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Geometry of infinite planar maps with high degrees

Timothy Budd* Nicolas Curien†

Abstract

We study the geometry of infinite random Boltzmann planar maps with vertices of high
degree. These correspond to the duals of the Boltzmann maps associated to a critical
weight sequence (qk)k≥0 for the faces with polynomial decay k−a with a ∈ ( 3

2
, 5
2
) which

have been studied by Le Gall & Miermont as well as by Borot, Bouttier & Guitter. We
show the existence of a phase transition for the geometry of these maps at a = 2. In
the dilute phase corresponding to a ∈ (2, 5

2
) we prove that the volume of the ball of

radius r (for the graph distance) is of order rd with d = (a− 1
2
)/(a−2), and we provide

distributional scaling limits for the volume and perimeter process. In the dense phase
corresponding to a ∈ ( 3

2
, 2) the volume of the ball of radius r is exponential in r. We

also study the first-passage percolation (fpp) distance with exponential edge weights
and show in particular that in the dense phase the fpp distance between the origin
and∞ is finite. The latter implies in addition that the random lattices in the dense
phase are transient. The proofs rely on the recent peeling process introduced in [16]
and use ideas of [22] in the dilute phase.
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1 Introduction

Whereas the geometry of random planar maps (rpm) converging towards the Brow-
nian map is by now pretty well understood, the problem remains open for many other
models of rpm. Famous examples of these are the rpm coupled with an O(n) model,
n ∈ (0, 2), where information about distances remains out of reach. In [27] Le Gall and
Miermont studied the geometry of rpm with large faces which correspond to the gaskets
of the above planar maps coupled with an O(n) model and in particular introduced their
(conjectural) scaling limits. In this work we study the geometry of the dual of these maps
which yields new interesting geometric phenomena.

*NBI, University of Copenhagen and IPhT, CEA, Université Paris-Saclay, E-mail: timothy.budd@cea.fr
†Université Paris–Sud, Université Paris-Saclay, E-mail: nicolas.curien@gmail.com

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/17-EJP55
http://arXiv.org/abs/1602.01328
mailto:timothy.budd@cea.fr
mailto:nicolas.curien@gmail.com


Geometry of infinite planar maps with high degrees

Figure 1: Two representations of the neighborhood of the root in infinite Boltzmann
maps with large degree vertices in the dilute case (left) and dense case (right). The root
is represented by a green ball, while the high degree vertices are represented by blue
balls of size proportional to the degree. The boundary is colored red.

Infinite Boltzmann planar maps. Let us first recall the model of planar maps we
are dealing with. As usual, all planar maps in this work are rooted, i.e. equipped
with a distinguished oriented edge; also for technical simplicity we will only consider
bipartite planar maps (all faces have even degree). We denote by Mn the set of all
finite bipartite planar maps with n vertices. Given a non-zero sequence q = (qk)k≥1 of
non-negative numbers we define a measure w on the set of all bipartite planar maps by
the formula

w(m) :=
∏

f∈Faces(m)

qdeg(f)/2, (1.1)

for every m ∈ ∪n≥0Mn. We shall assume that w is admissible, meaning that w is a finite
measure on ∪n≥1Mn. We shall also suppose that q is critical in the sense of [29, Equation
(3)] (see [16], recalled in Proposition A below, for an equivalent definition). For n ≥ 0,
provided that w(Mn) 6= 0, we define a random planar map Bn called the q-Boltzmann
random map with n vertices whose law is w(· | · ∈ Mn). Under these conditions we have
the following convergence in distribution for the local topology along the integers n for
which w(Mn) 6= 0

Bn
(d)−−−−→
n→∞

B∞,

where B∞ is an infinite random rooted bipartite planar map with only one end, which is
called the infinite q-Boltzmann planar map [14, 31]. As in [27, Section 2.2] or in [15],
we focus henceforth on the case when the critical and admissible weight sequence q is
non-generic, in particular satisfies for some c, κ > 0

qk ∼ c κk−1 k−a as k →∞, for a ∈
(

3

2
,

5

2

)
. (1.2)

The reader should keep in mind that the values of c, κ and (qk)k≥1 need to be fine-tuned
in order to have the desired criticality property, see the above references and Section
2.1 for details (alternatively the material reader may also use the concrete sequences
given in Section 6). For this choice of q the random Boltzmann maps Bn possess “large
faces” and their scaling limits (at least along subsequences) are given by the stable maps
of Le Gall and Miermont [27] (this is a family of random compact metric spaces that
look like randomized versions of the Sierpinski carpet or gasket). Our main object of
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Geometry of infinite planar maps with high degrees

study here1 is the dual map B†∞ of B∞ whose vertices are the faces of B∞ and edges
are dual to those of B∞. The origin (or root vertex) of B†∞ is the root face fr of B∞ lying
on the right of its root edge, while the root edge of B†∞ is taken to be the unique edge
starting at the origin and intersecting the root edge of B∞. The large faces of B∞ turn
into large degree vertices in B†∞ and our goal is to understand the effect of this change
on the large scale metric structure. For r ≥ 0, we denote by Ball†r(B∞) the submap of
B∞ obtained by keeping the faces which are at dual distance at most r from the root
face of B∞ and consider its hull

Ball
†
r(B∞)

made by adding to Ball†r(B∞) all the finite connected components of its complement in
B∞ (recall that B∞ is one-ended). Our main results describe the evolution of the volume

and (a version of) the perimeter of Ball
†
r(B∞) as r varies.

Results. When a ∈ (2; 5
2 ) –the so-called dilute phase– we show (Theorem 4.2) that the

volume of the ball of radius r in B†∞ (e.g. measure in terms of the number of faces,
i.e. vertices of B∞) is polynomial in r

Volume
(
Ball

†
r(B∞)

)
≈ rdima where dima =

a− 1
2

a− 2
∈ (4,∞). (1.3)

The exponent dima is called the volume growth exponent or sometimes in physics litera-
ture the “Hausdorff dimension” of B∞ since it should correspond to the true Hausdorff

dimension of a scaling limit of B∞ (see below). We also show that Perimeter
(
Ball

†
r(B∞)

)
≈

r1/(a−2) and in fact we obtain the limit in distribution of the rescaled volume and perime-
ter processes in the same spirit as the results of [22], see Theorem 4.2. The value of
dima should be contrasted to the case of Infinite Boltzmann maps with faces of bounded
degree, where the volume growth exponent equals 4, a value which is only approached
when a→ 5/2 (see also our discussion below).

The above exponents explode when a ↓ 2 indicating a phase transition at this value.
This is indeed the case and we prove (Theorem 5.3) that when a ∈ ( 3

2 ; 2) –the so-
called dense phase– the volume and the perimeter of the ball of radius r in B†∞ grow
exponentially with r

Perimeter
(
Ball

†
r(B∞)

)
≈ erca and Volume

(
Ball

†
r(B∞)

)
≈ er(a− 1

2 )ca (1.4)

for some constant ca > 0 which is expressed in terms of a certain Lévy process of
stability index a− 1 ∈ ( 1

2 ; 1). In the above results the perimeter is computed in terms of
number of edges and not in terms of number of vertices (see Section 2.3 for the precise
definition). Although this distinction is irrelevant in (1.3), we show that it is crucial in
the dense phase since we prove that B†∞ has infinitely many cut vertices separating the
origin from infinity. Our results show that the geometry of B†∞ is much different from
the geometry of B∞ (for their respective graph distances). Indeed, extrapolating the
work of Le Gall and Miermont [27] one should get that for a ∈ ( 3

2 ; 5
2 ) the volume of (hulls

of) balls in B∞ should scale as

Volume
(
Ballr(B∞)

)
≈ r2a−1.

Comparing the last display to (1.3) and (1.4) we see that the distances in the dual map
B†∞ are deeply modified. This might be unsurprising since when passing to the dual,

1We have decided to introduce our main character as the dual map of B∞ rather than starting with a
Boltzmann measure similar to (1.1) but with weights on the vertices. We hope that this will help the reader
navigate through the needed references [27, 15, 16] which deal with weights on the faces.
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Geometry of infinite planar maps with high degrees

the large degree faces become large degree vertices which act as “hubs” and shorten a
lot the distances. This contrasts with the case of “generic” random maps (e.g. uniform
triangulations or quadrangulations) where the primal and dual graph distances are
believed to be the same at large scales up to a constant multiplicative factor. This has
recently been verified in the case of triangulations [2, 23].

We also show similar results when we consider a first-passage percolation (fpp)
distance on B†∞ instead of the graph distance. Specifically, the edges of B†∞ are equipped
with independent exponential weights of parameter 1. These weights are interpreted
as random lenghts for the edges and give rise to the associate fpp-distance dfpp (this
precise model of fpp is the Eden model on B∞). The result (1.3) still holds in the dilute
phase for this distance, with identical scaling limit up to a constant multiplicative factor
(see Proposition 4.1). In the dense phase a striking phenomenon occurs: the minimal
fpp-length of an infinite path started at the origin fr of B†∞ is finite and moreover its
expectation is obtained as the expected number of visits to 0 of a certain one-dimensional
transient random walk (see Proposition 5.1). As a corollary we obtain that when a < 2

the simple random walk on B†∞ is almost surely transient (Corollary 5.2).
The reader may naturally wonder about the status of the above results in the critical

case a = 2: this will be the content of a companion paper.

Discussion. In order to discuss our results and explain the terminology of dense
and dilute phases, let us briefly recall some results for the O(n) model on random
quadrangulations proved in [15]. A loop-decorated quadrangulation (q, l) is a planar map
whose faces are all quadrangles on which non-crossing loops l = (li)i≥1 are drawn (see
Fig. 2 in [15]). For simplicity we consider the so-called rigid model when loops can only
cross quadrangles through opposite sides. We define a measure on such configurations
by putting

Wh,g,n((q, l)) = g|q|h|l|n#l,

for g, h > 0 and n ∈ (0, 2) where |q| is the number of faces of the quadrangulation, |l| is the
total length of the loops and #l is the number of loops. Provided that the measure Wh,g,n

has finite total mass one can use it to define random loop-decorated quadrangulations
with a fixed number of vertices. Fix n ∈ (0, 2). For most of the parameters (g, h) these
random planar maps are sub-critical (believed to be tree like when large) or generic
critical (believed to converge to the Brownian map). However, there exists a critical line
with an end point in the (g, h)-plane (whose location depends on n) at which these planar
maps may have different behaviours. More precisely, their gaskets, obtained by pruning
off the interiors of the outer-most loops (see Fig. 4 in [15]) are precisely non-generic
critical Boltzmann planar maps in the sense of (1.2) where

a = 2± 1

π
arccos(n/2).

The case a = 2 − 1
π arccos(n/2) ∈ ( 3

2 ; 2) (which occurs when away from the end point)
is called the dense phase because the loops on the gasket are believed in the scaling
limit to touch themselves and each other.2 The case a = 2 + 1

π arccos(n/2) ∈ (2; 5
2 ) (which

occurs exactly at the end point) is called the dilute phase because the loops on the gasket
are believed to be simple in the scaling limit and avoiding each other. This heuristic
sheds some light on our results: in the dense and dilute phases the appearance of large
degree vertices, when passing to the dual of B∞, shortens the distance significantly;

2The dense phase of the O(n) loop model resembles a critical Fortuin–Kasteleyn (FK) cluster model with
parameter q = n2. It is thus conceivable that a suitable notion of the gasket of an q-FK model with q ∈ (0, 4)
on a random planar map gives rise to a Boltzmann planar map with parameter a = 2− 1

π
arccos(

√
q/2). No

such correspondence is expected in the dilute phase.

EJP 22 (2017), paper 35.
Page 4/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP55
http://www.imstat.org/ejp/


Geometry of infinite planar maps with high degrees

this effect obeys a phase transition at a = 2, because in the dense phase the connections
between the large degree vertices are so numerous that the volume growth becomes
exponential instead of polynomial.

Figure 2: A schematic illustration of q-Boltzmann RPM in the dilute (left) and dense
phase (right).

Techniques. Our approach is to explore the map B†∞ using the “lazy” peeling process
recently introduced in [16]. The peeling process was first studied in physics by Watabiki
[33] and was the basis for the first derivation of the so-called two-point function [5, 4]. It
is a stochastic growth process which uses the spatial Markov property of the underlying
lattice in order to discover it step by step. A rigorous version of the peeling process and
its Markovian properties was given by Angel [6] in the case of the Uniform Infinite Planar
Triangulation (UIPT) and has been one of the key tools to study random triangulations
and quadrangulations since then [2, 6, 7, 12, 22, 30, 10, 20, 8, 19]. The peeling process
used in the last references consists roughly speaking in discovering one face at a time.
It is well designed to study planar maps with a degree constraint on the faces (such
as triangulations or quadrangulations). The peeling process we consider here and
which was recently introduced in [16] is different: it discovers one edge at a time. The
advantage of this “edge-peeling” process over the “face-peeling” process is that it can
be treated in a unified fashion for all models of Boltzmann planar maps. The results we
obtain in the dilute case roughly follow from adapting and sharpening the techniques
and proofs of [22]. The dense case on the contrary requires a totally new treatment.

Towards a stable sphere. In a forthcoming work [11] the authors together with Jean
Bertoin and Igor Kortchemski will explore the links between the random maps considered
in this work and growth-fragmentation processes. This extends the work [12] where
a certain scaling limit of random triangulations was described in terms of a growth-
fragmentation process related to the spectrally negative 3/2-stable process. The new
growth-fragmentations involved may have positive jumps and are related to α-stable
Lévy processes where α = a− 1 and with positivity parameter ρ satisfying

α(1− ρ) =
1

2
.

In the dilute phase a ∈ (2; 5/2), we conjecture that the random metric spaces n−1/dima ·Bn
admit a scaling limit (which we call stable spheres by lack of imagination) which can
be constructed from the above growth-fragmentations processes. We expect that these
random metric spaces are homeomorphic to the sphere and have Hausdorff dimension
dima = a−1/2

a−2 . A key difference with the Brownian map (corresponding to the case a = 5
2 )
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is the presence of certain points, “hubs”, in the metric spaces where a lot of geodesics
merge (these correspond to the high degree vertices in the discrete setting). These
questions will be addressed in our forthcoming works.

We end the discussion with a question that is left open3 by our work:

Open question. Are the random lattices B†∞ transient or recurrent in the dilute case
a ∈ (2, 5/2)?

From now on we fix once and for all the admissible
critical non-generic weight sequence q as in (1.2).

2 Boltzmann planar maps and the lazy peeling process

In this section we recall the edge-peeling process (also called the lazy peeling process)
of [16]. We decided to rather mimic the presentation of [12] in order for the reader
to easily compare the differences between the present “edge-peeling” process and the
“face-peeling” process used in [12, 22]. We then study in more details two particular
peeling algorithms that are designed to explore respectively the dual graph distance and
the Eden distance on B∞.

2.1 Enumeration

If m is a (rooted bipartite) planar map we denote by fr ∈ Faces(m) the face adjacent
on the right to the root edge. This face is called the root face of the map and its degree,
denoted by deg(fr), is called the perimeter of m (by parity constraint the perimeter of a
bipartite map must be even). We write |m| for the number of vertices of m. For ` ≥ 0 and

n ≥ 0 we denote byM(`)
n the set of all (rooted bipartite) planar maps of perimeter 2` and

with n vertices, with the convention thatM(0)
1 comprises a single degenerate “vertex

planar map” with no edges and a unique vertex. We putM(`) = ∪n≥1M(`)
n . Any planar

map with at least one edge can be seen as a planar map with root face of degree 2 by
simply doubling the root edge and creating a root face of degree 2. We shall implicitly
use this identification many times in this paper. We set

W (`)
n =

∑
m∈M(`)

n

∏
f∈Faces(m)\{fr}

qdeg(f)/2 and W (`) =
∑
n≥1

W (`)
n , (2.1)

where the dependence in q is implicit as always in this paper. By convention W (0)
1 = 1

and W
(0)
n = 0 for n ≥ 2. The number W (`) can be understood as the partition function

arising in the following probability measure: a q-Boltzmann planar map with perimeter
2` is a random planar map sampled according to the measure w(· | · ∈ M(`)). We now
recall a few important enumeration results, see [15, Eq. 3.15, Eq. 3.16], [27, Section
2] and [16]. Assuming that the weight sequence qk ∼ c κk−1 k−a for a ∈ (3/2; 5/2) is
fine-tuned (see [27, Section 2.2]) such that it is critical and admissible and satisfies the
equation

∞∑
k=1

(
2k − 1

k − 1

)
(4κ)1−kqk = 1− 4κ,

then we have

W (`) ∼ c

2 cos(a π)
κ−`−1`−a as `→∞. (2.2)

3Notice that the powerful result of [25] does not apply because the root vertex distribution in B†∞ has a
polynomial tail (and indeed in the dense case those lattices are transient by Corollary 5.2).
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Furthermore, from [16, Corollary 2] we deduce that:

κ`W
(`)
n

κW
(1)
n

−−−−→
n→∞

2` 2−2`

(
2`

`

)
.

The function h↑(`) := 2` 2−2`
(

2`
`

)
, which does not depend on the weight sequence q,

will play an important role in what follows in relation with a random walk whose step
distribution we define now. Let ν be the probability measure on Z defined by

ν(k) =

{
qk+1κ

−k for k ≥ 0

2W (−1−k)κ−k for k ≤ −1
. (2.3)

Under our assumptions ν is indeed a probability distribution which has power-law tails.
The function h↑ is (up to a multiplicative constant) the only non-zero harmonic function
on {1, 2, 3, ...} for the random walk with independent increments distributed according to
ν (we say that h↑ is ν-harmonic at these points) and that vanishes on {...,−2,−1, 0}. This
fact has been used in [16] to give an alternative definition of critical weight sequences:

Proposition A ([16]). A weight sequence q is admissible and critical iff there exists a law
ν on Z such that qk = (ν(−1)/2)k−1ν(k − 1) and h↑ is ν-harmonic on Z>0. In particular
the random walk with increments distributed according to ν oscillates (its lim sup and
lim inf respectively are +∞ and −∞).

2.2 Edge-peeling process

2.2.1 Submaps in the primal and dual lattices

Let m be a (rooted bipartite) planar map and denote by m† its dual map whose vertices
are the faces of m and whose edges are dual to those of m. The origin of m† is the root
face fr of m. Let e◦ be a finite connected subset of edges of m† such that the origin of m†

is in e◦, or more precisely incident to e◦ (the letter “e” stands for explored). We associate
to e◦ a planar map e obtained roughly speaking by gluing the faces of m corresponding to
the vertices in e◦ along the (dual) edges of e◦, see Fig. 3. The resulting map, rooted at the
root edge of m, is a finite (rooted bipartite) planar map given with several distinguished
faces h1, . . . , hk ∈ Faces(e) called the holes of e and corresponding to the connected
components of m†\e◦. These faces are moreover simple meaning that there is no pinch
point on their boundaries and that these boundaries do not share common vertices. We
call such an object a planar map with holes. We say that e is a submap of m and write

e ⊂ m,

because m can be obtained from e by gluing inside each hole hi of e a bipartite planar
map ui of perimeter deg(hi) (u stands for unexplored). To perform this operation we must
assume that we have distinguished an oriented edge on the boundary of each hole hi of e
on which we glue the root edge of ui. We will not specify this further since these edges
can be arbitrarily chosen using a deterministic procedure given e. Notice that during
this gluing operation it might be that several edges on the boundary of a given hole of e
get identified because the boundary of ui may not be simple, see Fig. 3 below. However,
this operation is rigid (see [9, Definition 4.7]) in the sense that given e ⊂ m the maps
(ui)1≤i≤k are uniquely defined. This definition even makes sense when e is a finite map
and m is an infinite map. Reciprocally, if e ⊂ m is given, one can recover e◦ the connected
subset of edges of m† as the set of dual edges between faces of e which are not holes.

The above discussion shows that there are two equivalent points of view on submaps
of m: either they can be seen as connected subsets e◦ of edges of m† containing the
origin, or as planar maps e ⊂ m with (possibly no) holes that, once filled-in by proper
maps, give back m. In this paper, we will mostly work with the second point of view.
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Figure 3: Illustration of the duality between connected subsets of edges on the dual map
and their associated submaps on the primal lattice. The gluing operation is illustrated
below.

2.2.2 Peeling exploration

Suppose that m is a (rooted bipartite) planar map. A branched edge-peeling exploration
of m is a sequence of increasing submaps of m

e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · ⊂ m,

such that ei is a planar map with holes whose number of inner edges, i.e. the ones not
incident to a hole, is exactly i ≥ 0, at least as long as the exploration has not stopped.
The map e0 is made of a simple face of degree deg(fr) corresponding to the root face
fr of the map (recall that if necessary, one can always see a planar map as a map with
root face degree 2) and a unique hole of the same perimeter. Next, the exploration
depends on an algorithm A which associates to each map with holes e one edge A(e) on
the boundary of one of its holes or the element † which we interpret as the will to stop
the exploration. This edge “to peel” A(ei) tells us how to explore in m in order to go from
ei to ei+1. More precisely, there are two cases:

• Case 1: if the face on the other side of A(ei) corresponds to a new face in m then
ei+1 is obtained by adding to ei the face adjacent to A(ei) inside the corresponding
hole of ei, see Fig. 4.

• Case 2: if the face on the other side of A(ei) is already a face of ei that means
that A(ei) is identified with another edge (necessarily adjacent to the same hole)
in m. Then ei+1 is obtained by performing this identification inside ei. This results
in splitting the corresponding hole in ei yielding two holes in ei+1. The holes of
perimeter 0 are automatically filled-in with the vertex map, in particular the above
process may close a hole which was made of two edges that have been identified in
m, see Fig. 4.

Remark 2.1. At this point, the reader may compare the above presentation with that of
[12, Section 2.3] in order to understand the difference between the edge-peeling and
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the face-peeling processes. More precisely, when dealing with the face-peeling process
the sequence e0 ⊂ · · · ⊂ ei ⊂ · · · ⊂ m of explored parts is again a sequence of maps
with simple holes4 but (unless the peeling has stopped), ei+1 is obtained from ei by the
addition of one face. Furthermore, in the case of the face-peeling process, m is obtained
from ei by gluing maps with simple boundary into the holes of ei.

Remark 2.2. One can alternatively represent a peeling exploration e0 ⊂ e1 ⊂ · · · ⊂ m as
the associate sequence of growing connected subset of edges (e◦i )i≥0 on the dual map m†

such that e◦i+1 is obtained from e◦i by adding one edge of m† provided that connectedness
is preserved (unless the exploration has stopped). We will however mostly use the first
point of view.

Figure 4: Illustration of the two cases which may happen when peeling an edge. In the
first case, we add a face, in the second case we glue two edges of the boundary of a hole
and create a new hole (possibly of perimeter 0 when gluing two consecutive edges).

In the above branched edge-peeling exploration the evolving explored parts (ei)i≥0

may have several holes. However in what follows we will restrict ourself to explorations
of one-ended infinite maps m (see [11, 12] for the study of branched peeling explorations).
In that case, we will fill-in all the holes of ei whose associate component in m is finite. That
is, in case 2 above, when the hole of ei is split into two new holes by the identification of
two of its edges, we automatically fill-in the hole which is associated to a finite part in
m. This gives rise to an exploration e0 ⊂ · · · ⊂ ei ⊂ · · · ⊂ m where ei+1 may have more
than one inner edge on top of ei, but ei always has a single hole on which we iteratively
choose the edges to peel using the algorithm A. In the following, we will always consider
such explorations and simply call them “peeling explorations”. Let us now recall the
results of [16]:

Theorem B ([16]). Let (Pi, Vi)i≥0 respectively be the half-perimeter of the unique hole
and the number of inner vertices in a peeling exploration (with only one hole) of B∞.
Then (Pi, Vi)i≥0 is a Markov chain whose law does not depend on the algorithm A and is
described as follows:

4with the slight difference that in [12] the holes can share vertices but not edges
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• the chain (Pi)i≥0 has the same law as (W ↑i )i≥0 the Doob h↑-transform of the random
walk (W )i≥0 started from W0 = 1 and with i.i.d. independent increments of law ν

given in (2.3). Equivalently, (Pi)i≥0 has the law of (Wi)i≥0 conditioned to never hit
Z≤0.

• Conditionally on (Pi)i≥0 the variables (Vi+1 − Vi)i≥0 are independent and are
distributed as the number of vertices in a q-Boltzmann planar map with perimeter
2(Pi − Pi+1 − 1) (where it is understood that this is 0 when Pi − Pi+1 − 1 < 0).

In fact, the last theorem is still true if the peeling algorithm A is randomized as long
as it does not use the information of the unexplored part at each peeling step. More
precisely, conditionally on the current exploration ei, once we have selected an edge
on the boundary of the hole of ei independently of the remaining part of B∞, assuming
that the half-perimeter of this hole is ` ≥ 1, then the peeling of this edge leads to the
discovery of a new face of degree 2k for k ≥ 1 with probability

p
(`)
k := ν(k − 1)

h↑(`+ k − 1)

h↑(`)
. (2.4)

Otherwise this edge is identified with another edge of the boundary and the peeling
swallows a bubble of length 2k for 0 ≤ k < ` − 1 (k = 0 corresponding to a bubble
consisting of the single vertex-map) directly to the left of A(ei) with probability

p
(`)
−k :=

1

2
ν(−k − 1)

h↑(`− k − 1)

h↑(`)
, (2.5)

or to the right with the same probability. Notice that
∑∞
k=1 p

(`)
k + 2

∑`−2
k=0 p

(`)
−k = 1 is

ensured precisely because h↑ is harmonic for the random walk (Wi)i≥0. We will use
many times below the fact that the probabilities of negative jumps for the process (P )

are uniformly dominated by those of ν, more precisely since h↑ is non-increasing we
have for k ≥ 1

P(∆Pi = −k | Pi = `) = 2p
(`)
−(k−1) ≤ ν(−k) ≤ Ck−a, (2.6)

for some C > 0 independent of ` ≥ 1 and k ≥ 1.
We now present two particular peeling algorithms that we will use in this work.

2.3 Peeling by layers on the dual map m†

It does not seem easy to use the edge-peeling process to systematically study the
graph metric on B∞ (this is because the degree of the faces are not bounded and so
when discovering a new large face, one cannot a priori know what is the distance to the
root of all of its adjacent vertices). However, as in [2, 22] for the face-peeling process it
is still possible to use the edge-peeling process in order to study the graph metric on the
dual of B∞. Let us describe now the precise peeling process that we use for that.

Let m be an infinite (rooted bipartite) one-ended planar map. We denote m† the dual
map of m and by d†gr the dual graph distance on m†. If f ∈ Faces(m) the dual distance to
the root face d†gr(f, fr) is called the height of f in m. The following peeling algorithm L†
is adapted to the dual graph distance (and fills the finite holes when created). Recall that
the exploration starts with e0, the map made of a simple face of degree deg(fr) (and a
unique hole of the same perimeter) which in the case of B∞ will be a 2-gon after splitting
the root edge as explained above. Inductively suppose that at step i ≥ 0, the following
hypothesis is satisfied:

(H): There exists an integer h ≥ 0 such that the explored map ei ⊂ m has a unique hole
f∗ such that all the faces adjacent to f∗ inside ei are at height h or h+ 1 in m. Suppose
furthermore that the boundary edges of f∗ in ei that are adjacent to faces at height h
form a connected part of the boundary of f∗.
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We will abuse notation and speak of the height of an edge of the boundary of the hole
of ei for the height of its incident face inside ei. If (H) is satisfied by ei the next edge to
peel L†(ei) is chosen as follows:

• If all edges incident to the hole f∗ of ei are at height h then L†(ei) is any (determin-
istically chosen) edge on the boundary of f∗,

• Otherwise L†(ei) is the unique edge at height h such that the edge immediately on
its left is at height h+ 1.

Figure 5: Illustration of the peeling using algorithm L†.

It is easy to check by induction that if one iteratively peels the edge determined by L†
starting from e0 then for every i ≥ 0 the explored map ei satisfies the hypothesis (H) and
therefore L† determines a well-defined peeling exploration of m. Let us give a geometric
interpretation of this peeling exploration. We denote by H(ei) the minimal height in m of
a face adjacent to the unique hole in ei and let θr = inf{i ≥ 0 : H(ei) = r} for r ≥ 0. On
the other hand, for r ≥ 0, we define by

Ball†r(m),

the map made by keeping only the faces of m that are at height less than or equal to r
and cutting along all the edges which are adjacent on both sides to faces at height r (see
Fig. 6 for an example). Equivalently, the corresponding connected subset(

Ball†r(m)
)◦

of dual edges in m† is given by those edges of m† which contain at least one endpoint at
height strictly less than r. By convention we also put Ball†0(m) to be the root face of m.

Also, we write Ball
†
r(m) for the hull of these balls, which are obtained by filling-in all the

finite holes of Ball†r(m) inside m (recall that m is infinite and one-ended). After doing so,

Ball
†
r(m) is a planar map with a single hole and we easily prove by induction on r ≥ 0

that

eθr = Ball
†
r(m). (2.7)

In the case when this edge-peeling exploration is performed on B∞ we denote by
Pi, Vi, Hi respectively the half-perimeter, the number of inner vertices and the minimal
height of a face adjacent to the unique hole of ei for i ≥ 0.
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Geometry of infinite planar maps with high degrees

Figure 6: Example of a geodesic ball (and its hull) of radius r = 2 with respect to the
dual graph distance.

2.4 Eden model and Uniform peeling

We are using the same setup as in the previous section. Let m be an infinite one-ended
planar map. On the dual map m† of m we sample independent weights xe for each edge
e ∈ Edges(m†) distributed according to the exponential law E(1) of mean 1, i.e. with
density e−xdx1x>0. These weights can be used to modify the usual dual graph metric on
m† by considering the first-passage percolation distance: for f1, f2 ∈ Faces(m)

dfpp(f1, f2) = inf
∑
e∈γ

xe,

where the infimum is taken over all paths γ : f1 → f2 in the dual map m†. This model
(first-passage percolation with exponential edge weights on the dual graph) is often
referred to as the Eden model on the primal map m [2]. It is convenient in this section
to view the edges of the map m† as real segments of length xe for e ∈ Edges(m†) glued
together according to incidence relations of the map. This operation turns m† into a
continuous length space (but we keep the same notation) and the distance dfpp extends
easily to all the points of this space. Now for t > 0 we denote by

Ballfpp
t (m)

the submap of m whose associated connected subset of dual edges
(

Ballfpp
t (m)

)◦
in m†

is the set of all dual edges which have been fully-explored by time t > 0, i.e. whose
points (in the length space) are all at fpp-distance less than t from the origin of m† (the

root-face of m). As usual, its hull Ball
fpp

t (m) is obtained by filling-in the finite components
of its complement. It is easy to see that there are jump times 0 = t0 < t1 < t2 < · · · for
this process and that almost surely (depending on the randomness of the xe) the map

Ball
fpp

ti+1
(m) is obtained from Ball

fpp

ti (m) by the peeling of an appropriate edge (and by
filling-in the finite component possibly created). The following proposition only relies on
the randomness of the weights, the map m is fixed.
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Proposition 2.3. If m is an infinite planar map with one end whose (dual) edges are
endowed with i.i.d. exponential weights then we have:

• the law of (Ball
fpp

ti (m))i≥0 is that of a uniform peeling on m: conditionally on the
past exploration, the next edge to peel is a uniform edge on the boundary of the
explored part ei;

• conditionally on (Ball
fpp

ti (m))i≥0 the variables ti+1 − ti are independent and dis-
tributed as exponential variables of parameter given by the perimeter (that is twice
the half-perimeter) of the explored part at time i.

Proof. Fix m and let us imagine the situation at time ti for i ≥ 0. We condition on the
sigma-field Fi generated by all the exploration up to time ti. Let us examine the edges in

m† which are dual to the boundary of ei = Ball
fpp

ti (m). These come in two types: type-1
edges that are adjacent to a new face in the unexplored part (that is, if we peel one
of those edges we are in case 1 of Section 2.2.2), and type-2 edges that link two faces
adjacent to the boundary of the explored part (that is, if we peel one of these edges we
are in case 2 of Section 2.2.2). See Fig. 7.

Figure 7: Illustration of the proof of Proposition 2.3. The edges of the first type are
in orange and those of the second type are in green. Regardless of their number and
locations, the next edge to peel can be taken unifomly on the boundary and the increase
of time is given by an exponential variable of parameter given by the perimeter.

Let us consider an edge e(1) of the first type and denote by e
(1)
− its extremity in

the explored region. Since this edge has not been fully explored at time ti, it follows
that its weight xe(1) satisfies xe(1) > ti − dfpp(e

(1)
− , fr) and furthermore by properties of

exponential variables conditionally on Fi

ye(1) := xe(1) −
(
ti − dfpp(e

(1)
− , fr)

)
has the law E(1) of an exponential variable of parameter 1. Let us now examine the

situation for an edge e(2) of the second type. We denote by e(2)
− and e

(2)
+ its endpoints.

Since e(2) is being explored from both sides (in the length space representation) but
has not been fully explored by time ti, we have that xe(2) >

(
ti − dfpp(e

(2)
− , fr)

)
+
(
ti −

dfpp(e
(2)
+ , fr)

)
and by the same argument as above conditionally on Fi

ye(2) := xe(2) −
(
ti − dfpp(e

(2)
− , fr)

)
−
(
ti − dfpp(e

(2)
+ , fr)

)
is again exponentially distributed. Of course, an edge of the second type is dual to two
edges of the boundary of ei. Apart from this trivial identification, the variables ye where
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e runs over the edges dual to the boundary of ei are, conditionally on Fi, independent of
each other. Now, the time it takes until a new edge is fully explored is equal to

ti+1 − ti = inf{ye : e of the first type} ∧ 1

2
inf{ye : e of the second type},

where the factor 1/2 again comes from the fact that edges of the second type are explored
from both sides. By the above independence property, ti+1 − ti is thus distributed as an
exponential variable of parameter

ti+1 − ti
(d)
= E(#{edges of the first type}+ 2#{edges of the second type}) = E(2`)

where 2` is the perimeter of the hole of ei. That proves the second part of the proposition.
To see that conditionally on Fi the next edge to peel is uniform on the boundary, we
may replace for each edge e(2) of the second type the variable 1

2ye(2) of law E(2) by the
minimum of two independent exponential variables ỹ

e
(2)
1

and ỹ
e
(2)
2

of law E(1) which we

attach on the two edges dual to e(2) on the boundary of ei. Finally, everything boils
down to assigning to each edge of the boundary of the explored map an independent
exponential variable of parameter 1; the next edge to peel is the one carrying the minimal
weight which is then uniform as desired. This completes the proof.

In the case when this edge-peeling exploration, also called the uniform peeling
or Eden peeling, is performed on B∞ we denote by Pi, Vi, τi for i ≥ 0 respectively
the half-perimeter, the number of inner vertices and the jump times of the process

(Ball
fpp

t (B∞))t≥0.

3 Scaling limits for the perimeter and volume process

3.1 More on the perimeter process

Recall from Theorem B that the process of the half-perimeter (Pi)i≥0 of the only hole
during an edge-peeling exploration of B∞ (which fills-in the finite holes) has the same
law as (W ↑i )i≥0 the h↑-transform of the random walk (Wi)i≥0 started from W0 = 1 whose
critical step distribution ν is defined in (2.3).

First, it is easy to see that the Markov chain (Pi)i≥0 or equivalently (W ↑i )i≥0 is
transient. Indeed, if T ↑y and Ty denote the first hitting times of y ∈ Z>0 by respectively
the chains W ↑ and W , then we have

P(T ↑y <∞ |W
↑
0 = p) =

h↑(y)

h↑(p)
P(Wk ≥ 1, ∀k ≤ Ty |W0 = p). (3.1)

Since h↑ is monotone (strictly) increasing on [[1,∞[[, the right-hand side is smaller than 1

when p > y, hence W ↑ is transient.
We now turn to estimating the expectation of 1/W ↑n . Those estimates will be crucial

for the proofs of our main results. Recall that h↑ is ν-harmonic on Z>0 and null on Z≤0.
One can then consider the function h↓ : Z→ R+ defined by

h↓(`) = h↑(`+ 1)− h↑(`) = 2−2`

(
2`

`

)
. (3.2)

Since h↑ is ν-harmonic on {1, 2, 3, ...} it is not hard to see that h↓ is ν-harmonic on
{1, 2, 3, ...} as well and satisfies furthermore h↓(0) = 1. As for h↑, which gave us the
conditioned walk (W ↑i )i≥0, one can consider the Markov process (W ↓i )i≥0 obtained as
the Doob h↓-transform of the walk (Wi)i≥0 started from W0 = p. This process is easily
seen (see [16, Corollary 1]) to be the walk W conditioned to hit 0 before hitting Z<0. For
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convenience we will set W ↓i = 0 for all i > j after its first hit of 0 at time j, which is
almost surely finite due to the fact (Proposition A) that W oscillates. We write Pp and Ep
for the probability and expectation under which W ↑ and W ↓ are started from p ≥ 1.

Lemma 3.1. For any p > 0 and n ≥ 0 we have

Ep

[
1

W ↑n

]
=
Pp(W

↓
n > 0)

p
. (3.3)

In particular, if (Pi)i≥0 is the half-perimeter process during an edge-peeling exploration
of B∞ then

E

[
1

Pn

]
= 2

∞∑
k=n+1

1

k
P1(Wk = 0) and

∞∑
n=0

E

[
1

Pn

]
= 2

∞∑
k=1

P1(Wk = 0). (3.4)

Proof. The equality (3.3) follows directly from the definition of the h↑-transform and the
exact forms of h↑ and h↓:

Ep

[
1

W ↑n

]
=

∞∑
k=1

1

k
Pp(W

↑
n = k) =

∞∑
k=1

1

k

h↑(k)

h↑(p)
Pp(Wi > 0 for 1 ≤ i < n, Wn = k)

=
h↓(p)

h↑(p)

∞∑
k=1

h↑(k)

kh↓(k)
Pp(W

↓
n = k) =

1

p

∞∑
k=1

Pp(W
↓
n = k) =

1

p
Pp(W

↓
n > 0),

which gives the first claim. For the remaining statements it suffices to consider p = 1.
Since inf{i : W ↓i = 0} is a.s. finite, we may identify

E

[
1

Pn

]
= P1(W ↓n > 0) =

∞∑
j=n+1

P1(W ↓i > 0 for 1 ≤ i < j, W ↓j = 0)

=
1

h↓(1)

∞∑
j=n+1

P1(Wi > 0 for 1 ≤ i < j, Wj = 0). (3.5)

We now use the cycle lemma to re-interpret the probabilities in the sum (see [1, display
before (1.7)]): For fixed k > n ≥ 0 we can construct another sequence (W̃i)i≥0 by
setting W̃i = 1 + Wn −Wn−i for i ≤ n, W̃i = Wn + Wk −Wn+k−i for n < i < k, and
W̃i = Wi for i ≥ k. Then clearly (W̃i)i≥0 is equal in distribution to (Wi)i≥0 while the
event Wi > 0, 1 ≤ i < k, Wk = 0, is equivalent to W̃k = 0 and the last maximum before
time k occurring at time n. Since the probability of the former event does not involve
n in its W -description, conditionally on W̃k = 0 the probability of the latter is equal for
each n ∈ {0, 1, . . . , k − 1}, and therefore

P1(Wi > 0 for 1 ≤ i < k, Wk = 0) =
1

k
P1(Wk = 0).

Together with (3.5) and h↓(1) = 1/2 this implies the first equality in (3.4), while the
second one follows from interchanging the sums over n and k.

3.2 Scaling limits for the perimeter

We shall now study the scaling limit for the perimeter process. To avoid technical
difficulties we exclude the case a = 2 which will be treated in a companion paper. Let
(St)t≥0 be the (a − 1)-stable Lévy process starting from 0 with positivity parameter
ρ = P(St ≥ 0) satisfying

(a− 1)(1− ρ) =
1

2
.
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That is to say (St)t≥0 has no drift, no Brownian part and its Lévy measure has been
normalized to

Π(dx) =
dx

xa
1x>0 +

1

cos(πa)

dx

|x|a
1x<0. (3.6)

It is then possible to define the process (S↑t )t≥0 by conditioning (St)t≥0 to remain positive
(see [18, Section 1.2] for a rigorous definition).

Proposition 3.2. If a ∈ (3/2; 2) ∪ (2; 5/2) we have the following convergence in distribu-
tion for the Skorokhod topology(

W ↑[nt]

n1/(a−1)

)
t≥0

(d)−−−−→
n→∞

pq · (S↑t )t≥0 where pq = c1/(a−1).

Proof. By the recent invariance principle [18] it suffices to prove the convergence in
distribution

Wn

n1/(a−1)

(d)−−−−→
n→∞

pq · S1.

First, it is easy to see from (1.2) and (2.2) that ν is a probability distribution in the
domain of attraction of an (a − 1)-stable law i.e. we have a−1

n Wn − bn converges to an
(a− 1)-stable law for some scaling sequence (an) and centering sequence (bn), see [13,
Theorem 8.3.1]. From the tail asymptotics of ν it follows that one can take an = n1/(a−1)

and it remains to show that the centering sequences (bn) can be set to 0. This is always
the case when a ∈ (3/2, 2) since no centering is needed; in the case when a ∈ (2, 5/2) the
fact that the random walk (Wi)i≥0 oscillates (Proposition A) implies that ν is centered
and thus the centering sequence can be set to 0 as well. In both cases, a−1

n Wn converges
towards a strictly stable law whose limiting Lévy-Khintchine measure (3.6) is computed
from the tails of ν by a straightforward calculation.

Remark 3.3. This scaling limit result should also hold true in the border case a = 2

where the limit process is the symmetric Cauchy process without drift. Since we do not
need this for our main results, which allude to either the dilute or the dense phase, we
do not give the proof, which involves additional estimates to prove that the centering
sequence can be set to 0 in general. This can however be shown easily for the particular
weight sequence qk = 61−k/((2k − 2)2 − 1) for k > 1 given in [16, Eq. (80)] (see also
Section 6 below).

Under the assumption of the above proposition, the local limit theorem [26, Theorem
4.2.1] implies that P1(Wk = 0) ∼ C0k

−1/(a−1) as k →∞ for some C0 > 0. Combining this
with the first equation of (3.4) it follows that

E

[
1

Pn

]
∼ Cn−1/(a−1), (3.7)

for some constant C > 0. See [22, Lemma 8] for a similar estimate is the case of the
face-peeling in random triangulations.

One can also deduce from the above proposition that any peeling exploration of B∞
will eventually discover the entire lattice (assuming further a 6= 2). The proof is mutatis
mutandis the same as that of [22, Corollary 7] and reduces in the end to check that∫ ∞

1

du

(S↑u)a−1
=∞ a.s.

which can be proved using Jeulin’s lemma.
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3.3 Scaling limits for the volume

Our goal is now to study the scaling limit of the process (Vi)i≥0. We start with a result
about the distribution of the size (number of vertices) of a q-Boltzmann planar map with
a large perimeter, see [6, Proposition 6.4], [22, Proposition 9] and [16, Proposition 5]
for similar statements in the case of more standard classes of planar maps. Recall that
a ∈ (3/2; 5/2).

Let ξ• be a positive 1/(a− 1
2 )-stable random variable with Laplace transform

E[e−λξ• ] = exp
(
−(Γ(a+ 1/2)λ)

1
a−1/2

)
. (3.8)

Then E[1/ξ•] =
∫∞

0
dx exp(−x1/(a−1/2))/Γ(a+ 1

2 ) = 1 and we can define a random variable
ξ by biasing ξ• by x→ 1/x, that is for any f ≥ 0

E[f(ξ)] = E

[
f(ξ•)

1

ξ•

]
.

Notice that ξ has mean E[ξ] = 1. Recall that |m| denotes the number of vertices of a
map m.

Proposition 3.4. Suppose that q is an admissible and critical weight sequence satisfying
(1.2). Let B(`) be a q-Boltzmann planar map with root face degree 2` for ` ≥ 1. Then we
have

E[|B(`)|] ∼ bq · `a−1/2 as `→∞ where bq =
2κ cos(πa)

c
√
π

(3.9)

and we have the convergence in distribution

`−a+ 1
2 |B(`)| (d)−−−→

`→∞
bq · ξ. (3.10)

Proof. Before entering the proof, let us introduce some convenient notation. A pointed
map m• is a planar (rooted bipartite) map given with a distinguished vertex. We denote
byM(`)

• the set of all pointed finite planar maps of perimeter 2` and define accordingly
W

(`)
• as in (2.1) after replacingM(`) byM(`)

• . With this notation in hand, it should be
clear that

E[|B(`)|] =
W

(`)
•

W (`)
.

It follows from [16, Eq. (24)] that we have the exact expression W
(`)
• = κ−`2−2`

(
2`
`

)
.

Combining this with (2.2) we easily get the first statement of the proposition. To prove
the second statement of the proposition one introduces B(`)

• , the pointed version of B(`)

whose law is given by w(· | · ∈ M(`)
• ) and will first show that

`−a+1/2|B(`)
• |

(d)−−−→
`→∞

bq ξ•. (3.11)

This is sufficient to imply our claim, indeed if φ : R∗+ → R+ is a bounded continuous
function with compact support in R∗+ we have

E
[
φ
(
`−a+1/2|B(`)|

)]
= E

[
φ
(
`−a+1/2|B(`)

• |
)
/|B(`)
• |
]
/E
[
1/|B(`)

• |
]

= E
[
φ
(
`−a+1/2|B(`)

• |
)
/(`−a+1/2|B(`)

• |)
]
· E
[
`−a+1/2|B(`)|

]
−−−→
`→∞

E[φ(bq ξ•)/(bq ξ•)] · bq = E[φ(bq ξ)]
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where in the last line the convergence is obtained after remarking that φ(x)/x is bounded
and continuous because φ has compact support in R∗+. This indeed proves the desired
convergence in distribution.

We now turn to proving (3.11) using Laplace transforms. In this part we highlight the
dependence in q since it is crucial in the calculation and write W (`)(q) for W (`), wq for
w, etc. Recall that |m| denotes the number of vertices of a map m and let us introduce
for g ∈ [0, 1] the generating function

W
(`)
• (g;q) :=

∑
m•∈M(`)

•

wq(m•) g
|m•|,

such that W (`)
• (g;q) is strictly increasing on g ∈ [0, 1] and W

(`)
• (1;q) = W

(`)
• (q) < ∞.

With this notation we have for all λ > 0

E[exp(−λ|B(`)
• |)] =

W
(`)
• (e−λ;q)

W
(`)
• (q)

. (3.12)

Using Euler’s formula we can rewrite this as W (`)
• (g;q) = g1+`W

(`)
• (qg) where qg is the

weight sequence determined by (qg)k := gk−1qk for k ≥ 1. Since qg is necessarily an

admissible weight sequence we know that W (`)
• (qg) = κ−`g h↓(`) for some κg > 0, where

h↓ is defined in (3.2). According to [29] we have κg = 1/(4x̄) where x̄ is the unique
positive solution to fqg (x̄) = 1− 1

x̄ with

fq(x) :=

∞∑
k=1

xk−1

(
2k − 1

k

)
qk.

Since fqg (x̄) = fq(gx̄), this is equivalent to κg = g/(4x) with x ∈ (0, 1/(4κ)) the unique
positive solution to fq(x) = 1− g

x , or better f̄q(x) = g with f̄q(x) := x(1− fq(x)).
Our weight sequence q is chosen exactly such that f̄q(1/(4κ)) = 1 and f̄ ′q(1/(4κ)) = 0.

Since qk ∼ cκk−1k−a as k →∞ we find that

f̄q(x) ∼ 1−
cΓ( 1

2 − a)

2κ
√
π

(1− 4κx)a−
1
2 = 1− 1

Γ(a+ 1
2 )bq

(1− 4κx)a−
1
2 as x↗ 1

4κ
.

It follows that

gκ

κg
= 4κx ∼ 1−

(
Γ(a+

1

2
)bq(1− g)

)1/(a− 1
2 )

as g ↗ 1. (3.13)

Using that W (`)
• (g;q)/W

(`)
• (q) = g (gκ/κg)

` and setting g = exp(−λ` 1
2−a) with λ > 0 we

find

lim
`→∞

E
[
exp

(
−λ` 1

2−a|B(`)
• |
)]

=
(3.12)

lim
`→∞

W
(`)
• (exp(−λ` 1

2−a);q)

W
(`)
• (q)

=
(3.13)

lim
`→∞

(
1− 1

`

(
Γ(a+

1

2
)bqλ

)1/(a− 1
2 )
)`

= exp

(
−
(

Γ(a+
1

2
)bqλ

)1/(a− 1
2 )
)

= E[exp(−λbqξ•)]

thereby proving the convergence (3.11).
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Geometry of infinite planar maps with high degrees

Remark 3.5. In this work, the number of vertices of the primal map B∞ (or, equivalently,
the number of faces of B†∞) has been taken as the notion of volume. Actually, all the
results on the volume could be translated in terms of number of faces of B∞ (or vertices
of B†∞) up to changing the constant bq. More precisely, the proposition above and its
consequences in the paper hold true if one uses ‖m‖, the number of faces of the map m,
instead of |m| and a new constant

bFq =

(
1

4κ
− 1

)
bq = (1− 4κ)

cos(πa)

2c
√
π

instead of bq. This can be proved either by generating function techniques as above (see
[17]) or by probabilistic representation of the volume using the Bouttier-Di Francesco-
Guitter encoding (see [21]).

We are now able to introduce the scaling limit for the perimeter and volume process
during a peeling exploration of B∞. Recall from Section 3.2 the definition of (S↑t )t≥0 as
the (a− 1)-stable Lévy process conditioned to survive. We let ξ1, ξ2, . . . be a sequence of
independent real random variables distributed as the variable ξ of Proposition 3.4. We
assume that this sequence is independent of the process (S↑t )t≥0 and for every t ≥ 0 we
set

Zt =
∑
ti≤t

ξi · |∆S↑ti |
a− 1

21∆S↑ti
<0, (3.14)

where t1, t2, . . . is a measurable enumeration of the jump times of S↑. Since x 7→ xa−
1
21x<0

integrates the Lévy measure of (St)t≥0 in the neighborhood of 0 it is easy to check that
(Zt)t≥0 is a.s. finite for all t ≥ 0. The analog of [22, Theorem 1] and [16, Theorem 3] is

Theorem 3.6. Let (Pi, Vi)i≥0 respectively be the half-perimeter and the number of inner
vertices in a peeling exploration of B∞. For a 6= 2 we have the following convergence in
distribution in the sense of Skorokhod(

P[nt]

n
1
a−1

,
V[nt]

n
a−1/2
a−1

)
t≥0

(d)−−−−→
n→∞

(
pq · S↑t , vq · Zt

)
t≥0

,

where vq = bq(pq)a−1/2 and pq and bq are as in Propositions 3.2 and 3.4.

Figure 8: Simulation of the processes S↑ and Z when a = 2.3.

Proof. The proof is the same as that of Theorem 1 of [22] with the appropriate updates.
The convergence of the first component is given by Proposition 3.2, it remains to study
the conditional distribution of the second component given the first one. Recall that the
number of inner vertices in en can be written as

Vn =

n−1∑
i=0

X (i)
Pi−Pi+1−1,
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where X (i)
j for i ≥ 0 and j ∈ Z are independent random variables such that X (i)

j has
the same distribution as the number of vertices inside a q-Boltzmann random map
with perimeter 2j if j ≥ 0 and is 0 otherwise. To simplify notation we use the notation
∆̃Pi = Pi − Pi+1 − 1 below. Fix ε > 0 and set for k ∈ {1, 2, ..., n}

V >εk =

k−1∑
i=0

X (i)

∆̃Pi
1∆̃Pi>εn1/(a−1) , V ≤εk =

k−1∑
i=0

X (i)

∆̃Pi
10≤∆̃Pi≤εn1/(a−1) . (3.15)

It is then easy to combine Proposition 3.4 and (2.6) in order to deduce (see the proof of
[22, Theorem 1] for the detailed calculation) that

n−(a−1/2)/(a−1)E[V ≤εn ] ≤ C
√
ε, (3.16)

for some C > 0 independent of n and ε.
On the other hand, by Proposition 3.2 and the fact that (S↑t )t≥0 does not have jumps

of size exactly −ε almost surely, it follows that jointly with the convergence of the first
component in the theorem we have the following convergence in distribution for the
Skorokhod topology (see [22, Proof of Theorem 6] for details)(

n−
a−1/2
a−1 · V >ε[nt]

)
t≥0

(d)−−−−→
n→∞

(
vq · Z>εt

)
t≥0

, (3.17)

where the process (Z>εt ) is defined as (Zt) but only keeping the negative jumps of (S↑t )

of absolute size larger than ε/pq. Then, it is easy to verify that, for every δ > 0 and any
t0 > 0 fixed we have

P
(

sup
0≤t≤t0

|Zt − Z>εt | > δ
)
−−−→
ε→0

0.

We can use the last display, together with (3.17) and (3.16) to deduce the desired
convergence in distribution.

4 The dilute phase

In this section we suppose that a ∈
(
2, 5

2

)
In this section, we study the geometry of B†∞ both for the dual graph distance d†gr and
the first-passage percolation distance dfpp in the dilute phase a ∈ (2, 5

2 ). Our main results
are Theorem 4.2 and Proposition 4.1. The proofs in this section are similar to those of
[22] and only the main differences are highlighted. The key idea is to relate the growth
of the distances along the peeling process to the perimeter process via a time change.
We start with the Eden model which is much simpler.

4.1 Eden model

Proposition 4.1 (Distances in the uniform peeling). Let (Pi, Vi, τi)i≥0 respectively be the
half-perimeter, the number of inner vertices and the times of jumps of the exploration
process in the uniform peeling of B∞ as described in Section 2.4. Then we have the
following convergence in distribution for the Skorokhod topology(

P[nt]

n
1
a−1

,
V[nt]

n
a−1/2
a−1

,
τ[nt]

n
a−2
a−1

)
t≥0

(d)−−−−→
n→∞

(
pq · S↑t , vq · Zt,

1

2pq
·
∫ t

0

du

S↑u

)
t≥0

.

The above result can easily be translated in geometric terms. Recall the notation

Ballfpp
r (B∞) from Section 2.4. We denote by |Ball

fpp

r (B∞)| and |∂Ball
fpp

r (B∞)| respec-
tively the size (number of inner vertices) and the half-perimeter of the unique hole of
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Ball
fpp

r (B∞). Then from the geometric interpretation of Section 2.4 and the above result
we have the following convergence in distribution in the sense of Skorokhod |∂Ball

fpp

[tn](B∞)|

n
1
a−2

,
|Ball

fpp

[tn](B∞)|

n
a−1/2
a−2


t≥0

(d)−−−−→
n→∞

(
pq · S↑ϑ2pqt

, vq · Zϑ2pqt

)
t≥0

, (4.1)

where for t ≥ 0 we have put ϑt = inf{s ≥ 0 :
∫ s

0
du

S↑u
≥ t}. In the work [22], the process S↑ϑt

(called the first Lamperti transform of S↑) could be interpreted as a reverse branching
process, but this is not the case anymore here since our Lévy processes now have positive
and negative jumps (Lamperti representation theorem links branching processes to Lévy
processes with only negative jumps).

Proof of Proposition 4.1. Here also, the proof is the same as that of Theorem 4 of [22]
with the appropriate updates. The joint convergence of the first two components is given
by Theorem 3.6. We now prove the convergence of the third component jointly with the
first two. Recall from Proposition 2.3 that conditionally on (Pi, Vi)i≥0 we have

τn =

n−1∑
i=0

ei
2Pi

,

where ei are independent exponential variables of expectation 1. Using Proposition 3.2
and an easy law of large number we deduce that for every ε > 0 we have the following
convergence (

n−
a−2
a−1
(
τ[nt] − τ[nε]

))
t≥ε

(d)−−−−→
n→∞

(
1

2pq

∫ t

ε

du

S↑u

)
t≥ε

, (4.2)

and this convergence holds jointly with the first two components considered in the
proposition (see [22, Proof of Theorem 4] for the details of the calculation needed).
Hence, to finish the proof of the proposition, it suffices to see that for any δ > 0 we have

lim
ε→0

sup
n≥1

P
(
n−

a−2
a−1 · τ[nε] > δ

)
= 0 and lim

ε→0
P

(∫ ε

0

du

S↑u
> δ

)
= 0.

For the first limit, we use (3.7) to get

E[τ[nε]] = E

E
[nε]∑
i=0

ei
2Pi

∣∣∣∣∣∣ (Pi)i≥0

 =

[nε]∑
i=0

E

[
1

2Pi

]
≤

(3.7)
C(εn)

a−2
a−1 ,

for some constant C > 0. The desired result follows from an application of Markov’s
inequality. The second statement just follows from the fact that (S↑t )−1 is almost surely
integrable around 0+ since a > 2. One cheap way to see this is to take expectations in
(4.2) and using Fatou’s lemma together with the last calculation to get

1

2pq
E

[∫ 1

ε

du

S↑u

]
≤ C(1 + ε

a−2
a−1 ).

Sending ε→ 0 we deduce that indeed (S↑t )−1 is almost surely integrable around 0.

4.2 Dual graph distance

Theorem 4.2 (Distances in the peeling by layers). Let (Pi, Vi, Hi)i≥0 respectively be the
half-perimeter, the number of inner vertices and the minimal height of a face adjacent
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to the hole of ei in the peeling of B∞ using algorithm L†. Then we have the following
convergence in distribution for the Skorokhod topology(

P[nt]

n
1
a−1

,
V[nt]

n
a−1/2
a−1

,
H[nt]

n
a−2
a−1

)
t≥0

(d)−−−−→
n→∞

(
pq · S↑t , vq · Zt, hq ·

∫ t

0

du

S↑u

)
t≥0

,

where hq = aq/(2pq) and aq is defined below by (4.4).

Let us again give a more geometric interpretation of the above result. Recall from
(2.7) that the peeling process using algorithm L† discovers balls for the dual graph

distance on B∞ and we denote by |Ball
†
r(B∞)| and |∂Ball

†
r(B∞)| respectively the size

(number of inner vertices) and the half-perimeter of its unique hole of the hull of the
ball of radius r for the dual distance. Then with the same notation as in (4.1) the above
result implies the convergence in distribution in the sense of Skorokhod |∂Ball

†
[tn](B∞)|

n
1
a−2

,
|Ball

†
[tn](B∞)|

n
a−1/2
a−2


t≥0

(d)−−−−→
n→∞

(
pq · S↑ϑt/hq , vq · Zϑt/hq

)
t≥0

. (4.3)

Proof of Theorem 4.2. The proof of Theorem 4.2 again follows the steps of [22] and
we therefore only sketch the structure and highlight the main changes. We denote by
e0 ⊂ e1 ⊂ · · · ⊂ B∞ the peeling process of B∞ using the algorithm L†. The idea is to
consider the speed at which the peeling with algorithm L† “turns” around the boundary.
To make this precise we introduce for r ≥ 0 the sets Hr of oriented boundary edges of

Ball
†
r(B∞) that have the unique hole on their right. These can be naturally viewed5 as

sets of oriented edges in B∞, allowing us to define their union H =
⋃
r≥0Hr consisting

of all oriented edges in B∞ that belong to the boundary of some ball Ball
†
r(B∞). We let

An be the number of those oriented edges in H that have been “swallowed” by en, i.e.
that are present in en but do not correspond to a boundary edge of en. Then we claim
that

An
n

(P )−−−−→
n→∞

aq :=
1

2

(
1 +

∞∑
k=0

(2k + 1)ν(k)

)
. (4.4)

The idea to prove this convergence is as follows. First notice that at each peeling step
at least one edge of H is swallowed, namely the peel edge itself. To determine the
remaining swallowed edges, we need some definitions. Recall that the height of an edge
e incident to the hole of ei is by definition d†gr(f, fr) where f is the face adjacent to e

inside ei. Let Dn be the number of edges on the boundary of en at height Hn, the other
Gn := 2Pn −Dn edges being at height Hn + 1. We claim that, for most times n both Gn
and Dn are large enough such that, except on a set of small probability, the number of
swallowed edges of H (in addition to the peel edge) is 2k + 1 precisely when we swallow
a bubble of perimeter 2k on the right of the peeling point. Since the latter event occurs
with probability asymptotic to 1

2ν(−(k + 1)) when the perimeter is large, we find for the
variation ∆An := An −An−1 that

E[∆An] ≈ 1 +
1

2

∞∑
k=1

ν(−k)(2k − 1).

The right-hand side is easily seen to be equal to aq after a few manipulations using the
fact that ν is centered.

5Notice that two oriented boundary edges in Ball
†
r(B∞) may appear as opposite orientations of a single

edge of B∞, since in the peeling operation two boundary edges may be identified.
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Next we claim that most of the time both Dn and 2Pn−Dn are large, or more precisely
that for every integer L ≥ 1 we have

1

n

n∑
i=0

1{Di≤L or 2Pi−Di≤L}
(P )−−−−→
n→∞

0. (4.5)

To prove the last display, we first recall from Section 3.1 that Pn → ∞ and so Dn and
2Pn −Dn cannot be both small. Next, we consider the Markov chain (Pn, Dn, Hn) with
values in (Z>0,Z≥0,Z≥0) whose transition kernel Q is easily computed exactly (recall
(2.4) and (2.5)): for 2 ≤ ` ≤ 2p we have

Q((p, `, h), (p+ k, `− 1, h)) = p
(p)
k+1 for k ≥ 0

Q((p, `, h), (p− k, `− 2k, h)) = p
(p)
−k+1 for 1 ≤ k < `

2

Q((p, `, h), (p− k, 2(p− k), h+ 1)) = p
(p)
−k+1 for `

2 ≤ k ≤ p− 1

Q((p, `, h), (p− k, `− 1, h)) = p
(p)
−k+1 for 1 ≤ k < p− (`− 1)/2

Q((p, `, h), (p− k, 2(p− k), h)) = p
(p)
−k+1 for p− (`− 1)/2 ≤ k ≤ p− 1 ,

(4.6)

while for ` = 1

Q((p, 1, h), (p+ k, 2(p+ k), h+ 1)) =

{
p

(p)
k+1 for k ≥ 0

2p
(p)
k+1 for 1− p ≤ k ≤ −1

.

Using these inputs we can adapt the proof of [22, Lemma 12] to obtain (4.5).
Given (4.5) the proof of (4.4) is analogous6 to [22, Proposition 11 and Proposition

14]. From here one can easily adapt [22, convergence (54)], and prove that we can
combine the convergences of (4.5) and Theorem 3.6 to prove that jointly with the latter
convergences, for any ε > 0 we have

n−
a−2
a−1

(
H[nt] −H[εn]

)
t≥ε

(d)−−−−→
n→∞

(
aq
2pa

∫ t

ε

du

S↑u

)
t≥ε

,

in distribution in the Skorokhod sense. We now let ε→ 0 in the last display. This causes
no problem for the right-hand side since we have seen in the proof of Proposition 4.1
that (S↑u)−1 is almost surely integrable at 0+. To get control over the left-hand side one

must show that for any δ > 0 we have limε→0 supn≥1P(H[εn] ≥ δn
a−2
a−1 ) = 0. As in [22,

Proof of Proposition 10], this follow from the Markov inequality and Lemma 4.3 below,
which gives control over the expectation of Hn.

Lemma 4.3. If a ∈ (2, 5
2 ), then there exists a constant C such that E[Hn] ≤ Cn

a−2
a−1 for

every n ≥ 1.

Proof. We interpolate H by a more “continuous” process and let H ′n := Hn + Gn
2Pn

=

Hn + 1− Dn
2Pn

such that Hn + 1 ≥ H ′n ≥ Hn for all n ≥ 0. We will compute the expectation
of the change ∆H ′n := H ′n+1 − H ′n and show that there exists a C ′ > 0 such that
E[∆H ′n|Fn] < C ′/Pn for all n and all Fn. When (Pn, Dn, Hn) = (p, 1, h) we easily get
E[∆H ′n|(Pn, Dn, Hn) = (p, 1, h)] = 1

2p , so let us concentrate on the case Dn = ` ≥ 2. We
have

E[∆H ′n|(Pn, Dn, Hn) = (p, `, h)] =

∞∑
k=0

p
(p)
k+1E0(p, `, k)

+

p−1∑
k=1

p
(p)
−k+1(Eleft(p, `,−k) + Eright(p, `,−k)),

6More precisely, the estimate on the martingale Mn of [22, Proposition 11] now becomes E[(∆Mn)] ≤
Cn3−a which is still sufficient for our purposes since 3− a < 1. Moreover, instead of using the rough bound
|∆An| ≤ 1 + 2|∆Pn| one should use the more precise bound |∆An| ≤ 1 + 2|∆Pn|1Pn≤0 and use (2.6).
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where the terms E0(p, `, k), Eleft(p, `,−k), and Eright(p, `,−k) correspond to the contribu-
tions of respectively the first line, the second and third line, and the last two lines of the
transition kernel (4.6). A simple calculation shows that they satisfy

E0(p, `, k) =
`

2p
− `− 1

2(p+ k)
=

p+ k`

2p(p+ k)
≤ 1 + k

p+ k
,

Eleft(p, `,−k) =
`

2p
−
(
`− 2k

2(p− k)
∨ 0

)
≤ k

p
,

Eright(p, `,−k) =
`

2p
−
(

`− 1

2(p− k)
∧ 1

)
≤ k

p
.

Using that
√
k ≤ h↑(k) ≤ 2

√
k for all k ≥ 0 we then obtain the bounds

∞∑
k=0

p
(p)
k+1E0(p, `, k) ≤ 2

∞∑
k=1

(k + 1)ν(k)√
p(p+ k)

≤ 2

p

∞∑
k=0

(k + 1)ν(k) =
C0

p
,

p−1∑
k=1

p
(p)
1−k(Eleft(p, `,−k) + Eright(p, `,−k)) ≤ 1

p

p−1∑
k=1

h↑(p− k)

h↑(p)
kν(−k) ≤ 1

p

∞∑
k=1

kν(−k) =
C1

p
.

Combining these we conclude that E[∆H ′n|(Pn, Dn, Hn) = (p, `, h)] ≤ C ′/p for all triples
(p, `, h) and therefore E[∆H ′n] ≤ C ′′n−1/(a−1) by (3.7). It follows that E[Hn] ≤ E[H ′n] ≤
Cn

a−2
a−1 for some C > 0.

5 The dense phase

In this section we suppose that a ∈
(

3
2 ; 2
)

We now focus on the study of the dense phase corresponding to a ∈ (3/2; 2). We start
with an easy but yet striking result in the case of the Eden model and then move to the
more precise study of the geometry of B†∞.

5.1 Eden model and transience

Recall that dfpp(·, ·) is the first-passage percolation metric on B†∞ for which its edges
are endowed with i.i.d. exponential weights. As usual fr denotes the root face of B∞
which is the origin of B†∞.

Proposition 5.1. When a ∈ (3/2; 2) we have

E [dfpp(fr,∞)] = E[N0] <∞,

where dfpp(fr,∞) is the infimum of the fpp-length of all infinite paths in B†∞, and N0 is
the number of times the random walk (Wi)i≥0 started at 1 visits 0.

Proof. We do the peeling process on B∞ with the algorithm of Proposition 2.3 and
recall the notation (τi)i≥0 of Section 2.4. The proposition boils down to computing the
expectation of τ∞ = limi→∞ τi. By Proposition 4.1, conditionally on the perimeter process
(Pi)i≥0 during the exploration, the increments τi+1 − τi are independent exponential
variables of mean 1/(2Pi). Hence we have

E[τ∞] =

∞∑
i=0

E

[
1

2Pi

]
=

Lem. 3.1

∞∑
k=1

P1(Wk = 0) = E[N0].

From the local limit theorem [26, Theorem 4.2.1] we have P1(Wk = 0) ∼ C0 k
−1/(a−1) as

k →∞ for some constant C0 > 0 and so when a ∈ (3/2; 2) we have E[N0] <∞ (in other
words the walk (Wi)i≥0 is transient whenever a < 2).
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Corollary 5.2. When a ∈ (3/2; 2) the random lattice B†∞ is almost surely transient (for
the simple random walk).

Proof. We use the method of the random path [28, Section 2.5 page 41]. More precisely,
the fpp model on B†∞ enables us to distinguish an infinite oriented path ~Γ : fr → ∞
in B†∞ which is the shortest infinite path starting from the origin for the fpp-distance
(uniqueness of this path is easy to prove). In our case, this path can equivalently be seen
as an unoriented path Γ since it is simple. From this path ~Γ one constructs a unit flow θ

on the directed edges with source at fr by putting for any oriented edge ~e of B†∞

θ(~e) = Pfpp(~e ∈ ~Γ)− Pfpp( ~e ∈ ~Γ).

To show that the energy of this flow is finite, we compare it to the expected fpp-length
of ~Γ which is almost surely finite by Proposition 5.1. More precisely, if xe denotes the
exponential weight on the edge e, we just remark that there exists a constant7 C > 0

such that for any event A we have

Efpp [xe1A] ≥ C Pfpp(A)2.

Indeed, if δ = P(A) we have Efpp[xe1A] ≥ Efpp[xe1A1xe≥δ/2] ≥ δ/2Pfpp(A∩{xe ≥ δ
2}) and

use the fact that Pfpp(A ∩ {xe ≥ δ
2}) ≥ Pfpp(A) + Pfpp(xe ≥ δ

2 )− 1 = δ + e−δ/2 − 1 ≥ δ/2.
Using this we can write∑

~e∈
−−−→
Edges(B∞)

θ(~e)2 ≤ 4
∑

e∈Edges(B∞)

Pfpp(e ∈ Γ)2 ≤ 4

C

∑
e∈Edges(B∞)

Efpp [1e∈Γxe]

=
4

C
Efpp[Lengthfpp(Γ)] <∞.

This proves almost sure transience of the lattice as desired.

5.2 Dual graph distance

We now come back to the dual graph distance d†gr on B†∞. Our main result which
parallels Theorem 4.2 is the following:

Theorem 5.3. For a ∈ (3/2; 2) there exists a constant ca ∈ (0,∞) such that with the same
notation as in the geometric interpretation below Theorem 4.2 we have the following
convergences in probability

r−1 log
(∣∣∣∂Ball†r(B∞)

∣∣∣) (P)−−−→
r→∞

ca, r−1 log
(∣∣∣Ball†r(B∞)

∣∣∣) (P)−−−→
r→∞

(a− 1/2) · ca.

The proof of the above theorem is presented in the next section. It mainly relies on
Proposition 5.4 which enables us to see, in the scaling limit, the different times needed
for the algorithm L† to complete a full layer, whereas in the dilute phase this information
vanishes in the scaling limit. In order to make the proof more digestible, we postpone a
few technical estimates to Section 5.2.2

5.2.1 Scaling limit of the peeling with algorithm L† in the dense phase

We perform the peeling process on B∞ with algorithm L† of Section 2.3. Recall that θr
is the first time i when all the faces adjacent to the unique hole of ei are at dual distance
at least r from the root face fr of B∞.

We shall need to generalize a bit the setup such that during the peeling with algorithm
L†, we start at time 0 with a boundary of length 2p with p ≥ 1 (or equivalently that the

7In fact one can take C = infs>0

(∫ s
0 dxxe−x

)
/
(∫ s

0 dx e−x
)2

= 1
2
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root face of B∞ has degree 2p) while still denoting by θ1, θ2, . . . the times it takes to
complete one layer, two layers etc. We denote by Pp and Ep the corresponding probability
and expectation. By the Markov property of the exploration of B∞ we know that the
law of Pθr+1

under P1 conditionally on Pθr = p is that of Pθ1 under Pp. Recall also from
Section 4.2 that Di denotes the number of edges on the boundary at minimal height Hi

after i peeling steps. We now introduce the scaling limit of (Pi)i≥0,(Di)i≥0 and (θi)i≥0

under Pp when p→∞.
We first consider (S↑t )t≥0 the (a − 1)-stable Lévy process conditioned to stay non-

negative with positivity parameter ρ satisfying (1− ρ)(a− 1) = 1
2 already introduced in

Section 3.2 but now started from S↑0 = 1. By an extension of Proposition 3.2 (which is
granted by [18]), we know that S↑ is the scaling limit of the perimeter process P under
Pp as p→∞ in the sense that under Pp(

P[t(p/pq)a−1]

p

)
t≥0

(d)−−−→
p→∞

(S↑t )t≥0, (5.1)

in distribution in the Skorokhod sense as p→∞. We now introduce the scaling limit of
D by mimicking in the continuous setting the behavior of D with respect to P . In the
case when a < 2, the process S↑ is pure jump and we can write

S↑t = 1 +
∑
ti≤t

∆S↑ti ,

where t1, t2, . . . is a measurable enumeration of its jumps times and ∆S↑t = S↑t − S
↑
t− .

Independently of (S↑t )t≥0 let also (εi)i≥1 be independent fair coin flips taking values in
{right, left}. With these ingredients we build a new pure jump process (Dt)t≥0 by putting
D0 = 1 and for every jump time ti such that ∆S↑ti < 0 is a negative jump we put

∆Dti =

{
∆S↑ti if εi = right

min
(
0, (S↑

t−i
−Dt−i ) + ∆S↑ti

)
if εi = left,

(5.2)

as long as D stays positive. More precisely, with the above construction, the process D
is pure jump and (a.s. strictly) non-increasing; we let ζ1 = inf{t ≥ 0 : Dt < 0} and at time
ζ1 we change the value of Dζ1 (which otherwise would be strictly negative) and set its
new value to be

Dζ1 := S↑ζ1 .

From this time on, we apply the rules of (5.2) until Dt reaches a strictly negative value
a time ζ2. Then we reset Dζ2 := S↑ζ2 and iterate the above procedure to construct the
full process (Dt)t≥0 and the sequence of random times (ζi)i≥1. See Fig. 9. As promised,
these processes are the scaling limits of the discrete processes (P,D, θ) in the following
sense:

Proposition 5.4. We have the following convergences in distribution under Pp((
P[t(p/pq)a−1]

p
,
D[t(p/pq)a−1]

2p

)
t≥0

,

(
θi

(p/pq)a−1

)
i≥1

)
(d)−−−→
p→∞

((
S↑t ,Dt

)
t≥0
, (ζi)i≥1

)
(5.3)

furthermore, jointly with the above convergences we have (
Pθi
p )i≥1 → (S↑ζi)i≥1 in law.

Remark 5.5. Let us explain heuristically a crucial difference between the dilute phase
a ∈ (2; 5/2) and the dense phase a ∈ (3/2; 2) above. In the dilute phase, by (4.4) the time
needed for the peeling process with algorithm L† to “turn around” a boundary of length
p and discover a new layer is roughly of order p whereas the scaling in time for the
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Figure 9: Illustration of the construction of the process D from the process S↑ and a
sequence of independent coin flips.

process (P ) is pa−1 which is much larger than p. So the information given by the (θi)i≥1

disappears in the scaling limit. In the dense phase however, the time needed to turn
around a boundary of perimeter p is roughly pa−1 which is precisely the time scaling for
the process (P ).

Proof of Proposition 5.4. The convergence of the rescaled process P towards S↑ is given
in (5.1). Next, it is easy to see that the definition of D mimics the discrete evolution of
D. More formally, for i ≥ 0 such that ∆Pi = Pi+1 − Pi < 0 we can define ε̃i ∈ {left, right}
indicating whether the peeling process swallows a bubble on the left or on the right-
hand side of the peeling point. By the probability transitions of the peeling process,
conditionally on (P ) these variables are independent and uniformly distributed over
the two outcomes. We put ε̃i = center when the peeling process discovers a new face
i.e. when ∆Pi ≥ 0. Then using (4.6) we see that for 0 ≤ i < θ1 − 1 we have

∆Di =


2∆Pi if ε̃i = right

min(0, (2Pi −Di) + 2∆Pi + 1)− 1 if ε̃i = left

−1 if ε̃i = center

(5.4)

At time θ1 we then have Dθ1 = 2Pθ1 and iterate the last construction for times θ1 ≤
i < θ2 − 1 etc. The above construction of D is the discrete analog of the continuous
construction of D given in (5.2), the various factors of two which differ between the
above display and (5.2) come from the fact that Pi is the half-perimeter at time i whereas
Di counts the number of edges at height Hi (not divided by two). By the Markov property
and the similarity of the constructions of (D,P ) and (D, S↑) it is sufficient to prove the
convergence until the completion of one layer, that is jointly with (5.1) we have((

D[t(p/pq)a−1]

2p

)
t∈[0,θ1/(p/pq)a−1]

,
θ1

(p/pq)a−1
,
Pθ1
p

)
(d)−−−→
p→∞

(
(Dt)t∈[0,ζ1) , ζ1, S

↑
ζ1

)
. (5.5)

To prove the above display it is convenient to argue by approximation. Fix ε > 0

and denote by D(ε) the process obtained by repeating the construction of D from S↑

but only keeping those (negative) jumps of S↑ of absolute size at least ε. We define
accordingly ζ(ε)

1 to be the first time at which D(ε)
t becomes strictly negative. We do the

same approximation procedure in the discrete setting and define a process D(ε) starting
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from p by applying the rules (5.4) restricted to (negative) jumps of P of size at least εp
(in particular the third line in (5.4) is never used) and also define θ(ε)

1 as the first time the
process D(ε) reaches a negative value. Notice that there are only finitely many (random)
times before θ1 (resp. ζ1) for which P (resp. S↑) has a negative jump of absolute size
larger than εp (resp. ε) and that for fixed ε the process S↑ has no jump of size exactly
ε. These facts combined with the convergence in distribution in the Skorokhod sense
(5.1) and with the fact that the variables εi and ε̃i are i.i.d. and uniform over {left, right}
entails that jointly with (5.1) we have

D(ε)
[t(p/pq)a−1]

2p


t∈[0,θ

(ε)
1 /(p/pq)a−1]

,
θ

(ε)
1

(p/pq)a−1
,
P
θ
(ε)
1

p

 (d)−−−→
p→∞

((
D(ε)
t

)
t∈[0,ζ

(ε)
1 )
, ζ

(ε)
1 , S↑

ζ
(ε)
1

)
.

(5.6)
We wish to let ε→ 0 but for this we need some uniform control with respect to p for the
left-hand side. We begin with the right-hand side: since a − 1 < 1 we know that S↑ is
pure jump and so for any given t > 0 we have∑

ti≤t

|∆S↑ti |1|∆S↑ti |>ε
a.s.−−−→
ε→0

0. (5.7)

It follows from the last display and the definitions of D(ε) and D that we have the
following almost sure convergences in the sense of Skorokhod

(D(ε)
t )

t∈[0,ζ
(ε)
1 )

a.s.−−−→
ε→0

(Dt)t∈[0,ζ1), ζ
(ε)
1

a.s.−−−→
ε→0

ζ1, S↑
ζ
(ε)
1

a.s.−−−→
ε→0

S↑ζ1 . (5.8)

Similarly, in the discrete setting we can use (2.6) to get that for any δ, t ≥ 0 we have

sup
p≥1

Pp

t·pa−1∑
i=0

1|∆Pi|<εp|∆Pi| > δ p

 −−−→
ε→0

0.

Using the fact that |∆Di| ≤ 1 + 2|∆Pi|1∆Pi≤0 we consequently have

sup
p≥1

Pp

t·pa−1∑
i=0

1|∆Di|<εp|∆Di| > δ p

 −−−→
ε→0

0.

It is then standard to combine the last two displays and the properties of D and D(ε) to
deduce that for any t ≥ 0, if ‖ · ‖ denotes the Skorokhod distance between two functions
over the time interval [0, t) then we have

sup
p≥1

Pp

(
p−1

∥∥∥D(ε)
· (p/pq)a−1 −D· (p/pq)a−1

∥∥∥ > δ
)
−−−→
ε→0

0. (5.9)

Now, combining (5.9), (5.8) and (5.6) we can deduce the convergence in law of the first
components in (5.5). The other joint convergences in law are derived similarly. We leave
the details to the reader.

We now introduce the following key random variable

Z = log(S↑ζ1).

Lemma 5.6. The expectation of Z denoted by ca is (stricly) positive.
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Proof. By the Markov property and the scale invariance property of the process (S↑)

used in the construction of D it is easy to see that conditionally on the past information
up to time ζk we have

(ζk+1 − ζk, S↑ζk+1
)

(d)
= ((S↑ζk)1/(a−1) · ζ̃1, S↑ζk · S̃

↑
ζ1

), (5.10)

where the process (ζ̃, D̃, S̃↑) is an independent copy of (ζ,D, S↑). In particular for any
k ≥ 1 the random variable log(S↑ζk) is obtained by summing k independent copies of the

variable log(S↑ζ1). Hence we have

E[Z] = E[log(S↑ζ1)] =
1

k
E[log(S↑ζk)]. (5.11)

Now, when k → ∞, using (5.10) and the fact that S↑ remains positive, it is any easy
matter to see that ζk → ∞ hence S↑ζk → ∞ and log(S↑ζk) → ∞ as well. On the other

hand, log(S↑ζk) is obviously bounded from below by the logarithm of the overall infimum

S↑∞ = inf{S↑t : t ≥ 0} of the process (S↑t )t≥0. Since S↑ is the h-transform of the process
S for the function h(x) =

√
x it follows that for any ε > 0 if Tε(X) = inf{t ≥ 0 : Xt ≤ ε}

then we have

P(S↑∞ ≤ ε) = P(Tε(S
↑) <∞) = E[h(STε)1Tε(S)<∞1St≥0,∀0≤t≤Tε(S)] ≤

√
ε, (5.12)

from which one deduces that log(S↑∞) is integrable. Using all these ingredients we can
apply Fatou’s lemma and get

lim inf
k→∞

E[log(S↑ζk)] ≥ E
[
lim inf
k→∞

log(S↑ζk)

]
=∞.

It follows from the last display and (5.11) that for some k0 ≥ 1 we have E[Z] =

E[log(S↑ζk0
)]/k0 > 0 as wanted. (Notice that at this point it could be that ca = ∞

but this will be ruled out in the next proof).

Proof of Theorem 5.3. By Proposition 5.4 we have the convergence log(p−1Pθ1)→ Z in
distribution under Pp as p→∞ and on the other hand Lemma 5.7 implies that the laws
of log(Pθ1/p) under Pp are uniformly integrable for p ≥ 1. It follows that

Ep

[
log

(
Pθ1
p

)]
−−−→
p→∞

E[Z] = ca, (5.13)

and in the same time we deduce that ca is finite (and positive thanks to Lemma 5.6).
We are now in position to prove a law of large numbers for log(Pθr ) under P1. Denote
(Fn)n≥0 the filtration generated by the peeling exploration and recall that the law of
Pθr+1

under P1(· | Fθr ) is that of P̃θ̃1 under P̃θr where the ∼ means that this is a new
sampling of the process. For r ≥ 1 large we evaluate

E1

[
(log(Pθr/Pθ0)− rca)

2
]

=
∑

1≤i,j≤r

E

[(
log

(
Pθi
Pθi−1

)
− ca

)(
log

(
Pθj
Pθj−1

)
− ca

)]
.(5.14)

The terms where i = j are bounded above by some constant according to Lemma 5.7.
For the other terms when i < j we condition on Fθj−1 and use the above remark to get
that

E

[(
log

(
Pθi
Pθi−1

)
− ca

)(
log

(
Pθj
Pθj−1

)
− ca

)]

= E

[(
log

(
Pθi
Pθi−1

)
− ca

)
ẼPθj−1

[
log

(
P̃θ̃1
Pθj−1

)
− ca

]]
,
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where independently of the previous exploration, under P̃p the random variable P̃θ̃1 is
distributed as Pθ1 under Pp. Since we have Pθj → ∞ by the transience of the process
(P ) it follows from (5.13) that

ẼPθj−1

[
log
(
P̃θ̃1/Pθj−1

)
− ca

]
a.s.−−−→
j→∞

0.

Conditioning with respect to Fθi−1 and using one more time the uniform integrability of
the variables log(Pθ1/p) under Pp we deduce that the off-diagonal terms in (5.14) go to 0

as i, j →∞. Consequently by Cesaro’s summation we have

E1

[
(log(Pθr/Pθ0)− rca)

2
]

= o(r2) as r →∞.

By Markov’s inequality, this proves that r−1 log(Pθr ) → ca in probability as desired in
Theorem 5.3. The second point of the theorem follows from the first point and Lemma
5.8 below.

Recall that the perimeter ∂|Ballr(B∞)| is defined is terms of number of (dual) edges.
It may thus be that the perimeter in terms of number of vertices on the boundary of B†∞
is much smaller. Whereas they are both of the same order in the dilute case (but we
do not prove it), this is far from being true in the dense case since for a ∈ (3/2; 2) the
random map B†∞ contains infinitely many cut vertices separating the origin from infinity
almost surely.

Sketch of proof. We will show that when doing the peeling process with algorithm L†,
then independently of the past exploration, there is a positive probability bounded away
from 0 that within the next two consecutive layers of B†∞ we create a cut point (i.e. a
face of B∞ which is folded on itself and separates the origin from infinity in B∞). This
proves that indeed there are infinitely many cut-points in B†∞. Fix r ≥ 0 and assume that
Pθr = p. We claim that with a probability which is bounded from below independently
of p

• during the construction of the (r+ 1)th layer a face f of degree of order p is created
which contributes to a fraction say at least 1/3 of Pθr+1

,

• during the construction of the (r + 2)th layer, two edges of f are identified in such
a way that the origin and infinity are separated in B†∞ by f , thereby creating the
desired cut point.

We leave it to the reader to translate the above recipe in terms of the process P and
D and to use the above scaling limit given by Proposition 5.4 to see that such a scenario
indeed has a positive probability to happen independently of p. We refer to Fig. 10 and
Fig. 11 for a pictorial description.

5.2.2 Proof of the technical estimates

Lemma 5.7. We have

sup
p≥1

Ep

[
log2

(
Pθ1
p

)]
<∞.

Proof. We first claim that the tail of θ1 under Pp is exponential in the scale pa−1, in other
words

Pp(θ1 ≥ kbpa−1c) ≤ e−ck, (5.15)

for all k ≥ 1 for some constant c > 0 independent of p. The reason is the following.
Suppose that θ1 ≥ kpa−1, then we claim that during the time interval [kbpa−1c, (k +
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Figure 10: Creation of a cut point during the construction of two consecutive layers.

Figure 11: Transcription of the event of Fig. 10 in terms of the coding processes P
and D. It is implicitly assumed that the event corresponding to the big negative jump
identifies two edges that are incident to the face created in the big positive jump event.

1)bpa−1c] the process (P ) has a positive probability (independent of p and k) to make a
negative jump of size at least p during which the peeling by layer process swallows at
least 2p edges on its left. When doing so, one must necessarily complete the first layer
since there are less than 2p edges initially at height 0 to discover (and this number can
only decrease). This easily implies (5.15).
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To see that within a time interval of length pa−1 the process P can indeed produce
a negative jump of size at least p with a probability bounded away from 0 we proceed
as follows: we first produce a positive jump of size about 2p followed within the time
interval by a negative jump of size larger than p. Using the explicit probability transitions
for the process P it is easy to see that the probability of this event is bounded away from
0 uniformly in p and in P0.

Once we have (5.15) in hand we first write

Ep

[
log2

(
Pθ1
p

)]
≤ Ep

[
log2

(
P θ1
p

)]
+ Ep

[
log2

(
P θ1
p

)]
, (5.16)

where P k = inf{Pi : 0 ≤ i ≤ k} and P k = sup{Pi : 0 ≤ i ≤ k} are the corresponding
running infimum and running supremum of the process P . We easily take care of the first
term, since P θ1 is bounded from below by P∞ the overall infimum of P : a calculation
similar to that of (5.12) shows that for any 1 ≤ p′ ≤ p we have

Pp(P∞ ≤ p′) ≤ C

√
p′

p
,

for a constant C > 0 independent of p and p′. It follows from this that

sup
p≥1

Ep[log2(P∞/p)] <∞

and so supp≥1Ep[log2(P θ1/p)] < ∞. Let us move to the second term on the right-hand
side of (5.16). By splitting according to the values of θ1 and applying Cauchy-Schwarz
inequality we have

Ep[log2(P θ1/p)] ≤
∑
k≥1

Ep
[
log2

(
P kbpa−1c/p

)
1θ1∈[(k−1)bpa−1c,kbpa−1c)

]
≤

∑
k≥1

√
Ep[log4(P kbpa−1c/p)] · Pp(θ1 ≥ (k − 1)bpa−1c). (5.17)

We will show below the rough estimate

Ep[log4(P kbpa−1c/p)] ≤ C ′ k (5.18)

for some C ′ > 0 (independent of k and p but which may depend on a ∈ (3/2; 2)) which
combined with (5.15) will show that supp≥1Ep[log2(P θ1/p)] is bounded. This will finish
the proof of the lemma. To this aim we look at the tail

Pp(P kbpa−1c > xp)

for x > 0 large. We first reduce the problem from P to P by a classical maximal
inequality: We suppose that x > k1/(a−1) and we claim that there is a universal constant
c > 0 (independent of k ≥ 1, x > k1/(a−1) and p) such that we have

Pp(P kbpa−1c > 2xp) ≤ c · Pp(Pkbpa−1c > xp). (5.19)

The reason is that if the process P reaches a value larger than xp before time kpa−1 then
afterwards it has a positive probability to stay within (kbpa−1c)1/(a−1) ≤ xp of this value
until time kbpa−1c. We then use the relation with the non-conditioned random walk (W )

to evaluate the tail of Pkbpa−1c:

Pp(Pkbpa−1c > xp) =
∑
y>xp

Pp(Wkbpa−1c = y and Wi ≥ 1,∀0 ≤ i ≤ kbpa−1c)h
↑(y)

h↑(p)

≤
∑
y>xp

Pp(Wkbpa−1c = y)
h↑(y)

h↑(p)
. (5.20)
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A well-known “one-jump” principle (see e.g. [24]) tells us that when y is large, the main
contribution to Pp(Wkbpa−1c = y) is given by those events where the walk W has one
increment of size approximately y. In our case, there exists a constant C > 0 which may
vary from line to line such that

Pp(Wkbpa−1c = y) = P0(Wkbpa−1c = y − p) ≤ C · kbpa−1c · P(∆W = y − p)
≤ Ckpa−1y−a.

Plugging this into (5.20) and using the fact that h↑(`) grows like
√
` as `→∞ it follows

that

Pp(Pkbpa−1c > xp) ≤ C · kx−a+3/2.

Using the above estimate together with (5.19) an easy calculation yields the estimate
(5.18).

Lemma 5.8. We have the following two almost sure convergences

logPn
log n

a.s.−−−−→
n→∞

1

a− 1
,

log Vn
log n

a.s.−−−−→
n→∞

a− 1/2

a− 1
.

Proof. The estimates of the first point of the lemma could be proved by bare hand
calculations as those presented in the last lemma, however we chose a different and
perhaps lighter route using Tanaka’s construction of the walk W ↑ conditioned to stay
positive [32]. To start with, let Exc be the time and space reversal of a negative excursion
of W :

Exc = (0,Wσ −Wσ−1,Wσ −Wσ−2, . . . ,Wσ −W1,Wσ)

where σ = inf{k ≥ 0 : Wk > 0}. One then considers independent copies Exc1,Exc2, . . .

of Exc which we concatenate together to get an infinite walk. Tanaka [32] proved that
the process obtained has the law of W ↑ (but started from 0 and conditioned not to touch
Z<0).

We recall the following known tail estimates

P(Wσ > x) ∼ c1 · x−(a−3/2)

P(σ > x) ∼ c2 · x−
a−3/2
a−1

P(max Exc > x) ≤ c3 · x−(a−3/2), (5.21)

as x→∞ for some constants c1, c2, c3 > 0. The first two estimates can be found in [18,
Remark 1.2, Lemma 2.1] and the last one can be deduced from the second one: Indeed,
for x > 0 consider τ−x = inf{i ≥ 0 : Wi ≤ −x}, then conditionally on the event τ−x < σ,
the probability of the event

{|Wk+τ−x −Wτ−x | < x/2 : ∀0 ≤ k ≤ xa−1}

is bounded away from zero by some constant c > 0 uniformly in x > 0 (this follows from
the Markov property and the convergence of x−1W (·xa−1) towards the (a − 1)-stable
Lévy process). In particular, on this event we have σ > τ−x + xa−1 and therefore

P(σ > xa−1) ≥ c · P( min
0≤i<σ

Wi ≤ −x).
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Figure 12: Illustration of Tanaka’s construction of the walk W ↑.

But clearly we have max Exc ≤Wσ −min0≤i<σWi and so

P(max Exc > 2x) ≤ P( min
0≤i<σ

Wi ≤ −x) + P(Wσ > x)

≤ 1

c
P(σ > xa−1) + P(Wσ > x)

≤
asympt.

1

c
c2(xa−1)

−(a−3/2)
a−1 + c1x

−(a−3/2),

and the desired third estimate of (5.21) follows.

We then use (5.21) in conjunction with the following classical result: if Sn = X1 +

X2 + · · ·+Xn is a random walk whose increments are independent, non-negative and
satisfy P(Xi > x) ∼ c · x−1/α for α > 1 and c > 0 (resp. P(Xi > x) ≤ c · x−1/α) then we
have

logSn
log n

a.s.−−−−→
n→∞

α ( resp. lim sup
n→∞

logSn
log n

≤ α). (5.22)

When applied to the above construction, this remark shows that after concatenating

n excursions, the total length is of order n
a−1
a−3/2

+o(1), the current height is of order
n1/(a−3/2)+o(1) and the height of the largest excursion is no more than n1/(a−3/2)+o(1).
Having a look at Fig. 12 this implies that W ↑n = n1/(a−1)+o(1) as desired in the first point
of the proposition.

Let us now turn our attention to the volume process. Recall that conditionally on the
perimeter process (Pn)n≥0 the volume process is obtained by summing the volume of
Boltzmann maps each time the perimeter produces a negative jump. Let us bound the
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tail of ∆Vn: for x > 0 we have

P(∆Vn > x) =

∞∑
`=1

P(∆Vn > x and ∆Pn = −`)

=

∞∑
`=1

P(|B(`−1)| > x)P(∆Pn = −`)

≤
Markov

∞∑
`=1

(
x−1E[|B(`−1)|] ∧ 1

)
P(∆Pn = −`)

≤
(2.6) and Prop.3.4

c

∞∑
`=1

(
`a−

1
2

x
∧ 1

)
`−a

≤ c x−
a−1
a−1/2 ,

for some constant c > 0 that may vary from line to line. Using the uniform control over
the tail of ∆Vn we can stochastically bound from above the volume process (Vn)n≥0 by a
process (Ṽn)n≥0 with independent positive increments with a tail of order P(∆Ṽn > x) ∼
cx−

a−1
a−1/2 . And so by (5.22) we deduce that

lim sup
n→∞

log Vn
log n

≤ lim sup
n→∞

log Ṽn
log n

≤
(5.22)

a− 1/2

a− 1
.

For the lower bound we use the fact that Vn dominates any of its jump until time n.
Since the process Pn makes negative jumps of order n1/(a−1) until time n, the process
(V ) makes jumps of order n(a−1/2)/(a−1) until time n. We leave it to the reader to turn
this heuristic into an almost sure lower bound.

6 A special weight sequence

In this paper we have considered general weight sequences q with asymptotic
behaviour qk ∼ cκk−1k−a. Let us wrap up by revisiting some of the results for a very
convenient particular weight sequence [3] for a ∈ (3/2; 5/2) given by

qk = cκk−1 Γ( 1
2 − a+ k)

Γ( 1
2 + k)

1k≥2, κ =
1

4a− 2
, c =

−
√
π

2 Γ(3/2− a)
. (6.1)

Notice that this weight sequence is term-wise continuous as a→ 5/2 taking the value
qk = 1

121k=2, which corresponds exactly to critical quadrangulations.

Lemma 6.1. For a ∈ (3/2, 5/2) the weight sequence (6.1) is admissible and critical and
the law ν of the corresponding random walk (Wi)i is given by

ν(k) = c
Γ(3/2− a+ k)

Γ(3/2 + k)
1k 6=0. (k ∈ Z) (6.2)

Proof. Clearly the values ν(k), k ∈ Z, are nonnegative and one may check that the
characteristic function φ(θ) :=

∑∞
k=−∞ ν(k)eikθ of (6.2) is given by

φ(θ) = 1− π

2

Γ(a− 1/2)

Γ(a)
(1− eiθ)a−3/2

√
1− e−iθ.

Since φ(0) = 1, ν defines a probability measure on Z. Using that κ = ν(−1)/2, it follows
from Proposition A that the only thing we need to check is that h↑ is ν-harmonic on Z>0,
i.e., that

∞∑
k=−∞

h↑(`+ k)ν(k) = h↑(`) for ` > 0. (6.3)
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Using that
∑∞
`=1 h

↑(`)e−i`θ = e−iθ(1− e−iθ)−3/2 we find for ` > 0 that

∞∑
k=−∞

h↑(`+ k)(ν(k)− 1k=0) =
1

2π

∫ 2π

0

e(`−1)iθ

(1− e−iθ)3/2
(φ(θ)− 1)dθ

= −Γ(a− 1/2)

4Γ(a)

∫ 2π

0

ei`θ(1− eiθ)a−5/2dθ = 0,

which implies (6.3).

The scaling constants in Theorem 3.6 take on the values

pq = c
1
a−1 , bq =

1

Γ(a+ 1/2)
, vq =

1

Γ(a+ 1/2)
c
a−1/2
a−1 .

On the other hand, for a ∈ (2, 5/2),

aq :=
1

2

(
1 +

∞∑
k=0

(2k + 1)ν(k)

)
= 1 +

1

4(a− 2)
, hq = aq/(2pq)

and for a ∈ (3/2, 2),

E [dfpp(fr,∞)] =

∞∑
k=1

P1(Wk = 0) =
1

2π

∫ 2π

0

eiθdθ

1− φ(θ)
=

cot(πa)

π

a− 1

(a− 5
2 )(a− 3

2 )
.
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