscripts II as they tend to be easier to define and bound.

In the sequel, we will make these notions precise. We start by formulating the split
for N = 0. We define

Ξ(0)

α,p(x) := 1l{‖x‖2=1}Pp({0⇐⇒ x} ∩ {(0, x) is occ.}), (3.59)

Ψ(0),κ
α,II,p(x) :=

p

µp
1l{‖x‖2=1}Pp

(
{0⇐⇒ x} ∩ {(0, x) is occ.} ∩ {(x− eκ) 6∈ C̃ (x,x−eκ)(0)}

)
,

(3.60)

Ξ(0)

R,p(x) := Ξ(0)

p (x)− Ξ(0)

α,p(x), Ψ(0),κ
R,II,p(x) := Ψ(0),κ

p (x)−Ψ(0),κ
α,II,p(x). (3.61)

In Ψ(0),κ
α,I,p(x), we extract the main contributions to Ψ(0),κ

p (x) for ‖x− eκ‖2 ≤ 1. Let

Ψ(0),κ
α,I,p(x) :=1l{‖x−eκ‖2≤1}

p

µp
Pp({0⇐⇒ x} ∩ {(x− eκ) 6∈ C̃ (x,x−eκ)(0)} (3.62)

∩ {∃ path between 0 and x consisting of one or two occ. bonds}),

and Ψ(0),κ
R,I,p(x) := Ψ(0),κ

p (x)−Ψ(0),κ
α,I,p(x). We split Ξ(0),ι

p (x) as

Ξ(0),ι
α,I,p(x) :=δx,eιΞ

(0),ι
p (eι) (3.63)

+ 1l{‖x−eι‖=1}P({0 {eι}←→ x off {(eι, x)}} ◦ {(eι, x) is occ.} | (0, eι) is vacant),

Ξ(0),ι
α,II,p(x) :=δx,eιΞ

(0),ι
p (eι), (3.64)

Ξ(0),ι
R,I,p(x) :=Ξ(0),ι

p (x)− Ξ(0),ι
α,I,p(x) Ξ(0),ι

R,II,p(x) := Ξ(0),ι
p (x)− Ξ(0),ι

α,II,p(x). (3.65)

Finally,

Π(0),ι,κ
α,p (x) := δx,eιΠ

(0),ι,κ
p (x), Π(0),ι,κ

R,p := Π(0),ι,κ
p (x)−Π(0),ι,κ

α,p (x). (3.66)

This completes the definition of the relevant splits for N = 0.
For N = 1, we recall the definition of ΞB,(1)(x, y;A) and ΨB,(1),κ(x,w;A) in (3.27)-(3.28)

with B = ∅, A = {0} and of the event E′ in (3.13). Due to the way in which we bound
the coefficients, the definition of the split is a bit involved as we only want to extract
some specific contributions. In each case, we extract the contribution where the pivotal
edge b0 = (0, e) starts at the origin and the cut through occurs directly at x. We define,
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for x with ‖x‖1 = 1,

Ξ(1)

α,p(x) = p
∑

e : ‖e‖1=1

E0

(
1l{e 6∈C̃

(0,e)
0 (0)}1l{(0,x) is occ.}P0

1

(
E′(e, x; C̃ (0,e)

0 (0))
))

, (3.67)

Ψ(1),κ
α,II,p(x) =

p2

µp

∑
e : ‖e‖1=1

E0

(
1l{e 6∈C̃

(0,e)
0 (0)}1l{(0,x) is occupied}

× E0

1

(
1l
E′(e,x;C̃

(0,e)
0 (0))

1l{x−eκ 6∈C̃
(x,x−eκ)
1 (e)∪{0}}

))
, (3.68)

and Ξ(1)
α,p(x) = Ψ(1),κ

α,II,p(x) = 0 for all other x. In Ψ(1),κ
α,I,p(x) we collect contributions in which

‖x− eκ‖ ≤ 1 and at least one of the connections {e←→ x} is realised in no more than
two steps, i.e.,

Ψ(1),κ
α,I,p(x) = 1l{‖x−eκ‖≤1}

p2

µp

∑
e : ‖e‖1=1

E0

(
1l{e 6∈C̃

(0,e)
0 (0)}1l{x∈C̃

(0,e)
0 (0)}E

0

1

(
1l
E′(e,x;C̃

(0,e)
0 (0))

(3.69)

× 1l{x−eκ 6∈C̃
(x,x−eκ)
1 (e)∪{0}}1l{∃ path between e and x consisting of one or two occ. bonds}

))
.

We define the remainder terms by

Ξ(1)

R,p(x) := Ξ(1)

p (x)− Ξ(1)

α,p(x), Ψ(1),κ
R,I,p(x) := Ψ(1),κ

p (x)−Ψ(1),κ
α,I,p(x), (3.70)

Ψ(1),κ
R,II,p(x) :=Ψ(1),κ

p (x)−Ψ(1),κ
α,II,p(x). (3.71)

It turns out that it is numerically not worthwhile to split Ξ(1),ι
p (x),Π(1),ι,κ

p (x) any further.
This completes the definition of the relevant splits for N = 1.

3.5 Verification of assumptions on NoBLE coefficients

In [17], we analyze the asymptotic properties of the NoBLE by making a number
of assumptions. In this section, we verify the assumption on the NoBLE coefficients
formulated in [17, Assumptions 3.1, 3.2 and 3.4].

[17, Definition 2.5] symmetry of the model We denote by Pd the set of all permuta-
tions of {1, 2, . . . , d}. For ν ∈ Pd, δ ∈ {−1, 1}d and x ∈ Zd, we define p(x; ν, δ) ∈ Zd to be
the vector with entries (p(x; ν, δ))j = δjxνj . We say that a function f : Zd 7→ R is totally
rotationally symmetric when f(x) = f(p(x; ν, δ)) for all ν ∈ Pd and δ ∈ {−1, 1}d.

Total rotational symmetry is natural on Zd, e.g., the two-point function τp as well
as the NBW two-point function have this symmetry. We next argue that the following
assumption holds for percolation:

[17, Assumption 4.1]. Let ι, κ ∈ {±1,±2, . . . ,±d}. The following symmetries hold for
all x ∈ Zd, p ≤ pc, N ∈ N and ι, κ:

Ξ(N)

p (x) = Ξ(N)

p (−x), Ξ(N),ι
p (x) = Ξ(N),−ι

p (−x),

Ψ(N),ι
p (x) = Ψ(N),−ι

p (−x), Π(N),ι,κ
p (x) = Π(N),−ι,−κ

p (−x).

For all N ≥ 0, the coefficients

Ξ(N)

p (x),
∑
ι

Ψ(N),ι
p (x),

∑
ι

Ξ(N),ι
p (x) and

∑
ι,κ

Π(N),ι,κ
p (x), (3.72)

as well as the remainder terms of the split

Ξ(0)

R,p(x),
∑
ι

Ψ(0),ι
R,I,p(x),

∑
ι

Ψ(0),ι
R,II,p(x),

∑
ι

Ξ(0),ι
R,I,p(x),

∑
ι

Ξ(0),ι
R,II,p(x),

∑
ι,κ

Π(0),ι,κ
R,p (x),
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are totally rotationally symmetric functions of x ∈ Zd. Finally, the dimensions are
exchangeable, in the sense that, for all ι, κ,

Ψ̂(N),ι
p (0) = Ψ̂(N),κ

p (0), Ξ̂(N),ι
p (0) = Ξ̂(N),κ

p (0),
∑
κ′

Π̂(N),ι,κ′

p (0) =
∑
ι′

Π̂(N),ι′,κ
p (0). (3.73)

For p < pc and N fixed, all the above functions are well defined. We now check
the stated symmetry properties, and will return to the case p = pc at the end. By the
definition of the NoBLE-coefficients in Section 3.3, it is easy to see that (3.72), (3.73)
hold. By the definition of Ξ(N)

p it is not difficult to see that x 7→ Ξ(N)
p (x) is TRS for all N ≥ 0.

The other three NoBLE coefficients are not TRS as their definition includes constraints
on one or two specific directions. For example, the coefficient Ψ(N),κ(x) includes the
constraint that x − eκ is not in the last cluster. When we sum over κ, the directional
constraint is averaged out and

∑
κ Ψ(N),κ

p (x) is TRS. For the same reason, the sums over ι
and ι, κ in (3.72), as well as the stated remainder terms, are TRS.

[17, Assumption 4.1] states that the symmetry properties also hold for p = pc.
However, it is not even obvious that these objects are well defined at p = pc. We verify
the left-continuity in [17, Assumption 4.4] below, from which the symmetries will follow
also for p = pc. Further, inspection of the proof in [17] shows that the symmetries
are only used for p < pc, while properties at p = pc are concluded by left continuity
arguments instead.

[17, Assumption 4.2] relation between coefficients For all x ∈ Zd, p ≤ pc, N ∈ N
and ι, κ ∈ {±1,±2, . . . ,±d}, the following bounds hold:

Ψ(N),κ
p (x) ≤ p

µp
Ξ(N)

p (x), Π(N),ι,κ
p (x) ≤ pΞ(N),ι

p (x). (3.74)

Comparing the definitions of Ξ(N),Ψ(N),κ and Ξ(N),ι and Π(N),ι,κ, we see that they differ
by the presence of the additional indicator of the event {y + eκ 6∈ C̃

(y,y+eκ)
N (bN−1)} and

a factor p/µp and p, respectively. We bound the indicator by 1 and obtain the relations
stated in (3.74).

[17, Assumption 4.4] Growth at the critical point The functions p 7→ Ξ̂p(k), p 7→
Ξ̂ιp(k), p 7→ Ψ̂κ

p(k) and p 7→ Π̂ι,κ
p (k) are continuous for p ∈ (0, pc). Further, let Γ1,Γ2,Γ3 ≥ 0

be such that fi(p) ≤ Γi and that Assumption [17, Assumption 4.3] holds. Then, the
functions stated above are left-continuous at pc with a finite limit p↗ pc for all x ∈ Zd.
Further, for technical reasons, we assume that pc < 1/2.

The two-point functions τp, τ ιp and the coefficients Ξ(N)
p ,Ξ(N),ι

p ,Ψ(N),ι
p and Π(N),ι,κ

p are
defined as sums of probabilities and expectations of intertwined events. The percolation
measure Pp, in which each bond is occupied/vacant independently, is a product measure.
Restricted to a finite graph, the above functions are clearly continuous. The continuity
for p < pc can be obtained using a finite-volume approximation that is non-trivial. We
omit the proof of this here, and instead refer the reader to [21, Appendix A.2] where such
a statement is proved for the coefficients of the classical lace expansion. The extension
to our setting is straightforward.

Since fi(p) ≤ Γi holds for all p ∈ (pI , pc), the coefficients are uniformly bounded in
p ∈ (pI , pc). We obtain the left-continuity of the coefficients using a finite-volume approx-
imation, which is a bit more elaborate than the arguments used to obtain continuity for
p < pc and requires that the coefficients are uniformly bounded. We omit the proof of
this and again refer the reader to [21, Appendix A.2].
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4 Diagrammatic bounds

In Sections 4-6 we bound the NoBLE-coefficients, derived in the last section, and
define the split of the coefficients as used in [17, Section 4.1]. The bounds are stated in
terms of simple diagrams, which can in turn be bounded by combinations of two-point
functions. Thus, we prove Proposition 2.2, and provide the bounds, in term of diagrams,
stated in [17, Assumption 4.3]. We start by giving an overview of the bounds on the
NoBLE coefficients.

4.1 Overview of the bounds on the coefficients in Sections 4-6

In Section 4.2, we first introduce simple diagrams that can be obtained by various
generalizations of the two-point function, as well as so-called repulsive diagrams. Then,
we state and prove the bounds on the coefficients for N = 0 in Section 4.3. For N ≥ 1,
the coefficients are defined as combinations of increasingly intertwined events that we
first bound in terms of simpler events in Section 4.4.

In Sections 5 and 6, we bound these events by so-called building blocks, which are
combinations of simple diagrams. We define these building blocks informally in Section
5.1. In Sections 5.2 and 5.3, we state the bounds for N ≥ 1. In Section 5.4, we give
a brief overview of how they prove Proposition 2.2 and explain how the diagrammatic
bounds are used to prove [17, Assumption 4.3].

In Section 6, we indicate how to prove the diagrammatic bounds for N ≥ 1. We give
the full proof of the bounds on Ξ(1)

p (x) in Section 6.1, and explain how to use similar
arguments to prove the bounds on Ξ(1),ι

p (x). The proof for N ≥ 2 relies on ideas already
used in the classical lace expansion and a distinction of cases for the length of several
distinct connections within the diagrams. We use this distinction of cases to make
optimal use of the additional avoidance constraints in the events defining the NoBLE
coefficients. The ideas underlying the distinction of cases is discussed within the proof
of the bounds of Ξ(1)

p . We give an outline of the proof for N ≥ 2 in Section 6.2.

As the proof of these bounds is quite elaborate, we do not give the full proof. In the
extended version of this document we give a sketch of the proof. A detailed explanation
of these bounds and their proof can be found in the thesis of the first author [14], which
can be downloaded from [13]. From [13] you can also download the extended version of
this article. In that extended version we give the formal definition of all building blocks,
that we only define informally in Section 5.1.

4.2 Simple diagrams

In this section, we define simple diagrams that we use to bound the NoBLE-coefficients.
Then, we review how we bound these diagrams using the bootstrap functions given
in (2.31)–(2.33). Moreover, we derive sharp bounds for the probability of a double
connection.

Modified two-point functions For m ≥ 0, we denote by {0 m←→ x} the event that 0

and x are connected and that there exists a path of occupied, disjoint bonds between
0 and x that consists of at least m bonds. Further, we define {0 m←→ x} to be the event
that 0 and x are connected by a path of exactly m occupied bonds. For m ≥ 0, we define

τm,p(x) = Pp(0
m←→ x), τ ιm,p(x) = Peιp (0

m←→ x), (4.1)

τm,p(x) = Pp(0
m←→ x), τ ιm,p(x) = Peιp (0

m←→ x). (4.2)
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For m ≥ 1 and x 6= 0, we note that

τ ιm,p(x) ≤ τm,p(x) ≤ 2dp(D ? τm−1,p)(x) ≤ (2dp)m(D?m ? τp)(x), (4.3)

τ ιm,p(x) ≤ τm,p(x) ≤ 2dp(D ? τm−1,p)(x) ≤ (2dp)mD?m(x). (4.4)

Non-repulsive diagrams For xi ∈ Zd and indices ji ∈ {0, 1, . . . } ∪ {0, 1, . . . , }, where
i = 1, . . . , 5, we define the non-repulsive diagrams by

B∗j1,j2(x1, x2) =τj1,p(x1)τj2,p(x2 − x1), (4.5)

T ∗j1,j2,j3(x1, x2, x3) =τj1,p(x1)τj2,p(x2 − x1)τj3,p(x3 − x2)

=B∗j1,j2(x1, x2)τj3,p(x3 − x2), (4.6)

S ∗j1,j2,j3,j4(x1, x2, x3, x4) =T ∗j1,j2,j3(x1, x2, x3)τj4,p(x4 − x3), (4.7)

P∗
j1,j2,j3,j4,j5(x1, x2, x3, x4, x5) =S ∗j1,j2,j3,j4(x1, x2, x3, x4)τj4,p(x5 − x4). (4.8)

In the analysis of [17] we assume that the bootstrap functions, see (2.31)-(2.33), are
bounded. These bounds in particular imply bounds on p < pc and supk∈(−π,π)d [1 −
D̂(k)]τ̂p(k). In this discussion, we assume that

2dp ≤ Γ̄1, sup
k∈(−π,π)d

[1− D̂(k)]τ̂p(k) ≤ Γ̄2, (4.9)

where Γ̄1 and Γ̄2 are functions of Γ1,Γ2 whose precise values are irrelevant for the
discussion at hand. Using this and (4.3) allows us to bound these non-repulsive diagrams,
for l1, l2, l3 ∈ N with l1 + l2 + l3 = l even, as∑

x1,x2

T ∗l1,l2,l3(x1, x2, x3) ≤ (2dp)l(D?l1 ? τp ? D
?l2 ? τp ? D

?l3 ? τp)(x3)

≤ (2dp)l
∫

(−π,π)d
D̂l(k)τ̂p(k)3 ddk

(2π)d
≤ Γ̄l1Γ̄3

2I3,l(0), (4.10)

with

In,l(x) =

∫
(−π,π)d

eik·x D̂l(k)

[1− D̂(k)]n
ddk

(2π)d
(4.11)

being a SRW-integral that we can compute numerically. In [17, Section 5], we explain how
we compute this integral, as well as how to improve the bounds on such non-repulsive
diagrams.

Repulsive diagrams Using only bounds as simple as (4.10) we could show mean-field
behavior only for d ≥ 50. In the following, we define repulsive diagrams that allow us
to prove sharper bounds on the coefficients. In repulsive diagrams, the connections
between the points xi are bond-disjoint. As first example we define the repulsive double
connection as

Dj1,j2(x) = Pp({0
j1←→ x} ◦ {0 j2←→ x}), (4.12)

where x ∈ Zd and j1, j2 ∈ {0, 1, . . . } ∪ {0, 1, . . . , }, and where the symbol ◦ indicates that
two events occur disjointly. For events involving the existence of paths, this means
that these paths consist of disjoint bonds. A formal definition can be found e.g. in [19,
Section 2.3].

The connections in Dj1,j2(x) are realised on the same percolation configuration. In
our bounds, we also consider paths on different percolation configurations. For this
reason we need to generalize the notion of disjoint occurrence:
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Definition 4.1 (Generalized disjoint occurrence). For a percolation realisation ω, we
denote by B(ω;x) the set of all bonds that are occupied in ω and for which one of its
endpoints is connected to the point x in ω. By {x ←→ y}i we denote that x, y ∈ Zd
are connected in ωi, for i ≥ 1. For n ≥ 2 and i = 1, 2, . . . n, let ωi be a percolation
configuration and let xi, yi ∈ Zd. Then, we say that the connections {xi ←→ yi}i occur
generalized-disjointly, and write

{x1 ←→ y1}1 ~ {x2 ←→ y2}2 ~ · · ·~ {xn ←→ yn}n, (4.13)

when, for each i = 1, 2, . . . , n, we can choose a path of bonds pi ⊂ B(ωi;xi), such that
the path pi connects xi to yi and the paths (pi)

n
i=1 are pairwise vertex disjoint. Similar

definitions apply to connections of the form {xi
ji←→ yi}i for indices ji ∈ {0, 1, . . . } ∪

{0, 1, . . . , }.
Note that if we choose i = 1 for all i = 2, . . . , n, then this notion corresponds to the

usual disjoint occurrence ◦. Further, when Pp denotes the distribution of independent
percolation configurations (ω1, . . . , ωn),

Pp({x1 ←→ y1}1 ~ {x2 ←→ y2}2) ≤ Pp(x1 ←→ y1)Pp(x2 ←→ y2), (4.14)

Pp({x1 ←→ y1}1 ~ {x2 ←→ y2}2 ~ {x3 ←→ y3}2)

≤ Pp(x1 ←→ y1)Pp({x2 ←→ y2} ◦ {x3 ←→ y3}). (4.15)

For xi ∈ Zd and indices ji ∈ {0, 1, . . . } ∪ {0, 1, . . . , }, we define the repulsive bubble and
triangle to be

Bj1,j2(x1, x2) = max
i=1,2

Pp({0
j1←→ x1}1 ~ {x1

j2←→ x2}i), (4.16)

Tj1,j2,j3(x1, x2, x3) = max
(i,j)={1,2,3}2

Pp({0
j1←→ x1}1 ~ {x1

j2←→ x2}i ~ {x2
j3←→ x3}j), (4.17)

where ω1, ω2, ω3 are three i.i.d. percolation configurations under Pp. The repulsive square
Sj1,j2,j3,j4(x1, x2, x3, x4) and pentagon Pj1,j2,j3,j4,j5(x1, x2, x3, x4, x5) are defined in the
same manner. We omit the formal definitions of these diagrams.

Bounds on repulsive diagrams We bound repulsive diagrams in an efficient manner
by extracting explicit contributions. This is easily seen for the two-point function itself,
by noting that

τn,p(x) ≤
M−1∑
r=n

prar(x) + pM (aM ? τ)(x), (4.18)

where an(x) is the number of n-step bond-avoiding walks ending at x. Bond-avoiding
walks are simple random walks that never use a bond twice, i.e., for i, j with i 6= j, we
have that {ωi, ωi+1} 6= {ωj , ωj+1}. The number M is some number larger than n. For the
implementation, we choose M = 10. We use the same idea for the repulsive bubbles,
triangles and squares. For example consider l1, l2 ∈ N, with l1 + l2 < M , we conclude
that ∑

y

Bl1,l2(y, x) ≤
∑
y

BM−l2,l2(y, x) +
∑
y

M−l2−1∑
r=l1

Br,l2(y, x) (4.19)

≤ pM (aM ? τ?2)(x) + (M − l1 − l2)pM (aM ? τ)(x)

+

M−l2−1∑
s=l1

M−s−1∑
r=l2

pr+sar+s(x).

More details can be found in [17, Section 5.3.2].
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Bounds on double connections The probability of a double connection Dn,n(x) de-
serves our special attention. As each double connection uses at least two neighbors, we
know that for x 6= 0,

Pp(0⇐⇒ x) (4.20)

≤
∑
ι

∑
κ 6=ι

Pp ({eι ←→ x off 0} ◦ {eκ ←→ x off 0} ∩ {(0, eι) occ.} ∩ {(0, eκ) occ.}) .

Reviewing this bound, we see that each percolation configuration in which {0 ⇐⇒ x}
occurs for x 6= 0, contributes twice to the right-hand side, e.g., once for ι = 1, κ = 2 and
once for ι = 2, κ = 1. Thus, this bound overcounts by a factor two, and actually (4.20)
holds with an extra factor 1/2 on the right-hand side. Another way to view this factor 1/2

is that the two connections in Dn,n(x) are interchangeable, while in the bubble Bn,n(x, 0)

the two connections are not. We conclude for n ≥ 1 that

Dn,n(x) ≤ 1

2

(
pM (aM ? τ?2)(x) + (M − 2)pM (aM ? τ)(x) +

M−1∑
r=n

M−r−1∑
s=n

pr+sar+s(x)
)
.

(4.21)

4.3 Diagrammatic bounds for N = 0

In this section, we bound the NoBLE coefficient for N = 0 and prove a part of the
bounds assumed in [17, Assumption 4.3]. These bounds on the coefficients defined in
Sections 3.3 and 3.4 are given in the following two lemmas:

Lemma 4.2 (Bounds on Ξ(0)
p and Ψ(0),κ

p ). Let p < pc. Then,∑
x∈Zd

Ξ(0)

p (x) ≤
∑
x∈Zd

D1,1(x),
∑
x∈Zd

‖x‖22Ξ(0)

p (x) ≤
∑
x∈Zd

‖x‖22D1,1(x), (4.22)

∑
x∈Zd

Ξ(0)

R,p(x) ≤
∑
x∈Zd

D2,2(x),
∑
x∈Zd

‖x‖22Ξ(0)

R,p(x) ≤
∑
x∈Zd

‖x‖22D2,2(x). (4.23)

Further, for all κ,∑
x∈Zd

Ψ(0),κ
R,I,p(x) ≤(2d− 2)pτ3,p(e1) + min

{
1,

p

µp

d− 1

d

} ∑
x∈Zd

D2,2(x), (4.24)

∑
x∈Zd

‖x− eκ‖22Ψ(0),κ
R,I,p(x) ≤ p

µp

∑
x∈Zd

(1 + ‖x‖22)D1,1(x), (4.25)

and ∑
x∈Zd

Ψ(0),κ
R,II,p(x) ≤ min

{
1,

p

µp

d− 1

d

} ∑
x∈Zd

D2,2(x), (4.26)

∑
x∈Zd

‖x‖22Ψ(0),κ
R,II,p(x) ≤ min

{
1,

p

µp

d− 1

d

} ∑
x∈Zd

‖x‖22D2,2(x). (4.27)

Lemma 4.3 (Bounds on Ξ(0),ι
p ). Let p < pc. Then,∑

x∈Zd
Ξ(0),ι
p (x) ≤τ3,p(e1)

(
1 +

∑
x∈Zd

D1,1(x)
)
, (4.28)

∑
x∈Zd

‖x− eι‖22Ξ(0),ι
p (x) ≤τ3,p(e1)

∑
x∈Zd

‖x‖22D1,1(x), (4.29)

∑
x∈Zd

‖x‖22Ξ(0),ι
p (x) ≤τ3,p(e1) + τ3,p(e1)

∑
x∈Zd

(
1 + ‖x‖22

)
D1,1(x). (4.30)
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Further,

Ξ(0),ι
α,I,p(eι) ≤τ3,p(e1), Ξ(0),ι

α,II,p(0) = 0,
∑
ι

Ξ(0),ι
α,II,p(eι) ≤ τ3,p(e1), (4.31)∑

ι

Ξ(0),ι
α,I,p(e1 + eι) ≤ τ3,p(e1)(2d− 1)pτ3,p(e1), (4.32)

and ∑
x∈Zd

Ξ(0),ι
R,I,p(x) ≤τ3,p(e1)

∑
x∈Zd

D2,2(x), (4.33)

∑
x∈Zd

‖x− eι‖22Ξ(0),ι
R,I,p(x) ≤τ3,p(e1)

∑
x∈Zd

‖x‖22D2,2(x), (4.34)

∑
x∈Zd

Ξ(0),ι
R,II,p(x) ≤τ3,p(e1)

∑
x∈Zd

D1,1(x), (4.35)

∑
x∈Zd

‖x‖22Ξ(0),ι
R,II,p(x) ≤τ3,p(e1)

∑
x∈Zd

(
1 + ‖x‖22

)
D1,1(x). (4.36)

The coefficient Π(0),ι,κ
p can be bounded by∑

κ

Π(0),ι,κ
α,p (e1) ≤2(d− 1)µpτ3,p(e1), (4.37)∑

x,κ

Π(0),ι,κ
R,p (x) ≤(2d)2pτ3,p(e1)

∑
x∈Zd

D1,1(x), (4.38)

∑
x,ι,κ

‖x− eι − eκ‖22Π(0),ι,κ
R,I,p (x) ≤(2d)2pτ3,p(e1)

∑
x∈Zd

(
1 + ‖x‖22

)
D1,1(x). (4.39)

Proof of Lemma 4.2. We begin by simplifying the coefficients. Recall the definition of
Ξ(0)
p (x) in (3.41). Using the split (3.59), (3.61) we extract from this the dominante nearest-

neighbor contribution. Thus, all contributions to the remainder term involve paths of
length at least two. We conclude that

Ξ(0)

R,p(x) = (1− δ0,x)Pp
(
{0 2←→ x} ◦ {x 2←→ 0}

)
. (4.40)

Thus, the bounds on Ξ(0)
p and Ξ(0)

R,p, stated in (4.22), (4.23), follow directly from the
definition of the double connections (4.12).

Recall the definition of Ψ(0),κ
p in (3.24). To bound Ψ(N),κ

p (x), we can use (3.74) to bound
it by p

µp
Ξ(N)
p (x). For N = 0, however, we can improve upon this in two different ways that

we now present.
First, since {0 ⇐⇒ x} is an increasing event, while {x − eκ 6∈ C̃ {x,x−eκ}(x)} is

decreasing, we conclude from the Harris inequality, see e.g. [19, Section 2.2], that

Pp({0⇐⇒ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}) ≤ Pp(0⇐⇒ x)Pp((x− eκ) 6∈ C̃ {x,x−eκ}(x)),

(4.41)
so that

Ψ(0),κ
p (x) ≤ p

µp
Pp((x− eκ) 6∈ C̃ {x,x−eκ}(x))Ξ(0)

p (x) = Ξ(0)

p (x). (4.42)

We cannot use the same argument for N ≥ 1 as the event E′(bN−1, y; C̃N−1) in the

innermost expectation EbN−1
N , see (3.31)-(3.32), is not increasing.

A second way to improve upon (3.74) for N = 0 is to remove overcounting: In every
fixed configuration in which {0 ⇐⇒ x} occurs, there exist at least two bond-disjoint
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paths leading from 0 to x. Thus, the event x− eκ ∈ C̃ {x,x−eκ}(x) occurs for at least two
κ. As a result, when we sum over κ, each configuration can contribute at most (2d− 2)

times to the sum, and we obtain the bound∑
κ

Ψ(0),κ
p (x) ≤ p

µp
(2d− 2)Ξ(0)

p (x). (4.43)

By symmetry also∑
x∈Zd

Ψ(0),κ
p (x) =

1

2d

∑
x,κ

Ψ(0),κ
p (x) ≤ p

µp

2d− 2

2d

∑
x

Ξ(0)

p (x). (4.44)

The split using Ψ(0),κ
α,II,p removed all contributions in which x is connected to the origin

via the direct bond (0, x), which can only occur when |x| = 1. Therefore, any connection
in the remainder Ψ(0),κ

R,II,p(x) of the split will use at least two bonds, see (3.60)-(3.61).
Recalling (3.42) we conclude that

Ψ(0),κ
R,II,p(x) = (1− δ0,x)

p

µp
Pp({0

2←→ x} ◦ {x 2←→ 0} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}). (4.45)

We either use the Harris inequality as in (4.41) or remove the overcounting to obtain the
bounds stated in (4.26)-(4.27).

In Ψ(0),κ
α,I,p, defined in (3.62), we have extracted contributions for which ‖x− eκ‖2 ≤ 1

and x is connected to the origin via one or two steps. Further, by definition, the
contribution where x = 0 does not contribute (see (3.41)). The remainder term is thus
given by

µp
p

Ψ(0),κ
R,I,p(x) =1l{‖x−eκ‖1>1}Pp({0⇐⇒ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}) (4.46)

+ δx,eκPp({0
3←→ eκ} ◦ {0

3←→ eκ} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)})

+ 1l{‖x−eκ‖1=1}Pp({0
4←→ x} ◦ {0 4←→ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}).

Here, in the last term, the connection from the origin to x requires at least 4 steps (see

0
4←→ x), as |x| = 2, the contribution via two steps has already been removed and by

the parity of the lattice. To bound this we conditioning on the length of the connection
between 0 and x:

µp
p

Ψ(0),κ
R,I,p(x) ≤1l{x 6∈{−eκ,eκ}}Pp({0

1←→ x} ◦ {0 3←→ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)})

+ Pp({0
2←→ x} ◦ {0 2←→ x} ∩ {(x− eκ) 6∈ C̃ {x,x−eκ}(x)}). (4.47)

For the first term, we use the Harris inequality as in (4.41) and bound Pp({0
1←→

x} ◦ {0 3←→ x}) explicitly. For the second term, we either remove the overcounting or
use the Harris inequality as on page 35 and obtain the bound stated in (4.24).

To show the bound on the weighted diagram stated in (4.25) we first use (3.74), then
‖x− eκ‖22 = ‖x‖22 − 2xκ + 1 and finally spatial symmetry∑

x∈Zd
‖x− eκ‖22Ψ(0),κ

R,I,p(x) =
1

2d

∑
x,κ

‖x− eκ‖22Ψ(0),κ
R,I,p(x)

≤ 1

2d

p

µp

∑
x6=0

∑
κ

(‖x‖22 + 1− 2xκ)Pp(0⇐⇒ x) =
p

µp

∑
x 6=0

(‖x‖22 + 1)D1,1(x)

This completes the proof of all bounds stated in Lemma 4.2.
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Proof of Lemma 4.3. By the definition in (3.53), see also (3.13),

Ξ(0),ι
p (x) = P({0 {eι}←→ x} ◦ {eι ⇐⇒ x} | (0, eι) vacant). (4.48)

From (4.48), it follows immediately that

Ξ(0),ι
p (eι) = τ3,p(e1), Ξ(0),ι

p (0) = 0, (4.49)

Ξ(0),ι
p (x) ≤ τ3,p(e1)D1,1(x− eι) for x 6= eι, 0. (4.50)

We conclude the bounds stated in (4.28)-(4.29) from this. To bound the weight ‖x‖22 we
apply (4.50), average over ι and shift the sum over x:∑

x∈Zd
Ξ(0),ι
p (x)‖x‖22 ≤ τ3,p(e1) + τ3,p(e1)

∑
x 6=eι

Pp(eι ⇐⇒ x)‖x‖22

≤ τ3,p(e1) +
τ3,p(e1)

2d

∑
x 6=0

∑
ι

Pp(0⇐⇒ x)‖x+ eι‖22 (4.51)

Then, we use ‖x+ eι‖22 = ‖x‖22 + 2eι + 1 and see that in the sum over ι the term with 2eι
cancels. In a final step we apply the bounds in (4.28)-(4.29) to obtain (4.30).

For the bounds on Ξ(0),ι
α,II,p and Ξ(0),ι

R,II,p stated in (4.31), (4.35), (4.36), we recall that we
have extracted the major contribution τ3,p(e1) from the coefficients. Knowing this, these
bounds are shown in the same way as (4.28)-(4.30).

Using the term Ξ(0),ι
α,I,p defined in (3.63) we extract Ξ(0),ι

p (eι) = τ3,p(e1) and all contri-
butions in which one connection of the double connection {eι ⇐⇒ x} is realised by the
direct bond (eι, x). The bound on Ξ(0),ι

α,I,p stated in (4.31) follows from (4.49). For the
bound in (4.32) we remark that ι = −1 does not contribute to the sum.

In the remainder term Ξ(0),ι
R,I,p(x), the connection eι ←→ x has length at least two. We

use this information together with (4.50) to obtain the bounds (4.33)-(4.34).
To complete the proof, we still need to prove the bounds on Π(0),ι,κ

p , which is defined
as

Π(0),ι,κ
p (x) = pP({0←→ eι} ◦ {eι ⇐⇒ x} ∩ {(x+ eκ) 6∈ C x,x+eκ(x)} | (0, eι) is vacant),

(4.52)

see (3.53) and (3.13). It is easy to see that Π(0),ι,κ
p (eι) ≤ µpτ3,p(e1) using the Harris

inequality. When summing over κ, we note that for a given configuration at least two
κ do not contribute, namely κ = −ι and the direction of the last step of {0←→ eι}. So
using an overcounting argument, as on page 35, we obtain (4.37). In the remainder term
Π(0),ι,κ
R,p we know that x 6= eι, so that∑

x,ι

Π(0),ι,κ
R,p (x) ≤p

∑
ι,κ

τ3,p(eι)
∑
x6=eι

P(eι ⇐⇒ x) = (2d)2pτ3,p(e1)
∑
x 6=0

D1,1(x). (4.53)

and (4.38) holds.∑
x,ι

‖x− eι − eκ‖22Π(0),ι,κ
R,p (x) ≤

∑
ι,κ

pτ3,p(eι)
∑
x 6=eι

‖x− eι − eκ‖22P(eι ⇐⇒ x)

=
∑
ι,κ

pτ3,p(eι)
∑
x 6=0

‖x− eκ‖22D1,1(x)

= 2d
∑
κ

pτ3,p(e1)
∑
x 6=0

(‖x‖22 + 1− 2xκ)D1,1(x)

= (2d)2pτ3,p(e1)
∑
x 6=0

(
1 + ‖x‖22

)
D1,1(x). (4.54)

This proves the last bound stated in Lemma 4.3, and thereby completes the proof.
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4.4 Bounding events

For N ≥ 1, the NoBLE-coefficients are defined in terms the probability of E′(x, y;A)

events. In this section, we show that these events are bounded by simpler events, whose
probabilities we bound in the following sections. We adapt arguments that can be found
in either [22, Proof of Lemma 2.5] or [41, Proof of Lemma 5.5.8].

Let P(N) denote the product measure on N + 1 copies of percolation on Zd, where in
the ith copy, all bonds emanating from bi−1 are made vacant, i.e.,

P(N) = PB0 × Pb01 × · · · × PbN−1
N . (4.55)

Using Fubini’s Theorem and (3.31), we conclude that

ΞB,(N)(x, y;A) (4.56)

=
∑

b0,...,bN−1

pNP(N)

(
E′(x, b0;A)0 ∩ {b0 6∈ C̃0} ∩ E′(b0, b1; C̃0)1 ∩ {b1 6∈ C̃1}

∩
(⋂N−1

i=2 E′(bi−1, bi; C̃i−1)i ∩ {bi 6∈ C̃i}
)
∩ E′(bN−1, y; C̃N−1)N

)
,

where, for an event F , we write Fi to denote that F occurs on the ith percolation copy.
We next define events to bound E′(bi−1, bi; C̃i−1)i. For increasing events E,F , we

recall that E ◦ F denotes the event that E and F occur disjointly and focus first on the
bounding events used to bound Ξ(N)

p (x). Note that B = ∅ for Ξ(N)
p (x). We define the events

F0(b0, w0, z1) ={0←→ b0} ◦ {0←→ w0} ◦ {w0 ←→ b0}
◦ {w0 ←→ z1} ∩ {z1 6∈ b0}, (4.57)

FN(bN−1, tN , zN , y) ={bN−1 ←→ tN} ◦ {tN ←→ zN} ◦ {tN ←→ y}
◦ {zN ←→ y} ∩ {b

N−1
6∈ {tN , zN , y}}, (4.58)

for N ≥ 1, and

F ′(bi−1, ti, zi, bi, wi, zi+1) = {bi−1 ←→ wi} ◦ {wi ←→ bi} ◦ {wi ←→ zi+1}
∩ {zi = bi = ti} ∩ {zi+1 6∈ bi} ∩ {bi−1 6∈ {ti, wi, zi, bi}},

(4.59)

F ′′(bi−1, ti, zi, bi, wi, zi+1) = {bi−1 ←→ wi} ◦ {wi ←→ ti} ◦ {ti ←→ zi} ◦ {ti ←→ bi}
◦ {zi ←→ bi} ◦ {wi ←→ zi+1} ∩ {zi 6= bi} ∩ {wi 6= ti}
∩ {zi+1 6∈ bi} ∩ {bi−1 6∈ {ti, wi, zi, bi}}, (4.60)

F ′′′(bi−1, ti, zi, bi, wi, zi+1) = {bi−1 ←→ ti} ◦ {ti ←→ zi} ◦ {ti ←→ wi} ◦ {zi ←→ bi}
◦ {wi ←→ bi} ◦ {wi ←→ zi+1} ∩ {zi 6= bi} ∩ {zi+1 6∈ bi}
∩ {bi−1 6∈ {ti, wi, zi, bi}}, (4.61)

F (bi−1, ti, zi, bi, wi, zi+1) = F ′(bi−1, ti, zi, bi, wi, zi+1) ∪ F ′′(bi−1, ti, zi, bi, wi, zi+1)

∪ F ′′′(bi−1, ti, zi, bi, wi, zi+1), (4.62)

for i ∈ {1, 2, . . . , N − 1}. The events F0, F , FN are depicted in Figure 7.
These events are similar to those used for the classical lace expansion, see e.g. [22,

Section 2.2] or [9, Section 4]. The difference is that the NoBLE creates additional
self-avoidance constraints, which we incorporate into the definition of the F -events.
These conditions ensure that certain loops in the diagrams have length at least four. In
order to bound E′(bN−1, y; C̃N−1)N in terms of these events, we define Evac(x) to be the
event that all bonds that contain x are vacant. Note that Pxp defined in (3.5), is the same
as the percolation measure conditioned on Evac(x). We will now argue that
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F0(b0, w0, z1) = 0

w0

b0

z1

z1 6∈ b0

F ′(bi−1, ti, zi, bi, wi, zi+1) = bi−1 wi
bi = ti = zi, zi+1 6∈ bi

zi+1

F ′′(bi−1, ti, zi, bi, wi, zi+1) = bi−1
wi 6= ti

zi
ti

bi 6= zi, zi+1 6∈ bi

zi+1

F ′′′(bi−1, ti, zi, bi, wi, zi+1) = bi−1

wi

zi
ti

bi 6= zi, zi+1 6∈ bi

zi+1

FN(bN−1, tN , zN , y) =bN−1

zN
tN

y

Figure 7: Diagrammatic representations of the events F0(b0, w0, z1), F (bi−1, ti, zi, bi,

wi, zi+1), FN(bN−1, tN , zN , y). Lines indicate disjoint connections. Shaded cycles might be
trivial, meaning that they might consist of a single vertex.

E′(bN−1,y; C̃N−1)N ∩ Evac(b
N−1

)N (4.63)

⊂
⋃

zN∈C̃N−1

⋃
tN∈Zd

FN(bN−1, tN , zN , y)N ∩ Evac(b
N−1

)N ,

where we have defined E′ in (3.13). For the event E′ to occur there must exist at least
one vertex zN ∈ C̃N−1 that lies on the last sausage. We denote by tN the first point of
the last sausage. As we restrict to the configurations in which Evac(bN−1)N holds, we

know that only bN−1 6∈ {tN , zN , y} contribute. Since tN , wN , zN , y ∈ C̃N , we know that there
exists a path of open edges connecting them as shown in Figure 7. In the right-hand
side of (4.63), we simply sum over all possible tN and zN and conclude that (4.63) holds.
Next we argue that, for N ≥ 1 and i ∈ {1, 2, . . . , N − 1},

E′(bi−1, bi; C̃i−1)i ∩ {zi+1 ∈ C̃ bi
i (bi−1)} ∩ {bi 6∈ C̃i} ∩ Evac(b

i−1
)i

⊂
⋃

zi∈C̃i−1

⋃
ti,wi∈Zd

F (bi−1, ti, zi, bi, wi, zi+1)i ∩ Evac(b
i−1

)i. (4.64)

If E′(bi−1, bi; C̃i−1)i occurs, then a string of sausages connects bi−1 and bi and the last
sausage of the string is cut through by C̃i−1. We denote the “first” point of the last
sausage by ti. We identify the first point that every path from bi−1 to bi and from bi−1

to zi+1 share by wi. By zi ∈ C̃i−1 ∩ C̃ bi
i (bi−1) we identify one point in the last sausage,

where bi−1 ←→ bi is cut through. As zi ∈ C̃i−1 ∩ C̃ bi
i (bi−1), with C̃j = C̃

bj
j (bj−1) ∪ {bj−1},

while bi 6∈ C̃i and bi 6∈ C̃
bi+1

i+1 (bi) since Evac(bi)i+1 occurs, we know that zi+1 6∈ bi. The
restriction on configurations for which Evac(bi−1)i occurs, further guarantees that bi−1 6∈
{ti, wi, zi, bi}.

Now we distuinguish between three different cases, characterized by F ′,F ′′,F ′′′,
depending on the relative position of wi, ti. The event F ′ represents the cases for which
zi = bi, in which case we define ti = bi. The event F ′′ represents cases for which zi 6= bi
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and that wi is before the last sausage. As ti is on the last sausage we know for this
event that wi 6= ti. The event F ′′′ captures the configurations in which wi is in the last
sausage. If wi is in the last sausage, then we choose zi such that it is on the opposite
side of the sausage, i.e., we choose zi such that there exist two bond-disjoint paths from
ti to bi such that zi lies on the path and wi on the other path. This is always possible as a
sausage is formed by a double connection and, since this sausage is cut though by C̃i−1,
all connections contain an element of C̃i−1.

The event at level 0 is bounded in the same way using F0. As this is completely
analogous, we omit further discussions here. We conclude from (4.63) and (4.64) that

Ξ(N)

p (x) ≤
∑
~t,~w,~z,~b

pNPp(F0(b0, w0, z1) ∩ {b0 6∈ C̃0}) (4.65)

×
N−1∏
i=1

Pbi−1
p (Fi(bi−1, ti, zi, bi, wi, zi+1) ∩ {bi 6∈ C̃i})P

bN−1
p (FN(bN−1, tN , zN , x)),

where the summation is over ~t = (t0, . . . , tN), ~w = (w0, . . . , wN−1), ~z = (z1, . . . , zN) and
~b = (b0, . . . bN−1). The probabilities in (4.65) factor as the events F0, . . . , FN occur on
different percolation configurations and are thus independent. If we would at this point
follow the classical lace expansion, then we would apply the BK-inequality on (4.65)
and obtain a bound on Ξ(N)

p in terms of combinations of two-point functions τp. In doing
so, we would lose the information that all loops have length at least four and that the
intersection at zi+1 cannot occur at the bond bi.

For our bounds, we use one additional property of the diagram that we now explain.
Recall the definition of repulsive diagrams in Section 4.2. In most cases, we can choose
zi such that there exists a path from wi−1 to zi in C̃i−1 that intersects C̃i only at its
endpoint zi. We can bound such events using repulsive diagrams. Indeed, if wi is not in
the last sausage, then we simply define zi to be the point in C̃i−1 ∩ C̃i with the smallest
intrinsic distance to bi−1. In this case, all paths involved in the above connections are
bond disjoint, even when they occur in different levels.

There is one exception, in which we have to resort to non-repulsive diagrams. Indeed,
if wi is in the last sausage in C̃i−1 containing bi, then it can occur that, for every choice
of zi, every path from zi to bi−1 in C̃i−1 contains at least one bond of any path in C̃i
connecting wi to zi+1, see Figure 8 for an example. As we cannot exclude this case, we
resort to non-repulsive diagrams to bound the F ′′′ events in which wi and zi are both in
the sausage containing bi.

Next, we derive a bound as in (4.65) for Ξ(N)
p (x), but now for Ξ(N),ι

p (x) instead, see
(3.43) and (3.55) for their definitions. For N ≥ 1, Ξ(N),ι

p (x) is the sum of two terms. The
only difference between the first term Ξbι,(N)

p (0, x; {eι}) and Ξ(N)
p (x) = Ξ∅,(N)

p (0, x; {0}) is
at the level of the graphs 0 and 1 that describe the configurations ω0 and ω1. Thus,
we can use (4.63) and (4.64) to estimate the event defining Ξbι,(N)

p (0, x; {eι}) on levels

i = 2, . . . , N . Since 0 ∈ bι, B(C̃0) ∪ {bι} = B(C̃0) and we can use (4.64) also to bound the
event on level i = 1. To bound the event on level 0, we define

F ι,I0 (b0, w0, z1) ={0←→ eι} ◦ {eι ←→ w0} ◦ {w0 ←→ b0} ◦ {w0 ←→ z1} ◦ {eι ←→ b0}
∩ {z1 6∈ b0} ∩ {bι is vacant}, (4.66)

F ι,II0 (b0, w0, z1) ={0←→ w0} ◦ {w0 ←→ eι} ◦ {eι ⇐⇒ b0} ◦ {w0 ←→ z1}
∩ {w0 6= eι} ∩ {z1 6∈ b0} ∩ {bι is vacant}, (4.67)

F ι,III0 (b0, w0, z1) ={0←→ z1} ◦ {bι is occupied} ∩ {z1 6∈ b0} ∩ {w0 = 0} ∩ {b0 = (0, eι)}.
(4.68)

See Figure 9 for diagrammatic representations of these events.
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u

wi

zi

zi+1bi−1

b̄i−1

C̃i−1

C̃i

C̃i+1

bi

Figure 8: A configuration in which we can not define zi and wi such that the path
bi−1 ←→ zi in C̃i−1 and the path zi+1 ←→ wi in C̃i are bond-disjoint. The reason is that

all paths connecting bi−1 to zi+1 in C̃i (indicated in dark dashed style), as well as all
paths in C̃i−1 cutting through the double connection from bi−1 to bi (indicated in solid
lines), use the bond {u,wi}.

F ι,I0 (b0, w0, z1) = 0

w0

eι b0

z1

z1 6∈ b0

F ι,II0 (b0, w0, z1) = 0 b0eι

w0 z1

z1 6∈ b0, w0 6= eι

F ι,III0 (b0, w0, z1) = 0 = w0

eι = b0

z1

z1 6∈ b0

Figure 9: Diagrammatic representations of the events F ι0(b0, w0, z1). Lines indicate
disjoint connections. Shaded cycles might be trivial.

Now, we first argue that

E′(0, b0; {eι})0 ∩ {z1 ∈ C̃0} ∩ {bι is vacant} ⊂
⋃

w0∈Zd

(
F ι,I0 (b0, w0, z1) ∪ F ι,II0 (b0, w0, z1)

)
.

(4.69)

Indeed, if E′(0, b0; {eι})0 occurs, then there exists a path of occupied bonds from 0 to
eι. As eι cuts the connection 0 ←→ b0, either b0 = eι or eι and b0 are connected by a
sausage. We denote by w0 the last point that the connections 0 ←→ b0 and 0 ←→ z1

share. If w0 is on the last sausage, then the event is part of F ι,I0 and otherwise part of
F ι,II0 . This proves (4.69) and bounds the events on the first level of Ξbι,(N)

p (0, x; {eι}). We
conclude that Ξbι,(N)

p (0, x; {eι}) is bounded as in (4.65) when F (b0, w0, z1) is replaced by
F ι,I0 (b0, w0, z1) ∪ F ι,II0 (b0, w0, z1).

The second part of Ξ(N),ι
p (x), defined in (3.55), is given by

pEbι0
[
1l{eι 6∈C̃ bι (0)}Ξ

bι,(N-1)

p (eι, x; C bι(0))
]
. (4.70)

We apply (4.56) with A = C̃ bι(0) and B = {bι} and use (4.63) and (4.64) to bound the
event at levels i = 2, . . . , N . For i = 1,
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E′(eι, b1;C̃ bι(0))1 ∩ {z2 ∈ C̃1} ∩ {b1 6∈ C̃1} ∩ {bι is vacant}

⊂
⋃

z2∈C̃1

⋃
t1,w1∈Zd

F (eι, t1, z1, b1, w1, z2)1 ∩ {bι is vacant}. (4.71)

For level 0 in (4.70) we see that

{z1 ∈ C̃0} ∩ {eι 6∈ C̃ bι
0 (0)} ∩ {bι is vacant} ⊂ F ι,III0 ((0, eι), 0, z1). (4.72)

Thus, the term in (4.70) is bounded as in (4.65) when replacing F (b0, w0, z1) by
F ι,III0 (b0, w0, z1).

In this section we have obtained bounds on Ξ(N)
p (x) and Ξ(N),ι

p (x) in terms of sums over
~t, ~w, ~z,~b of products of probabilities of bounding events as in (4.65). The bounding events,
in turn, can be bounded using products of two-point functions, or by repulsive diagrams.
This leads to enormous sums of complicated diagrams. To structure such sums more
effectively, we reformulate them in terms of building blocks in the next section.

5 Bounding diagrams for N ≥ 1

In Section 5.1, we define the building blocks that we use to bound the NoBLE
coefficients. These building block are defined as combinations of simple diagrams that
we can bound numerically, see [17, Section 5]. In Section 5.2, we then provide the
bounds for N = 1. In Section 5.3, we extend the bounds to N ≥ 2. For N ≥ 2, we only
give bounds on Ξ(N)

p and Ξ(N),ι
p . Bounds on Ψ(N),κ

p and Π(N),ι,κ
p follow from (3.74). The proof

of these bounds is discussed in the next section.

5.1 Building blocks

The coefficients of the lace expansion are usually displayed as diagrams. Reviewing
the bounding events, which we have created in the preceding section, the coefficient
Ξ(4)
p is shown in Figure 10.

0 x

b0 b2

b1 b3w0 z1

t1 w1 z2

t2

w2 z3

t3

w3 z4

t4

F0 F ′′′ F ′ ∪ F ′′ F ′ ∪ F ′′ FN

Figure 10: Diagrammatic representations of the bound on Ξ(4)
p (x). Lines indicate disjoint

connections. Shaded triangles might be trivial. On the bottom we mark the F -event
corresponding to the part of the diagram.

In this section we informally define the simple diagrams that serve as building blocks
for our diagrammatic bounds. In the following sections, we combine these building
blocks to construct the bounds on the coefficients, as shown informally in Figure 11.

The diagrams of the NoBLE-coefficients have stronger repulsive properties than the
coefficients of the classical lace expansion. For example, we know that zi+1 6∈ bi and that
all non-trivial closed triangles/squares consist of at least four occupied bonds. We use
this to obtain sharper bounds. We incorporate information on the lengths of connections
shared by two blocks into the definition of the building blocks. This way we can combine
the blocks such that all non-trivial loops have length at least four. We decompose a
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Mean-field behavior for nearest-neighbor percolation in d > 10

∑
x Ξ(N)

p (x) =
∑

~l

N − 1

0 l0 lN−1

lr−1

lr

lr−1

lr

Figure 11: Diagrammatic decomposition of Ξ(N)
p (x). The numbers li denote the lengths of

shared connections.

diagram as shown in Figure 11, where we denote the length of a line that two squares
share by li. The length of a connection corresponds to the number of bonds used by the
shortest connected path of occupied bonds. To obtain the infrared bound in d ≥ 11 we
distinguish between the three cases li = 0, 1 and li ≥ 2.

The formal definition is quite lengthly, as we need 12 different building blocks, where
each depends on two parameters a, b ∈ {0, 1,≥ 2}. Thus, we introduce them in this
section only informally in Tables 2 and 3. The formal definition of the 100 different cases
for the blocks can be found in the appendix of the extended version of this paper [16].

To give an idea, we define the block that we use to bound the initial and final triangle:

P S,0(x, y) = δx,yP(0⇐⇒ x), (5.1)

P S,1(x, y) = δ0,yB1,3(x, 0) + T1,1,1(x, y, 0), (5.2)

P S,2(x, y) = δ0,yD2,2(x) + T1,2,1(x, y, 0). (5.3)

We combine the diagrams to create larger diagrams. We define Bι,a,b and B̄ι,a,b by

Bι,a,b(0, v, x, y) =
∑
u,w

2∑
c=0

Aι,a,c,∗(0, v, u, w)Ac,b(u,w, x, y)

+
∑
u

Aι,a,b(0, v, x, u)P 0(y − u, y − u) +B(2),ι(0, v, x, y), (5.4)

B̄ι,a,b(0, v, x, y) =
∑
u,w

2∑
c=0

Aι,a,c(0, v, w, u)Ac,b,∗(w, u, x, y)

+Aι,a,b(0, v, x, y) + B̄(2),ι,a,b(0, v, x, y). (5.5)

For example, the block Bι,a,b(0, v, x, y) corresponds to the middle pieces in Figure 11. The
non-repulsive diagrams are used to bound the combination of squares, corresponding to
the event F ′′′, see Section 4.4. Most weighted diagrams are defined as combinations of
unweighted diagrams, e.g.,

hι,κ,b(x, y) =

2∑
a=0

∑
u,v

(δ0,aδκ,ιδ0,uδ0,v + P ι,a(u, v)) Āκ,a,b(u, v, x, y)‖x− eι‖22. (5.6)

We also use the following adaptation of hι,κ:

hι,κ,II,b(x, y) =hι,κ,b(x, y) +

2∑
c=0

∑
w,t

Aι,0,c(0, 0, w, t)
∑
κ2

Āκ2,c,b,∗(t, w, y, x)‖x− eι‖22

+

2∑
a,c=0

∑
u,v,w,t

P ι,a(u, v)Aκ,a,c(u, v, w, t)
∑
κ2

Āκ2,c,b,∗(t, w, y, x)‖x− eι‖22.

(5.7)
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We define a = dC (0, v) and b = dC (x, y) as the intrinsic distance in the percolation
cluster between the points 0 and v and x and y, respectively. We consider

a, b ∈ {0, 1,≥ 2}.
Repulsive triangles P S,b(x, y) and P E,b(x, y)

0

y

b

x

When x = 0, the triangle shrinks to a point. If x 6= 0,
then the triangle consists of at least four bonds. For P E,b

we know that y 6= 0 and b ≥ 1.

Open triangle Aa,b(0, v, x, y)

0

v

a

y

b

x

The complete square consists of at least four bonds and
x, y 6= 0 and x 6= v. The missing connection 0←→ v

contributes to the neighboring block.

Open repulsive triangle with one pivotal edge Aι,a,b(0, v, x, y),

0 eι

v

a

y

b

x

Alike an open triangle with the additional property that
y, v 6= eι.

Double-open bubble Āι,a,b(0, v, x, y)

0 eι

v
a

y

b
x

Alike Aι,a,b. Both connections 0←→ v and x←→ y

contribute to the neighboring blocks.

Open non-repulsive diagram Aι,a,b,∗, Aa,b,∗ and Āι,a,b,∗

Alike Aι,a,b(0, v, x, y), Aa,b(0, v, x, y) and Āι,a,b(0, v, x, y),
with the difference that if b 6= 0 the connections are not
repulsive.

Double non-trivial triangle B(2),ι,a,b(0, v, x, y), right

0

v

eι

w

u
y

x

∑
u,w

A combination of a closed triangle and an open square.
All points (u,w, y) of the small triangle are distinct and
u,w 6∈ {0, x}.

Double non-trivial triangle B̄(2),ι,a,b(0, v, x, y), left

x

y
w + eιw

u
v

0

∑
u,w

A combination of a closed triangle and an open square.
The small triangle is non-trivial, i.e., w 6= u, y and x 6= u,
and also 0 6∈ {w,w + eι}.

The initial piece P ι,a for Ξιp

0 eι

y

x

b
0 eι

y

x

b

When the shaded diagrams are non-trivial,
their loop consist of at least four bonds. The
length of 0←→ eι is at least three, except
when y = 0, x = eι and b = 0. In the second
diagram, y 6= eι.

Table 2: The unweighted building blocks: P S, P E, P ι, Aι, A, Ā, B(2),ι, B̄(2),ι.
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Weighted double open bubble

0

v

a

y

b

x

‖x‖22
0

eι

v

a

y

b

x

‖x‖22
0

v

a

eι y

b

x

‖x‖22
H(1),a,b(0, v, x, y) H(2),ι,a,b(0, v, x, y) H(3),ι,a,b(0, v, x, y)

v = y is possible v = y is possible v 6= y

Each complete square consists of at least four bonds.
Weighted intermediate piece

∑
t,w,z,u a

y

x

b

v

0
t w

‖w‖22

uz
v

a

0

b

y

x
w

z

t

u

u+ eκ with triangle on top
C(1),ι,κ,a,b(0, v, x, y)

∑
t,w,z,u a

0

v

b

y

x

t w

z u
‖u‖22

a

0

v

b

y

x
t

w

z u

with triangle on bottom
C(2),ι,κ,a,b(0, v, x, y)

The weighted initial piece for Ξιp

x

y

b

eι ‖x− eι‖22

0 eι

y

x

b 0

eι

≥ 1

y

x

b
hι,κ,b(0, v, x, y)

Table 3: The weighted building blocks: H(1), H(2),ι, H(3),ι, C(1), C(2) and hι,κ.

Elements of the bounds

Here we define the objects which we use to state the bounds on the coefficients. We
define the vectors ~P S, ~P E ∈ R3 and the matrices Āι,Aι,A, Āι,∗,Aι,∗,A∗, B, B̄ ∈ R3×3 by

(~P S)b =
∑
x,y

P S,b(x, y), (~P E)b =
∑
x,y

P E,b(x, y),

(Aι)a,b = sup
v∈Zd

∑
ι,x,y

Aι,a,b(0, v, x, y), (Aι,∗)a,b = sup
v∈Zd

∑
ι,x,y

Aι,a,b,∗(0, v, x, y),

(A)a,b = sup
v∈Zd

∑
x,y

Aa,b(0, v, x, y), (A∗)a,b = sup
v∈Zd

∑
x,y

Aa,b,∗(0, v, x, y),

(Āι)a,b = sup
v,y∈Zd

∑
ι,x,y

Āι,a,b(0, v, x, x+ y), (Āι,∗)a,b = sup
v,y∈Zd

∑
ι,x,y

Āι,a,b,∗(0, v, x, x+ y),

(B)a,b = sup
v∈Zd

∑
ι,x,y

Bι,a,b(0, v, x, y), (B̄)a,b = sup
v∈Zd

∑
ι,x,y

B̄ι,a,b(0, v, x, y).

These are sufficient to state the bounds on Ξ̂(N)
p (0). For bounds on weighted diagrams we

define the vectors ~hS, ~hE and the matrices H(1), H(2), H(3), C(1) and C(2) with entries

(C(1))a,b = sup
v,y∈Zd

∑
ι,κ,x

C(1),ι,κ,a,b(0, v, x, x+ y),

EJP 22 (2017), paper 43.
Page 45/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP56
http://www.imstat.org/ejp/


Mean-field behavior for nearest-neighbor percolation in d > 10

(C(2))a,b = sup
v,y∈Zd

∑
ι,κ,x

C(2),ι,κ,a,b(0, v, x, x+ y),

(H(1))a,b = sup
v,y∈Zd

∑
x

H(1),a,b(0, v, x, x+ y), (H(2))a,b = sup
v,y∈Zd

∑
ι,x

H(2),ι,a,b(0, v, x, x+ y),

(H(3))a,b = sup
v,y∈Zd

∑
ι,x

H(3),ι,a,b(0, v, x+ y, y) (~hS)b = (H(1))0,b, (~hE)b = (H(3))0,b.

For bounds on Ξ(N),ι
p , we additionally require the vectors ~P ι,~hι,~hι,II with entries

(~P ι)b =
1

2d

[
δ0,b +

∑
ι,x,y

P ι,b(x, y)
]

(~hι)b =
1

2d

∑
ι,κ,x,y

hι,κ,b(x, y), (~hι,II)b =
1

2d

∑
ι,κ,x,y

hι,κ,II,b(x, y).

Remark: For convenience, we will interpret starting vectors, such as ~P S, ~P ι, ~hS and ~hι,
as row vectors, while ending vectors such as ~P E and ~hE are considered to be column
vectors. With these definitions in hand, we are ready to state the bounds on the NoBLE
coefficients, first for N = 1 and then for N ≥ 2.

5.2 Diagrammatic bounds for N = 1

In this section we state bounds on the NoBLE coefficients for N = 1 and provide a
part of the bounds assumed in [17, Assumption 4.3]. We abbreviate ~u = (1, 0, 0) and

Hn(x) := max
{∑

y

‖y‖22B0,n(y, x),
∑
e,y

‖y‖22T1,n−1,1(y, x− e, x), (5.8)

∑
e,y

‖y‖22T1,1,n−1(y, e+ y, x)
}
,

H D

n :=
∑
x

‖x‖22Dn,n(x), (5.9)

β(1)

∆Ξ :=~uTH(3)~u+ 2H2(0)
(∑

x

D1,1(x)
)

+ 2H D

1 (0)
(∑

x

B1,2(x, 0)
)

+ 8dpH2(e1)
∑
x

B1,1(x, e1) + 8dpH1(e1)
∑
ι,x

T1,1,1(x, e1 + eι, e1)

+
(

sup
x 6=0

H2(x)
)(∑

x

D1,1(x) + 4
∑
x,y

T1,2,1(x, y, 0)
)

+ 4
(

sup
x 6=0

H1(x)
)(∑

ι,x,y

S1,1,1,2(eι, x, y, 0)
)

+ 3~hS(Aι)T (~P E − ~u) + 3(~P S − ~uT )H(3)(~P E − ~u) + 3(~P S − ~uT )Aι~hE. (5.10)

Lemma 5.1 (Bounds on Ξ(1)
p and Ψ(1),κ

p ). Let p < pc. Then,∑
x∈Zd

Ξ(1)

p (x) ≤ ~P SĀι ~P E, (5.11)

∑
x

Ξ(1)

R,p(x) ≤ ~P SĀι ~P E − (Āι)0,0 +
∑
ι,x

T1,1,2(eι, x, 0), (5.12)

∑
x

Ψ(1),κ
R,I,p(x) ≤2d− 1

2d

p

µp

(
~P SĀι ~P E − (Āι)0,0 + (2d− 2)

∑
ι

T1,2,1(eι, e2, 0)
)

+
2d− 1

2d

p

µp

(∑
x

∑
ι

T1,1,2(eι, x, 0)
)
, (5.13)
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∑
x

Ψ(1),κ
R,II,p(x) ≤2d− 1

2d

p

µp

(
~P SĀι ~P E − (Āι)0,0 +

∑
ι,x

T1,1,2(eι, x, 0)
)
. (5.14)

The weighted diagrams are bounded by∑
x∈Zd

‖x‖22Ξ(1)

p (x) ≤ β(1)

∆Ξ, (5.15)

∑
x

‖x‖22Ξ(1)

R,p(x) ≤ β(1)

∆Ξ − (H(2))0,0 +
∑
ι,x

‖x‖22T1,1,2(eι, x, 0), (5.16)

∑
x

‖x− eκ‖22Ψ(1),κ
R,I,p(x) ≤ p

µp

(
β(1)

∆Ξ + ~P SĀι ~P E

)
(5.17)∑

x

‖x‖22Ψ(1),κ
R,II,p(x) ≤ p

µp

(
β(1)

∆Ξ − (H(2))0,0 +
∑
ι,x

‖x‖22T1,1,2(eι, x, 0)
)
. (5.18)

Lemma 5.2 (Bounds on Ξ(1),ι
p ). Let p < pc. Then,∑

x

Ξ(1),ι
p (x) ≤~P ιĀι ~P E, (5.19)∑

x

‖x− eι‖22Ξ(1),ι
p (x) ≤(~hι)0 + 2~hι(~P E − (1, 0, 0)) + 2~P ιAι~hE, (5.20)∑

x

‖x‖22Ξ(1),ι
p (x) ≤2

∑
ι,x

(‖x− eι‖22 + 1)Ξ(1),ι
p (x). (5.21)

Lemma 5.3 (Lower bounds). Let

θ2 = max{τ 1

2,p(2e1), τ 1

2,p(e1 + e2)}, θ4 = max{τ 1

4,p(2e1), τ 1

4,p(e1 + e2)}, (5.22)

ϑ =
d2

(d− 1)(d− 2)
(D?3 ? τ5,p)(0). (5.23)

The following lower bounds hold for all p < pc:∑
κ

Π(0),ι,κ
α,p (eι) ≥(2d− 1)(2d− 2)p4(1− p3)2d−3 − (2d− 2)2p4τ3,p(e1)2

− (2d− 2)p4
(
τ1
4,p(2e1) + (4d− 5)τ1

2,p(e1 + e2) + (4d− 4)p3 + 2dϑ
)

+ 16(d− 1)(d− 2)(2d− 3)p6(1− p3)2d−2(1− p5)16(d−1)(d−2)(2d−3)−1

×
(

1− τ3,p(e1)− θ2 − 3 sup
x 6=0

τ1,p(e1)
)
. (5.24)

Further,

Ψ̂(0),κ
p (0) ≥ (2d− 1)(2d− 2)p4(1− p3)2d−3 − (2d− 2)2p4τ3,p(e1)2 (5.25)

− (2d− 2)p4
(
τ1
4,p(2e1) + (4d− 5)τ1

2,p(e1 + e2) + (4d− 4)p3 + 2dϑ
)

+ (2d− 2)2p4(1− τ3,p(e1)− 2θ2 − 2p3)− 2d(2d− 2)p4ϑ

+ 64d(d− 1)(d− 2)(1− p4)2d−2(1− p6)16(d−1)(d−2)

×
(
1− τ3,p(e1)− 2p2 − 2θ2 − 2ϑ− τ 1

5,p(2e1 + e2)
)
,

and∑
κ

Π̂(1),ι,κ
p (0) ≥(2d− 1)(2d− 2)p5(1− p− 3τ3,p(e1)− θ2 − θ4)− (2d− 2)p5(θ4 + ϑ)

(5.26)

+ (2d− 2)2(2d− 3)p7(1− p3)2d− 3
(
1− p− 2p2− 2p3− 2τ3,p(e1)− 4θ4− 2ϑ

)
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× (1− τ3,p(e1)− θ2 − ϑ)

+ (2d− 2)2(2d− 3)p7(1− p3)2d−3(1− p− p2 − 2τ3,p(e1)− 2θ4 − ϑ)

× (1− τ3,p(e1)− θ2)

+ (2d− 2)3(2d− 3)p8(1− p3)2d−3 (1− 2τ3,p(e1)− θ2 − ϑ)

×
(
1− p− 2p2 − 2τ3,p(e1)− 4θ4 − 3ϑ− (2dp)4(D?4 ? τ4,p)(0)

)
.

We expect that the coefficients for N = 0 and N = 1 are of comparable size. Thus, we
use the following bounds to cancel out a part of the NoBLE coefficient in our analysis:

Lemma 5.4 (Bounds on differences). Let p < pc. Then,

Ξ(0)

α,p(0)− Ξ(1)

α,p(0) =0, (5.27)

Ξ(1)

α,p(e1)− Ξ(0)

α,p(e1) ≤(2d− 2)p4
(
1− (1− p3)2d−3

)
+ p2((2d− 2)τ1

4,p(e1 + e2) + τ1
4,p(2e1)),

(5.28)

Ξ(0)

α,p(e1)− Ξ(1)

α,p(e1) ≤pτ5,p(e1) + (2d− 2)p5 + 2(2d− 2)p4(τ3,p(e1) + τ1
4,p(e1 + e2)), (5.29)

and∑
ι

(
Ψ(0),1
α,I,p(e1 + eι)−Ψ(1),1

α,I,p(e1 + eι)
)

(5.30)

≤(2d− 2)
p5

µp
+
p3

µp

(
2(2d− 2)τ 1

4,p(e1 + e2) + τ 1

4,p(2e1) + (4d− 3)τ3,p(e1)2
)

+ (2d− 2)
p5

µp

[
1− 2(1− 2τ3,p(e1)− τ 1

2,p(e1 + e2))(1− τ3,p(e1)− θ2)
]
,∑

ι

(
Ψ(1),1
α,I,p(e1 + eι)−Ψ(0),1

α,I,p(e1 + eι)
)

(5.31)

≤ p3

µp

(
(2d− 2)p2 + 2(2d− 2)τ 1

4,p(e1 + e2) + τ 1

2,p(2e1)
)

+ (2d− 2)
p5

µp

[
τ3,p(e1) + 2θ2 + τ 1

5,p(2e1 + e2))
]
,∑

ι

(
Ψ(0),1
α,II,p(eι)−Ψ(1),1

α,II,p(eι)
)
≤ (2d− 1)pτ5,p(e1) (5.32)

+ (2d− 1)(2d− 2)
p5

µp
[1− (1− p− 2τ3,p(e1)− 2θ4) (1− τ3,p(e1)− θ2 − ϑ)]∑

ι

(
Ψ(1),1
α,II,p(eι)−Ψ(0),1

α,II,p(eι)
)

(5.33)

≤(2d− 1)(2d− 2)
p5

µp

[
1− (1− p3)2d−3

]
+

(2d− 1)p3

µp

(
(2d− 2)τ 1

4,p(e1 + e2) + τ 1

4,p(2e1)
)

+ (2d− 2)2p4τ3,p(e1)2

+ (2d− 2)p4
(
τ1
4,p(2e1) + (4d− 5)τ1

2,p(e1 + e2) + (4d− 4)p3 + 2dϑ
)
.

Lemmas 5.1–5.2 and the lower bounds in Lemma 5.3 for N = 0 are proved in Section
6.1. The proof of the missing lower bound in Lemma 5.3 for N = 1, as well as the proof
of Lemma 5.4, is given in [16, Appendix B]. It is based on similar ideas as used in the
proof of Lemma 5.1 and 5.3.

5.3 Diagrammatic bounds for N ≥ 2

We state the bounds on the NoBLE-coefficients for N ≥ 2 in Propositions 5.5 and 5.6.
We discuss the proof of these bounds in Section 6.2.
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Proposition 5.5 (Bounds on Ξ(N)
p for N ≥ 2). Let p < pc. Then,

Ξ̂(N)

p (0) ≤~P S(Bι)N−1Āι ~P E. (5.34)

For N ≥ 2 even,∑
x

‖x‖22Ξ(N)

p (x) ≤(N + 2)
[
~hS (Aι)

T
(B̄ι)N−1 ~P E + ~P S(Bι)N−1(H(3) ~P E + Aι~hE)

]
(5.35)

+ (N + 2)

N/2−1∑
M=0

~P S(Bι)2M

(
C(1)B̄ι + 1l

{M 6=N
2 −1}

BιC(2)

)
(B̄ι)N−3−2M ~P E,

and, for N ≥ 2 odd,∑
x

‖x‖22Ξ(N)

p (x) ≤(N + 2)
[
~hS (Aι)

T
(B̄ι)N−1 ~P E + ~P S(Bι)N−1(H(2) ~P E + Aι~hE)

]
(5.36)

+ (N + 2)

(N−3)/2∑
M=0

~P S(Bι)2M (C(1)B̄ι + BιC(2))(B̄ι)N−3−2M ~P E.

Proposition 5.6 (Bounds on Ξ(N),ι
p for N ≥ 2). Let p < pc. Then,

Ξ̂(N),ι
p (0) ≤~P ι(Bι)N−1Āι ~P E. (5.37)

For N ≥ 2 even,∑
x

‖x− eι‖22Ξ(N),ι
p (x) (5.38)

≤ (N + 1)
[
~hι,II(B̄ι)N−1 ~P E + ~P ι(Bι)N−1(H(3) ~P E + Aι~hE)

]
+ (N + 1)1l{N≥4}

(N−4)/2∑
M=0

~P ι(Bι)2M+1(C(2)B̄ι + BιC(1))(B̄ι)N−4−2M ~P E,∑
x

‖x‖22Ξ(N),ι
p (x) (5.39)

≤ (N + 2)
[
~hι,II(B̄ι)N−1 ~P + ~P ι(Bι)N−1(H(3) ~P E + Aι~hE)

]
+ (N + 2)1l{N≥4}

(N−4)/2∑
M=0

~P ι(Bι)2M+1(C(2)B̄ι + BιC(1))(B̄ι)N−4−2M ~P E

+ (N + 2)(~P ι(Bι)N−1Āι ~P E).

For N ≥ 2 odd,∑
x

‖x− eι‖22Ξ(N),ι
p (x) ≤(N + 1)

[
~hι,II(B̄ι)N−1 ~P E + ~P ι(Bι)N−1(H(2) ~P E + Aι~hE)

]
(5.40)

+ (N + 1)

(N−3)/2∑
M=0

~P ι(Bι)2M+1C(2)(B̄ι)N−3−2M ~P E

+ (N + 1)

(N−5)/2∑
M=0

~P ι(Bι)2M+2C(1)(B̄ι)N−4−2M ~P E,

∑
x

‖x‖22Ξ(N),ι
p (x) ≤(N + 2)

[
~hι,II(B̄ι)N−1 ~P E + ~P ι(Bι)N−1(H(2) ~P E + Aι~hE)

]
(5.41)

+ (N + 2)

(N−3)/2∑
M=0

~P ι(Bι)2M (C(1)B̄ι + BιC(2))(B̄ι)N−3−2M ~P E

+ (N + 2)~P ι(Bι)N−1Āι ~P E.
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In Section 6 we explain how these bounds are proved, see in particular Section
6.2. The objects appearing in the bounds in Proposition 5.5–5.6 can be evaluated
numerically using the assumed bounds on f1(p), f2(p) and f3(p) and methods proved in
the Mathematica notebook Percolation. To obtain the mean-field result in dimension
d = 11 and d = 12 we further improved the bounds stated in Proposition 5.5–5.6 for
N = 2, 3, by considering the special cases that the left- and right-most triangles are
trivial, see Figure 10.

In Section 6.2, we sketch the proof of the proposition and comment on the improve-
ment for N = 2, 3. A detailed explanation of these bounds and their proof can be found
in Chapter 4 of the thesis of the first author [14], which can be downloaded from [13].

5.4 Summary of the bounds

We have now stated all the bounds on the NoBLE coefficients required for the NoBLE
analysis, that is explained in [17] on the level of diagrams. In doing so we have proven
Proposition 2.2.

In this section we review where to find the bounds stated in [17, Assumption 4.3].
We want to emphasize that, next to the diagrammatic bounds proven in this document,
the proof of [17, Assumption 4.3] also requires an analysis that enables us to bound
them numerically and a computer program that computes the stated bounds numerically.
Only once these numerical bounds are computed we can apply the analysis of [17] to
obtain the mean-field results. In the previous sections, we have proven the diagrammatic
bounds that allow us to prove the following assumption. We first state it, and then check
all required bounds one by one:

Assumption 5.7 ([17, Assumption 4.3]: Diagrammatic bounds). Let Γ1,Γ2,Γ3 ≥ 0. As-
sume that p ∈ (pI , pc) is such that fi(p) ≤ Γi holds. Then τ̂p(k) ≥ 0 for all k ∈ (−π, π)d.
There exists βµ ≥ 1, β

µ
> 0 such that

µ̄p
µp
≤ βµ, µp ≥ β

µ
. (5.42)

Further, there exist β(N)
Ξ , β(N)

Ξι , β
(N)
∆Ξ, β

(N)

∆Ξι,0, β
(N)

∆Ξι,ι ≥ 0, such that

Ξ̂(N)

p (0) ≤ β(N)

Ξ , Ξ̂(N),ι
p (0) ≤ β(N)

Ξι , (5.43)∑
x

‖x‖22Ξ(N)

p (x) ≤ β(N)

∆Ξ,
∑
x

‖x‖22Ξ(N),ι
p (x) ≤ β(N)

∆Ξι,0, (5.44)∑
x

‖x− eι‖22Ξ(N),ι
p (x) ≤ β(N)

∆Ξι,ι, (5.45)

for all N ≥ 0 and k ∈ (−π, π)d. Moreover, we assume that
∑∞
N=0 β

(N)
• < ∞ for • ∈

{Ξ,Ξι,∆Ξ, {∆Ξι, 0}, {∆Ξι, 1}} and that

(2d− 1)µ̄p
1− µp

∞∑
N=0

β(N)

Ξι < 1. (5.46)

Further, there exist β(0)

Ψ
, β(1)∑

Π
such that

Ψ̂(0),ι
p (0) ≥ β(0)

Ψ
,

∑
κ

Π̂(1),ι,κ
p (0) ≥ β(1)∑

Π
. (5.47)

Additionally, there exist β(1-0)

Ξα(0), β
(0-1)

Ξα(0), β
(1-0)

Ξα(e1), β
(0-1)

Ξα(e1) with

−β(1-0)

Ξα(0) ≤ Ξ(0)

α,p(0)− Ξ(1)

α,p(0) ≤ β(0-1)

Ξα(0), (5.48)
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−β(1-0)

Ξα(e1) ≤ Ξ(0)

α,p(e1)− Ξ(1)

α,p(e1) ≤ β(0-1)

Ξα(e1), (5.49)

and β(0)

Ξια,I
, β(0)∑

Ξια,I
, β(0)

Ξια,II
, β(0)∑

Ξια,II
,≥ 0 such that

Ξ(0),ι
α,I,p(eι) ≤β

(0)

Ξια,I
,

∑
κ

Ξ(0),ι
α,I,p(eι + eκ) ≤ β(0)∑

Ξια,I
, (5.50)

Ξ(0),ι
α,II,p(0) ≤β(0)

Ξια,II
,

∑
κ

Ξ(0),ι
α,II,p(eκ) ≤ β(0)∑

Ξια,II
. (5.51)

Also, there exist β(0-1)∑
Ψια,I

, β(0-1)∑
Ψια,II

, β(1-0)∑
Ψια,I

, β(1-0)∑
Ψια,II

, β(0)∑
Πα
, β(0)∑

Πα
, such that

−β(1-0)∑
Ψια,I
≤
∑
κ

(
Ψ(0),ι
α,I,p(eι + eκ)−Ψ(1),ι

α,I,p(eι + eκ)
)
≤ β(0-1)∑

Ψια,I
, (5.52)

−β(1-0)∑
Ψια,II

≤
∑
κ

(
Ψ(0),ι
α,II,p(eκ)−Ψ(1),ι

α,II,p(eκ)
)
≤ β(0-1)∑

Ψια,I
, (5.53)

β(0)∑
Πα
≤
∑
κ

Π(0),ι,κ
α,p (eι) ≤ β(0)∑

Πα
. (5.54)

For N = 0, 1, there exist β(N)

Ξ,R, β(N)

∆Ξ,R
, β(N)

Ψ,R,I , β
(N)

∆Ψ,R,I
, β(N)

Ψ,R,II , β
(N)

∆Ψ,R,II
≥ 0, such that∑

x

Ξ(N)

R,p(x) ≤β(N)

Ξ,R,
∑
x

‖x‖22Ξ(N)

R,p(x) ≤ β(N)

∆Ξ,R
, (5.55)∑

x

Ψ(N),ι
R,I,p(x) ≤β(N)

Ψ,R,I ,
∑
x

‖x− eι‖22Ψ(N),ι
R,I,p(x) ≤ β(N)

∆Ψ,R,I
, (5.56)∑

x

Ψ(N),ι
R,II,p(x) ≤β(N)

Ψ,R,II ,
∑
x

‖x‖22Ψ(N),ι
R,II,p(x) ≤ β(N)

∆Ψ,R,II
. (5.57)

Further, there exist β(0)

Ξι,R,I , β
(0)

∆Ξι,R,I
, β(0)

Ξι,R,II , β
(0)

∆Ξι,R,II
, β(0)

Π,R, β(0)

∆Π,R
≥ 0, such that∑

x

Ξ(0),1
R,I,p(x) ≤β(0)

Ξι,R,I ,
∑
x

‖x− eι‖22Ξ(0),ι
R,I,p(x+ eι) ≤ β(0)

∆Ξι,R,I
, (5.58)∑

x

Ξ(0),1
R,II,p(x) ≤β(0)

Ξι,R,II ,
∑
x

‖x‖22Ξ(0),ι
R,II,p(x) ≤ β(0)

∆Ξι,R,II
, (5.59)∑

x,ι

Π(0),ι,κ
R,p (x) ≤β(0)

Π,R,
∑
x,ι,κ

‖x‖22Π(0),ι,κ
R,p (x+ eι + eκ) ≤ β(0)

∆Π,R
. (5.60)

For all • ∈ {Ξ,Ξι,∆Ξ, {∆Ξι, 0}, {∆Ξι, 1}} and N ∈ N, β(N)
• depends only on Γ1,Γ2,Γ3, d

and on the model. The bounds stated above also holds for pI = (2d − 1)−1 with the
constants β• only depending on the dimension d and the model.

In Table 4, we give the line numbers in which a given bound β• is stated. Some of
the assumed bounds were not discussed yet. We derive these missing bounds now. For
percolation it is well known that τ̂p(k) ≥ 0, see [3]. For the bounds stated in (5.42) we
recall µ̄p = p, µp = pP(eκ 6∈ C̃ (0,eκ)(0)) and pI = (2d− 1)−1. Thus,

µ̄p
µp

=
1

1− P{(0,eκ)}(0←→ eκ)
=

1

1− τ3,p(e1)
≤ 1

1− β(τ3,p(e1))
:= βµ, (5.61)

µp ≥ pIP(eκ 6∈ C̃ (0,eκ)(0)) =
1− τ3,p(e1)

2d− 1
≥ 1− β(τ3,p(e1))

2d− 1
:= β

µ
, (5.62)

where β(τ3,p(e1)) is a numerical upper bound on τ3,p(e1).
The condition in (5.46) is numerical condition that is verified explicitly in the Mathe-

matica notebooks. We remark that this condition is a relatively weak, in the sense that
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Bound defined in Bound defined in Bound defined in
β(0)

Ξ (4.22) β(1)
Ξ (5.11) β(N)

Ξ , N ≥ 2 (5.34)
β(0)

Ξι (4.28) β(1)

Ξι (5.19) β(N)

Ξι , N ≥ 2 (5.37)
β(0)

∆Ξ (4.22) β(1)
∆Ξ (5.15) β(N)

∆Ξ, N ≥ 2 (5.35), (5.36)
β(0)

∆Ξι,0 (4.30) β(1)

∆Ξι,0 (5.21) β(N)

∆Ξι,0, N ≥ 2 (5.39), (5.41)

β(0)

∆Ξι,ι (4.29) β(1)

∆Ξι,ι (5.20) β(N)

∆Ξι,ι, N ≥ 2 (5.38), (5.40)
β(0)

Ψ
(5.25) β(1)∑

Π
(5.26) β(0-1)

Ξα(0) (5.27)

β(1-0)

Ξα(0) (5.27) β(1-0)

Ξα(e1) (5.28) β(0-1)

Ξα(e1) (5.29)
β(0)

Ξια,I
(4.31) β(0)∑

Ξια,I
(4.31) β(0)

Ξια,II
(4.31)

β(0)∑
Ξια,II

(4.32)

β(0-1)∑
Ψια,I

(5.30) β(0-1)∑
Ψια,II

(5.32) β(1-0)∑
Ψια,I

(5.31)

β(1-0)∑
Ψια,II

(5.33) β(0)∑
Πα

(5.24) β(0)∑
Πα

(4.37)

β(0)
Ξ,R (4.23) β(0)

∆Ξ,R
(4.23) β(0)

Ψ,R,I (4.24)

β(0)

∆Ψ,R,I
(4.25) β(0)

Ψ,R,II (4.26) β(0)

∆Ψ,R,II
(4.27)

β(1)
Ξ,R (5.12) β(1)

∆Ξ,R
(5.16) β(1)

Ψ,R,I (5.13)

β(1)

∆Ψ,R,I
(5.17) β(1)

Ψ,R,II (5.14) β(1)

∆Ψ,R,II
(5.18)

β(0)

Ξι,R,I (4.33) β(0)

∆Ξι,R,I
(4.34) β(0)

Ξι,R,II (4.35)

β(0)

∆Ξι,R,II
(4.36) β(0)

Π,R (4.38) β(0)

∆Π,R
(4.39)

Table 4: An overview where to find the bounds stated in [17, Assumption 4.3].

the bootstrap analysis, which in particular includes an improvement of bounds, fails
before (5.46).

This completes the summary of the bounds that we have proved. Using that p = pI ,
see [17, Assumptions 2.2], or that the bootstrap function are bounded, we can compute
numerical bounds on these diagrammatic bounds, see (4.10) for the idea of these bounds,
or [17, Section 5] for a complete description.

6 Proof of the bounds

The bounds stated in the previous section are proved using ideas that are quite
standard in lace expansion analyses, in combination with a consideration of cases for
the number of edges involved in shared lines. This consideration is needed to use the
additional avoidance constraints. The proof of the bound for the classical lace expansion
is already elaborate, adding the consideration of cases makes the proof even more
lengthy. In the proof of Lemma 5.1, we discuss in detail how we use these different cases
for our bounds. We will omit details in the explanation of the proof for N ≥ 2. For a
detailed description of such bounds we refer the reader to [50] or [14].

6.1 Proof of the bounds for N = 1

Proof of Lemma 5.1. We first prove the bounds on Ξ(1)
p and Ξ(1)

R,p and then explain how to
modify the arguments used to obtain the bounds on Ψ(1),κ

R,I,p and Ψ(1),κ
R,II,p.

For N = 1 we simplify the definition (3.43) to see that

Ξ(1)

p (x) =
∑
b0

pE0

(
1l{0⇐⇒b0}1l{b0 6∈C̃0}P

b0
1

(
E(b0, x; C̃0)

))
. (6.1)

In Section 4.4 we have proven with (4.65) that

Ξ(1)

p (x) ≤
∑

b0,t,w,z

pPp(F0(b0, w, z) ∩ {b0 6∈ C̃0})P
b0
p (F1(b0, t, z, x)). (6.2)
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0 x

b0 = (u, u+ eι)

w z

t

Figure 12: Diagrammatic representations of the bound on Ξ(1)
p (x) in (6.2). The solid

lines are connections in C̃0 = C̃ b0
0 (0), while the dashed lines represent connections in

C1 ⊂ Zd \ {b}. Shaded triangles might be trivial. As explained in Section 4.4 we choose z
such that the connection {w ←→ z} intersects with C̃1 only at z, so that all connections
are bond-disjoint.

This can be displayed as in Figure 12.
Using Figure 12, it is straightforward to obtain that

Ξ(1)

p (x) ≤
∑

b0,t,w,z

T ∗0,0,0(b0, w, 0)2dpτp(t− b0)τp(w − z)T ∗0,0,0(t− x, z − x, 0). (6.3)

We use the repulsiveness properties to obtain a better bound. Namely, we prove that

Ξ(1)

p (x) ≤
2∑

a,b=0

∑
u,ι,w,z,t

P S,a(u,w)Āι,a,b(u,w, t, z)P E,b(t− x, z − x), (6.4)

where, to avoid confusion between the bond b0 and the number of edges in Aι,a,b, we
replace the bond b0 by (u, u+ eι). Once this is established, the bound (5.11) follows as∑

x

Ξ(1)

p (x) ≤
2∑

a,b=0

∑
x,u,ι,w,z,t

P S,a(u,w)Āι,a,b(u,w, t, z)P E,b(t− x, z − x)

=

2∑
a,b=0

∑
u,w

P S,a(u, u+ w)
∑
y,x

P E,b(x, x+ y)
∑
ι,t

Āι,a,b(0, w, t, t+ y)

≤
2∑

a,b=0

∑
u,w

P S,a(u, u+ w)
∑
y,x

P E,b(x, x+ y) sup
w,y

∑
ι,t

Āι,a,b(0, w, t, t+ y)

=

2∑
a,b=0

(~P S)a(Āι)a,b(~P
E)b = ~P SĀι ~P E. (6.5)

Let us now prove (6.4). We denote by dC (x, y) the intrinsic distance between x and
y in C , so the length of the shortest path of bonds that are occupied in C and connect
x and y. We define a = d

C̃
b0
0 (0)

(b0
, w) and b = dC̃1(x)(t, z). We first discuss the left most

triangle 0, b0, w and show that it is bounded by P S,a(u,w), see (5.1). We split between
several cases depending on the value of a:
Case a = 0. In this case w = u. If 0 = w = u, then the left triangle shrinks to a point,
otherwise 0 and w are doubly connected:

δu,wP(0⇐⇒ w) = P S,0(u,w). (6.6)

Case a = 1. We conclude from a = 1 that u and w are neighbors, 2dD(u − w) = 1, the
bond {u,w} is occupied and u 6= 0. We split between w = 0 and w 6= 0 to obtain the
desired bound:

δw,0B1,3(u, 0) + T1,1,1(u,w, 0) = P S,1(u,w). (6.7)
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Case a ≥ 2. We consider the cases w = 0 and w 6= 0 to obtain the bound

δw,0P({0 2←→ u} ◦ {0 2←→ u}) + T1,2,1(u,w, 0) ≤ P S,2(u,w). (6.8)

Further, the right triangle z, t, x is bounded by P E,b(t− x, z − x) for the three different
cases of b. The difference to the left triangle is that when x = z, we have the freedom to
choose t = x, so that we can exclude the case x = z for b ≥ 1.

Let us now discuss the middle piece of Figure 12 consisting of the square (b0 = (u, u+

eι), t, z, w). By definition of F0 and FN in (4.57)-(4.58), we know that z 6∈ b = (u, u+ eι),
u 6= x, t. Further, we note that the connections {u+ eι ←→ t} and {w ←→ z} are realised
on different percolation configurations. For this reason we have introduced the concept
of generalized-disjoint occurrence, see Definition 4.1. We have to consider the nine
combinations of (a, b):

Case a = 0, b = 0. We begin with the simplest case. We use u + eι 6= z = t and
u = w = b 6= z to conclude

T1,1,1(eι, t− u, 0) = Āι,0,0(u, u, t, t). (6.9)

Case a = 1, b = 0. We note that t = z 6∈ {u, u + eι} and 2dD(u − w) = 1, which implies
that

2dD(u− w)T1,1,0(eι, t− u,w − u) ≤ Āι,1,0(u,w, t, t). (6.10)

Case a ≥ 2, b = 0. We note that t = z 6∈ {u, u+ eι} and obtain the bound

T1,1,0(eι, t− u,w − u) ≤ Āι,2,0(u,w, t, t). (6.11)

Case a = 0, b = 1. We note that u = w 6= t, z and 2dD(z − t) = 1 and conclude

2dD(t− z)T1,1,0(u− z, u+ eι − z, t− z) ≤ Āι,0,1(u, u, z, t). (6.12)

Case a = 0, b ≥ 2. We note that u = w 6= t, z and obtain

T1,1,0(u− z, u+ eι − z, t− z) ≤ Āι,0,2(u, u, z, t). (6.13)

Cases a ≥ 1 and b ≥ 1. For a ≥ 1 and b ≥ 1, the two paths realising the connections
{(u, u + eι) occ., u + eι ←→ t} and {w ←→ z} have no common vertices, leading to a
repulsive diagram. Thus, we obtain

B1,0(eι − u, t− u)τp(z − w) ≤ Āι,a,b(u,w, z, t). (6.14)

When a = 1 and/or b = 1, we include the information that either u,w and/or z, t are
neighbors into the definition of Āι,a,b. Using the information and the parity of the lattice
allows us to obtain improved numerical bounds on Āι,a,b. This completes the proof of the
bound (5.11).

To prove the bound (5.12), we review what contributions of Ξ(1)
p (x) have been ex-

tracted using Ξ(1)
α,p(x), see (3.67). Indeed, we extract the contributions in which b0 = 0,

{b0 ←→ x} is cut through at x and the connection to the cutting point is established in

C̃
(0,e)
0 directly, so via the bond (0, x). This corresponds to a contribution of a = b = 0 in

which t and u are directly connected. We split the bound in (6.9) into

T1,1,1(eι, t− u, 0) + T1,1,2(eι, t− u, 0), (6.15)

and see that the first term corresponds to the event that we removed with Ξ(1)
α,p(x). In

(5.12) we simply remove the bound in (6.9) and replace it with a bound on the second
term in (6.15).
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Next, we explain how to obtain the bound on the weighted diagram (5.15). First, we
define an open bubble that will replace the left and right triangle:

QS,0(x, y) = QE,0(x, y) = P S,0(x, y), (6.16)

QS,1(x, y) = 2dD(x− y) (δ0,yτ3,p(x) + B1,1(−y, x− y)) , (6.17)

QS,2(x, y) = δ0,yτ2,p(x) + B1,1(−y, x− y), (6.18)

and QE,b(x, y) = (1− δ0,y)QS,b(x, y) for b = 1, 2.
Then, we show that, next to the bound in (6.4), also the bounds

Ξ(1)

p (x) ≤
2∑

a,b=0

∑
u,ι,w,z,t

P S,a(u,w)Aι,a,b(u,w, t, z)QE,b(t− x, z − x), (6.19)

Ξ(1)

p (x) ≤
2∑

a,b=0

∑
u,ι,w,z,t

QS,a(u,w)Aι,b,a(t, z, u, w)P E,b(t− x, z − x), (6.20)

hold. As the proof of these bounds is very similar to the proof of (6.4), we omit it here.
For our bound we split the weight ‖x‖22 using the inequality:

‖x‖22 ≤ 3(‖w‖22 + ‖z − w‖22 + ‖x− z‖22). (6.21)

More precisely, we first use this inequality for each given configuration and then apply
the bounds (6.4), (6.19), (6.20) to obtain

‖x‖22Ξ(1)

p (x) ≤3

2∑
a,b=0

∑
u,ι,w,z,t

QS,a(u,w)Aι,b,a(t, z, u, w)P E,b(t− x, z − x)‖w‖22

+ 3

2∑
a,b=0

∑
u,ι,w,z,t

P S,a(u,w)Āι,a,b(u,w, t, z)P E,b(t− x, z − x)‖w − z‖22

+ 3

2∑
a,b=0

∑
u,ι,w,z,t

P S,a(u,w)Aι,a,b(u,w, t, z)QE,b(t− x, z − x)‖x− z‖22. (6.22)

We have defined the diagrams in ~hS,~hE and H(3) as the bound on the weighted version of
QS, QE and Āι, so that (6.22) implies∑

x

‖x‖22Ξ(1)

p (x) ≤3~hSAι ~P E + 3~P SH(3) ~P E + 3~P SAι~hE. (6.23)

We obtain the bound (5.15) by extracting the special case that one or both of the triangles
on the left and right are trivial, characterized by ~uT = (1, 0, 0). In this case we simply
use the weight ‖x‖22 or apply the inequalities

‖x‖22 ≤ 2(‖w‖22 + ‖x− w‖22) if z = x, or ‖x‖22 ≤ 2(‖z‖22 + ‖x− z‖22) if w = 0. (6.24)

In this way we obtain the bound∑
x

‖x‖22Ξ(1)

p (x) ≤~uTH(3)~u+ 2~uTH(3)
(
~P E − ~u

)
+ 2~uTAι~hE + 2~hSAι~u+ 2

(
~P S − ~uT

)
H(3)~u

+ 3~hSAι
(
~P E − ~u

)
+ 3
(
~P S − ~uT

)
H(3)

(
~P E − ~u

)
+ 3
(
~P S − ~uT

)
Aι~hE.

(6.25)

As this is a central quantity, we improve this bounds once more, by improving the bound
for diagrams which involve only two triangles. These are precisely the terms carrying
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the factor 2 in (6.25). As this is a simple analysis of special cases we omit it here. The
details are given in the appendix of the extended version [16].

This creates the term β(1)
∆Ξ and proves (5.15). We obtain (5.16) by reviewing the

contribution that we remove in Ξ(1)
α,p(x) and subtract the contribution it creates from the

bound, see also (6.15).
Now we prove the bounds on

∑
κ Ψ(1),κ

R,II,p(x). The coefficients Ξ(1)
R,p and Ψ(1),κ

R,II,p only

differ by the factor p/µp and the constraint that x + eκ 6∈ C̃
(x,x+eκ)
1 . The constraint is

created by the next pivotal bond b1 = (x, x + eκ) in the expansion, see Section 3. For
each realisation at most 2d− 1 values of κ can contribute, so that∑

κ

Ψ(1),κ
R,II,p(x) ≤ (2d− 1)

p

µp
Ξ(1)

R,p(x), (6.26)

for all x. Combining this with the bound on Ξ(1)
R,p in (5.12) and (5.16), we obtain the

stated upper bounds on Ψ(1),κ
R,II,p in (5.14) and (5.18).

The argument in (6.26) also implies that∑
κ

Ψ(N),κ
p (x) ≤(2d− 1)

p

µp
Ξ(N)

p (x). (6.27)

Combining this with the bound (5.11) gives∑
x

Ψ(1),κ
R,I,p(x) ≤ p

µp

2d− 1

2d
~P SĀι ~P E. (6.28)

By the definition in (3.70), in Ψ(1),κ
α,p we extract contributions in which b0 = u = w = 0,

t = z = x, ‖x− eκ‖ ≤ 1 and b and x are connected by a short path. In the bound on Ξ(1)

these contribute to the case bounded in (6.9). Inspecting the proof in (6.9), we see that
we can bound this case for Ψ(1),κ

R,I,p by∑
x

∑
ι

(
1l{‖x−eκ‖2>1}T1,1,1(eι, x, 0) + 1l{‖x−eκ‖2≤1}T1,3,1(eι, x, 0)

)
. (6.29)

We can remove x = −eκ from the sum as Ψ(1),κ
R,I,p(−eκ) = 0. For our bound we extract all

contributions in which 0 and x are connected via the direct edge, and note that the direct
connection does not contribute for x = eκ. In this way we obtain the bound for this case

(2d− 2)
∑
ι

T1,2,1(eι, e2, 0) +
∑
x

∑
ι

T1,1,2(eι, x, 0). (6.30)

We replace the original bound (Āι)0,0 in (6.28) by this term and obtain (5.13).
In the bounds on weighted version of Ψ(1),κ

R,I,p, see (5.17), we can unfortunately not
benefit from the extracted contribution. We explain the reason for this after proving the
bound. We first use (3.74) to bound, for every x,

Ψ(1),κ
R,I,p(x) ≤ Ψ(N),κ

p (x) ≤ p

µp
Ξ(N)

p (x), (6.31)

In the following, we first use symmetry to perform the sum over κ, then apply ‖x−eκ‖22 =

‖x‖22 − 2xκ + 1 and (6.31), to obtain∑
x

‖x− eκ‖22Ψ(1),κ
R,I,p(x) ≤ 1

2d

p

µp

∑
x,κ

(‖x‖22 − 2xκ + 1)Ξ(1)

p (x) =
p

µp

∑
x

(‖x‖22 + 1)Ξ(1)

p (x).

(6.32)
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In the second step we have used that Ξ(1)
p (x) is symmetric to conclude that xκΞ(1)

p (x)

vanishes when we sum over x. Using the already proven bounds (5.11), (5.15) we obtain
the bound claimed in (5.17).

For this bound it is not beneficial to extract contributions that contribute to Ψ(1),κ
R,I,p,

but not to Ψ(1),κ
p (x), as this would create terms that are not symmetric. Without the

symmetry in x, we would need to use the inequality ‖x − eκ‖22 ≤ 2‖x‖22 + 2 to split the
weight. The factor 2 in this split is numerically worse than any gain we can possibly
expect from the extraction of explicit contributions.

Proof of Lemma 5.2. This proof is similar to the proof of Lemma 5.1. First, we recall
that, in Section 4.4, we have proven that

Ξ(1),ι
p (x) ≤

∑
b0,t,w,z

pE0

(
1lF ι0(b0,w,z)1l{b0 6∈C̃0}E

b0
1

(
1lF1(b0,t,z,x)1l{0←→z off C̃1\{z}}

))
. (6.33)

The event F ι0 is given as a union of three events, so the diagram representing (6.33)
consists of three parts that are shown in Figure 13.

0 eι

z

tu

u+ eκ

w

x 0

eι

≥ 1

zw

t

x

u

u+ eκ
0 = w = u

t

z

x

eι

Figure 13: Diagrammatic representations of Ξ(1),ι
p (x). The solid lines are connections in

C̃0 = C̃ b0
0 (0), while the dashed lines represent connections in C̃1. Shaded triangles can

be trivial. All connections are bond-disjoint. The first two contributions give rise to the
P ι,a(u,w) term in (6.34), the last gives rise to the δa,0δι,κ1l{u=w=0} term.

We define a = dC̃0
(u,w) (where we recall that u = b0), and b = dC̃1

(t, z) and show that

Ξ(1),ι
p (x) ≤

2∑
a,b=0

∑
u,κ,w,z,t

(δa,0δι,κ1l{u=w=0} + P ι,a(u,w))Āκ,a,b(u,w, t, z)P E,b(t− x, z − x).

(6.34)

Once this is established, the bound (5.19) follows by repeating the steps leading to
(6.5). The right triangle z, t, x and the square w, z, t, b are bounded in the same way as
the left triangle and the middle piece of Ξ(1)

p . Thus, we will only discuss the bound on the
left parts of the three diagrams. Again we consider the different cases a = 0, 1,≥ 2.

Case a = 0. In this case we know that u = w, which is possible for the events F ι,I0

and F ι,III0 , and this is the only contribution due to F ι,III0 . If F ι,III0 occurs, then we have
w = u = 0 and κ = ι. For F ι,I0 , we first have a connection 0 ←→ eι that does not use
the bond (0, eι) and then eι ⇐⇒ w = u. We bound the sum of the probabilities of the
contributions due to F ι,I0 and F ι,III0 by

δu,w
(
δι,κδw,0 + (1− δ0,w)τ3,p(eι)P(eι ⇐⇒ w)

)
= δu,w

(
δw,0δι,κ + P ι,0(u,w)

)
. (6.35)

Case a = 1. The events F ι,I0 and F ι,II0 contribute. The event F ι,II0 can occur for a = 1 only
when u = eι and when w is directly connected to eι. For F ι,I0 we distinguish between the
cases w = eι and w 6= eι. We bound the sums of the probabilities of the discussed events
by
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δu,eιB2,1(w, eι) + τ3,p(eι)(δw,eιB1,3(u− eι, 0) + T1,1,1(w − eι, u− eι, 0)) = P ι,1(u,w).

(6.36)

Case a ≥ 2. The events F ι,I0 and F ι,II0 contribute. For F ι,I0 , we note that u 6= eι as the
bubble would shrink to a point otherwise. For F ι,II0 , we distinguish between whether
u = eι or not, and and whether w = 0 or not. As a = dC̃0

(u,w) ≥ 2, we conclude the
bound to be

τ3,p(eι)P
2(u− eι, w − eι) + δu,eι(δ0,wτ3,p(eι) + B1,2(w, eι))

+(δ0,wτ3,p(eι) + B1,1(w, eι))(1− δeι,u)P(eι ⇐⇒ u) = P ι,1(u,w). (6.37)

This completes the proof of (6.34) and thus also of (5.19).
The bound on the weighted sums are obtained in the same way as the bound on∑
x ‖x‖22Ξ(1)

p (x). We first prove a decompositions similar to (6.34). Thereby, we use
‖x− eι‖22 ≤ 2‖t− eι‖22 + 2‖t− x‖22 if the right triangle is non-trivial. As this follows the
same ideas as demonstrated above, we omit the proof.

Proof of Lemma 5.3. In this proof and the proof of Lemma 5.4 we prove lower bounds
on the coefficients. We create most of our bounds using the FKG and Harris inequalities,
which are standard tools in percolation (see [19]). The coefficients are defined as the
probability of combinations of increasing and decreasing events. For the lower bounds
we have the problem that we can not rearrange them such that these inequalities can be
applied to our advantage.

As we explain in the following, we create these lower bounds by counting explicit
contributions which use at most four steps and bound these by hand. We denote by

γρ = {(0, eρ), (eρ, e1 + eρ), (e1 + eρ, e1)} (6.38)

the three-step path from 0 to e1 that passes through eρ 6= e1,−e1. We say that γρ is
occupied if all three bonds of γρ are occupied and otherwise we call it vacant.

We start by deriving a lower bound on τ3(e1), for which we note that

τ3(e1) ≥P(
⋃

ρ:|ρ|6=1

{γρ is occ.}) ≥ P(
⋃

ρ:|ρ|6=1

{γρ is occ.} ∩
⋂

ι 6=−1,1,ρ

{γι is vac.}) (6.39)

=
∑
ρ

P(γρ is occ.)
∏

ι6=−1,1,ρ

P(γι is vac.) = (2d− 2)p3(1− p3)2d−3,

where the independence is due to the fact that the edges on the different paths (γρ)ρ are
bond disjoint. Further, we define the event

Tκ := {e1 + eκ 6∈ C̃ (e1,e1+eκ)(e1)}, (6.40)

and say that a vertex v ∈ Zd is contained in a path γ and write v ∈ γ if it is the starting
or endpoint of one of the bonds in γ. For the lower bound, we remark that

P({0 3←→ e1} ∩ Tκ) ≥ P({0 3←→ e1} ∩ Tκ)

= P(0
3←→ e1)− P({0 3←→ e1} ∩ T cκ )

(6.39)
≥ (2d− 2)p3(1− p3)2d−3 − P({0 3←→ e1} ∩ T cκ ). (6.41)

We bound the second term by

P({0 3←→ e1} ∩ T cκ ) ≤
∑

ρ : |ρ|6=1

P({γρ is occ.} ∩ T cκ ) (6.42)
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≤ p3
∑

ρ:|ρ|6=1

∑
v∈γρ

P(e1,e1+eκ)
(
v ←→ e1 + eκ off {0, eρ, eρ + e1, e1} \ {v}

)
,

so that

P({0 3←→ e1} ∩ T c1 ) ≤(2d− 2)p3
(
τ3,p(e1) + τ1

2,p(e1 + e2) + τ1
5,p(2e1 + e2) + τ1

4,p(2e1)
)
,

P({0 3←→ e1} ∩ T cκ ) ≤(2d− 3)p3
(
τ3,p(e1) + 2τ1

2,p(2e1 + e2) + 2p3 + τ5,p(e1 + e2 + e3)
)
,

for |κ| 6= 1. To summarize this, we state the bound when summing over κ and note that
κ = −1 does not contribute to the original object, to obtain∑

κ

P({0 3←→ e1} ∩ Tκ)

≥(2d− 1)(2d− 2)p3(1− p3)2d−3 − (2d− 2)2p3τ3,p(e1)2 − (2d− 2)p3τ1
4,p(2e1)

− (2d− 2)p3
(

(4d− 5)τ1
2,p(e1 + e2) + (4d− 4)p3 +

∑
κ

τ5,p(e1 + e2 + eκ)
)
. (6.43)

Now we start to prove the stated lower bounds. We recall (3.66), (4.52) to see that

Π(0),1,κ
α,p (x) = δx,e1pP({0←→ e1} ∩ Tκ | (0, e1) is vacant) = δx,e1pP({0 3←→ e1} ∩ Tκ),

(6.44)

so that the lower bound in (5.24) follows from (6.43).
Next, we create a lower bound for Ψ(0),κ, see (3.42). For the 2d direct neighbours of

the origin, we compute∑
ι

Ψ(0),κ(eι) ≥
p2

µp

∑
κ

P(0,e1)
p ({0←→ e1} ∩ Tκ), (6.45)

we bound this using (6.43) (noting that the event is independent from the occupation
status of (0, e1)) and p/µp > 1 to obtain the first part of (5.25). For a better bound, we
also consider the vertices at distance 2 from the origin that can be part of a four step
loop: ∑

ι,ρ

Ψ(0),κ(eι + eρ) ≥2d(2d− 2)
∑
κ

Pp({0
2←→ e1 + e2} ◦ {0

2←→ e1 + e2} ∩ Tκ)

=(2d− 2)p4
∑
κ

Pp(Tκ | 0, e1, e2, e1 + e2 are occ.)

≥(2d− 2)2p4(1− τ3,p(e1)− 2 max
κ
{τ1

2,p(e1 + eκ)} − 2p3)

− (2d− 2)p4
∑
κ

τ1
5,p(e1 + e2 + eκ) (6.46)

This creates the bound on the second term in (5.25). We improve this bound by also
considering the 32d(d− 1)(d− 2) paths that return to the origin in 6 steps using three
different dimensions. For these paths we have to exclude that a double connection is
present in four steps and that the path passes the point x+ eκ. We exclude these events
by using a bound of of the following type: Let γ and γ′ be two paths whose bonds do not
touch (i.e., there is no v such that v ∈ γ, v ∈ γ′), with x ∈ γ and y ∈ γ′. Then,

P(x←→/ y | γ and γ′ are occ.) =1− P(x←→ y | γ and γ′ are occ.) (6.47)

≥1−
∑
v∈γ

∑
w∈γ′

P(v ←→ w off (γ ∪ γ′) \ {v, w}).

The lower bound on Π(1),ι,κ
p is proven in a similar way. As this is elaborate and not

very insightful we omit the details. These details and the proof of Lemma 5.4 are given
in [16, Appendix B.2] of the extended version.
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6.2 Proof of the bounds for N ≥ 2

6.2.1 Strategy of proof for the bounds

In this section we sketch how to prove the bounds on the coefficients stated in Propo-
sitions 5.5 and 5.6. The proofs are basically an adaptation of the techniques of the
classical lace expansion, see e.g. [50], in combination with a consideration of cases for
the lengths of lines that are shared by two parts of the arising diagrams. The first author
explains this in detail in his thesis (see [14, Chapter 4]).

The first step is to prove a pointwise bound on the coefficients. In order to do this,
we combine the building blocks to construct the bounding diagrams. For b = 0, 1, 2 and
x, y ∈ Zd, let

P (0),b(x, y) = P S,b(x, y), R(0),b(x, y) = P E,b(x, y), (6.48)

and, for N ≥ 1, we recursively define

P (N),b(uN , wN) =
∑

uN−1,wN−1∈Zd

∑
κ

2∑
a=0

P (N-1),b(uN−1, wN−1)B
κ,a,b(uN−1, wN−1, wN , uN),

(6.49)

R(N),a(x, y) =
∑

u,v∈Zd

∑
κ

2∑
b=0

B̄κ,a,b(x, y, u, v)R(N-1),b(u, v). (6.50)

Further, recall the definition of QS,a and QE,a in (6.16)-(6.18). Then, we prove that these
diagrams can be used to bound the coefficients as follows:

Lemma 6.1 (x-space bounds). For every x ∈ Zd, N ≥ 1 and 0 ≤M ≤ N − 1,

Ξ(N)(x) ≤
∑

uM ,wM ,wM+1,zM+1∈Zd

∑
κM

2∑
a,b=1

P (M),a(uM , wM) (6.51)

× ĀκM ,a,b(uM , wM , wM+1, zM+1)R
(N-M-1),b(zM+1 − x,wM+1 − x),

Ξ(N)(x) ≤
∑

uN−1,wN−1,tN ,zN

∑
κN

2∑
a,b=0

P (N-1),a(uN−1, wN−1) (6.52)

×AκN ,a,b(uN−1, wN−1, wN , uN)QE,b(uN − x,wN − x),

Ξ(N)(x) ≤
∑

w0,u0,w1,z1

2∑
a,b=0

∑
κ1

QS,a(u0, w0)Aκ,a,b(z1, w1, u0, w0)R(N-1),b(u1 − x,w1 − x).

(6.53)

Let us briefly discuss this in the example N = 2, as displayed in Figure 14. In Section
4.4, we have bounded the coefficient in terms of simpler events and have produced the
bound (4.65):4

Ξ(2)

p (x) ≤
∑

~b,~w,~t.~z

p2P(2)

(
F0(b0, w0, z1)0 ∩ F (b0, t1, z1, b1, w1, z2)1 ∩ F2(b1, t2, z2, x)2

)
. (6.54)

We draw one possible contribution in Figure 14. We define

� a0 to be the length of the path in C̃0 from b0 to w0 that does not pass the origin,

� a1 to be the length of the path in C̃1 from b1 to w1 that does not pass z1,

4Note that the measure P(2) enforces that the events Evac(b0)0 and Evac(b1)1 occur, recall (4.55) and (4.63).
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F0(b0, w0, z1)

F1(b0, t1, z1, b1, w2, z2)

F2(b1, t2, z2, x)

0

w0

b0

w1

z1

t1

z2

b1 t2
x

0 x

w0 z1 b1

t1

w1

b0
z2

t2

B2,ι Āι
P (0)P (0)

Figure 14: The combination of events that we have used to bound Ξ(2)
p (x) and the

corresponding bounding diagram. Lines indicate disjoint connections. A filled triangle
might be trivial. Note that in this case we can choose z1 and z2 such that the path from
wi to zi intersects C̃i only at zi.

� a2 to be the length of the path in C̃2 from z2 to t2 that does not pass x.

Performing a consideration of cases for ai, as was done in the proof of Lemma 5.1, we
obtain the bounds stated in (6.51). Which of the three bounds is obtained depends on
where we let the connections {b0 ←→ w0}, {b1 ←→ w1}, {z2 ←→ t2} contribute.

To prove the bounds for all N we use induction on N . The proof for Ξι differs only in
the different initial block of the bounding diagram.

Once the x-wise bounds of Lemma 6.1 are proven, we use a split as demonstrated in
(6.5) to conclude the bounds stated in Propositions 5.5 and 5.6.

For the bound on the weighted sum we first split the weights at the level of events
using

‖x‖22 ≤ J
J∑
i=1

‖xi‖22, for xi such that x = xi. (6.55)

For each of the J terms we use one of the bounds stated in Lemma 6.1 and decompose
the sums as in the unweighted case.

To be able to show the mean-field result in d = 11, 12, we improve the bounds for
N = 2, 3 by considering the special case that the left- and/or right-most triangle are
trivial. Doing this we reduce the leading factor J originating from (6.55), by one or two.
Further, for N = 2, we extract the leading contribution, consisting only of two trivial
triangles and bound these manually. Details can be found in [16, Appendix B.1].

7 Proof related results: Proofs of Theorems 1.4, 1.5 and 1.6

In this section, we prove Theorems 1.4, 1.5 and 1.6 one by one.

Proof of Theorem 1.4. The proof of Theorem 1.4 follows by using the x-space asymptotics
proved by Takashi Hara in [21]. See in particular [21, Proposition 1.3]. In more detail
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we use that, by our numerical computations in dimension d = 11,

T̄ (0,0) = sup
x∈Zd

(τ?3pc (x)− δ0,x) ≤ 0.53562, Tpc = 2dpc sup
x∈Zd

(τ?3pc ? D)(x) ≤ 0.28036. (7.1)

In particular, by a recent improvement of the bounds by Hara compared to [21, Proposi-
tion 1.3], it suffices to prove that

Tpc(1 + 2T̄ (0,0)) < 1. (7.2)

This corresponds to the middle diagram in Figure 11, which needs to be at most 1 as
it appears to the power N − 1 in Figure 11 and is being summed out over N . The
improvement in (7.2) follows by carefully inspecting which triangles can be trivial and
which are not. The first contribution in the middle diagram in Figure 11 corresponds
to the term Tpc in (7.2), the other two contributions are each bounded by Tpc T̄

(0,0). The
bound in (7.2) follows from (7.1) and the estimate on pc(11) ≤ 0.048242.

Proof of Theorem 1.5. Theorem 1.5 is proved by the second author and Járai [32]. We
use the more recent version in [28], where it was proved under the assumption that the
classical lace expansion converges (see also the proof of Theorem 1.4). Thus, Theorem
1.5 follows from Theorem 1.4 and the fact that Π̂(N)

pc (0) is exponentially small for N large.
We next show this latter claim. By [9, (4.31) in Proposition 4.1], for all N ≥ 1,

Π̂(N)

pc (0) ≤ T ′pc [2TpcT
′
pc ]

N−1, (7.3)

where
T ′p = max

x∈Zd
(τp ? τp ? τp)(x) ≤ 1 + T̄ (0,0). (7.4)

An improvement alike the one used in (7.2) can improve the above by replacing (7.3) by

Π̂(N)

pc (0) ≤ T ′pc [Tpc(1 + 2T̄ (0,0))]N−1, (7.5)

Therefore, it suffices to show that Tpc(1 + 2T̄ (0,0)) < 1, which we have already proved
above.

Proof of Theorem 1.6. Theorem 1.6 is proved by Kozma and Nachmias [39, 40] under
the assumption that there exist constants c1 and c2 with 0 < c1 < c2 <∞ such that

c1‖x‖−(d−2)
2 ≤ τpc(x) ≤ c2‖x‖−(d−2)

2 . (7.6)

The assumption in (7.6) follows from Theorem 1.4.
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A Notation

Notation brief description defined in
SRW simple random walk Section 2.1
NBW non-backtracking random walk Section 2.1

D SRW step distribution (1.11)
ι, κ direction of a bond ι, κ ∈ {±1, . . . ,±d} above (2.7)

u, v, w, x, y points on the lattice: Zd

k Fourier argument, so k ∈ (−π, π)d (1.9)
p probability of a bond being occupied

f ? g, f?n convolution of functions f, g 7→ Zd (1.10)

Cz, Bz SRW and NBW two-point functions (2.2), (2.10)
J permutation matrix with entries (J)ι,κ = δι,−κ (2.7)

D̂(k) diagonal matrix with entries (D̂(k))ι,κ = δι,κeikι . (2.7)
τp percolation two-point function (1.2), (2.29)
τ ιp modified percolation two-point function (2.12)

Ξz,Ξ
ι
z coefficient of the NoBLE expansion

Ψκ
z ,Π

ι,κ
z coefficient of the NoBLE expansion

D ,B,T ,S repulsive diagram used for the bounds (4.12)-(4.17)
P S, A, B̄(2),ι building blocks used for the bounds Section 5.1

f1, f2, f3 bootstrap function (2.31)-(2.33)
γi,Γi assumed/concluded bounds on the fi (2.31)-(2.33)

Table 5: List of notation that is used in at least two different sections.
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