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Abstract

We prove a local law in the bulk of the spectrum for random Gram matrices XX∗,
a generalization of sample covariance matrices, where X is a large matrix with
independent, centered entries with arbitrary variances. The limiting eigenvalue
density that generalizes the Marchenko-Pastur law is determined by solving a system
of nonlinear equations. Our entrywise and averaged local laws are on the optimal
scale with the optimal error bounds. They hold both in the square case (hard edge)
and in the properly rectangular case (soft edge). In the latter case we also establish a
macroscopic gap away from zero in the spectrum of XX∗.
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1 Introduction

Random matrices were introduced in pioneering works by Wishart [43] and Wigner
[42] for applications in mathematical statistics and nuclear physics, respectively. Wigner
argued that the energy level statistics of large atomic nuclei could be described by
the eigenvalues of a large Wigner matrix, i.e., a hermitian matrix H = (hij)

N
i,j=1 with

centered, identically distributed and independent entries (up to the symmetry constraint
H = H∗). He proved that the empirical spectral measure (or density of states) converges
to the semicircle law as the dimension of the matrix N goes to infinity. Moreover, he
postulated that the statistics of the gaps between consecutive eigenvalues depend only
on the symmetry type of the matrix and are independent of the distribution of the
entries in the large N limit. The precise formulation of this phenomenon is called the
Wigner-Dyson-Mehta universality conjecture, see [33].
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Local law for random Gram matrices

Historically, the second main class of random matrices is the one of sample covariance
matrices. These are of the form XX∗ where X is a p×n matrix with centered, identically
distributed independent entries. In statistics context, its columns contain n samples of a
p-dimensional data vector. In the regime of high dimensional data, i.e., in the limit when
n, p→∞ in such a way that the ratio p/n converges to a constant, the empirical spectral
measure of XX∗ was explicitly identified by Marchenko and Pastur [32]. Random
matrices of the form XX∗ also appear in the theory of wireless communication; the
spectral density of these matrices is used to compute the transmission capacity of a
Multiple Input Multiple Output (MIMO) channel. This fundamental connection between
random matrix theory and wireless communication was established by Telatar [39] and
Foschini [23, 22] (see also [40] for a review). In this model, the element xij of the
channel matrix X represents the transmission coefficient from the j-th transmitter to
the i-th receiver antenna. The received signal is given by the linear relation y = Xs+ w,
where s is the input signal and w is a Gaussian noise with variance σ2. In case of i.i.d.
Gaussian input signals, the channel capacity is given by

Cap =
1

p
log det

(
I + σ−2XX∗

)
. (1.1)

The assumption in these models that the matrix elements of H or X have identical
distribution is a simplification that does not hold in many applications. In Wigner’s
model, the matrix elements hij represent random quantum transition rates between
physical states labelled by i and j and their distribution may depend on these states.
Analogously, the transmission coefficients in X may have different distributions. This
leads to the natural generalizations of both classes of random matrices by allowing for
general variances, sij ..= E|hij |2 and sij ..= E|xij |2 , respectively. We will still assume the
independence of the matrix elements and their zero expectation. Under mild conditions
on the variance matrix S = (sij), the limiting spectral measure depends only on the
second moments, i.e., on S, and otherwise it is independent of the fine details of the
distributions of the matrix elements. However, in general there is no explicit formula
for the limiting spectral measure. In fact, the only known way to find it in the general
case is to solve a system of nonlinear deterministic equations, known as the Dyson (or
Schwinger-Dyson) equation in this context, see [8, 41, 24, 30].

For the generalization of Wigner’s model, the Dyson equation is a system of equations
of the form

− 1

mi(z)
= z +

N∑
j=1

sijmj(z), for i = 1, . . . , N, z ∈ H, (1.2)

where z is a complex parameter in the upper half plane H ..= {z ∈ C : Im z > 0}.
The average 〈m(z)〉 = 1

N

∑
imi(z) in the large N limit gives the Stieltjes transform of

the limiting spectral density, which then can be computed by inverting the Stieltjes
transform. In fact, mi(z) approximates individual diagonal matrix elements Gii(z) of
the resolvent G(z) = (H − z)−1, thus the solution of (1.2) gives much more information
on H than merely the spectral density. In the case when S is a stochastic matrix, i.e.,∑
j sij = 1 for every i, the solution mi(z) to (1.2) is independent of i and the density is

still the semicircle law. The corresponding generalized Wigner matrix was introduced in
[18] and the optimal local law was proven in [19, 20]. For the general case, a detailed
analysis of (1.2) and the shapes of the possible density profiles was given in [2, 3] with
the optimal local law in [4].

Considering the XX∗ model with a general variance matrix for X, we note that in
statistical applications the entries of X within the same row still have the same variance,
i.e., sik = sil for all i and all k, l. However, beyond statistics, for example modeling the
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Local law for random Gram matrices

capacity of MIMO channels, applications require to analyze the spectrum of XX∗ with
a completely general variance profile for X [28, 13]. These are called random Gram
matrices, see e.g. [24, 26]. The corresponding Dyson equation is (see [24, 13, 40] and
references therein)

− 1

mi(ζ)
= ζ −

n∑
k=1

sik
1

1 +
∑n
j=1 sjkmj(ζ)

, for i = 1, . . . , p, ζ ∈ H. (1.3)

We have mi(ζ) ≈ (XX∗ − ζ)−1ii and the average of mi(ζ) yields the Stieltjes transform of
the spectral density exactly as in case of the Wigner-type ensembles. In fact, there is
a direct link between these two models: Girko’s symmetrization trick reduces (1.3) to
studying (1.2) on CN with N = n+ p, where S and H are replaced by

S =

(
0 S

St 0

)
, H =

(
0 X

X∗ 0

)
, (1.4)

respectively, and z2 = ζ.
The limiting spectral density, also called the global law, is typically the first question

one asks about random matrix ensembles. It can be strengthened by considering its
local versions. In most cases, it is expected that the deterministic density computed via
the Dyson equation accurately describes the eigenvalue density down to the smallest
possible scale which is slightly above the typical eigenvalue spacing (we choose the
standard normalization such that the spacing in the bulk spectrum is of order 1/N ).
This requires to understand the trace of the resolvent G(z) at a spectral parameter very
close to the real axis, down to the scales Im z � 1/N . Additionally, entry-wise local laws
and isotropic local laws, i.e., controlling individual matrix elements Gij(z) and bilinear
forms 〈v,G(z)w〉, carry important information on eigenvectors and allow for perturbation
theory. Moreover, effective error bounds on the speed of convergence as N goes to
infinity are also of great interest.

Local laws have also played a crucial role in the recent proofs of the Wigner-Dyson-
Mehta conjecture. The three-step approach, developed in a series of works by Erdős,
Schlein, Yau and Yin [15, 16] (see [17] for a review), was based on establishing the local
law as the first step. Similar input was necessary in the alternative approach by Tao and
Vu in [37, 38].

In this paper, we establish the optimal local law for random Gram matrices with a
general variance matrix S in the bulk spectrum; edge analysis and local spectral univer-
sality is deferred to a forthcoming work. We show that the empirical spectral measure of
XX∗ can be approximated by a deterministic measure ν on R with a continuous density
away from zero and possibly a point mass at zero. The convergence holds locally down
to the smallest possible scale and with an optimal speed of order 1/N . In the special
case when X is a square matrix, n = p, the measure ν does not have a point mass but
the density has an inverse square-root singularity at zero (called the hard edge case). In
the soft edge case, n 6= p, the continuous part of ν is supported away from zero and it
has a point mass of size 1− n/p at zero if p > n. All these features are well-known for
the classical Marchenko-Pastur setup, but in the general case we need to demonstrate
them without any explicit formula.

We now summarize some previous related results on Gram matrices. If each entry of
X has the same variance, local Marchenko-Pastur laws have first been proved in [16, 34]
for the soft edge case; and in [12, 10] for the hard edge case. The isotropic local law
was given in [9]. Relaxing the assumption of identical variances to a doubly stochastic
variance matrix of X, the optimal local Marchenko-Pastur law has been established
in [1] for the hard edge case. Sample correlation matrices in the soft edge case were
considered in [5].
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Local law for random Gram matrices

Motivated by the linear model in multivariate statistics and to depart from the iden-
tical distribution, random matrices of the form TZZ∗T ∗ have been extensively studied
where T is a deterministic matrix and the entries of Z are independent, centered and
have unit variance. If T is diagonal, then they are generalizations of sample covari-
ance matrices as TZZ∗T ∗ = XX∗ and the elements of X = TZ are also independent.
With this definition, all entries within one row of X have the same variance since
sij = E|xij |2 = (TT ∗)ii, i.e., it is a special case of our random Gram matrix. In this
case the Dyson system of equations (1.3) can be reduced to a single equation for the
average 〈m(z)〉, i.e., the limiting density can still be obtained from a scalar self-consistent
equation. This is even true for matrices of the form XX∗ with X = TZT̃ , where both T
and T̃ are deterministic, investigated for example in [14]. For general T the elements of
X = TZ are not independent, so general sample covariance matrices are typically not
Gram matrices. The global law for TZZ∗T ∗ has been proven by Silverstein and Bai in
[36]. Knowles and Yin showed optimal local laws for a general deterministic T in [31].

Finally, we review some existing results on random Gram matrices with general
variance S, when (1.3) cannot be reduced to a simpler scalar equation. The global law,
even with nonzero expectation of X, has been determined by Girko [24] via (1.3) who
also established the existence and uniqueness of the solution to (1.3). More recently,
motivated by the theory of wireless communication, Hachem, Loubaton and Najim
initiated a rigorous study of the asympotic behaviour of the channel capacity (1.1) with
a general variance matrix S [27, 28], This required to establish the global law under
more general conditions than Girko; see also [26] for a review from the point of view of
applications. Hachem et. al. have also established Gaussian fluctuations of the channel
capacity (1.1) around a deterministic limit in [29] for the centered case. For a nonzero
expectation of X, a similar result was obtained in [25], where S was restricted to a
product form. Very recently in [7], a special k-fold clustered matrix XX∗ was considered,
where the samples came from k different clusters with possibly different distributions.
The Dyson equation in this case reduces to a system of k equations. In an information-
plus-noise model of the form (R+X)(R+X)∗, the effect of adding a noise matrix to X
with identically distributed entries was studied knowing the limiting density of RR∗ [11].

In all previous works concerning general Gram matrices, the spectral parameter z
was fixed, in particular Im z had a positive lower bound independent of the dimension of
the matrix. Technically, this positive imaginary part provided the necessary contraction
factor in the fixed point argument that led to the existence, uniqueness and stability
of the solution to the Dyson equation, (1.3). For local laws down to the optimal scales
Im z � 1/N , the regularizing effect of Im z is too weak. In the bulk spectrum Im z

is effectively replaced with the local density, i.e., with the average imaginary part
Im 〈m(z)〉. The main difficulty with this heuristics is its apparent circularity: the yet
unknown solution itself is necessary for regularizing the equation. This problem is
present in all existing proofs of any local law. This circularity is broken by separating the
analysis into three parts. First, we analyze the behavior of the solution m(z) as Im z → 0.
Second, we show that the solution is stable under small perturbations of the equation
and the stability is provided by Im 〈m(E + i0)〉 for any energy E in the bulk spectrum.
Finally, we show that the diagonal elements of the resolvent of the random matrix satisfy
a perturbed version of (1.3), where the perturbation is controlled by large deviation
estimates. Stability then provides the local law.

While this program could be completed directly for the Gram matrix and its Dyson
equation (1.3), the argument appears much shorter if we used Girko’s linearization (1.4)
to reduce the problem to a Wigner-type matrix and use the comprehensive analysis of
(1.2) from [2, 3] and the local law from [4]. There are two major obstacles to this naive
approach.
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Local law for random Gram matrices

First, the results of [2, 3] are not applicable as S does not satisfy the uniform
primitivity assumption imposed in these papers (recall that a matrix A is primitive
if there is a positive integer L such that all entries of AL are strictly positive). This
property is crucial for many proofs in [2, 3] but S in (1.4) is a typical example of a
nonprimitive matrix. It is not a mere technical subtlety, in fact in the current paper, the
stability estimates of (1.2) require a completely different treatment, culminating in the
key technical bound, the Rotation-Inversion lemma (see Lemma 3.6 later).

Second, Girko’s transformation is singular around z ≈ 0 since it involves a z2 = ζ

change in the spectral parameter. This accounts for the singular behavior near zero
in the limiting density for Gram matrices, while the corresponding Wigner-type matrix
has no singularity at zero. Thus, we need to perform a more accurate analysis near
zero. If p 6= n, the soft edge case, we derive and analyze two new equations for the
first coefficients in the expansion of m around zero. Indeed, the solutions to these new
equations describe the point mass at zero and provide information about the gap above
zero in the support of the approximating measure. In the hard edge case, n = p, an
additional symmetry allows us to exclude a point mass at zero.
Acknowledgments. The authors thank Zhigang Bao for helpful discussions.

Notation For vectors v, w ∈ Cl, the operations product and absolute value are defined
componentwise, i.e., vw = (viwi)

l
i=1 and |v| = (|vi|)li=1. Moreover, for w ∈ (C \ {0})l,

we set 1/w ..= (1/wi)
l
i=1. For vectors v, w ∈ Cl, we define 〈w〉 = l−1

∑l
i=1 wi, 〈v , w〉 =

l−1
∑l
i=1 viwi, ‖w‖22 = l−1

∑l
i=1|wi|2 and ‖w‖∞ = maxi=1,...,l|wi|, ‖v‖1 ..= 〈|v|〉. Note that

〈w〉 = 〈1 , w〉 where we used the convention that 1 also denotes the vector (1, . . . , 1) ∈ Cl.
For a matrix A ∈ Cl×l, we use the short notations ‖A‖∞ ..= ‖A‖∞→∞ and ‖A‖2 ..= ‖A‖2→2

if the domain and the target are equipped with the same norm whereas we use ‖A‖2→∞
to denote the matrix norm of A when it is understood as a map (Cl, ‖·‖2)→ (Cl, ‖·‖∞).

2 Main results

Let X = (xik)i,k be a p× n matrix with independent, centered entries and variance
matrix S = (sik)i,k, i.e.,

Exik = 0, sik ..= E|xik|2

for i = 1, . . . , p and k = 1, . . . , n.

Assumptions:

(A) The variance matrix S is flat, i.e., there is s∗ > 0 such that

sik ≤
s∗

p+ n

for all i = 1, . . . , p and k = 1, . . . , n.

(B) There are L1, L2 ∈ N and ψ1, ψ2 > 0 such that

[(SSt)L1 ]ij ≥
ψ1

p+ n
, [(StS)L2 ]kl ≥

ψ2

p+ n

for all i, j = 1, . . . , p and k, l = 1, . . . , n.

(C) All entries of X have bounded moments in the sense that there are µm > 0 for m ∈ N
such that

E|xik|m ≤ µmsm/2ik

for all i = 1, . . . , p and k = 1, . . . , n.
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Local law for random Gram matrices

(D) The dimensions of X are comparable with each other, i.e., there are constants
r1, r2 > 0 such that

r1 ≤
p

n
≤ r2.

In the following, we will assume that s∗, L1, L2, ψ1, ψ2, r1, r2 and the sequence
(µm)m are fixed constants which we will call, together with some constants introduced
later, model parameters. The constants in all our estimates will depend on the model
parameters without further notice. We will use the notation f . g if there is a constant
c > 0 that depends on the model parameter only such that f ≤ cg and their counterparts
f & g if g . f and f ∼ g if f . g and f & g. The model parameters will be kept fixed
whereas the parameters p and n are large numbers which will eventually be sent to
infinity.

We start with a theorem about the deterministic density.

Theorem 2.1. (i) If (A) holds true, then there is a unique holomorphic function
m : H→ Cp satisfying

− 1

m(ζ)
= ζ − S 1

1 + Stm(ζ)
(2.1)

for all ζ ∈ H such that Imm(ζ) > 0 for all ζ ∈ H. Moreover, there is a probability
measure ν on R whose support is contained in [0, 4s∗] such that

〈m(ζ)〉 =

∫
R

1

ω − ζ
ν(dω) (2.2)

for all ζ ∈ H.

(ii) Assume (A), (B) and (D). The measure ν is absolutely continuous wrt. the Lebesgue
measure apart from a possible point mass at zero, i.e., there are a number π∗ ∈ [0, 1]

and a locally Hölder-continuous function π : (0,∞) → [0,∞) such that ν(dω) =

π∗δ0(dω) + π(ω)1(ω > 0)dω.

Part (i) of this theorem has already been proved in [28] and we will see that it also
follows directly from [2, 3]. We included this part only for completeness. Part (ii) is a
new result.

For ζ ∈ C \R, we denote the resolvent of XX∗ at ζ by

R(ζ) ..= (XX∗ − ζ)−1

and its entries by Rij(ζ) for i, j = 1, . . . , p.
We state our main result, the local law, i.e., optimal estimates on the resolvent R,

both in entrywise and in averaged form. In both cases, we provide different estimates
when the real part of the spectral parameter ζ is in the bulk and when it is away from
the spectrum. As there may be many zero eigenvalues, hence, a point mass at zero in
the density ν, our analysis for spectral parameters ζ in the vicinity of zero requires a
special treatment. We thus first prove the local law under the general assumptions (A) –
(D) for ζ away from zero. Some additional assumptions in the following subsections will
allow us to extend our arguments to all ζ.

All of our results are uniform in the spectral parameter ζ which is contained in some
spectral domain

Dδ
..= {ζ ∈ H : δ ≤ |ζ| ≤ 10s∗} (2.3)

for some δ ≥ 0. In the first result, we assume δ > 0. In the next section, under additional
assumptions on S, we will work on the bigger spectral domain D0 that also includes a
neighbourhood of zero.
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Local law for random Gram matrices

In the following theorem, we use the notation [p] ..= {1, . . . , p} for p ∈ N and for
γ, ε > 0, we set

Sγ,ε
..= {ζ ∈ H : π(Re ζ) ≥ ε, Im ζ ≥ p−1+γ}. (2.4)

Theorem 2.2 (Local Law for Gram matrices). Let δ, ε∗ > 0 and γ ∈ (0, 1). If X is a random
matrix satisfying (A) – (D) then for every ε > 0 and D > 0 there is a constant Cε,D > 0

such that

P

(
∃ i, j ∈ [p], ζ ∈ Dδ ∩ Sγ,ε∗ : |Rij(ζ)−mi(ζ)δij | ≥

pε√
pIm ζ

)
≤ Cε,D

pD
, (2.5a)

P

(
∃ i, j ∈ [p], ζ ∈ Dδ : dist(ζ, supp ν) ≥ ε∗, |Rij(ζ)−mi(ζ)δij | ≥

pε
√
p

)
≤ Cε,D

pD
, (2.5b)

for all p ∈ N. Furthermore, for any sequences of deterministic vectors w ∈ Cp satisfying
‖w‖∞ ≤ 1, we have

P

(
∃ ζ ∈ Dδ ∩ Sγ,ε∗ :

∣∣∣∣∣1p
p∑
i=1

wi [Rii(ζ)−mi(ζ)]

∣∣∣∣∣ ≥ pε

pIm ζ

)
≤ Cε,D

pD
, (2.6a)

P

(
∃ ζ ∈ Dδ : dist(ζ, supp ν) ≥ ε∗,

∣∣∣∣∣1p
p∑
i=1

wi [Rii(ζ)−mi(ζ)]

∣∣∣∣∣ ≥ pε

p

)
≤ Cε,D

pD
, (2.6b)

for all p ∈ N. In particular, choosing wi = 1 for all i = 1, . . . , p in (2.6) yields that
p−1 TrR(ζ) is close to 〈m(ζ)〉.

The constant Cε,D depends, in addition to ε and D, only on the model parameters and
on γ, δ and ε∗.

These results are optimal up to the arbitrarily small tolerance exponents γ > 0 and
ε > 0. We remark that under stronger (e.g. subexponential) moment conditions in (C),
one may replace the pγ and pε factors with high powers of log p.

Owing to the symmetry of the assumptions (A) – (D) in X and X∗, we can exchange
X and X∗ in Theorem 2.2 and obtain a statement about X∗X instead of XX∗ as well.

For the results in the up-coming subsections, we need the following notion of a
sequence of high probability events.

Definition 2.3 (Overwhelming probability). Let N0 : (0,∞) → N be a function that
depends on the model parameters and the tolerance exponent γ only. For a sequence A =

(A(p))p of random events, we say that A holds true asymptotically with overwhelming
probability (a.w.o.p.) if for all D > 0

P(A(p)) ≥ 1− pD

for all p ≥ N0(D).

We denote the eigenvalues of XX∗ by λ1 ≤ . . . ≤ λp and define

i(χ) ..=

⌈
p

∫ χ

−∞
ν(dω)

⌉
, for χ ∈ R. (2.7)

For a spectral parameter χ ∈ R in the bulk, the nonnegative integer i(χ) is the index of
an eigenvalue expected to be close to χ.

Theorem 2.4. Let δ, ε∗ > 0 and X be a random matrix satisfying (A) – (D).

(i) (Bulk rigidity away from zero) For every ε > 0 and D > 0, there exists a constant
Cε,D > 0 such that

P

(
∃ τ ∈ (δ, 10s∗] : π(τ) ≥ ε∗, |λi(τ) − τ | ≥

pε

p

)
≤ Cε,D

pD
(2.8)
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Local law for random Gram matrices

holds true for all p ∈ N.

The constant Cε,D depends, in addition to ε and D, only on the model parameters
as well as on δ and ε∗.

(ii) Away from zero, all eigenvalues lie in the vicinity of the support of ν, i.e., a.w.o.p.

σ(XX∗) ∩ {τ ; |τ | ≥ δ, dist(τ, supp ν) ≥ ε∗} = ∅. (2.9)

In the following two subsections, we distinguish between square Gram matrices,
n = p, and properly rectangular Gram matrices, |p/n− 1| ≥ d∗ > 0, in order to extend
the local law, Theorem 2.2, to include zero in the spectral domain D. Since the density
of states behaves differently around zero in these two cases, separate statements and
proofs are necessary.

2.1 Square Gram matrices

The following concept is well-known in linear algebra. For understanding singularities
of the density of states in random matrix theory, it was introduced in [2].

Definition 2.5 (Fully indecomposable matrix). A K ×K matrix T = (tij)
K
i,j=1 with noneg-

ative entries is called fully indecomposable if for any two subsets I, J ⊂ {1, . . . ,K}
such that #I + #J ≥ K, the submatrix (tij)i∈I,j∈J contains a nonzero entry.

For square Gram matrices, we add the following assumptions.

(E1) The matrix X is square, i.e., n = p.

(F1) The matrix S is block fully indecomposable, i.e., there are constants ϕ > 0,
K ∈ N, a fully indecomposable matrix Z = (zij)

K
i,j=1 with zij ∈ {0, 1} and a partition

(Ii)
K
i=1 of {1, . . . , p} such that

#Ii =
p

K
, sxy ≥

ϕ

p+ n
zij , x ∈ Ii and y ∈ Ij

for all i, j = 1, . . . ,K.

The constants ϕ and K in (F1) are considered model parameters as well.

Remark 2.6. Clearly, (E1) yields (D) with r1 = r2 = 1. Moreover, adapting the proof
of Theorem 2.2.1 in [6], we see that (F1) implies (B) with L1, L2, ψ1 and ψ2 explicitly
depending on ϕ and K.

For part (i) of the following theorem, we recall the definitions of [p] and Sγ,ε from (2.4).

Theorem 2.7 (Local law for square Gram matrices). If X satisfies (A), (C), (E1) and (F1),
then

(i) The conclusions of Theorem 2.2 are valid with the following modifications: (2.5b)
and (2.6) hold true for δ = 0 (cf. (2.3)) while instead of (2.5a), we have

P

(
∃ i, j ∈ [p], ζ ∈ D0 ∩ Sγ,ε∗ : |Rij(ζ)−mi(ζ)δij | ≥ pε

√
〈Imm(ζ)〉
pIm ζ

)
≤ Cε,D

pD
.

(2.10)

(ii) π∗ = 0 and the limit limω↓0 π(ω)
√
ω exists and lies in (0,∞).

(iii) (Bulk rigidity down to zero) For every ε∗ > 0 and every ε > 0 and D > 0, there
exists a constant Cε,D > 0 such that

P

(
∃ τ ∈ (0, 10s∗] : π(τ) ≥ ε∗, |λi(τ) − τ | ≥

pε

p

(√
τ +

1

p

))
≤ Cε,D

pD
(2.11)
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for all p ∈ N. The constant Cε,D depends, in addition to ε and D, only on the model
parameters and on ε∗.

(iv) There are no eigenvalues away from the support of ν, i.e., (2.9) holds true with
δ = 0.

We remark that the bound of the individual resolvent entries (2.10) deteriorates as
ζ gets close to zero since 〈Imm(ζ)〉 ∼ |ζ|−1/2 in this regime while the averaged version
(2.6), with δ = 0, does not show this behaviour.

2.2 Properly rectangular Gram matrices

(E2) The matrix X is properly rectangular, i.e., there is d∗ > 0 such that∣∣∣ p
n
− 1
∣∣∣ ≥ d∗.

(F2) The matrix elements of S are bounded from below, i.e., there is a ϕ > 0 such that

sik ≥
ϕ

n+ p

for all i = 1, . . . , p and k = 1, . . . , n.

The constants d∗ and ϕ in (E2) and (F2), respectively, are also considered as model
parameters. Note that (F2) is a simpler version of (F1). For properly rectangular Gram
matrices we work under the stronger condition (F2) for simplicity but our analysis could
be adjusted to some weaker condition as well.

Remark 2.8. Note that (F2) immediately implies condition (B) with L = 1.

We introduce the lower edge of the absolutely continuous part of the distribution ν
for properly rectangular Gram matrices

δπ ..= inf{ω > 0: π(ω) > 0}. (2.12)

Theorem 2.9 (Local law for properly rectangular Gram matrices). Let X be a random
matrix satisfying (A), (C), (D), (E2) and (F2). We have

(i) The gap between zero and the lower edge is macroscopic δπ ∼ 1.

(ii) (Bulk rigidity down to zero) The estimate (2.8) holds true with δ = 0.

(iii) There are no eigenvalues away from the support of ν, i.e., (2.9) holds true with
δ = 0.

(iv) If p > n, then π∗ = 1− n/p and dim ker(XX∗) = p− n a.w.o.p.

(v) If p < n, then π∗ = 0 and dim ker(XX∗) = 0 a.w.o.p.

(vi) (Local law around zero) For every ε∗ ∈ (0, δπ), every ε > 0 and D > 0, there exists a
constant Cε,D > 0, such that

P

(
∃ ζ ∈ H, i, j ∈ {1, . . . , p} : |ζ| ≤ δπ − ε∗, |Rij(ζ)−mi(ζ)δij | ≥

pε

|ζ|√p

)
≤ Cε,D

pD
,

(2.13)
for all p ∈ N if p > n and

P

(
∃ ζ ∈ H, i, j ∈ {1, . . . , p} : |ζ| ≤ δπ − ε∗, |Rij(ζ)−mi(ζ)δij | ≥

pε
√
p

)
≤ Cε,D

pD
,

(2.14)
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for all p ∈ N if p < n. Moreover, in both cases

P

(
∃ ζ ∈ H : |ζ| ≤ δπ − ε∗,

∣∣∣∣∣1p
p∑
i=1

[Rii(ζ)−mi(ζ)]

∣∣∣∣∣ ≥ pε

p

)
≤ Cε,D

pD
, (2.15)

for all p ∈ N.

The constant Cε,D depends, in addition to ε and D, only on the model parameters
and on ε∗.

If p > n, then the Stieltjes transform of the empirical spectral measure of XX∗ has a
term proportional to 1/ζ due to the macroscopic kernel of XX∗. This is the origin of the
additional factor 1/|ζ| in (2.13).

Remark 2.10. As a consequence of Theorem 2.7 and Theorem 2.9 and under the same
conditions, the standard methods in [9] and [4] can be used to prove an anisotropic law
and delocalization of eigenvectors in the bulk.

3 Quadratic vector equation

For the rest of the paper, without loss of generality we will assume that s∗ = 1 in (A),
which can be achieved by a simple rescaling of X. In the whole section, we will assume
that the matrix S satisfies (A), (B) and (D) without further notice.

3.1 Self-consistent equation for resolvent entries

We introduce the random matrix H and the deterministic matrix S defined through

H =

(
0 X

X∗ 0

)
, S =

(
0 S

St 0

)
. (3.1)

Note that both matrices, H and S have dimensions (p + n) × (p + n). We denote
their entries by H = (hxy)x,y and S = (σxy)x,y, respectively, where σxy = E|hxy|2 with
x, y = 1, . . . , n+ p.

It is easy to see that condition (B) implies

(B’) There are L ∈ N and ψ > 0 such that

L∑
k=1

(Sk)xy ≥
ψ

n+ p
(3.2)

for all x, y = 1, . . . , n+ p.

In the following, a crucial part of the analysis will be devoted to understanding the
resolvent of H at z ∈ H, i.e., the matrix

G(z) ..= (H − z)−1 (3.3)

whose entries are denoted by Gxy(z) for x, y = 1, . . . , n + p. For V ⊂ {1, . . . , n + p}, we

use the notation G
(V )
xy to denote the entries of the resolvent G(V )(z) = (H(V ) − z)−1 of

the matrix H(V )
xy = hxy1(x /∈ V )1(y /∈ V ) where x, y = 1, . . . , n+ p.

The Schur complement formula and the resolvent identities applied to G(z) yield the
self-consistent equations

− 1

g1,i(z)
= z +

n∑
k=1

sikg2,k(z) + d1,i(z), (3.4a)

− 1

g2,k(z)
= z +

p∑
i=1

sikg1,i(z) + d2,k(z), (3.4b)
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where g1,i(z) ..= Gii(z) for i = 1, . . . , p and g2,k(z) ..= Gk+p,k+p(z) for k = 1, . . . , n with the
error terms

d1,r ..=

n∑
k,l=1,k 6=l

xrkG
(r)
kl xrl +

n∑
k=1

(
|xrk|2 − srk

)
G

(r)
k+n,k+n −

n∑
k=1

srk
Gk+n,rGr,k+n

g1,r
,

d2,m ..=

p∑
i,j=1,i6=j

ximG
(m+p)
ij xjm +

p∑
i=1

(
|xim|2 − sim

)
G

(m+p)
ii −

p∑
i=1

sim
Gi,m+pGm+p,i

g2,m

for r = 1, . . . , p and m = 1, . . . , n.
We will prove a local law which states that g1,i(z) and g2,k(z) can be approximated by

M1,i(z) and M2,k(z), respectively, where M1 : H→ Cp and M2 : H→ Cn are the unique
solution of

− 1

M1
= z + SM2, (3.5a)

− 1

M2
= z + StM1, (3.5b)

which satisfy ImM1(z) > 0 and ImM2(z) > 0 for all z ∈ H.
The system of self-consistent equations for g1 and g2 in (3.4) can be seen as a

perturbation of the system (3.5). With the help of S, equations (3.5a) and (3.5b) can be
combined to a vector equation for M = (M1,M2)t ∈ Hp+n, i.e.,

− 1

M
= z + SM. (3.6)

Since S is symmetric, has nonnegative entries and fulfills (A) with s∗ = 1, Theorem 2.1
in [2] is applicable to (3.6). Here, we take a = 0 in Theorem 2.1 of [2]. This theorem
implies that (3.6) has a unique solution M with ImM(z) > 0 for any z ∈ H. Moreover,
by this theorem, Mx is the Stieltjes transform of a symmetric probability measure on R
whose support is contained in [−2, 2] for all x = 1, . . . , n+ p and we have

‖M(z)‖2 ≤
2

|z|
(3.7)

for all z ∈ H. The function 〈M〉 is the Stieltjes transform of a symmetric probability
measure on R which we denote by ρ, i.e.,

〈M(z)〉 =

∫
R

1

t− z
ρ(dt) (3.8)

for z ∈ H. Its support is contained in [−2, 2].
We combine (3.4a) and (3.4b) to obtain

− 1

g
= z + Sg + d, (3.9)

where g = (g1, g2)t and d = (d1, d2)t. We think of (3.9) as a perturbation of (3.6) and
most of the subsequent subsection is devoted to the study of (3.9) for an arbitrary
perturbation d.

Before we start studying (3.6) we want to indicate how m and R are related to M and
G, respectively. The Stieltjes transforms as well as the resolvents are essentially related
via the same transformation of the spectral parameter. If G11(z) denotes the upper left
p× p block of G(z) then R(z2) = (XX∗ − z2)−1 = G11(z)/z. In the proof of Theorem 2.1
in Subsection 3.4, we will see that m and M1 are related via m(ζ) = M1(

√
ζ)/
√
ζ. (We
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always choose the branch of the square root satisfying Im
√
ζ > 0 for Im ζ > 0.) Assuming

this relation and introducing m2(ζ) ..= M2(
√
ζ)/
√
ζ, we obtain

− 1

m(ζ)
= ζ(1 + Sm2(ζ)),

− 1

m2(ζ)
= ζ(1 + Stm(ζ))

from (3.5). Solving the second equation for m2 and plugging the result into the first one
yields (2.1) immediately. In fact, m2 is the analogue of m corresponding to X∗X, i.e, the
Stieltjes transform of the deterministic measure approximating the eigenvalue density
of X∗X.

3.2 Structure of the solution

We first notice that the inequality sik ≤ 1/(n+ p) implies

‖Stw‖∞ = max
k=1,...,n

p∑
i=1

sik|wi| ≤ max
k=1,...,n

(
p

p∑
i=1

s2ik

)1/2(
1

p

p∑
i=1

|wi|2
)1/2

≤ ‖w‖2 (3.10)

for all w ∈ Cp, i.e., ‖St‖2→∞ ≤ 1. Now, we establish some preliminary estimates on the
solution of (3.6).

Lemma 3.1. Let z ∈ H and x ∈ {1, . . . , n+ p}. We have

|Mx(z)| ≤ 1

dist(z, supp ρ)
, (3.11a)

ImMx(z) ≤ Im z

dist(z, supp ρ)2
. (3.11b)

If z ∈ H and |z| ≤ 10 then

|z| . |Mx(z)| ≤ ‖M(z)‖∞ .
|z|2−2L

〈ImM(z)〉
(3.12a)

|z|2L〈ImM(z)〉 . ImMx(z). (3.12b)

In particular, the support of the measures representing Mx is independent of x away
from zero.

The proof essentially follows the same line of arguments as the proof of Lemma 5.4
in [2]. However, instead of using the lower bound on the entries of SL as in [2] we have
to make use of the lower bound on the entries of

∑L
k=1 S

k.
To prove another auxiliary estimate on S, we define the vectors Sx = (σxy)y=1,...,n+p ∈

Rn+p for x = 1, . . . , n+ p. Since (3.2) implies

ψ ≤
L∑
k=1

n+p∑
y=1

(Sk)xy ≤
L∑
k=1

n+p∑
v=1

σxv max
t=1,...,n+p

n+p∑
y=1

(Sk−1)ty ≤ L
n+p∑
v=1

σxv

for any fixed x = 1, . . . , n+ p, where we used ‖Sk−1‖∞ ≤ ‖S‖k−1∞ ≤ 1 by (A), we obtain

inf
x=1,...,n+p

‖Sx‖1 ≥
ψ

L
. (3.13)

In particular, together with (A), this implies

p∑
j=1

sjk ∼ 1,

n∑
l=1

sil ∼ 1, i = 1, . . . , p, k = 1, . . . , n. (3.14)
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In the study of the stability of (3.6) when perturbed by a vector d, as in (3.9), the linear
operator

F(z)v ..= |M(z)|S(|M(z)|v) (3.15)

for v ∈ Cn+p plays an important role. Before we collect some properties of operators of
this type in the next lemma, we first recall the definition of the gap of an operator from
[2].

Definition 3.2. Let T be a compact self-adjoint operator on a Hilbert space. The spectral
gap Gap(T ) ≥ 0 is the difference between the two largest eigenvalues of |T | (defined
by spectral calculus). If the operator norm ‖T‖ is a degenerate eigenvalue of |T |, then
Gap(T ) = 0.

In the next lemma, we study matrices of the form F̂(r)xy ..= rxσxyry where r ∈
(0,∞)n+p and x, y = 1, . . . , n + p. If infx rx > 0 then (3.2) implies that all entries of∑L

k=1 F̂(r)k are strictly positive. Therefore, by the Perron-Frobenius theorem, the

eigenspace corresponding to the largest eigenvalue λ̂(r) of F̂(r) is one-dimensional
and spanned by a unique non-negative vector f̂ = f̂(r) such that 〈̂f, f̂〉 = 1.

The block structure of S implies that there is a matrix F̂ (r) ∈ Rp×n such that

F̂(r) =

(
0 F̂ (r)

F̂ (r)t 0

)
. (3.16)

However, for this kind of operator, we obtain σ
(
F̂(r)

)
= −σ

(
F̂(r)

)
, i.e., Gap(F̂(r)) = 0 by

above definition. Therefore, we will compute Gap(F̂ (r)F̂ (r)t), instead. We will apply
these observations for F(z) where the blocks F̂ (|M(z)|) will be denoted by F (z).

Lemma 3.3. For a vector r ∈ (0,∞)n+p which is bounded by constants r+ ∈ (0,∞) and
r− ∈ (0, 1], i.e.,

r− ≤ rx ≤ r+
for all x = 1, . . . , n + p, we define the matrix F̂(r) with entries F̂(r)xy ..= rxσxyry for

x, y = 1, . . . , n + p. Then the eigenspace corresponding to λ̂(r) ..= ‖F̂(r)‖2→2 is one-
dimensional and λ̂(r) satisfies the estimates

r2− . λ̂(r) . r2+. (3.17)

There is a unique eigenvector f̂ = f̂(r) corresponding to λ̂(r) satisfying f̂x ≥ 0 and
‖̂f‖2 = 1. Its components satisfy

r2L−
r4+

min
{
λ̂(r), λ̂(r)−L+2

}
. f̂x .

r4+

λ̂(r)2
, (3.18)

for all x = 1, . . . , n+ p. Moreover, F̂ (r)F̂ (r)t has a spectral gap

Gap
(
F̂ (r)F̂ (r)t

)
&
r8L−
r16+

min
{
λ̂(r)6, λ̂(r)−8L+10

}
. (3.19)

The estimates in (3.17) and (3.18) can basically be proved following the proof of
Lemma 5.6 in [2] where SL is replaced by

∑L
k=1 S

k and (F̂ /λ̂)L by
∑L
k=1(F̂/λ̂)k. There-

fore, we will only show (3.19) assuming the other estimates.

Proof. We write f̂ = (f̂1, f̂2)t for f̂1 ∈ Cp and f̂2 ∈ Cn and define a linear operator on Cp

through

T ..=

L∑
k=1

(
F̂ F̂ t

λ̂2

)k
.
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Thus, ‖T‖2 = L as T f̂1 = Lf̂1. Using (B’) we first estimate the entries tij by

tij ≥
L∑
k=1

r4k−

λ̂2k

(
(SSt)k

)
ij
≥ r4L− min

{
λ̂−2, λ̂−2L

} ψ

n+ p
, for i, j = 1, . . . , p.

Estimating ‖f̂1‖2 and ‖f̂1‖∞ from (3.18) and applying Lemma 5.6 in [3] or Lemma 5.7 in
[2] yields

Gap(T ) ≥ ‖f̂1‖
2
2

‖f̂1‖2∞
p inf
i,j
tij &

r8L−
r16+

min
{
λ̂4, λ̂−8L+8

}
.

Here we used (D) and note that the factor infi,j tij in Lemma 5.6 in [3] is replaced by
p infi,j tij as tij are considered as the matrix entries of T and not as the kernel of an inte-
gral operator on L2({1, . . . , p}) where {1, . . . , p} is equipped with the uniform probability
measure. As q(x) ..= x+x2 + . . .+xL is a monotonously increasing, differentiable function
on [0, 1] and σ(F̂ F̂ t/λ̂2) ⊂ [0, 1] we obtain Gap(T ) ∼ Gap(F̂ F̂ t)/λ̂2 which concludes the
proof.

Lemma 3.4. The matrix F(z) defined in (3.15) with entries Fxy(z) = |Mx(z)|σxy|My(z)|
has the norm

‖F(z)‖2 = 1− Im z〈f(z)|M(z)|〉
〈f(z)ImM(z)|M(z)|−1〉

, (3.20)

where f(z) is the unique eigenvector of F(z) associated to ‖F(z)‖2. In particular, we
obtain

(1− ‖F(z)‖2)−1 .
1

|z|
min

{
1

Im z
,

1

|z|dist(z, supp ρ)2

}
(3.21)

for z ∈ H satisfying |z| ≤ 10.

Proof. The derivation of (3.20) follows the same steps as the proof of (4.4) in [3] (compare
Lemma 5.5 in [2] as well). We take the imaginary part of (3.6), multiply the result by |M|
and take the scalar product with f. Thus, we obtain〈

f ,
ImM

|M|

〉
= Im z〈f|M|〉+ ‖F‖2

〈
f ,

ImM

|M|

〉
, (3.22)

where we used the symmetry of F and Ff = ‖F‖2f. Solving (3.22) for ‖F‖2 yields (3.20).
Now, (3.21) is a direct consequence of Lemma 3.1 and (3.20).

3.3 Stability away from the edges and continuity

All estimates of M− g, when M and g satisfy (3.6) and (3.9), respectively, are based
on inverting the linear operator

B(z)v ..=
|M(z)|2

M(z)2
v − F(z)v

for v ∈ Cn+p. The following lemma bounds B−1(z) in terms of 〈ImM(z)〉 if z is away
from zero. For δ > 0, we use the notation f .δ g if and only if there is an r > 0 which is
allowed to depend on model parameters such that f . δ−rg.

Lemma 3.5. There is a universal constant κ ∈ N such that for all δ > 0 we have

‖B−1(z)‖2 .δ min

{
1

(Re z)2〈ImM(z)〉κ
,

1

Im z
,

1

dist(z, supp ρ)2

}
, (3.23)

‖B−1(z)‖∞ .δ min

{
1

(Re z)2〈ImM(z)〉κ+2
,

1

(Im z)3
,

1

dist(z, supp ρ)4

}
(3.24)

for all z ∈ H satisfying δ ≤ |z| ≤ 10.
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For the proof of this result, we will need the two following lemmata. We recall that
by the Perron-Frobenius theorem an irreducible matrix with nonnegative entries has
a unique `2-normalized eigenvector with positive entries corresponding to its largest
eigenvalue. By the definition of the spectral gap, Definition 3.2, we observe that if AA∗

is irreducible then Gap(AA∗) = ‖AA∗‖2 −max(σ(AA∗) \ {‖AA∗‖2}).
Lemma 3.6 (Rotation-Inversion Lemma). There exists a positive constant C such that
for all n, p ∈ N, unitary matrices U1 ∈ Cp×p, U2 ∈ Cn×n and A ∈ Rp×n with nonnegative
entries such that A∗A and AA∗ are irreducible and ‖A∗A‖2 ∈ (0, 1], the following bound
holds: ∥∥∥∥( U1 A

A∗ U2

)−1 ∥∥∥∥
2

≤ C

Gap(AA∗)|1− ‖A∗A‖2〈v1 , U1v1〉〈v2 , U2v2〉|
, (3.25)

where v1 ∈ Cp and v2 ∈ Cn are the unique positive, normalized eigenvectors with
AA∗v1 = ‖A∗A‖2v1 and A∗Av2 = ‖A∗A‖2v2. The norm on the left hand side of (3.25) is
infinite if and only if the right hand side of (3.25) is infinite, i.e., in this case the inverse
does not exist.

This lemma is proved in the appendix.

Lemma 3.7. Let R : Cn+p → Cn+p be a linear operator and D : Cn+p → Cn+p a diagonal
operator. If R−D is invertible and Dxx 6= 0 for all x = 1, . . . , n+ p then

‖(R−D)−1‖∞ ≤
(
n+p

inf
x=1
|Dxx|

)−1 (
1 + ‖R‖2→∞‖(R−D)−1‖2

)
. (3.26)

The proof of (3.26) follows a similar way as the proof of (5.28) in [2].

Proof of Lemma 3.5. The bound on ‖B−1(z)‖∞, (3.24), follows from (3.23) by employ-
ing (3.26). We use (3.26) with R = F(z) and D = |M(z)|2/M(z)2 and observe that
‖F(z)‖2→∞ ≤ ‖M‖2∞‖S‖2→∞. Therefore, (3.24) follows from (3.23) due to the estimates

‖M‖∞ . min{〈ImM〉−1, (Im z)−1,dist(z, supp ρ)−1},
1 .δ min{〈ImM〉−1, (Im z)−1,dist(z, supp ρ)−1}.

Here, we used (3.12a) and δ ≤ |z| ≤ 10.
Now we prove (3.23). Our first goal is the following estimate

‖B−1(z)‖2 .δ
1

Gap(F (z)F (z)t)(Re z)2〈ImM(z)〉κ
(3.27)

for some universal κ ∈ N which will be a consequence of Lemma 3.6. We apply this
lemma with(

0 F (z)

F (z)t 0

)
= F(z) ..= F̂(|M(z)|), U ..=

(
U1 0

0 U2

)
= diag

(
|M(z)|2

M(z)2

)
and v1 ..= f1/‖f1‖2 and v2 ..= f2/‖f2‖2 where f = (f1, f2) ∈ Cp+n. Note that λ(z) ..=

λ̂(|M(z)|) = ‖F(z)‖2 in Lemma 3.3 and F (z) = F̂ (|M(z)|) in the notation of (3.16). In
Lemma 3.3, we choose r− ..= infx|Mx(z)| and r+ ..= ‖M(z)‖∞ and use the bounds r− & |z|
and r+ . |z|2−2L/〈ImM(z)〉 by (3.12a). Moreover, we have

|z|2 . ‖F(z)‖2 ≤ 1 (3.28)

by (3.12a), (3.17) and (3.20).
We write U = diag(e−i2ψ), i.e., eiψ = M/|M|, to obtain

〈v1 , U1v1〉 = 〈v1 , (cosψ1 − i sinψ1)2v1〉 = 〈v1 , (1− 2(sinψ1)2 − 2i cosψ1 sinψ1)v1〉
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and a similar relation holds for 〈v2 , U2v2〉. Thus, we compute

Re
(
1− ‖F (z)tF (z)‖2

〈
v1 , (1− 2(sinψ1)2 − 2i cosψ1 sinψ1)v1

〉
×
〈
v2 , (1− 2(sinψ2)2 − 2i cosψ2 sinψ2)v2

〉)
= 1− ‖F (z)tF (z)‖2

(
1− 2〈v1 , (sinψ1)2v1〉 − 2〈v2 , (sinψ2)2v2〉

+4〈v1 , (sinψ1)2v1〉〈v2 , (sinψ2)2v2〉
)
.

Using 2a+ 2b− 4ab ≥ (a+ b)(2− a− b) for a, b ∈ R, and estimating the absolute value by
the real part yields∣∣1− ‖F (z)tF (z)‖2〈v1 , U1v1〉〈v2 , U2v2〉

∣∣
≥ 1− ‖F (z)tF (z)‖2 + ‖F (z)tF (z)‖2

(
〈v1, (sinψ1)

2
v1〉+ 〈v2, (sinψ2)

2
v2〉
)

×
(
〈v1, (cosψ1)

2
v1〉+ 〈v2, (cosψ2)

2
v2〉
)

& |z|4〈f, (sinψ)
2
f〉〈f, (cosψ)

2
f〉

&δ

(
inf

x=1,...,n+p
f4x

)〈(
ImM

|M|

)2
〉〈(

ReM

|M|

)2
〉
, (3.29)

where we used 1 ≥ ‖F (z)tF (z)‖2 = ‖F‖22 & |z|4 by (3.28) and 〈f, (sinψ)
2
f〉〈f, (cosψ)

2
f〉 ≤ 1

in the second step. In order to estimate the last expression, we use r− & |z| and
‖F(z)‖2 ≤ 1 by (3.28) as well as (3.12a), (3.17) and (3.18) to get for the first factor

inf
x=1,...,n+p

f4x & r8L+8
− r−16+ &δ 〈ImM〉16. (3.30)

To estimate the last factor in (3.29), we multiply the real part of (3.6) with |M| and obtain

(1 + F)
ReM

|M|
= −τ |M|

if z = τ + iη for τ, η ∈ R. Estimating ‖·‖2 of the last equation yields

|τ |‖M‖2 ≤ 2

∥∥∥∥ReM

|M|

∥∥∥∥
2

by (3.28). As ‖M‖2 ≥ ‖ImM‖2 ≥ 〈ImM〉 we get

2

∥∥∥∥ReM

|M|

∥∥∥∥
2

≥ |τ |〈ImM〉. (3.31)

Finally, we use (3.30) for the first factor in (3.29) and (3.31) for the last factor
and apply the last estimate in (3.12a) and Jensen’s inequality, 〈(ImM)2〉 ≥ 〈ImM〉2, to
estimate the second factor which yields∣∣1− ‖F (z)tF (z)‖2〈v1 , U1v1〉〈v2 , U2v2〉

∣∣ &δ |τ |2〈ImM〉κ. (3.32)

This completes the proof of (3.27).
Next, we bound Gap(F (z)F (z)t) from below by applying Lemma 3.3 with r− ..=

infx|Mx(z)| and r+ ..= ‖M(z)‖∞. As F (z) = F̂ (|M(z)|) we have

Gap(F (z)F (z)t) &δ 〈ImM(z)〉16,

where we used the estimates in (3.12a) and (3.28). Combining this estimate on
Gap(F (z)F (z)t) with (3.27) and (3.21) and increasing κ, we obtain

‖B−1(z)‖2 .δ min

{
1

(Re z)2〈ImM(z)〉κ
,

1

Im z
,

1

dist(Re z, supp ρ)2

}
as ‖B−1(z)‖2 ≤ (1− ‖F(z)‖2)−1 and δ ≤ |z| ≤ 10.
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Lemma 3.8 (Continuity of the solution). If M is the solution of the QVE (3.6) then
z 7→ 〈M(z)〉 can be extended to a locally Hölder-continuous function on H\{0}. Moreover,
for every δ > 0 there is a constant c depending on δ and the model parameters such that

|〈M(z1)〉 − 〈M(z2)〉| ≤ c|z1 − z2|1/(κ+1) (3.33)

for all z1, z2 ∈ H\{0} such that δ ≤ |z1|, |z2| ≤ 10 where κ is the universal constant of
Lemma 3.5.

Proof. In a first step, we prove that z 7→ 〈ImM(z)〉 is locally Hölder-continuous. Taking
the derivative of (3.6) with respect to z ∈ H yields

(1−M2(z)S)∂zM(z) = M(z)2.

By using that ∂zφ = i2∂zImφ for every analytic function φ and taking the average, we get

i2∂z〈ImM〉 = 〈|M|,B−1|M|〉.

Here, we suppressed the z-dependence of B−1. We apply Cauchy-Schwarz inequality
and use (3.7), (3.23) and (3.12a) to obtain

|∂z〈ImM〉| ≤ ‖M‖2‖B−1‖2→2‖M‖2 .δ min{(Re z)−2〈ImM〉−κ, (Im z)−1} .δ 〈ImM〉−κ

for all z ∈ H satisfying δ ≤ |z| ≤ 10. This implies that z 7→ 〈ImM(z)〉 is Hölder-continuous
with Hölder-exponent 1/(κ + 1) on z ∈ H satisfying δ ≤ |z| ≤ 10. Moreover, it has a
unique continuous extension to Iδ ..= {τ ∈ R; δ/3 ≤ |τ | ≤ 10}. Multiplying this continuous
function on Iδ by π−1 yields a Lebesgue-density of the measure ρ (cf. (3.8)) restricted to
Iδ.

We conclude that the Stieltjes transform 〈M〉 has the same regularity by decomposing
ρ into a measure supported around zero and a measure supported away from zero and
using Lemma A.7 in [2].

For estimating the difference between the solution M of the QVE and a solution g of
the perturbed QVE (3.9), we introduce the deterministic control parameter

ϑ(z) ..= 〈ImM(z)〉+ dist(z, supp ρ), z ∈ H.

Lemma 3.9 (Stability of the QVE). Let δ & 1. Suppose there are some functions d : H→
Cp+n and g : H → (C\{0})n+p satisfying (3.9). Then there exist universal constants
κ1, κ2 ∈ N and a function λ∗ : H→ (0,∞), independent of n and p, such that λ∗(10i) ≥ 1/5,
λ∗(z) &δ ϑ(z)κ1 and

‖g(z)−M(z)‖∞1
(
‖g(z)−M(z)‖∞ ≤ λ∗(z)

)
.δ ϑ(z)−κ2‖d(z)‖∞ (3.34)

for all z ∈ H satisfying δ ≤ |z| ≤ 10. Moreover, there are a universal constant κ3 ∈ N
and a matrix-valued function T : H→ C(p+n)×(p+n), depending only on S and satisfying
‖T (z)‖∞→∞ . 1, such that

|〈w, g(z)−M(z)〉|·1
(
‖g(z)−M(z)‖∞ ≤ λ∗(z)

)
.δ ϑ(z)−κ3

(
‖w‖∞‖d(z)‖2∞ + |〈T (z)w, d(z)〉|

)
(3.35)

for all w ∈ Cp+n and z ∈ H satisfying δ ≤ |z| ≤ 10.

Proof. We set Φ(z) ..= max{1, ‖M(z)‖∞}, Ψ(z) ..= max{1, ‖B−1(z)‖∞} and λ∗(z) ..=

(2ΦΨ)−1. As Φ(z) ≤ max{1, (Im z)−1} and ‖B−1(z)‖∞ ≤ (1−‖F(z)‖∞)−1 ≤ (1−(Im z)−2)−1

due to ‖M(z)‖∞ ≤ (Im z)−1 we obtain λ∗(10i) ≥ 1/5. We obtain 〈ImM(z)〉−1 &δ 1 by
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(3.12a) and δ ≤ |z|. Thus, for z ∈ H satisfying δ ≤ |z| ≤ 10 the first estimate in (3.11a),
the last estimate in (3.12a) and (3.24) yield

Φ .δ ϑ
−1, Ψ .δ ϑ

−κ−2,

where κ is the universal constant from Lemma 3.5. Therefore, λ∗(z) &δ ϑ(z)κ+3 and
Lemma 5.11 in [2] yield the assertion as ‖w‖1 = (p+ n)−1

∑
i|wi| ≤ ‖w‖∞.

3.4 Proof of Theorem 2.1

Proof of Theorem 2.1. We start by proving the existence of the solution m of (2.1). Let
M = (M1,M2)t be the solution of (3.6) satisfying ImM(z) > 0 for z ∈ H. For ζ ∈ H,
we set m(ζ) ..= M1(

√
ζ)/
√
ζ. Then it is straightforward to check that m satisfies (2.1)

by solving (3.5b) for M2 and plugging the result into (3.5a). Note that Imm(ζ) > 0 for
all ζ ∈ H since M1,i is the Stieltjes transform of a symmetric measure on R (cf. the
explanation before (3.7) for the symmetry of this measure).

Next, we show the uniqueness of the solution m of (2.1) with Imm(ζ) > 0 for ζ ∈ H
which is a consequence of the uniqueness of the solution of (3.6). Therefore, we set
m1(ζ) ..= m(ζ), m2(ζ) ..= −1/(ζ(1+Stm1(ζ))) and m(ζ) ..= (m1(ζ),m2(ζ))t for ζ ∈ H. From
(2.1), we see that

|m1| =
1∣∣∣ζ − S 1
1+Stm1

∣∣∣ ≤ 1

Im ζ + S 1
|1+Stm1|S

tImm1

≤ 1

Im ζ
(3.36)

for all ζ ∈ H. Since m2 satisfies

− 1

m2(ζ)
= ζ + St

1

1 + Sm2
(ζ) (3.37)

for ζ ∈ H, a similar argument yields |m2| ≤ (Im ζ)−1. Combining these two estimates, we
obtain |m(ζ)| ≤ (Im ζ)−1 for all ζ ∈ H. Therefore, multiplying (2.1) and (3.37) with m1

and m2, respectively, yields

|1 + iξmx(iξ)| ≤ ‖m(iξ)‖∞
1

1− ‖m(iξ)‖∞
≤ 1

ξ − 1
→ 0

for ξ →∞ and x = 1, . . . , n+ p where we used |m(ζ)| ≤ (Im ζ)−1 in the last but one step.
Thus, mx is the Stieltjes transform of a probability measure νx on R for all x = 1, . . . , n+p.
Multiplying (2.1) by m1, taking the imaginary part and averaging at ζ = χ+ iξ, for χ ∈ R
and ξ > 0, yields

χ〈Imm1〉+ ξ〈Rem1〉 = −
〈

Rem1 , S
1

|1 + Stm1|2
StImm1

〉
+

〈
Imm1 , S

1

|1 + Stm1|2
(1 + StRem1)

〉
=

〈
Imm1 , S

1

|1 + Stm1|2

〉
≥ 0, (3.38)

where we used the definition of the transposed matrix and the symmetry of the scalar
product in the last step. On the other hand, we have

χ〈Imm1〉+ ξ〈Rem1〉 =

∫
R

ξt

(t− χ)2 + ξ2
ν(dt).

Assuming that there is a χ < 0 such that χ ∈ supp ν we obtain that χ〈Imm1〉+ξ〈Rem1〉 <
0 for ξ ↓ 0 which contradicts (3.38). Therefore supp νx ⊂ [0,∞) for x = 1, . . . , p.
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Together with a similar argument for m2, we get that supp νx ⊂ [0,∞) for all x =

1, . . . , n + p. In particular, we can assume that m is defined on C \ [0,∞). We set
M1(z) ..= zm1(z2), M2(z) ..= zm2(z2) and M(z) ..= (M1(z),M2(z))t for all z ∈ H. Hence,
we get

ImMx(τ + iη) = η

∫
[0,∞)

t+ τ2 + η2

(t− τ2 + η2)2 + 4η2τ2
νx(dt)

as supp νx ⊂ [0,∞). This implies ImM(z) > 0 for z ∈ H and thus the uniqueness of
solutions of (3.6) with positive imaginary part implies the uniqueness of m1.

Finally, we verify the claim about the structure of the probability measure repre-
senting 〈m〉. By Lemma 3.8 and the statements following (3.6), 〈M1〉 is the Stieltjes
transform of π∗δ0 + ρ1(ω)dω for some π∗ ∈ [0, 1] and some symmetric Hölder-continuous
function ρ1 : R \ {0} → [0,∞) whose support is contained in [−2, 2]. Therefore, m is the
Stieltjes transform of ν(dω) ..= π∗δ0(dω) + π(ω)1(ω > 0)dω where π(ω) = ω−1/2ρ1(ω1/2)

for ω > 0. Thus, the support of ν is contained in [0, 4].

3.5 Square Gram matrices

In this subsection, we study the stability of (3.6) for n = p. Here, we assume (A), (E1)
and (F1). These assumptions are strictly stronger than (A), (B) and (D) (cf. Remark 2.6).

For the following arguments, it is important that M is purely imaginary for Re z = 0

as M(−z̄) = −M(z) for all z ∈ H. If we set

v(z) = ImM(z) (3.39)

for z ∈ H, then v fulfills
1

v(iη)
= η + Sv(iη) (3.40)

for all η ∈ (0,∞) due to (3.6). The study of this equation will imply the stability of the
QVE at z = 0. The following proposition is the main result of this subsection.

Proposition 3.10. Let n = p, i.e., (E1) holds true, and S satisfies (A) as well as (F1).

(i) There exists a δ̂ ∼ 1 such that |M(z)| ∼ 1 uniformly for all z ∈ H satisfying |z| ≤ 10

and Re z ∈ [−δ̂, δ̂]. Moreover, 〈ImM(z)〉 & 1 for all z ∈ H satisfying |z| ≤ 10 and
Re z ∈ [−δ̂, δ̂] and there is a v(0) = (v1(0), v2(0))t ∈ Rp ⊕Rp such that v(0) ∼ 1 and

iv(0) = lim
η↓0

M(iη).

(ii) (Stability of the QVE at z = 0) Suppose that some functions d = (d1, d2)t : H→ Cp+p

and g = (g1, g2)t : H→ (C\{0})p+p satisfy (3.9) and

〈g1(z)〉 = 〈g2(z)〉 (3.41)

for all z ∈ H. There are numbers λ∗, δ̂ & 1, depending only on S, such that

‖g(z)−M(z)‖∞1
(
‖g(z)−M(z)‖∞ ≤ λ∗

)
. ‖d(z)‖∞ (3.42)

for all z ∈ H satisfying |z| ≤ 10 and Re z ∈ [−δ̂, δ̂]. Moreover, there is a matrix-valued
function T : H → C2p×2p, depending only on S and satisfying ‖T (z)‖∞ . 1, such
that

|〈w, g(z)−M(z)〉|·1
(
‖g(z)−M(z)‖∞ ≤ λ∗

)
. ‖w‖∞‖d(z)‖2∞+|〈T (z)w, d(z)〉| (3.43)

for all w ∈ C2p and z ∈ H satisfying |z| ≤ 10 and Re z ∈ [−δ̂, δ̂].
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The remainder of this subsection will be devoted to the proof of this proposition.
Therefore, we will always assume that (A), (E1) and (F1) are satisfied.

Lemma 3.11. The function v : i(0,∞)→ R2p defined in (3.39) satisfies

1 . inf
η∈(0,10]

v(iη) ≤ sup
η>0
‖v(iη)‖∞ . 1. (3.44)

If we write v = (v1, v2)t for v1, v2 : i(0,∞)→ Rp, then

〈v1(iη)〉 = 〈v2(iη)〉 (3.45)

for all η ∈ (0,∞).

The estimate in (3.44), with some minor modifications which we will explain next, is
shown as in the proof of (6.30) of [2].

Proof. From (3.40) and the definition of S, we obtain η〈v1〉 − η〈v2〉 = 〈v1 , Sv2〉 −
〈v2 , Stv1〉 = 0 for all η ∈ (0,∞) which proves (3.45). Differing from [2], the discrete
functional J̃ is defined as follows:

J̃(u) =
ϕ

2K

2K∑
i,j=1

u(i)Ziju(j)−
2K∑
i=1

log u(i) (3.46)

for u ∈ (0,∞)2K (we used the notation u(i) to denote the i-th entry of u) where Z is the
2K × 2K matrix with entries in {0, 1} defined by

Z =

(
0 Z

Zt 0

)
. (3.47)

Decomposing u = (u1, u2)t for u1, u2 ∈ (0,∞)K and writing u1(i) = u(i) and u2(j) =

u(K + j) for their entries we obtain

J̃(u) =
ϕ

K

K∑
i,j=1

u1(i)Ziju2(j)−
K∑
i=1

(log u1(i) + log u2(i)). (3.48)

Lemma 3.12. If Ψ <∞ is a constant such that u = (u1, u2)t ∈ (0,∞)K×(0,∞)K satisfies

J̃(u) ≤ Ψ,

where J̃ is defined in (3.46), and 〈u1〉 = 〈u2〉, then there is a constant Φ <∞ depending
only on (Ψ, ϕ,K) such that

2K
max
k=1

u(k) ≤ Φ.

Proof. We define Z̃ij ..= Ziσ(j) where σ is a permutation of {1, . . . ,K} such that Z̃ii = 1

for all i = 1, . . . ,K where we use the FID property of Z. Moreover, we set Mij
..=

u1(i)Z̃iju2(σ(j)) and follow the proof of Lemma 6.10 in [2] to obtain

u1(i)u2(σ(j)) . (MK−1)ij . 1

for all i, j = 1, . . . ,K. Averaging over i and j yields

〈u1〉2 = 〈u2〉2 . 1

where we used 〈u1〉 = 〈u2〉. This concludes the proof of Lemma 3.12.
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Recalling the function v in Lemma 3.11, we set u = (〈v〉1, . . . , 〈v〉2K) with 〈v〉i =

Kp−1
∑
x∈Ii vx, where Ii ..= p + Ii−K for i ≥ K + 1. Then we have 〈u1〉 = 〈u2〉 by

(3.45) and since I1, . . . , I2K is an equally sized partition of {1, . . . , 2p}. Therefore, the
assumptions of Lemma 3.12 are met which implies (3.44) of Lemma 3.11 as in [2].

We recall from Lemma 3.4 that f = (f1, f2) is the unique nonnegative, normalized
eigenvector of F corresponding to the eigenvalue ‖F‖2. Moreover, we define f− ..=

(f1,−f2) which clearly satisfies
Ff− = −‖F‖2f−. (3.49)

Since the spectrum of F is symmetric, σ(F) = −σ(F) with multiplicities, and ‖F‖2 is a
simple eigenvalue of F, the same is true for the eigenvalue −‖F‖2 of F and f− spans its
associated eigenspace. We introduce

e− ..=

(
1

−1

)
∈ Cp ⊕ Cp. (3.50)

Lemma 3.13. For η ∈ (0,∞), the derivative of M satisfies

M′(iη) =
d

dz
M(iη) = −v(iη)(1 + F(iη))−1v(iη). (3.51)

Moreover, |M′(iη)| . 1 uniformly for η ∈ (0, 10].

Proof. In the whole proof, the quantities v, f, f− and F are evaluated at z = iη for η > 0.
Therefore, we will mostly suppress the z-dependence of all quantities. Differentiating
(3.6) with respect to z and using (3.39) yields

−(1 + F)
M′

v
= v.

As ‖F‖2 < 1 by (3.20), the matrix (1+F) is invertible which yields (3.51) for all η ∈ (0,∞).
In order to prove |M′(iη)| . 1 uniformly for η ∈ (0,∞), we first prove that

|〈f−(iη)v(iη)〉| ≤ O(η). (3.52)

We define the auxiliary operator A ..= ‖F‖2 + F = 1 + F− η 〈fv〉〈f〉 where we used (3.20) and
(3.39). Note that

Af− = 0, Ae− = e− + Fe− − η
〈fv〉
〈f〉

e− = O(η), (3.53)

where we used Fe− = −e− + η

(
v1
−v2

)
which follows from (3.6) and the definition of F.

Defining Qu ..= u− 〈f−u〉f− for u ∈ C2p and decomposing

e− = 〈f−e−〉 f− +Qe−

yield AQe− = O(η) because of (3.53). As |M(iη)| ∼ 1 by (3.44) for η ∈ (0, 10] the bound
(3.19) in Lemma 3.3 implies that there is an ε ∼ 1 such that for all η ∈ (0, 10] we have

σ(F) ⊂ {−‖F‖2} ∪ [−‖F‖2 + ε, ‖F‖2 − ε] ∪ {‖F‖2}. (3.54)

Since −‖F‖2 is a simple eigenvalue of F and (3.49) the symmetric matrix A = ‖F‖2 + F is

invertible on f⊥− and
∥∥∥(A|f⊥−)−1∥∥∥2 = ε−1 ∼ 1. As f− ⊥ Qe− we conclude Qe− = O(η) and

hence
(1− 〈f〉)(1 + 〈f〉) = 1− 〈f〉2 = 1− 〈f−e−〉2 = ‖Qe−‖22 = O(η2). (3.55)
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Thus, using (3.45) and (3.55), this implies

|〈f−(iη)v(iη)〉| = |〈ve−〉+ 〈v [f− − e−]〉| . ‖f− − e−‖2 =
√

2(1− 〈f〉) = O(η),

which concludes the proof of (3.52).
In (3.51), we decompose v = 〈f−v〉f− +Qv and, using Ff− = −‖F‖2f− and (3.20), we

obtain

M′ = −v 〈f−v〉
η

〈f〉
〈fv〉

f− − v(1 + F)−1Qv.

Using (3.54), we see that ‖(1 + F)−1Qv‖2 ∼ 1 uniformly for η ∈ (0, 10]. Together with
〈f−(iη)v(iη)〉 = O(η) by (3.52), this yields |M′(iη)| . 1 uniformly for η ∈ (0, 10].

The previous lemma, (3.40) and Lemma 3.11 imply that v(0) ..= limη↓0 v(iη) exists and
satisfies

v(0) ∼ 1, 1 = v(0)Sv(0) = F(0)1, 〈v1(0)〉 = 〈v2(0)〉, (3.56)

where v(0) = (v1(0), v2(0))t.
In the next lemma, we establish an expansion of M(z) on the upper half-plane around

z = 0. The proof of this result and later the stability estimates on g −M will be a
consequence of the equation

Bu = e−iψuFu+ e−iψgd (3.57)

where u = (g−M)/|M| and eiψ = M/|M|. This quadratic equation in u was derived in
Lemma 5.8 in [2].

Lemma 3.14. For z ∈ H, we have

M(z) = iv(0)− zv(0)(1 + F(0))−1v(0) +O(|z|2), (3.58a)

M(z)

|M(z)|
= i− (Re z)(1 + F(0))−1v(0) +O(|z|2). (3.58b)

In particular, there is a δ̂ ∼ 1 such that |M(z)| ∼ 1 uniformly for z ∈ H satisfying
Re z ∈ [−δ̂, δ̂] and |z| ≤ 10. Moreover,

‖f(z)− 1‖∞ = O(|z|), ‖f−(z)− e−‖∞ = O(|z|). (3.59)

Proof. In order to prove (3.58a), we consider (3.6) at z as a perturbation of (3.6) at z = 0

perturbed by d = z in the notation of (3.9). The solution of the unperturbed equation is
M = iv(0). Following the notation of (3.9), we find that (3.57) holds with g = M(z) and
u(z) = (M(z)− iv(0))/v(0). We write u(z) = θ(z)e−+w(z) with w ⊥ e−. (We will suppress
the z-dependence in our notation.) Plugging this into (3.57) and projecting onto e− yields

θ〈v(0)〉 = −〈e−v(0)w〉 , (3.60)

where we used that F(0)1 = 1, i.e., 〈F(0)w〉 = 〈w〉, 〈e−wF(0)w〉 = 0 and 〈v1(0)〉 = 〈v2(0)〉.
Thus, we have θ = O(‖w‖∞) because of (3.56), so that we conclude −(1 + F(0))w =

zv(0) +O(‖w‖2∞ + |z|‖w‖∞). As w, (1 + F(0))w and v(0) are orthogonal to e−, the error
term is also orthogonal to it which implies

w = −z(1 + F(0))−1v(0) +O(|z|2) (3.61)

using that (1 + F(0))−1 is bounded on e⊥−.
Observing that 〈M1(z)〉 = 〈M2(z)〉 for z ∈ H by (3.6) and differentiating this relation

yields 〈M′(iη)e−〉 = 0 for all η ∈ (0,∞). Hence,

〈e−v(0)(1 + F(0))−1v(0)〉 = − lim
η↓0
〈e−M′(iη)〉 = 0 (3.62)
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by Lemma 3.13.
Plugging (3.61) into (3.60), we obtain

θ〈v(0)〉 = 〈e−v(0)(1 + F(0))−1v(0)〉+O(|z|2) = O(|z|2),

where we used (3.62). Hence, M(z) = v(0)(u + iv(0)) concludes the proof of (3.58a)
which immediately implies (3.58b).

Using the expansion of M in (3.58a) in a similar argument as in the proof of ‖f−(iη)−
e−‖2 = O(η) in Lemma 3.13 yields

‖f(z)− 1‖2 = ‖f−(z)− e−‖2 = O(|z|).

Similarly, using (3.26), we obtain (3.59).

By a standard argument from perturbation theory and possibly reducing δ̂ ∼ 1, we can
assume that B(z) has a unique eigenvalue β(z) of smallest modulus for z ∈ H satisfying
|Re z| ≤ δ̂ and |z| ≤ 10 such that |β′| − |β| & 1 for β′ ∈ σ(B(z)) and β′ 6= β. This follows
from |M| ∼ 1 and thus Gap(F (z)F (z)t) & 1 by Lemma 3.3. For z ∈ H satisfying |Re z| ≤ δ̂
and |z| ≤ 10, we therefore find a unique (unnormalized) vector b(z) ∈ C2p such that
B(z)b(z) = β(z)b(z) and 〈f− , b(z)〉 = 1.

We introduce the spectral projection P onto the spectral subspace of B(z) associated
to β(z) which fulfills the relation

P =
〈b̄ , ·〉
〈b2〉

b.

Note that P is not an orthogonal projection in general. Let Q ..= 1 − P denote the
complementary projection onto the spectral subspace of B(z) not containing β(z) (this
Q is different from the one in the proof of Lemma 3.13). Since B(z) = −1− F(z) +O(|z|)
we obtain

‖b(z)− e−‖∞ =
∥∥b(z)− e−

∥∥
∞ = O(|z|) (3.63)

for z ∈ H satisfying |Re z| ≤ δ̂ and |z| ≤ 10.

Lemma 3.15. By possibly reducing δ̂ from Lemma 3.14, but still δ̂ & 1, we have

‖B−1(z)‖∞ .
1

|z|
, ‖B−1(z)Q‖∞ + ‖(B−1(z)Q)∗‖∞ . 1 (3.64)

for z ∈ H satisfying |Re z| ≤ δ̂ and |z| ≤ 10.

Proof. Due to |M(z)| ∼ 1 and using (3.26) with R = F(z) and D = |M(z)|2/M(z)2,
it is enough to prove the estimates in (3.64) with ‖·‖∞ replaced by ‖·‖2. We first
remark that |M(z)| ∼ 1 and arguing similarly as in the proof of Lemma 3.4 imply
‖B−1(z)‖2 . (Im z)−1.

Now we prove ‖B−1(z)‖2 . (Re z)−1. We apply Lemma 3.6 and recall U1 = |M1|2/M2
1

and U2 = |M2|2/M2
2 to get

Im

(
1− ‖F (z)tF (z)‖2

〈
f1
‖f1‖2

, U1
f1
‖f1‖2

〉〈
f2
‖f2‖2

, U2
f2
‖f2‖2

〉)
=
‖F (z)tF (z)‖2
‖f1‖2‖f2‖2

〈v(0)〉Re z +O(|z|2), (3.65)

where we used (3.58b), (3.59) and ‖f1‖2, ‖f2‖2, ‖F (z)tF (z)‖2 ∼ 1. Since v(0) ∼ 1

and Gap(F (z)F (z)t) & 1 by Lemma 3.3 and |M(z)| ∼ 1, (3.65) and Lemma 3.6 yield
‖B−1(z)‖2 . (Re z)−1 and hence ‖B−1(z)‖2 . min{(Im z)−1, (Re z)−1} . |z|−1.
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The estimate ‖B−1(z)Q‖∞ . 1 in (3.64) follows from Gap(F (z)F (z)t) & 1 by Lemma
3.3, |M(z)| ∼ 1 and a standard argument from perturbation theory as presented
in Lemma 8.1 of [2]. Here, it might be necessary to reduce δ̂. We remark that

B∗ = |M|2/M2 − F and similarly P ∗ = 〈b , ·〉/〈b2〉b, i.e., B∗ and P ∗ emerge by the same
constructions where M is replaced by M. Therefore, we obtain ‖(B−1(z)Q)∗‖∞ . 1.

Proof of Proposition 3.10. The part (i) follows from the previous lemmata.
The part (ii) has already been proved for |z| ≥ δ in Lemma 3.9 and for any δ & 1.

Therefore, we restrict ourselves to |z| ≤ δ for a sufficiently small δ & 1. We recall
eiψ = M/|M|.

Owing to Lemma 3.14 and (3.63), there are positive constants δ,Φ, Φ̂ ∼ 1 which only
depend on the model parameters such that

‖M(z)‖∞ ≤ Φ, ‖b(z)− e−‖2‖b‖∞ +
∥∥e−iψ + i

∥∥
∞ ‖b‖

2
∞ ≤ Φ̂|〈b2〉||z| (3.66)

for all z ∈ H satisfying |z| ≤ δ. Here, we used ‖w‖2 ≤ ‖w‖∞ for all w ∈ C2p. Note that
we employed (3.63) for estimating ‖b− e−‖2 as well as to obtain ‖b‖∞ ∼ 1 and |〈b2〉| ∼ 1

for all z ∈ H satisfying |z| ≤ δ if δ & 1 is small enough.
Lemma 3.15 implies the existence of Ψ, Ψ̂ ∼ 1 such that

‖B−1(z)‖∞ ≤ Ψ|z|−1, ‖B−1(z)Q‖∞ ≤ Ψ̂ (3.67)

for all z ∈ H satisfying |z| ≤ δ if 1 . δ ≤ δ̂ is sufficiently small. With these definitions, we
set

λ∗ ..=
1

2Φ(ΨΦ̂ + Ψ̂)
. (3.68)

The estimate on h ..= g(z)−M(z) = u|M| will be obtained from inverting B in (3.57). In
order to control the right-hand side of (3.57), we decompose it, according to 1 = P +Q,
as

e−iψuFu =

〈
be−iψuFu

〉
〈b2〉

b+Qe−iψuFu, e−iψgd =

〈
e−iψgdb

〉
〈b2〉

b+Qe−iψgd.

Clearly, as ‖S‖∞ ≤ 1 we have ‖(B−1Q)(e−iψuFu)‖∞ ≤ Ψ̂‖h‖2∞ and ‖(B−1Q)(e−iψgd)‖∞ ≤
Ψ̂‖g‖∞‖d‖∞ due to (3.67). Using 〈e−hSh〉 = 0 and (3.66), we obtain∥∥∥∥〈be−iψuFu〉 b

〈b2〉

∥∥∥∥
∞
≤
(
|−i〈hShe−〉|+ |−i〈(b− e−)hSh〉|+

∣∣〈(e−iψ + i
)
bhSh

〉∣∣) ‖b‖∞
|〈b2〉|

≤ Φ̂|z|‖h‖2∞.

Similarly, due to (3.66) and 〈gde−〉 = 〈g1(z)d1(z)〉 − 〈g2(z)d2(z)〉 = 0 by the perturbed
QVE (3.9), we get∥∥∥∥〈e−iψgdb〉 b

〈b2〉

∥∥∥∥
∞
≤
(
|〈gde−〉|+ |〈(b− e−)gd〉|+

∣∣〈(e−iψ + i
)
bgd
〉∣∣) ‖b‖∞
|〈b2〉|

≤ Φ̂|z|‖g‖∞‖d‖∞.

Thus, inverting B in (3.57), multiplying the result with |M|, taking its norm and using
(3.67) yield

‖h‖∞ ≤ Φ(ΨΦ̂ + Ψ̂)‖h‖2∞ + Φ(ΨΦ̂ + Ψ̂)‖g‖∞‖d‖∞,

which implies

‖h‖∞1
(
‖h‖∞ ≤ λ∗

)
≤ Φ(1 + 2Φ(ΨΦ̂ + Ψ̂))‖d‖∞

by the definition of λ∗ in (3.68). This concludes the proof of (3.42).
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For the proof of (3.43), inverting B in (3.57) and taking the scalar product with w

yield

〈w, h〉 = 〈w,B−1(e−iψhSh)〉+
〈w, |M|B−1b〉

〈b2〉
〈
hd
[
(e−iψ + i)b− i(b− e−)

]〉
+ 〈(B−1Q)∗(|M|w) , e−iψhd〉+ 〈Tw, d〉, (3.69)

where we used 〈e−gd〉 = 0 and set Tw ..= 〈b2〉−1〈|M|B−1b , w〉M
[
(eiψ − i)b+ i(b− e−)

]
+

eiψM(B−1Q)∗(|M|w).
Using (3.66) and (3.67) as well as a similar argument as in the proof of (3.42) for the

first term in the definition of T and ‖(B−1Q)∗‖∞ . 1 by (3.64) for the second term, we
obtain ‖T‖∞ . 1. Moreover, as above we see that the first term on the right-hand side
of (3.69) is . ‖w‖∞‖h‖2∞. The estimates (3.66) and (3.67) imply that the second term
on the right-hand side of (3.69) is . ‖w‖∞‖h‖∞‖d‖∞. Applying (3.42) to these bounds
yields (3.43).

3.6 Properly rectangular Gram matrices

In this subsection, we study the behaviour of M1 and M2 for z close to zero for p/n
different from one. We establish that the density of the limiting distribution is zero
around zero – a well-known feature of the Marchenko-Pastur distribution for p/n different
from one.

We suppose that the assumptions (A), (C) and (D) are fulfilled and we will study the
case p > n. More precisely, we assume that

p

n
≥ 1 + d∗ (3.70)

for some d∗ > 0 which will imply that each component of M1 diverges at z = 0 whereas
each component of M2 stays bounded at z = 0. Later, we will see that these properties
carry over to m1 and m2. We use the notation Dδ(w) ..= {z ∈ C : |z − w| < δ} for δ > 0

and w ∈ C.

Proposition 3.16 (Solution of the QVE close to zero). If (F2) and (3.70) are satisfied
then there exist a vector u ∈ Cp, a constant δ∗ & 1 and analytic functions a : Dδ∗(0)→ Cp,
b : Dδ∗(0) → Cn such that the unique solution M = (m1,m2)t of (3.6) with ImM > 0

fulfills
M1(z) = za(z)− u

z
, M2(z) = zb(z) (3.71)

for all z ∈ Dδ∗(0) ∩H. Moreover, we have

(i)
∑p
i=1 ui = p− n and 1 . ui ≤ 1 for all i = 1, . . . , p,

(ii) b(0) = 1/Stu ∼ 1,

(iii) ‖a(z)‖∞ + ‖b(z)‖∞ . 1 uniformly for all z ∈ Dδ∗(0),

(iv) limη↓0 ImM1(τ + iη) = 0 and limη↓0 ImM2(τ + iη) = 0 locally uniformly for all
τ ∈ (−δ∗, δ∗)\{0}.

The ansatz (3.71) is motivated by the following heuristics. Considering H as an
operator Cp⊕Cn → Cn⊕Cp, we expect that the first component described by X∗ : Cp →
Cn has a nontrivial kernel for dimensional reasons whereas the second component
has a trivial kernel. Since the nonzero eigenvalues of H2 correspond to the nonzero
eigenvalues of XX∗ and X∗X, the Marchenko-Pastur distribution indicates that there
is a constant δ∗ & 1 such that H has no nonzero eigenvalue in (−δ∗, δ∗). As the first
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component M1 of M corresponds to the “first component” of H, the term −u/z in (3.71)
implements the expected kernel. For dimensional reasons, the kernel should be p− n
dimensional which agrees with part (i) of Proposition 3.16. The factor z in the terms
za(z) and zb(z) in (3.71) realizes the expected gap in the eigenvalue distribution around
zero.

Proof of Proposition 3.16. We start with the defining equations for u and b. We assume
that u ∈ (0, 1]p fulfills

1

u
= 1 + S

1

Stu
(3.72)

and b : Dδ∗(0)→ Cp fulfills

− 1

b(z)
= z2 − St 1

1 + Sb(z)
(3.73)

for some δ∗ > 0. We then define a : Dδ∗(0)→ Cp through

z2a(z) = u− 1

1 + Sb(z)
(3.74)

and set M̂1(z) ..= za(z)− u/z and M̂2(z) ..= zb(z) for z ∈ Dδ∗(0). Thus, for z ∈ Dδ∗(0), we
obtain

z + StM̂1(z) = z − St 1

1 + Sb(z)
= − 1

zb(z)
= − 1

M̂2(z)
,

where we used (3.74) in the first step and (3.73) in the second step. Similarly, solving
(3.74) for Sb(z) yields

z + SM̂2(z) = z + z

(
1

u− z2a(z)
− 1

)
= − 1

M̂1(z)
, z ∈ Dδ∗(0). (3.75)

Thus, (M̂1, M̂2) satisfy (3.6), the defining equation for M = (M1,M2) and we will be able
to conclude that M̂1 = M1 and M̂2 = M2.

For the rigorous argument, we first establish the existence and uniqueness of u and b
that follow from the next two lemmata whose proofs are given later.

Lemma 3.17. If (F2) and (3.70) are satisfied then there is a unique solution of (3.72) in
the set u ∈ (0, 1]p. Moreover,

1 > ui & 1, (Stu)k & 1 (3.76)

for all i = 1, . . . , p and k = 1, . . . , n and
∑p
i=1 ui = p− n.

Lemma 3.18. If (F2) and (3.70) are satisfied, then there are a δ∗ ∼ 1 and a unique
holomorphic function b : Dδ∗(0) → Cn satisfying (3.73) with b(0) = 1/(Stu), where u is
the solution of (3.72). Moreover, we have ‖b(z)‖∞ . 1 and ‖(1 + Sb(z))−1‖∞ ≤ 1/2 for
all z ∈ Dδ∗(0), b(0) ∼ 1, b′(0) = 0, Im (zb(z)) > 0 for all z ∈ Dδ∗(0) with Im z > 0 and
Im (zb(z)) = 0 for z ∈ (−δ∗, δ∗).

Given u and b(z), the formula (3.74) defines a(z) for z 6= 0. To extend its definition
to z = 0, we observe that the right-hand side of (3.74) is a holomorphic function for all
z ∈ Dδ∗(0) by Lemma 3.18. Since b(0) = 1/(Stu) and the derivative of the right-hand
side of (3.74) vanishes as b′(0) = 0, the first two coefficients of the Taylor series of the
right-hand side on Dδ∗(0) are zero by (3.72). Thus, (3.74) defines a holomorphic function
a : Dδ∗(0)→ Cp.

Furthermore, Im M̂2(z) > 0 for Im z > 0 by Lemma 3.18. Taking the imaginary part of
(3.75) yields

Im M̂1(z)

|M̂1(z)|2
= Im z + SIm M̂2(z), (3.77)
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which implies Im M̂1(z) > 0 for Im z > 0 as Im M̂2(z) > 0 for z ∈ H ∩Dδ∗(0). Since the
solution M of (3.6) with ImM(z) > 0 for Im z > 0 is unique by Theorem 2.1 in [2], we

have M(z) = M̂(z) ..= (M̂1(z), M̂2(z))t for all z ∈ H ∩Dδ∗(0). The statements in (i), (ii)
and (iii) follow from Lemma 3.17, Lemma 3.18 and (3.74).

For the proof of (iv), we note that limη↓0 ImM2(τ + iη) = 0 for all τ ∈ (−δ∗, δ∗) locally
uniformly by Lemma 3.18. Because of (3.77) and the locally uniform convergence of
M1(τ +iη) to τa(τ)−u/τ for η ↓ 0 and τ ∈ (−δ∗, δ∗)\{0}, we have limη↓0 ImM1(τ +iη) = 0

locally uniformly for all τ ∈ (−δ∗, δ∗)\{0} as well, which concludes the proof of (iv).

We conclude this subsection with the proofs of Lemma 3.17 and Lemma 3.18.

Proof of Lemma 3.17. We will show that the functional

J : (0, 1]p → R, u 7→ 1

p

n∑
j=1

log

( p∑
i=1

sijui

)
+

1

p

p∑
i=1

(ui − log ui)

has a unique minimizer u with ui > 0 for all i = 1, . . . , p which solves (3.72). Note that

J(1, . . . , 1) =
1

p

n∑
j=1

log

( p∑
i=1

sij

)
+
p

p
≤ 1. (3.78)

We start with an auxiliary bound on the components of u. Using (F2) and Jensen’s
inequality, we get

J(u) ≥ 1

p

n∑
k=1

log

(
p∑
i=1

ϕ

n+ p
ui

)
+

1

p

p∑
i=1

(ui − log ui)

≥ 1

p

(
p∑
i=1

n

p
log
(ϕ

2
ui

)
−

p∑
i=1

log ui

)

≥ −1

p

d∗
1 + d∗

p∑
i=1

log ui +
n

p
log
(ϕ

2

)
, (3.79)

where we used (3.70) in the last step. For any u ∈ (0, 1]p with J(u) ≤ J(1, . . . , 1), using
(3.78), we obtain

1 ≥ J(1, . . . , 1) ≥ J(u) ≥− d∗
p(1 + d∗)

p∑
i=1

log ui +
n

p
log
(ϕ

2

)
≥− d∗

p(1 + d∗)
log ui +

1

r1
log
(ϕ

2

)
,

for any i = 1, . . . , p, i.e., ui ≥ exp(−p(1 + d∗)(1− r−11 log(ϕ/2))/d∗) > 0.
Therefore, taking a minimizing sequence, using a compactness argument and the

continuity of J , we obtain the existence of u? ∈ (0, 1]p such that J(u?) = infu∈(0,1]p J(u)

and

u?i ≥ exp

(
−p1 + d∗

d∗

(
1− 1

r1
log
(ϕ

2

)))
, i = 1, . . . , p. (3.80)

Next, we show that u?i < 1 for all i = 1, . . . , p. Assume that u?i = 1 for some i ∈ {1, . . . , p}.
Consider a vector û that agrees with u? except that u?i is replaced by λ ∈ (0, 1). An
elementary calculation then shows that J(û) ≥ J(u?) implies sik = 0 for all k = 1, . . . , n

which contradicts (3.14).
Therefore, evaluating the derivative J(u? + τh) for h ∈ Rp at τ = 0, which vanishes

since u? ∈ (0, 1)p is a minimizer, we see that u? satisfies (3.72).

EJP 22 (2017), paper 25.
Page 27/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP42
http://www.imstat.org/ejp/


Local law for random Gram matrices

To see the uniqueness of the solution of (3.72), we suppose that u?, v? ∈ (0, 1]p satisfy
(3.72), i.e., u? = f(u?) and v? = f(v?) where the function f : (0, 1]p → (0, 1]p is defined as
f(u) = (1 + S((Stu)−1))−1. On (0, 1]p we define the distance function

D(u, v) ..= sup
i=1,...,p

d(ui, vi) (3.81)

where d(a, b) = (a−b)2/(ab) for a, b > 0. This function d defined on (0,∞)2 is the analogue
of D defined in (A.6) of [3] on H2. Therefore, we can apply Lemma A.2 in [3] with the
natural substitutions which yields

D(u?, v?) = D(f(u?), f(v?)) =

(
1 +

1

S(Stu?)−1

)−1(
1 +

1

S(Stv?)−1

)−1
D(u?, v?)

≤ cD(u?, v?).

for some number c. Here we used 1. and 2. of Lemma A.2 in [3] in the second step and
3. of Lemma A.2 in [3] in the last step. Since we can choose c < 1 by (3.80), we conclude
u? = v?. This argument applies particularly to minimizers of J on (0, 1]p.

In the following, we will denote the unique minimizer of J by u. To compute the sum
of the components of u we multiply (3.72) by u and sum over i = 1, . . . , p and obtain

p =

p∑
i=1

ui +

p∑
i=1

ui

(
S

1

Stu

)
i

=

p∑
i=1

ui +

n∑
j=1

(Stu)j
1

(Stu)j
=

p∑
i=1

ui + n,

i.e.,
∑p
i=1 ui = p− n.

Finally, we show that the components of the minimizer u are bounded from below by
a positive constant which only depends on the model parameters. For k ∈ {1, . . . , n}, we
obtain

(Stu)k ≥
ϕ

n+ p

p∑
i=1

ui ≥
ϕ

2
〈u〉 =

ϕ

2

(
1− n

p

)
≥ ϕd∗

2(1 + d∗)
, (3.82)

where we used (F2) in the first step, n ≤ p in the second step,
∑p
i=1 ui = p − n in the

third step and (3.70) in the last step. This implies the third bound in (3.76).
Therefore, we obtain for all i = 1, . . . , p from (3.72)

1

ui
= 1 +

n∑
k=1

sik
1

(Stu)k
≤ 1 +

2(1 + d∗)

ϕd∗
,

where we used (A) with s∗ = 1 in the last step. This shows that ui is bounded from below
by a positive constant which only depends on the model parameters, i.e., the second
bound in (3.76).

Proof of Lemma 3.18. Instead of solving (3.73) directly, we solve a differential equation
with the correctly chosen initial condition in order to obtain b. Note that b0 ..= 1/(Stu)

fulfills (3.73) for z = 0 and b0 ∼ 1 by (3.76) and (3.14).
For any b ∈ Cn satisfying (Sb)i 6= −1 for i = 1, . . . , p, we define the linear operator

L(b) : Cn → Cn, v 7→ L(b)v ..= bSt
1

(1 + Sb)2
S(bv),

where bv is understood as componentwise multiplication. Using the definition of L(b),
b0 = 1/(Stu) and (3.72), we get

L(b0)1 =
1

Stu
Stu2S

1

Stu
=

1

Stu

(
Stu− Stu2

)
= 1− Stu2

Stu
≤ 1− κ (3.83)
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for some κ ∼ 1. Here we used (3.14), u2 & 1 and (3.76) in the last step. As

L(b0) =
1

Stu
Stu2S

(
1

Stu
·
)

is symmetric and positivity-preserving, Lemma 4.6 in [2] implies ‖L(b0)‖2→2 ≤ 1 − κ
because of (3.83). Therefore, (1 − L(b0)) is invertible and ‖(1 − L(b0))−1‖2→2 ≤ κ−1.
Moreover, ‖(1 − L(b0))−1‖∞→∞ ≤ 1 + ‖L(b0)‖2→∞κ−1 by (3.26) with R = L(b0) and
D = 1. The estimate (3.10) and the submultiplicativity of the operator norm ‖·‖2 yield
‖L(b0)‖2→∞ . 1. Thus, we obtain

‖(1− L(b0))−1‖∞ . 1.

We introduce the notation Uδ′ ..= {b ∈ Cn; ‖b − b0‖∞ < δ′}. If we choose δ′ ≤
(2‖S‖∞→∞)−1 then

|(1 + Sb)i| = |u−1i + (S(b− b0))i| ≥ |u−1i | − ‖S‖∞→∞‖b− b0‖∞ ≥ 1/2

for all i = 1, . . . , p, where we used the definition of b0, (3.72) and ui ≤ 1. Therefore,
‖(1 + Sb)−1‖∞ ≤ 1/2 for all b ∈ Uδ′ , i.e., Uδ′ → Cn×n, b 7→ L(b) will be a holomorphic
map. In particular,

‖L(b)− L(b0)‖∞ . ‖b− b0‖∞. (3.84)

If D ..= L(b)−L(b0) and ‖(1−L(b0))−1D‖∞→∞ ≤ 1/2 then (1−L(b)) will be invertible
and

(1− L(b))−1 =
(
1− (1− L(b0))−1D

)−1
(1− L(b0))−1,

as well as ‖(1 − L(b))−1‖∞→∞ ≤ 2‖(1 − L(b0))−1‖∞→∞. Therefore, (3.84) implies the
existence of δ′ ∼ 1 such that (1 − L(b)) is invertible and ‖(1 − L(b))−1‖∞ . 1 for all
b ∈ Uδ′ .

Hence, the right-hand side of the differential equation

b′ ..=
∂

∂z
b = 2zb(1− L(b))−1b =.. f(z, b) (3.85)

is holomorphic on Dδ′(0) × Uδ′ . As δ′ ∼ 1 and sup{‖f(z, w)‖∞; z ∈ Dδ′(0), b ∈ Uδ′} . 1,
the standard theory of holomorphic differential equations yields the existence of δ∗ & 1

and a holomorphic function b : Dδ∗(0) → Cn which is the unique solution of (3.85) on
Dδ∗(0) satisfying b(0) = b0.

The solution of the differential equation (3.85) is a solution of (3.73) since dividing
by b, multiplying by (1− L(b)) and dividing by b in (3.85) yields

b′

b2
= 2z +

1

b
L(b)

b′

b
.

This is the derivative of (3.73). Since b(0) = b0 fulfils (3.73) for z = 0 the unique solution
of (3.85) with this initial condition is a solution of (3.73) for z ∈ Dδ∗(0). There is only
one holomorphic solution of (3.73) due to the uniqueness of the solution of (3.85). This
proves the existence and uniqueness of b(z) in Lemma 3.18.

Since b is a holomorphic function on Dδ∗(0) such that |b(z)| . 1 on Dδ∗(0) and δ∗ ∼ 1

there is a holomorphic function b1 : Dδ∗(0)→ Cn such that

b(z) = b0 + b1(z)z

and |b1(z)| . 1. Thus, we can assume that δ∗ & 1 is small enough such that Im zb(z) ≥
(b0 − |z||b1(z)|)Im z > 0 for all z ∈ Dδ∗(0) ∩H.
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Taking the imaginary part of (3.73) for τ ∈ R, we get

Im b(τ)

|b(τ)|2
= St

1

|1 + Sb(τ)|2
SIm b(τ)

or equivalently, introducing

L̃(z) : Cn → Cn, v 7→ L̃(z)v ..= |b(z)|St|1 + Sb(z)|−2S(|b(z)|v)

for z ∈ Dδ∗(0), we have (
1− L̃(τ)

) Im b(τ)

|b(τ)|
= 0. (3.86)

As ‖(1 + Sb(z))−1‖∞ ≤ 1/2 for all z ∈ Dδ∗(0), the linear operator L̃(z) is well-defined for
all z ∈ Dδ∗(0). Because L̃(0) = L(b0) and ‖L̃(b) − L̃(b0)‖∞ . ‖b − b0‖∞ we can assume
that δ∗ & 1 is small enough such that (1 − L̃(z)) is invertible for all z ∈ Dδ∗(0). Thus,
(3.86) implies that Im b(τ) = 0 for all τ ∈ (−δ∗, δ∗) and consequently, Im τb(τ) = 0 for all
τ ∈ (−δ∗, δ∗).

4 Local laws

4.1 Local law for H

In this section, we will follow the approach used in [4] to prove a local law for the
Wigner-type matrix H. We will not give all details but refer the reader to [4]. Therefore,
we consider (3.4) as a perturbed QVE of the form (3.9) with g ..= (g1, g2)t : H → Cp+n

and d ..= (d1, d2)t : H→ Cp+n, in particular g(z) = (Gxx(z))x=1,...,n+p where Gxx are the
diagonal entries of the resolvent of H defined in (3.3). We recall that ρ is the probability
measure on R whose Stieltjes transform is 〈M〉, cf. (3.8), where M is the solution of (3.6)
satisfying ImM(z) > 0 for z ∈ H.

Definition 4.1 (Stochastic domination). Let P0 : (0,∞)2 → N be a given function which
depends only on the model parameters and the tolerance exponent γ. If ϕ = (ϕ(p))p and
ψ = (ψ(p))p are two sequences of nonnegative random variables then we will say that ϕ
is stochastically dominated by ψ, ϕ ≺ ψ, if for all ε > 0 and D > 0 we have

P
(
ϕ(p) ≥ pεψ(p)

)
≤ p−D

for all p ≥ P0(ε,D).

In the following, we will use the convention that τ ..= Re z and η ..= Im z for z ∈ C.

Theorem 4.2 (Local law for H away from the edges). Fix any δ, ε∗ > 0 and γ ∈ (0, 1)

independent of p. If the random matrix X satisfies (A) – (D) then the resolvent entries
Gxy(z) of H defined in (3.3) and (3.1), respectively, fulfill

max
x,y=1,...,n+p

|Gxy(z)−Mx(z)δxy| ≺
1
√
pη
, if Im z ≥ p−1+γ and 〈ImM(z)〉 ≥ ε∗, (4.1a)

max
x,y=1,...,n+p

|Gxy(z)−Mx(z)δxy| ≺
1
√
p
, if dist(z, supp ρ) ≥ ε∗, (4.1b)

uniformly for z ∈ H satisfying δ ≤ |z| ≤ 10. For any sequence of deterministic vectors
w ∈ Cn+p satisfying ‖w‖∞ ≤ 1, we have

|〈w, g(z)−M(z)〉| ≺ 1

pη
, if Im z ≥ p−1+γ and 〈ImM(z)〉 ≥ ε∗, (4.2a)

|〈w, g(z)−M(z)〉| ≺ 1

p
, if dist(z, supp ρ) ≥ ε∗, (4.2b)
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uniformly for z ∈ H satisfying δ ≤ |z| ≤ 10. Here, the threshold function P0 in the
definition of the relation ≺ depends on the model parameters as well as δ, ε∗ and γ.

Remark 4.3. The proof of Theorem 4.2 actually shows an explicit dependence of the
estimates (4.1) and (4.2) on ε∗. More precisely, if the right-hand sides of (4.1) and (4.2)
are multiplied by a universal inverse power of ε∗ and the right-hand side of the condition
Im z ≥ p−1+γ is multiplied by the same inverse power of ε∗ then Theorem 4.2 holds true
where the relation ≺ does not depend on ε∗ any more.

Let µ1 ≤ . . . ≤ µn+p be the eigenvalues of H. We define

I(τ) ..=

⌈
(n+ p)

∫ τ

−∞
ρ(dω)

⌉
, τ ∈ R. (4.3)

Thus, I(τ) denotes the index of an eigenvalue expected to be close to the spectral
parameter τ ∈ R.

Corollary 4.4 (Bulk rigidity, Absence of eigenvalues outside of supp ρ). Let δ, ε∗ > 0.

(i) Uniformly for all τ ∈ [−10,−δ]∪ [δ, 10] satisfying ρ(τ) ≥ ε∗ or dist(τ, supp ρ) ≥ ε∗, we
have ∣∣∣∣#{j;µj ≤ τ} − (n+ p)

∫ τ

−∞
ρ(dω)

∣∣∣∣ ≺ 1. (4.4)

(ii) Uniformly for all τ ∈ [−10,−δ] ∪ [δ, 10] satisfying ρ(τ) ≥ ε∗, we have

|µI(τ) − τ | ≺
1

n+ p
. (4.5)

(iii) Asymptotically with overwhelming probability, we have

#
(
σ(H) ∩ {τ ∈ [−10,−δ] ∪ [δ, 10]; dist(τ, supp ρ) ≥ ε∗}

)
= 0. (4.6)

The estimates (4.2a) and (4.2b) in Theorem 4.2 imply Corollary 4.4 in the same way
as the corresponding results, Corollary 1.10 and Corollary 1.11, in [4] were proved. In
fact, inspecting the proofs in [4], rigidity at a particular point τ0 in the bulk requires
only (i) the local law, (4.2a), around τ0 = Re z, (ii) the local law somewhere outside of the
support of ρ, (4.2b), and (iii) a uniform global law with optimal convergence rate, (4.2b),
for any z away from supp ρ.

Proof of Theorem 4.2. In the proof, we will use the following shorter notation. We
introduce the spectral domain

DH
..=
{
z ∈ H : δ ≤ |z| ≤ 10, Im z ≥ p−1+γ , 〈ImM(z)〉 ≥ ε∗ or dist(z, supp ρ) ≥ ε∗

}
for the parameters γ > 0, ε∗ > 0 and δ > 0. Moreover, we define the random control
parameters

Λd(z) ..= ‖g(z)−M(z)‖∞, Λo(z) ..= max
x,y=1,...,n+p

x 6=y

|Gxy(z)|, Λ(z) ..= max{Λd(z),Λo(z)}.

Before proving (4.1) and (4.2), we establish the auxiliary estimates: Uniformly for all
z ∈ DH , we have

Λd(z) + ‖d(z)‖∞ ≺

√
〈ImM(z)〉
(n+ p)η

+
1

(n+ p)η
+

1√
n+ p

, (4.7a)

Λo(z) ≺

√
〈ImM(z)〉
(n+ p)η

+
1

(n+ p)η
+

1√
n+ p

. (4.7b)

EJP 22 (2017), paper 25.
Page 31/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP42
http://www.imstat.org/ejp/


Local law for random Gram matrices

Moreover, for every sequence of vectors w ∈ Cp+n satisfying ‖w‖∞ ≤ 1,

|〈w, g(z)−M(z)〉| ≺ 〈ImM(z)〉
(n+ p)η

+
1

(n+ p)2η2
+

1

n+ p
(4.8)

uniformly for z ∈ DH .
Now, we show that (4.8) follows from (4.7a) and (4.7b). To that end, we use the

following lemma which is proved as Theorem 3.5 in [4].

Lemma 4.5 (Fluctuation Averaging). For any z ∈ DH and any sequence of deterministic
vectors w ∈ Cn+p with the uniform bound, ‖w‖∞ ≤ 1 the following holds true: If Λo(z) ≺
Φ for some deterministic (n and p-dependent) control parameter Φ with Φ ≤ (n+ p)−γ/3

and Λ(z) ≺ (n+ p)−γ/3 a.w.o.p., then

|〈w, d(z)〉| ≺ Φ2 +
1

n+ p
. (4.9)

By (4.7a), the indicator function in (3.35) is nonzero a.w.o.p. Moreover, (4.7b) ensures
the applicability of the fluctuation averaging, Lemma 4.5, which implies that the last
term in (3.35) is stochastically dominated by the right-hand side in (4.8). Using (4.7a)
again, we conclude that the first term of the right-hand side of (3.35) is dominated by
the right-hand side of (4.8).

In order to show (4.7a) and (4.7b) we use the following lemma whose proof we omit,
since it follows exactly the same steps as the proof of Lemma 2.1 in [4].

Lemma 4.6. Let λ∗ : H→ (0,∞) be the function from Lemma 3.9. We have

‖d(z)‖∞1(Λ(z) ≤ λ∗(z)) ≺

√
Im 〈g(z)〉
(n+ p)η

+
1√
n+ p

, (4.10a)

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺

√
Im 〈g(z)〉
(n+ p)η

+
1√
n+ p

(4.10b)

uniformly for all z ∈ DH .

By (3.34) and (4.10a), we obtain

(Λd(z) + ‖d(z)‖∞)1(Λd(z) ≤ λ∗(z)) ≺

√
〈ImM〉
(n+ p)η

+ (n+ p)−εΛd +
(n+ p)ε

(n+ p)η
+

1√
n+ p

for any ε ∈ (0, γ). Here we used Im g = ImM +O(Λd). We absorbe (n+ p)−εΛd into the
left-hand side and get

(Λd(z) + ‖d(z)‖∞)1(Λd(z) ≤ λ∗(z)) ≺

√
〈ImM〉
(n+ p)η

+
1

(n+ p)η
+

1√
n+ p

(4.11)

as ε ∈ (0, γ) is arbitrary. From (4.10b), we conclude

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺

√
〈ImM〉
(n+ p)η

+
1

(n+ p)η
+

1√
n+ p

, (4.12)

where we used Im g = ImM +O(Λd) and (4.11) and the fact that Λd ≤ Λ.
We will conclude the proof by establishing that 1(Λ(z) ≤ λ∗(z)) = 1 a.w.o.p. due to

an application of Lemma A.1 in [4]. Combining (4.11) and (4.12) and using 〈ImM(z)〉 .
(Im z)−1, we obtain

Λ(z)1(Λ(z) ≤ λ∗(z)) ≺ (n+ p)−γ/2 (4.13)
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for z ∈ DH by the definition of DH . We define the function Φ(z) ..= (n+ p)−γ/3 and note
that Λ(z) = ‖g(z)−M(z)‖∞ is Hölder-continuous since g and M are Hölder-continuous
by

max
x,y=1,...,n+p

|Gxy(z1)−Gxy(z2)| ≤ |z1 − z2|
(Im z1)(Im z2)

≤ (n+ p)2|z1 − z2| (4.14)

for z1, z2 ∈ DH and Lemma 3.8, respectively. We set z0 ..= 10i. Since |Gxy(z)| ≤ (Im z)−1

and |Mx(z)| ≤ (Im z)−1 we get Λ(10i) ≤ 1 and hence 1(Λ(10i) ≤ λ∗(10i)) = 1 by Lemma
3.9. Therefore, we conclude Λ(z0) ≤ (n+ p)−γ/2 ≤ Φ(z0) from (4.13). Moreover, (4.13)
implies Λ · 1(Λ ∈ [Φ− (n+ p)−1,Φ]) < Φ− (n+ p)−1 a.w.o.p. uniformly on DH . Thus, we
get Λ(z) ≤ (n+ p)−γ/3 a.w.o.p. for all z ∈ DH by applying Lemma A.1 in [4] to Λ and Φ

on the connected domain DH , i.e., 1(Λ(z) ≤ λ∗(z)) = 1 a.w.o.p. Therefore, (4.11) and
(4.12) yield (4.7a) and (4.7b), respectively. As remarked above this also implies (4.1a).

For the proof of (4.1b) and (4.2b), we first notice that

Gxx(z) =

n+p∑
a=1

|ua(x)|2

µa − z

for all x = 1, . . . , n + p, where ua(x) denotes the x-component of a ‖·‖2 normalized
eigenvector ua corresponding to the eigenvalue µa of H. Therefore, we conclude

ImGxx(z) = η

n+p∑
a=1

|ua(x)|2

(µa − τ)2 + η2
≺ η

n+p∑
a=1

1(Aa)
|ua(x)|2

(µa − τ)2 + η2
≺ η

for all z ∈ H satisfying δ ≤ |z| ≤ 10 and dist(z, supp ρ) ≥ ε∗. Here we used that
Aa ..= {dist(µa, supp ρ) ≤ ε∗/2} occurs a.w.o.p by (4.6) and thus 1 − 1(Aa) ≺ 0. In
particular, we have 〈Im g〉 ≺ η. Now, (4.10a) and (4.10b) yield

‖d(z)‖∞1(Λ(z) ≤ λ∗(z)) ≺
1√
n+ p

, (4.15a)

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺
1√
n+ p

. (4.15b)

Following the previous argument but using (4.15a) and (4.15b) instead of (4.10a) and
(4.10b), we obtain (4.1b) and (4.2b) and this completes the proof of Theorem 4.2.

4.2 Local law for Gram matrices

Proofs of Theorem 2.2 and Theorem 2.4. Splitting the resolvent of H at z ∈ C \ R into
blocks

G(z) =

(
G11(z) G12(z)

G21(z) G22(z)

)
and computing the product G(z)(H − z) blockwise, we obtain that (XX∗ − z2)−1 =

G11(z)/z and (X∗X − z2)−1 = G22(z)/z for z ∈ C \R. Therefore, (2.5) follows from (4.1)
as well as |z| ≥ δ and m(ζ) = M1(

√
ζ)/
√
ζ for ζ ∈ H.

As p ∼ n we obtain

|〈w,diag(XX∗ − ζ)−1 −m(ζ)〉| .
∣∣∣∣〈(w, 0)t ,

1√
ζ

(
g(
√
ζ)−M(

√
ζ)
)〉∣∣∣∣

for w ∈ Cp. Using p ∼ n, this implies (2.6) by (4.2). This concludes the proof of
Theorem 2.2.

Theorem 2.4 is a consequence of the corresponding result for H, namely Corollary 4.4.
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Proof of Theorem 2.7. As m(ζ) = M1(
√
ζ)/
√
ζ for ζ ∈ H, Proposition 3.10 implies

|m(ζ)| . |ζ|−1/2. Thus, π∗ = 0. Recalling π(ω) = ω−1/2ρ1(ω1/2)1(ω > 0), where ρ1
is the bounded density representing 〈M1〉, yields

lim
ω↓0

π(ω)
√
ω =

1

π
〈v1(0)〉 ∈ (0,∞)

by (3.58a) which proves part (ii) of Theorem 2.7.
Since n = p, in this case we have σ(XX∗) = σ(X∗X). Thus, 〈g1〉 = 〈g2〉, i.e., (3.41) is

fulfilled and Proposition 3.10 is applicable.
Using Proposition 3.10 instead of Lemma 3.9 and following the argument in Subsec-

tion 4.1, we obtain the same result as Theorem 4.2 without the restriction |z| ≥ δ. As in
the proof of Theorem 2.2, we obtain

|Rij(ζ)− δijmi(ζ)| ≺
√

Re
√
ζ

|
√
ζ|
√
pIm ζ

.

√
〈Imm(ζ)〉
pIm ζ

.

Here, we deviated from the proof of Theorem 2.2 since |z| can be arbitrarily small for
z ∈ D0 and used part (ii) of Theorem 2.7 in the last step. This concludes the proof of part
(i) of Theorem 2.7.

Consequently, a version of Corollary 4.4 for δ = 0 holds true. Then, part (iii) and (iv)
of the theorem follow immediately.

4.3 Proof of Theorem 2.9

In this subsection, we will assume that (A), (C), (D) and (F2) as well as

p

n
≥ 1 + d∗ (4.16)

for some d∗ > 0 hold true.

Theorem 4.7 (Local law for H around z = 0). If (A), (C), (D), (F2) and (4.16) hold true,
then

(i) The kernel of H and the kernel of H2 have dimension p− n a.w.o.p.

(ii) There is a γ∗ & 1 such that
|µ| ≥ γ∗ (4.17)

a.w.o.p. for all µ ∈ σ(H) such that µ 6= 0.

(iii) For every ε∗ > 0, we have

max
x,y=1,...,n+p

|Gxy(z)−Mx(z)δxy| ≺
1

|z|
√
n+ p

, (4.18a)

|〈g〉 − 〈M〉| ≺ |z|
n+ p

. (4.18b)

uniformly for z ∈ H satisfying |z| ≤
√
δπ − ε∗.

We will prove that the kernel of H2 has dimension p− n by using a result about the
smallest nonzero eigenvalue of XX∗ from [21]. Since this result requires the entries
of X to have the same variance and a symmetric distribution, in order to cover the
general case, we employ a continuity argument which replaces xik, for definiteness, by
centered Gaussians with variance (n+ p)−1. This will immediately imply Theorem 4.7
and consequently Theorem 2.9.

We recall the definition of δπ from (2.12) and choose δ∗ as in Proposition 3.16 for the
whole section. Note that δ2∗ ≤ δπ.
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Lemma 4.8. If (4.16) holds true then for all δ1, δ2 > 0 such that δ1 < δ2 < δ2∗/2, the
matrix H2 has no eigenvalues in [δ1, δ2] a.w.o.p.

Proof. Part (iii) of Corollary 4.4 with δ = δ1 and ε∗ = min{δ1, δπ − δ2} implies

#
(
σ(H) ∩ [

√
δ1,
√
δ2]
)

= 0

a.w.o.p. because there is a gap in the support of ρ by part (iii) of Proposition 3.16. Since
σ(H2) = σ(H)2 this concludes the proof.

For the remainder of the section, let X̂ = (x̂ik)k=1,...,n
i=1,...,p consist of independent centered

Gaussians with E|x̂ik|2 = (n+ p)−1. We set

Ĥ ..=

(
0 X̂

X̂∗ 0

)
.

Lemma 4.9. If (4.16) holds true then the kernel of X̂X̂∗ has dimension p− n a.w.o.p.,
ker(X̂∗X̂) = {0} a.w.o.p. and there is a γ̂ ∼ 1 such that

λ̂ ≥ γ̂ (4.19)

for all λ̂ ∈ σ(X̂∗X̂).

Proof. Let λ̂1 ≤ . . . ≤ λ̂p be the eigenvalues of X̂X̂∗. The assertion will follow once we

have established that λ̂p−n+1 & 1 a.w.o.p. since X̂X̂∗ and X̂∗X̂ have the same nonzero

eigenvalues and dim ker X̂X̂∗ ≥ p − n for dimensional reasons. Corollary V.2.1 in [21]
implies that λ̂p−n+1 ≥ γ−−p−2/3+ε a.w.o.p. for each ε > 0 where γ− ..= 1−2

√
pn/(n+p) &

1, thus λ̂p−n+1 & 1 a.w.o.p. In fact, our proof only requires that λ̂p−n+1 ≥ γ− − ε for any
ε > 0 a.w.o.p, which already follows from the argument in [35].

Proof of Theorem 4.7. We define Ht
..=
√

1− tH +
√
tĤ for t ∈ [0, 1] and set γ∗ ..=

min{δ∗/2,
√
γ̂}, where γ̂ is chosen as in (4.19). By Lemma 4.8 with δ2 ..= γ2∗ and δ1 ..= γ2∗/2,

H2
t has no eigenvalues in [δ1, δ2] a.w.o.p. for every t ∈ [0, 1]. Clearly, the eigenvalues of

H2
t depend continuously on t. Therefore, #(σ(H2) ∩ [0, δ1)) = #(σ(Ĥ2) ∩ [0, δ1)). Thus,

we get the chain of inequalities

p− n ≤ dim kerH = dim kerH2

≤ #
(
σ(H2) ∩ [0, δ1)

)
= #

(
σ(Ĥ2) ∩ [0, δ1)

)
= dim ker Ĥ2 = p− n.

Here we used Lemma 4.9 in the last step. As the left and the right-hand-side are equal
all of the inequalities are equalities which concludes the proof of part (i) and part (ii).

We will omit the proof of part (iii) of Theorem 4.7 as it is very similar to the proof of
part (vi) of Theorem 2.9 below which will be independent of part (iii) of Theorem 4.7.

Proof of Theorem 2.9. Since δ∗ is chosen as in Proposition 3.16 we conclude δπ ≥ δ2∗ & 1

from part (iv) of this proposition. Part (ii) and (iii) of the theorem follow immediately
from (4.17) in Theorem 4.7.

If p > n, then dim kerXX∗ = p−n a.w.o.p. as p−n ≤ dim kerXX∗ ≤ dim kerH2 = p−n
a.w.o.p by part (i) of Theorem 4.7. By Proposition 3.16, we obtain π∗ = 〈u〉 = 1 − n/p,
where u is defined as in this proposition. This proves part (iv). If p < n, then part (v)
follows from interchanging the roles of X and X∗ and following the same steps as in the
proof of part (iv).

For the proof of part (vi), we first assume p > n. By Proposition 3.16 we can uniquely
extend ζm(ζ) =

√
ζM1(

√
ζ) to a holomorphic function on Dδ2∗

(0). We fix γ∗ as in (4.17).
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On the event {λi ≥ γ2∗ for all i = p − n + 1, . . . , p}, which holds true a.w.o.p. by (4.17),
the function ζR(ζ) can be uniquely extended to a holomorphic function on Dγ2

∗
(0). We

set δ ..= min{γ2∗/2, δ2∗} and assume without loss of generality that δ ≤ δπ − ε∗. For
ζ ∈ H satisfying δ ≤ |ζ| ≤ δπ − ε∗, (2.13) is immediate from (2.5b). We apply (2.5b)
to obtain maxi,j |Rij(ζ) −mi(ζ)δij | ≺ 1/p for ζ ∈ H satisfying |ζ| = δ. By the symmetry
of R(ζ) and m(ζ) this estimate holds true for all ζ ∈ C satisfying |ζ| = δ. Thus, the
maximum principle implies that maxi,j |ζRij(ζ) − ζmi(ζ)δij | ≺ 1/p which proves (2.13)
since {λi ≥ 2δ for all i = p− n+ 1, . . . , p} which holds true a.w.o.p. by 2δ ≤ γ2∗ and (4.17).
If p < n then XX∗ does not have a kernel a.w.o.p. by (v). Therefore, a similar argument
yields (2.14).

For the proof of (2.15), we observe that dim ker(XX∗) = pπ∗ a.w.o.p. in both cases by
(iv) and (v). Thus,

1

p

p∑
i=1

[Rii(ζ)−mi(ζ)] =
1

p

 ∑
j : λj≥γ2

∗

1

λj − ζ
−

p∑
i=1

ai(
√
ζ)


a.w.o.p. for ζ ∈ Dδ(0), δ chosen as above, by (4.17), where a is the holomorphic function
on Dδ∗(0) defined in Proposition 3.16. The right-hand side of the previous equation can
therefore be uniquely extended to a holomorphic function on Dδ∗(0). As before, the
estimate (2.5b) can be extended to ζ ∈ H with |ζ| ≤ δ by the maximum principle.

The local law for ζ around zero needed an extra argument, Theorem 2.9, due to the
possible singularity at ζ = 0. We note that this separate treatment is necessary even
if p < n, in which case XX∗ does not have a kernel and R(ζ) is regular at ζ = 0, since
we study XX∗ and X∗X simultaneously. Our main stability results are formulated and
proved in terms of H, as defined in (3.1). Therefore, these results are not sensitive to
whether p or n is bigger which means whether XX∗ has a kernel or X∗X.

A Appendix: Proof of the Rotation-Inversion lemma

In this appendix, we prove the Rotation-Inversion lemma, Lemma 3.6.

Proof of Lemma 3.6. In this proof, we will write ‖A‖ to denote ‖A‖2. Moreover, we
introduce a few short hand notations,

U ..=

(
U1 0

0 U2

)
, A ..=

(
0 A

A∗ 0

)
, a± ..=

1√
2

(
v1
±v2

)
, ρ ..= ‖A∗A‖1/2.

In particular, we have Av2 = ρeiψv1 and A∗v1 = ρe−iψv2 for some ψ ∈ R. By redefining
v1 to be eiψv1 we may assume that ψ = 0 and get Aa± = ±ρa± as well.

Let us check that indeed U + A is not invertible if the right hand side of (3.25) is
infinite, i.e., if

‖A∗A‖〈v1 , U1v1〉〈v2 , U2v2〉 = 1 .

In this case we find ‖A∗A‖ = 1, 〈v1 , U1v1〉 = eiϕ and 〈v2 , U2v2〉 = e−iϕ for some ϕ ∈ R.
Thus, v1 and v2 are eigenvectors of U1 and U2, respectively. Therefore, both U and A
leave the 2-dimensional subspace spanned by (v1, 0) and (0, v2) invariant and in this basis
the restriction of U +A is represented by the 2× 2-matrix(

eiϕ 1

1 e−iϕ

)
,

which is not invertible.
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We will now show that in every other case U +A is invertible and its inverse satisfies
(3.25). To this end we will derive a lower bound on ‖(U+A)w‖ for an arbitrary normalized
vector w ∈ Cn+p. Any such vector admits a decomposition,

w = α+a+ + α−a− + βb ,

where α± ∈ C, β ≥ 0 and b is a normalized vector in the orthogonal complement of the
2-dimensional space spanned by a+ and a−. The normalization of w implies

|α+|2 + |α−|2 + β2 = 1 . (A.1)

The case β = 1 is trivial because the spectral gap of A∗A implies a spectral gap of A in
the sense that

σ(A/ρ) ⊆ {−1} ∪
[
− 1 + ρ−2 Gap(AA∗), 1− ρ−2 Gap(AA∗)

]
∪ {1} . (A.2)

Thus, we will from now on assume β < 1.
We will use the notations P‖ and P⊥ for the orthogonal projection onto the 2-

dimensional subspace spanned by a± and its orthogonal complement, respectively.
We also introduce

λ ..=
1

2

|α+ + α−|2

|α+|2 + |α−|2
∈ [0, 1] ,

κ ..= (|α+|2 + |α−|2)−1/2‖P‖(1 + U∗A)(α+a+ + α−a−)‖ .
(A.3)

With this notation we will now prove

‖(U +A)w‖ ≥ c1 Gap(AA∗)κ , (A.4)

for some positive numerical constant c1. The analysis is split into the following regimes:

Regime 1: κ1/2 < 10β,

Regime 2: κ1/2 ≥ 10β and λ < 1/10,

Regime 3: κ1/2 ≥ 10β and λ > 9/10,

Regime 4: κ1/2 ≥ 10β and 1/10 ≤ λ ≤ 9/10 and |〈v1 , U1v1〉|2 + |〈v2 , U2v2〉|2 ≤ 2− κ/2,

Regime 5: κ1/2 ≥ 10β and 1/10 ≤ λ ≤ 9/10 and |〈v1 , U1v1〉|2 + |〈v2 , U2v2〉|2 > 2− κ/2.

These regimes can be chosen more carefully in order to optimize the constant c1 in (A.4),
but we will not do that here.

Regime 1: In this regime we make use of the spectral gap of A∗A by simply using the
triangle inequality,

‖(U +A)w‖ ≥ ‖w‖ − ‖Aw‖ = 1−
√
ρ2 |α+|2 + ρ2 |α−|2 + β2‖Ab‖2.

We use the inequality 1 −
√

1− τ ≥ τ/2 for τ ∈ [0, 1] as well as the normalization (A.1)
and find

2‖(U +A)w‖ ≥ 1− ρ2 + ρ2β2 − β2‖Ab‖2 ≥ ρβ2(ρ− ‖Ab‖) ≥ β2 Gap(AA∗) .

The last inequality follows from (A.2) and because b is orthogonal to a±. Since β2 ≥ κ/100,
we conclude that in the first regime (A.4) is satisfied.
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Regime 2: In this regime we project on the second component of (U +A)w.

√
2‖(U +A)w‖ ≥ ‖(α+ − α−)U2v2 +

√
2βU2b2 − (α+ + α−)A∗v1 −

√
2βA∗b1‖

≥ |α+ − α−|‖U2v2‖ −
√

2β‖U2b2‖ − ρ |α+ + α−|‖v2‖ −
√

2β‖A∗b1‖

≥
√

2
√
|α+|2 + |α−|2(

√
1− λ−

√
λ)− 2

√
2β .

Here we used the notation b = (b1, b2) for the components of b. The last inequality holds
by the normalization of v2 and b, by ρ ≤ 1 and by the definition of λ from (A.3), which
also implies

|α+ − α−|2 = 2(1− λ)(|α+|2 + |α−|2) .

Since λ < 1/4 in this regime and κ ≤ 2 by the definition of κ in (A.3) we find β ≤
κ1/2/10 ≤ 1/5 and infer

‖(U +A)w‖ ≥
√

1− β2(
√

1− λ−
√
λ)− 2β ≥ 1/10 ≥ κ/20 .

Regime 3: By the symmetry in a± and α± and therefore in λ and 1− λ this regime is
treated in the same way as Regime 2 by estimating the norm of the first component of
(U +A)w from below.

Regime 4: Here we project onto the orthogonal complement of the subspace spanned
by a+ and a−,

‖(U +A)w‖ ≥ ‖P⊥(U +A)w‖ ≥ ‖P⊥U(α+a+ + α−a−)‖ − β‖P⊥(U +A)b‖ . (A.5)

We compute the first term in this last expression more explicitly,

‖P⊥U(α+a+ + α−a−)‖2 = ‖α+a+ + α−a−‖2 − ‖P‖U(α+a+ + α−a−)‖2

= |α+|2 + |α−|2 −
1

2
|α+ + α−|2|〈v1 , U1v1〉|2

− 1

2
|α+ − α−|2|〈v2 , U2v2〉|2

= (1− β2)
(
1− λ|〈v1 , U1v1〉|2 − (1− λ)|〈v2 , U2v2〉|2

)
.

(A.6)

For the second equality we used that

‖P‖u‖2 = |〈v1 , u1〉|2 + |〈v2 , u2〉|2, u = (u1, u2) ∈ Cp+n.

With the choice of variables

ξ ..= |〈v1 , U1v1〉|2 , η ..= |〈v2 , U2v2〉|2 ,

we are minimizing the last line in (A.6) under the restrictions that are satisfied in this
regime,

min{1− λξ − (1− λ)η : ξ, η ∈ [0, 1] , 2ξ + 2η ≤ 4− κ} ≥ 1

2
κmin{1− λ, λ} .

We use the resulting estimate in (A.5) and in this way we arrive at

‖(U +A)w‖ ≥ 1√
2
κ1/2

√
1− β2 min{1− λ, λ}1/2 − 2β ≥ κ1/2

100
≥ κ

200
.

In the second to last inequality we used β ≤ 1/5 which was already established in the
consideration of Regime 2 and in the last inequality we used κ ≤ 2.
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Regime 5: In this regime we project onto the span of a+ and a−,

‖(U +A)w‖ = ‖(1 + U∗A)w‖
≥ ‖P‖(1 + U∗A)(α+a+ + α−a−)‖ − β‖P‖(1 + U∗A)b‖

=
√
|α+|2 + |α−|2 κ− β ‖P‖U∗Ab‖ .

(A.7)

The second term in the last line is estimated by using

‖P‖U∗Ab‖2 ≤ ‖Ab‖ sup
h‖a±

sup
u⊥a±

|〈h,U∗u〉|2 ,

where the suprema are taken over normalized vectors h and u in the 2-dimensional
subspace spanned by a± and its orthogonal complement, respectively. First we perform
the supremum over h and get

‖P‖U∗Ab‖2 ≤ sup
u⊥a±

(
|〈v1 , U∗1u1〉|2 + |〈v2 , U∗2u2〉|2

)
≤ sup

u1⊥v1
|〈v1 , U∗1u1〉|2 + sup

u2⊥v2
|〈v2 , U∗2u2〉|2,

(A.8)

where the vectors u1 ∈ Cp and u2 ∈ Cn are normalized. Computing

sup
u1⊥v1

|〈v1 , U∗1u1〉|2 = 1− |〈v1 , U1v1〉|2 , sup
u2⊥v2

|〈v2 , U∗2u2〉|2 = 1− |〈v2 , U2v2〉|2 ,

we get
‖P‖U∗Ab‖2 ≤ 2− |〈v1 , U1v1〉|2 − |〈v2 , U2v2〉|2 ≤ κ/2 ,

where we used the choice of Regime 5 in the last step. Plugging this bound into (A.7)
and using β ≤ κ1/2/10 as well as β ≤ 1/5 yields

‖(U +A)w‖ ≥
√

1− β2 κ− βκ1/2 ≥ κ/2 .

This finishes the proof of (A.4). In order to show (3.25), and thus the lemma, we
notice that

κ ≥ inf
u‖a±
‖P‖(1 + U∗A)u‖ ,

where the infimum is taken over normalized vectors u in the span of a+ and a−. Thus,
it suffices to estimate the norm of the inverse of P‖(1 + U∗A)P‖, restricted to the 2-
dimensional subspace with orthonormal basis (v1, 0) and (0, v2). In this basis this linear
operator takes the form of the simple 2× 2-matrix,(

1 ρ〈v1 , U1v1〉
ρ〈v2 , U2v2〉 1

)
.

Its inverse is bounded by the right hand side of (3.25), up to the factor Gap(AA∗) that
we encountered in (A.4), and the lemma is proven.
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