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Abstract

Consider the following partial “sorting algorithm” on permutations: take the first
entry of the permutation in one-line notation and insert it into the position of its own
value. Continue until the first entry is 1. This process imposes a forest structure on
the set of all permutations of size n, where the roots are the permutations starting
with 1 and the leaves are derangements. Viewing the process in the opposite direction
towards the leaves, one picks a fixed point and moves it to the beginning. Despite its
simplicity, this “fixed point forest” exhibits a rich structure. In this paper, we consider
the fixed point forest in the limit n → ∞ and show using Stein’s method that at a
random permutation the local structure weakly converges to a tree defined in terms of
independent Poisson point processes. We also show that the distribution of the length
of the longest path from a random permutation to a leaf converges to the geometric
distribution with mean e − 1, and the length of the shortest path converges to the
Poisson distribution with mean 1. In addition, the higher moments are bounded and
hence the expectations converge as well.
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1 Introduction

1.1 Fixed point forest

Consider a deck of n cards labeled 1, 2, . . . , n given in an arbitrary order. Take the
top card and reinsert it into the pile at the position of its value. This gives rise to a
partial sorting algorithm, where the algorithm stops when card 1 is on the top. This
can be formulated in terms of the set Sn of permutations of size n. Each permutation
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Local limit of the fixed point forest

321

312

231

213

132 123

Figure 1: Fixed point forest F3.

π represents an ordered deck of cards and can be written in one-line notation as
π(1)π(2) . . . π(n), where π(i) is the value of the i-th card in the deck with π(1) being the
topmost card. Then π(1) is removed and reinserted into the position π(1). For example,
the permutation 3142 ∈ S4 goes to 1432. This defines a graph with vertices being all
permutations in Sn and vertex π being connected by an edge to vertex π′, if π′ is obtained
from π by moving the first entry π(1) to position π(1). It was shown in [13] that the graph
is in fact a rooted forest, which we call Fn. A rooted forest is a union of rooted trees,
where a tree is a graph that does not contain any closed loops involving distinct vertices.
Since later on we will consider trees with random permutations as roots, we call each
root of Fn a base. The bases of the forest are the permutations with π(1) = 1, and the
leaves are the derangements, that is, permutations without fixed points. The partial
sorting algorithm describes a path from a permutation to a base. Viewing the process
in the opposite direction towards the leaves (i.e. vertices without incoming edge), one
picks a fixed point π(i) = i of the permutation and moves it to the beginning, which we
call bumping the fixed point i. For this reason, we call this forest the fixed point forest .
Examples for n = 3 and n = 4 are given in Figures 1 and 2, respectively.

The goal of this paper is to understand the local structure of this forest as n→∞. Put
differently, we would like to describe the neighborhood of a “typical” permutation in the
forest for large n. We carry this out in Theorem 3.6, where we find the limit of the forest
as n→∞ in the sense of local weak convergence, as defined in Section 2.1 (see [2] for
more background). The limit is a random tree that we construct from an infinite collection
of independent Poisson point processes. The proof relies on Stein’s method for Poisson
approximation. The limit tree seems to have interesting properties; see Section 1.4 for
comparisons to other processes. As a corollary of this local weak convergence, we show
that the distributions of the distance from a random permutation to the farthest and
nearest leaves descending from it converge, respectively, to a geometric distribution
with mean e− 1 and a Poisson distribution with mean 1. With some additional work, we
prove that the higher moments are bounded and hence the expectations converge as
well (see Theorem 5.1).

We were first made aware of the fixed point forest by Gwen McKinley who studied it in
her undergraduate thesis [13], which she wrote under the guidance of the second author.
McKinley was introduced to the problem at the Missouri State University summer REU
program by Les Reid to whom the process was suggested by Gerhardt Hinkle. In her
thesis, McKinley investigated several global properties of the forest, finding for instance
that the longest path to the base is of length 2n−1 − 1. Despite the simplicity of the
description of the fixed point forest, many basic questions about it seem difficult and
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Figure 2: Fixed point forest F4.

remain unanswered. We discuss some of them in more detail in Section 6. Both locally
and globally, the structure of the fixed point forest seems quite rich.

In the remainder of the introduction, we provide a non-technical discussion of the
local structure of the forest Fn in the limit n → ∞. Let πn be a uniformly random
permutation in Fn. The essential information for determining the neighborhood of πn is
the location of its fixed and near-fixed points. Our idea for understanding the limiting
structure of Fn is to construct a sort of limit of the fixed and near-fixed points of πn. By
rescaling by a factor of 1/n, these are represented as Poisson point processes on [0, 1].
Then, we define a tree from these point processes, which will turn out to be the local
limit of Fn (see Section 3).

1.2 Moving towards leaves in the tree

Suppose that π is a permutation and that we would like to enumerate its descendants
up to three levels in the forest; that is, we want to determine all permutations obtained
from π by bumping fixed points to the beginning no more than three times. What
information about π do we need?

The answer is that we must know all i such that π(i) = i, π(i) = i+ 1, or π(i) = i+ 2.
This is best seen by example. To unify our terminology, say that the letter π(i) or the
position i is k-separated if π(i) = i+ k. A 0-separated letter is simply a fixed point.

Example 1.1. Suppose that π has 0-separated letters at positions 7 and 27, that it has
a 1-separated letter at 18, and that it has a 2-separated letter at 13. Then π has two
children in the forest, given by bumping the letters in either position 7 or 27.
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Figure 3: The descendants of π from Example 1.1, encoded by their words. Only three
levels are given here, since we are using the information only from the 0-, 1-, and 2-
separated letters. To construct a tree like this given only the encoding of π by its word,
when we bump the 0-separated letter at a given position, we remove the 0 from this
position and subtract 1 from all letters previous to the bumped position. A value of −k is
indicated here by k̄, that is, barred and colored red.

If the letter in position 7 is bumped, then the resulting permutation still has a 0-
separated letter at 27, a 1-separated letter at 18, and a 2-separated letter at 13. From
here, one child is given by bumping the letter in position 27. Then, this turns the 1-
separated letter at position 18 into a 0-separated letter at 19, and it turns the 2-separated
letter at 13 into a 1-separated letter at 14. From here, there is a child given by bumping
the letter in position 19 (as well as another child after that).

If the letter in position 27 is bumped in the first step, then the 0-separated letter
at 7 is destroyed, the 1-separated letter at 18 becomes a 0-separated letter at 19, and
the 2-separated letter becomes a 1-separated letter at 14. Now there is a child given
by bumping the letter in position 19, which turns the 1-separated letter at 14 into a
0-separated letter at 15, which can then be bumped.

This example suggests a way to encode a permutation according to its k-separated
letters for k = 0, . . . ,K. We create a word containing a k for each k-separated position
in the permutation, in the order that they appear. For example, with K = 2, the word
corresponding to π in Example 1.1 is 0210. When we bump the 0-separated letter at a
given position, we remove the 0 from this position, subtract 1 from all letters previous to
the bumped position, and we leave alone all letters after the bumped position. We write
a −k letter as k̄, that is, barred and colored red. These negative letters are irrelevant
for determining the descendants of a permutation, but we leave them in the word for
consistency with the next section. Thus bumping the first 0 from 0210 yields 210, and
bumping the second 0 yields 1̄10. This gives us the compact depiction of the descendants
of π in Figure 3.

We warn the reader that this picture is incomplete in one way. When a 0-separated
letter at position i is bumped, it creates a new (i− 1)-separated letter at position 1. In
Example 1.1, this makes no difference, but in the following example it does.

Example 1.2. Suppose that π is the permutation 42135, in one-line notation. Then π has
0-separated letters at locations 2 and 5, and it has no 1- or 2-separated letters. If 5 is
bumped, the resulting permutation has no 0-separated letters and hence no children. If
2 is bumped, then we still have a 0-separated letter at 5. We also have a new 1-separated
letter at position 1, namely the 2 that was just bumped. Thus, if 5 is bumped, we can
then bump the 2 again.

If we start with the word 00 corresponding to 42135 and then follow the rules laid out
before this example for manipulating these words, we miss this last descendant (see
Figure 4).
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Figure 4: On the left, we depict the descendants of the permutation 42135 in the forest.
Fixed points are in bold. On the right, we show the apparent forest computed only using
the words giving the order of the k-separated letters. This misses a descendant created
by the “reentry” of 2 as a fixed point.

ξπ0 :
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Figure 5: The point processes ξπ0 , ξπ1 , and ξπ2 on the interval [0, 1], representing the 0-, 1-,
and 2-separated letters in the abstracted permutation π. The word associated with this
permutation for K = 2 is 0120, and the tree of its descendants up to three levels is the
same as in Figure 3.

This possible “reentry” of a bumped letter as a fixed point complicates the picture.
When we determine the descendants of a permutation π up to level K, this reentry can
only occur if there is a 0-separated letter at one of positions 1, . . . ,K−1. For fixed K, this
is vanishingly unlikely as n→∞, and so in constructing the limit tree, we ignore it. The
essential idea to this construction is to take a random word on the alphabet 0, . . . ,K and
make a tree by the procedure described in Figure 3. In constructing the limit tree, one
complication is that we want K to be infinite. To address this, we represent the locations
of k-separated letters for each k in an abstracted permutation π as a point process ξπk ,
representing a set of locations on the interval [0, 1]. These will be independent Poisson
point processes with intensity one in the limit. For any fixed K, we can then obtain a
string by writing a k for each point of ξπk for 0 ≤ k < K, sorted by the positions of the
points in [0, 1]. This string then determines a tree up to level K following the procedure
sketched out after Example 1.1.

Example 1.3. Suppose ξπ0 , ξπ1 , and ξπ2 contain points as depicted in Figure 5. Then
the word associated with the abstracted permutation π for K = 2 is 0120, and the tree
generated by it up to three levels is the same one as in Example 1.1 and Figure 3.

One can also construct the tree directly from the point processes, without the
intermediate step of converting to a word. The abstracted permutation π with associated
point processes ξπ0 , ξ

π
1 , . . . has |ξπ0 | children, with |ξπ0 | denoting the number of points

in ξπ0 . The point processes obtained by bumping a point x ∈ [0, 1] of ξπ0 are given by
removing the point x from ξπ0 , and by “shifting down” each point process on [0, x) as in
Figure 6.
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Figure 6: If π is an abstracted permutation and π′ is its child given by bumping the
middle point x in ξπ0 , then the point processes ξπ

′

k is equal to ξπk+1 on [0, x) and is equal to
ξπk on (x, 1], as depicted above.

1.3 Moving towards the base in the tree

In the previous section, we gave a loose account of how to define the descendants of
an abstracted permutation π in the limit tree. We need to define the entire tree, however,
which includes the ancestors of π and their descendants.

Suppose π is a (non-abstracted) permutation, and we would like to determine both
how many children and how many siblings it has in the forest. Again, we ask the question
of what information about π we need to find this out.

As before, we need to know the locations of 0-separated letters in π. We also need to
know the locations of −1-separated letters, which can become 0-separated letters in the
parent of π. Finally, we need to know the value of π(1), as this determines the ancestor
of π in the forest.

Example 1.4. Let π be the permutation from Example 1.1, which has 0-separated letters
at positions 7 and 27. Suppose that it has −1-separated letters at 15 and 36, and suppose
that π(1) = 20.

As before, π has two children in the forest, given by bumping positions 7 and 27.
When we move towards the base in the tree to the parent of π, the 0-separated letter
at position 7 becomes a 1-separated letter at position 6, and the −1-separated letter
at position 15 becomes a 0-separated letter at position 14, while the separated letters
after position 20 remain the same. The permutation also has a new 0-separated letter at
position 20, which if bumped leads to π. Thus the parent of π has three children total,
and π has two siblings.

Again, we can view this in terms of words encoding the k-separated letters. We can
view the permutation π of Example 1.4 as the word 021̄1|01̄, with the | symbol specifying
the value of π(1). When moving towards the base in the tree, a 0 is inserted in the
position of the | symbol, and all values to the left of the | are incremented. See Figure 7
for a depiction of Example 1.4 in these terms. As before, this picture is incomplete:
if the first character in the word corresponds to a separated letter at position 1, this
character is deleted rather than incremented when moving towards the base in the tree.
This will be irrelevant in the limit, since for a fixed K and r, a random permutation is
vanishingly unlikely to have a k-separated letter with |k| 6 K occurring in the first r
positions.

The extra ingredient in moving towards the base in the tree rather than towards the
leaves is knowledge of π(1). Looking back at Figure 6, to go backward from π′ to π in
the limit tree, we need the location of the dotted line, which cannot be determined from
ξπ
′

k . In the limit case, these locations will be uniform over [0, 1] and independent of the
point processes.
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Figure 7: The children, parent, and siblings of the permutation π given in Example 1.4.

1.4 Comparison to other known processes

It is a natural question to compare the fixed point forest or its subtrees to other
known random trees, such as the Galton–Watson tree [18]. The tree component of the
fixed point forest containing the identity permutation has approximately (n− 1)! vertices.
As we discussed earlier, the height of this component is 2n−1 − 1 as shown in [13]. The
Galton–Watson tree on the other hand has height

√
N if the tree has N vertices [1],

which is much larger than 2n−1 when N = (n− 1)!. This is consistent with the fact that
the fixed point tree has offspring sizes that are correlated across generations, whereas
the Galton–Watson tree has independent siblings. The fixed point forest locally also is
quite different from a Galton–Watson tree. For example, no leaf in the fixed point forest
has a sibling that is also a leaf.

The process of picking a fixed point at random and moving it to the front (which
corresponds to a walk to a leaf) has some resemblance to the Tsetlin library [17, 8, 9],
which is a model for the evolution of an arrangement of books in a library shelf over
time. It is a Markov chain on permutations, where the entry in the i-th position is moved
to the front with probability pi. However, in the fixed point forest this process eventually
stops when a derangement is reached, whereas in the Tsetlin library the process can go
on arbitrarily long.

2 The limiting objects

In this section, we provide the precise definition of the limiting tree.

2.1 Local weak convergence in general

The main result of this paper is the local weak convergence of the fixed point forest
to a certain limiting tree. This mode of convergence is sometimes called Benjamini–
Schramm convergence after the paper [4]. We will give a short introduction to local
weak convergence now, but see [2, Section 2] for a more in depth discussion.

Let G,G1, G2, . . . be a sequence of random rooted graphs. For any rooted graph H,
H(r) denotes the r-ball around the root of H; that is, H(r) is the subgraph of H induced
by all vertices at distance r or less from the root. We write H ∼= H ′ to signify that H and
H ′ are isomorphic as rooted graphs. We say that G is the local weak limit of Gn if for
every r ≥ 0 and every finite graph H,

P[Gn(r) ∼= H]→ P[G(r) ∼= H]

as n→∞. Roughly speaking, this says that the view from the root of Gn resembles the
view from the root of G in distribution more and more as n → ∞. Frequently, Gn is a
finite, deterministic graph with its root chosen uniformly at random, as will be the case
in this paper.
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Local limit of the fixed point forest

2.2 Construction of the limit tree

The ingredients of our construction are a collection of Poisson point processes
(ξρk)k∈Z of unit intensity on [0, 1] and a sequence U1, U2, . . . of independent Unif[0, 1]

random variables. Formally, a point process is an integer-valued random measure on
the Borel sets of R. One should think of it as a random collection of points, represented
as the atoms of the measure. A Poisson point process ξ of unit intensity on [0, 1] is
characterized by two properties: First, for any interval of length x, the number of points
of ξ in the interval is distributed as Poi(x). Second, the numbers of points of ξ in disjoint
intervals are independent. We use the terminology point process configuration to mean
a deterministic collection of points, also represented formally as a measure.

The point process ξρk represents the k-separated letters in the abstracted permuta-
tion ρ. Let ρ1 be the parent of ρ0 = ρ, let ρ2 be the parent of ρ1, and so on. The random
variable Ui represents the 0-separated letter in ρi that was bumped to create ρi−1.

To construct the tree, we first define maps corresponding to moving forwards and
backwards from a given vertex.

Definition 2.1 (The forward map f ). Let ξ = (ξk)k∈Z be a collection of point process
configurations on [0, 1]. For any atom x of ξ0, let f(ξ, x) = (ξ′k)k∈Z, where

ξ′k = ξk+1

∣∣
[0,x)

+ ξk
∣∣
(x,1]

.

This is the down-shift operation depicted in Figure 6, corresponding to moving forwards
towards a leaf in the tree from a permutation to one of its children by bumping the
abstracted fixed point x.

Definition 2.2 (The backward map b). Let ξ = (ξk)k∈Z be a collection of point process
configurations on [0, 1]. For any u ∈ [0, 1], let b(ξ, u) = (ξ′k)k∈Z, where

ξ′0 = ξ−1
∣∣
[0,u)

+ ξ0
∣∣
(u,1]

+ δu,

ξ′k = ξk−1
∣∣
[0,u)

+ ξk
∣∣
(u,1]

for k 6= 0.

This is the reverse of the forward map, in the following sense: if x is an atom of ξ0 and
f(ξ, x) = ξ′, then b(ξ′, x) = ξ.

Next, we define a tree by applying f and b to map out the abstracted permutations.

Definition 2.3. Given point process configurations ξρ = (ξρk)k∈Z and a sequence u =

(u1, u2, . . .) of elements of [0, 1], we construct a rooted tree ϕ(u, ξρ) as follows. We think
of each vertex v of this tree as an abstracted permutation, represented by a collection
of point processes ξv = (ξvk)k∈Z. Let ρ = ρ0 be the root of the tree. First, we give
ρ0 an infinite chain of ancestors ρ1, ρ2, . . .. Starting with ξρ0 , which is given to us, we
inductively define

ξρi+1 = b
(
ξρi , ui+1

)
.

Next, we construct descendants of each ρi. For every atom x in ξρi0 other than ui,
give ρi a child ρi(x) and define

ξρi(x) = f
(
ξρi , x

)
.

for all k. (We avoid doing this with x = ui since this would just recreate ρi−1.) From here
on, we proceed inductively, continuing to extend the tree forwards. Suppose that ξv has
already been defined. For each atom x in ξv0 , extend the tree by creating a child v(x) of
v, and define

ξv(x) = f
(
ξv, x

)
.
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Local limit of the fixed point forest

We define ϕ(u, ξρ) as the resulting tree. Also, observing that the r-neighborhood of
the root of the tree depends only on

(
ξρ−r+1, . . . , ξ

ρ
r−1
)

and on u1, . . . , ur, define the map
ϕr by setting ϕr

(
u1, . . . , ur; ξ

ρ
−r+1, . . . , ξ

ρ
r−1
)

as the r-neighborhood of the root of ϕ(u, ξρ).

Finally, we construct the limit tree T .

Definition 2.4. Define T = ϕ(U, ξρ), where U = (U1, U2, . . .) consists of independent
Unif[0, 1] random variables, and ξρ = (ξρk)k∈Z consists of independent Poisson point
processes on [0, 1] with unit intensity, and ξρ and U are independent of each other.

In the following section, we will prove that T is the local limit of Fn as n→∞.

3 Local weak convergence of the fixed point tree

Recall that i is a k-separated position in a permutation π if π(i) = i+k. The main idea
in this section is that the neighborhood of a permutation π in Fn up to distance r can
typically be reassembled from two pieces of information: the k-separated positions in π
for −r < k < r, and the values of π(1), . . . , π(r). The first piece lets us work out the tree
forwards (towards leaves) from π. When we rescale by 1/n, these locations converge to
independent Poisson point processes on [0, 1]. The second piece of information lets us
move backwards in the tree. With the same rescaling, these random variables converge
to independent points sampled uniformly from [0, 1]. The two pieces of information
converge jointly, as shown in Proposition 3.5, and the weak local convergence of the
fixed point tree Fn follows easily from this in Theorem 3.6.

While this convergence is what one would expect from well known Poisson approxi-
mations of fixed points of random permutations (see [6, Theorem 11], for example), it
will take some technical work to prove our precise statement. We will use Stein’s method
via size-bias couplings using the framework from [3], which we introduce now. See also
[14, Section 4.3] for a more detailed introduction to size-bias couplings. The general
idea for our purposes is that we have a collection of 0-1 random variables, and we would
like to show that they are well approximated by independent Poisson random variables.
If there exist certain couplings described below, Stein’s method gives a quantitative
version of this approximation. The bound is given in terms of the covariances of the
random variables and does not depend on the couplings, once they are shown to exist.

Condition 3.1. Let I = (Iα)α∈I be a collection of 0-1 random variables. For each α ∈ I,
there is a random vector J•α = (Jβα)β∈I coupled with I such that

• J•α is distributed as I conditioned on Iα = 1;

• we can partition I into disjoint sets

I = I+α ∪ I−α ∪ {α}

such that with probability one,

Jβα 6 Iβ if β ∈ I−α , (3.1)

Jβα > Iβ if β ∈ I+α . (3.2)

When this condition holds, one can estimate the distance between I and a vector of
independent Poisson random variables in terms of the covariances of the components of
I, with no mention of the coupling. Here, as usual, the covariance between two random
variables X and Y is

Cov(X,Y ) = E[XY ]−E[X]E[Y ].
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Local limit of the fixed point forest

The bound is on the total variation distance between the laws of the random vectors. For
random variables X and Y taking values in some space S, this distance is defined as

dTV (X,Y ) = sup
S⊆S
|P[X ∈ S]−P[Y ∈ S]|.

Another characterization of the total variation distance between the laws of X and Y is
as the minimum of P[X 6= Y ] over all couplings of X and Y ; see [3, Section A.1].

Proposition 3.2 (Corollary 10.J.1 in [3]). Assume the coupling condition. Let Y =

(Yα)α∈I be a vector of independent Poisson random variables with EYα = EIα. Then

dTV (I,Y) 6
∑
α∈I

(EIα)2 +
∑
α∈I

∑
β∈I−α

|Cov(Iα, Iβ)|+
∑
α∈I

∑
β∈I+α

Cov(Iα, Iβ). (3.3)

We will also need the following technical lemma.

Lemma 3.3. Let Y = (Yα)α∈I and let Z = (Zα)α∈I be vectors of independent Poisson
random variables. Then

dTV (Y,Z) 6
∑
α∈I

∣∣EYα −EZα
∣∣.

Proof. Suppose that U and V are Poisson with means a 6 b. Then U and V can be
coupled by setting V = U + W where W ∼ Poi(b − a) and is independent of U . By
Markov’s inequality,

P[U 6= V ] = P[W > 1] 6 b− a.

Applying this coupling to Yα and Zα for each α, we obtain a coupling of Y and Z in which
they differ with probability at most

∑
α∈I

∣∣EYα −EZα
∣∣.

Next, we apply Proposition 3.2 to some indicators derived from a random permutation
π on [n] := {1, . . . , n} with distribution to be specified. Let I(i, k) be an indicator on
position i being k-separated in π. Fix r and n, and let

I =
{

(i, k)
∣∣ k ∈ {−r + 1, . . . , r − 1}, i ∈ {r + 1, . . . , n}, and i+ k ∈ {1, . . . , n}

}
,

which is the set of (i, k) such that i > r and i might possibly be k-separated in π, for
|k| 6 r − 1.

Proposition 3.4. Let π be a uniformly random permutation on [n] conditioned on

π(1) = a1, . . . , π(r) = ar (3.4)

for some set of r distinct values A = {a1, . . . , ar} ⊆ [n]. Let I =
(
I(i, k)

)
(i,k)∈I be the

vector of indicators defined above. Let Z =
(
Z(i, k)

)
(i,k)∈I where the components of Z

are drawn independently from Poi(1/n). Then

dTV (I,Z) 6
16r2 + 2r

n− r − 1
.

Proof. The proof proceeds in three steps: First, we construct a coupling satisfying the
coupling condition. Next, we bound the expression on the right hand side of (3.3) to
obtain a total variation bound between I and a random vector Y =

(
Y (i, k)

)
(i,k)∈I whose

components are independent Poisson random variables with EY (i, k) = EI(i, k). Last,
we bound the total variation distance between Y and Z.
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Local limit of the fixed point forest

One thing to observe before we start is that if i+ k ∈ A, then I(i, k) = 0 deterministi-
cally for (i, k) ∈ I. The pairs (i, k) where this holds are irrelevant when we bound the
distance between I and Y, as the corresponding term in Y is also deterministically zero.
Thus we can ignore these terms in Steps 1 and 2 by removing them from I and Y. Let
I ′ = {(i, k) ∈ I | i+ k /∈ A}. In a slight abuse of notation, we take I and Y to be indexed
by I ′ rather than by I in Steps 1 and 2 only.

Step 1. Constructing the coupling.

Fix some (i0, k0) ∈ I ′. Our goal is to construct (J(i, k))(i,k)∈I′ distributed as I conditioned
on I(i0, k0) = 1 and to partition I so that (3.1)–(3.2) hold. (In the notation used in the
coupling condition, J(i, k) would be written J(i,k)(i0,k0). We omit mention of (i0, k0) to
simplify notation.)

Let τ be the random swap (π(i0), i0 + k0), and let π′ = τ ◦ π. This forces π′ to map
i0 to i0 + k0, making i0 a k0-separated point for π′. As π(i0) cannot be an element of
A (because i0 > r) and i0 + k0 is not in A by definition of I ′, the permutation π′ also
satisfies (3.4).

We show now that π′ is distributed as π conditioned on mapping i0 to i0 +k0. Let Π be
the set of permutations on n elements satisfying the conditions specified in (3.4), and let
Π′ ⊆ Π be the set of permutations that also map i0 to i0 + k0. One can easily check that
for any σ′ ∈ Π′, there are exactly n− r permutations σ ∈ Π such that swapping σ(i0) and
i0 + k0 yields σ′. As π is distributed uniformly over Π, this implies that π′ is distributed
uniformly over Π′, which shows that π′ is distributed as π conditioned on mapping i0 to
i0 + k0.

Now, for (i, k) ∈ I ′ we define

J(i, k) = 1{i is k-separated in π′},

and the distribution of
(
J(i, k)

)
(i,k)∈I′ is as we wanted. To partition I ′, we define I−i0,k0

as all pairs (i, k) ∈ I ′ where either

(i) i = i0 and k 6= k0; or

(ii) i = i0 + k0 − k and k 6= k0.

Define I+i0,k0 to be the rest of I ′ except for (i0, k0). For any (i, k) ∈ I−i0,k0 , it is impossible
that π′(i) = i + k: If (i) holds, then we already know that π′(i) = i + k0, since we have
conditioned π′ to make this so. If (ii) holds, then we already know that π′(i0) = i0 + k0,
and so it cannot be that π′(i) = i+k = i0 +k0. Thus, for (i, k) ∈ I−i0,k0 , we have J(i, k) = 0,
and the coupling satisfies (3.1).

To see that (3.2) is satisfied, suppose that J(i, k) = 0 and I(i, k) = 1 for some (i, k) ∈ I ′.
We will show that (i, k) ∈ I−i0,k0 . By our assumption, π(i) = i+ k, and π′(i) 6= i+ k. Thus
τ swaps i + k with some other value. By the definition of τ , either i + k = π(i0), or
i + k = i0 + k0. In the first case, we have π(i0) = π(i), implying that i0 = i; thus (i, k)

satisfies (i). In the second case, we have i = i0 + k0 − k, satisfying (ii). Thus our coupling
satisfies (3.2).

Step 2. Bounding dTV (I,Y).

The conditions of Proposition 3.2 are now satisfied, and we just need to bound the
three terms on the right hand side of (3.3). We start with the observation that π can be
thought of as a uniformly random bijection from {r + 1, . . . , n} to {1, . . . , n} \ A. Thus,
for any (i, k) ∈ I ′, the probability that π maps i to i + k is 1/(n − r). Equivalently,
EI(i, k) = 1/(n− r).
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Local limit of the fixed point forest

Now, we bound the first term in (3.3). As |I ′| 6 2r(n− r), we have∑
(i,k)∈I′

(EI(i, k))2 6
2r

n− r
. (3.5)

For the next term, observe that if (i, k) ∈ I−i0,k0 , then I(i, k) and I(i0, k0) cannot
simultaneously be 1. Thus

Cov
(
I(i, k), I(i0, k0)

)
= −EI(i, k)EI(i0, k0) = −1/(n− r)2.

For any (i0, k0), the number of pairs (i, k) satisfying (i) is at most 2r, and the number
satisfying (ii) is at most 2r. Thus

∣∣I−i0,k0∣∣ 6 4r, and∑
(i0,k0)∈I′

∑
(i,k)∈I−i0,k0

∣∣Cov
(
I(i, k), I(i0, k0)

)∣∣ 6 2r(n− r)(4r)
(n− r)2

=
8r2

n− r
. (3.6)

For the final term, suppose that (i, k) ∈ I+i0,k0 . As π conditioned on Ii0,k0 = 1 is a
uniformly random element of the set Π′ from Step 1, we have E[Ii,k | Ii0,k0 = 1] =

1/(n− r − 1). Thus

Cov
(
I(i, k), I(i0, k0)

)
= E

[
I(i, k)I(i0, k0)

]
− 1

(n− r)2

=
1

n− r
E
[
Ii,k | Ii0,k0 = 1

]
− 1

(n− r)2

=
1

(n− r)(n− r − 1)
− 1

(n− r)2
=

1

(n− r)2(n− r − 1)
.

Using the bound
∣∣I+i0,k0∣∣ 6 |I ′| 6 2r(n− r),

∑
(i0,k0)∈I′

∑
(i,k)∈I+i0,k0

Cov
(
I(i, k), I(i0, k0)

)
6

(
2r(n− r)

)2
(n− r)2(n− r − 1)

=
4r2

n− r − 1
. (3.7)

Summing (3.5)–(3.7) and applying Proposition 3.2 shows that

dTV (I,Y) 6
12r2 + 2r

n− r − 1
. (3.8)

Step 3. Bounding dTV (Y,Z).
If (i, k) ∈ I \ I ′, then EY (i, k) = 0. If (i, k) ∈ I ′, then EY (i, k) = 1/(n − r). Applying
Lemma 3.3 and using the bounds |I \ I ′| 6 2r2 and |I ′| 6 2r(n− r),

dTV (Y,Z) 6 2r2
(

1

n
− 0

)
+ 2r(n− r)

(
1

n− r
− 1

n

)
=

4r2

n
.

Summing this bound and the one in (3.8) proves the theorem.

Proposition 3.5. Let πn be a uniform permutation on n elements. Let ξ(n)k be the point
process on [0, 1] with atoms at i/n for every position i that is k-separated in πn, and let(
ξi
)
i∈Z be independent Poisson point processes on [0, 1] with unit intensity. Let U1, U2, . . .

be distributed uniformly on [0, 1], and let them be independent of each other and of(
ξi
)
i∈Z. For any fixed r,(

πn(1)

n
, . . . ,

πn(r)

n
, ξ

(n)
−r+1, . . . , ξ

(n)
r−1

)
d−→
(
U1, . . . , Ur, ξ−r+1, . . . , ξr−1

)
(3.9)

as n→∞.

EJP 22 (2017), paper 18.
Page 12/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP36
http://www.imstat.org/ejp/


Local limit of the fixed point forest

Proof. As a first step, let ξ
(n)

k be the point process obtained by restricting ξ
(n)
k to the

interval
(
(r + 1)/n, 1

]
. For any i,

P
[
πn(i) ∈ {i− r + 1, . . . , i+ r − 1}

]
6

2r

n
.

By a union bound, the probability that any of 1, . . . , r is k-separated in πn for some
−r < k < r is at most 2r2/n. Thus(

πn(1)

n
, . . . ,

πn(r)

n
, ξ

(n)
−r+1, . . . , ξ

(n)
r−1

)
=

(
πn(1)

n
, . . . ,

πn(r)

n
, ξ

(n)

−r+1, . . . , ξ
(n)

r−1

)
except with probability at most 2r2/n. Since this probability vanishes as n → ∞, it
suffices to show the convergence in distribution of the right hand side of the above
equation to the limit in (3.9).

Now, observe that (
πn(1)

n
, . . . ,

πn(r)

n

)
d−→
(
U1, . . . , Ur

)
(3.10)

by directly calculating

lim
n→∞

P

[(
πn(1)

n
, . . . ,

πn(r)

n

)
∈ E1 × · · · × Er

]
for any intervals E1, . . . , En. To finish off the theorem, we will show that the law

of
(
ξ
(n)

−r+1, . . . , ξ
(n)

r−1
)

conditional on πn(1), . . . , πn(r) converges weakly to the law of
(ξ−r+1, . . . , ξr−1).

Observe that
(
ξ
(n)

−r+1, . . . , ξ
(n)

r−1
)

is a function of I, with its entries given by

ξ
(n)

k =

n∑
i=r+1

I(i, k)δi/n.

Let ζ(n)k =
∑n
i=r+1 Z(i, k)δi/n, where

(
Z(i, k)

)
(i,k)∈I has entries independent and dis-

tributed as Poi(1/n). Since dTV (f(X), f(Y )) 6 dTV (X,Y ) for any random variables X
and Y and measurable map f , Proposition 3.4 implies that the total variation distance

between
(
ξ
(n)

−r+1, . . . , ξ
(n)

r−1
)

conditional on πn(1), . . . , πn(r) and
(
ζ
(n)
−r+1, . . . , ζ

(n)
r−1
)

vanishes
as n→∞.

Thus we only need to show that
(
ζ
(n)
−r+1, . . . , ζ

(n)
r−1
)
, a collection of discretized Poisson

point processes, converges in distribution to the continuous Poisson point processes(
ξ−r+1, . . . , ξr−1

)
. By the independence of entries of both of these vectors, we only need

to show that ζ(n)k
d−→ ξk as n → ∞. To prove this, by Theorem 16.16 and Chapter 16,

Exercise 11 in [10], it suffices to show that ζ(n)k (B)
d−→ ξk(B) for any finite union of

intervals B. Both ζ
(n)
k (B) and ξk(B) are Poisson, and so the convergence holds as the

portion of points of the form i/n with i > r + 1 contained in B approaches the length of
B.

Let us consider the shift operation from the perspective of the point processes(
ξ
(n)
k

)
k∈Z of Proposition 3.5. Suppose that πn has a fixed point at position i and we bump

it to the beginning of the permutation, moving forward in the tree. At times after i/n, all

point processes ξ(n)k are unchanged. At times before i/n, every point in ξ(n)k becomes a

point in ξ(n)k−1 shifted to the right by 1/n. Additionally, ξ(n)0 loses its point at i/n, and ξ(n)i−1
gains a point at 1/n. This completely describes how the point processes change when
this fixed point is shifted.
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Local limit of the fixed point forest

Theorem 3.6. As n → ∞, the randomly rooted graph Fn converges to T in the local
weak sense.

Proof. Fix some integer r > 1, and assume throughout that n > r. We need to show that
the r-ball around πn in Fn converges in distribution to the r-ball around the root in T ,
which is

ϕr
(
U1, . . . , Ur; ξ−r+1, . . . , ξr−1

)
.

Let

Tn = ϕr

(
πn(1)

n
, . . . ,

πn(r)

n
; ξ

(n)
−r+1, . . . , ξ

(n)
r−1

)
.

The idea will be to show that this tree Tn is almost the same thing as the r-neighborhood
of πn in Fn, and then to apply Proposition 3.5 to show that Tn converges in distribution
to the r-ball around the root in T .

Claim 3.7. If ξ(n)−r+1, . . . , ξ
(n)
r−1 contain no points in the interval [0, r/n], then Tn is identical

to to the r-ball around πn in Fn.

Proof. The algorithm defining Tn differs from the true r-ball around πn in Fn in two
ways. First, when moving forward in the tree by bumping a fixed point at position i to
position 1, no point at 1/n is inserted into the point process ξ(n)i−1. For this to cause Tn to
lack a vertex in the r-ball around πn, it must occur that after s > 0 steps backward in the
tree from πn, there is a fixed point at i, and then after bumping it one can move forward
in the tree another i− 1 times to return the fixed point to i, and then one can bump the
fixed point again, all while remaining within the r-ball around πn. Thus, it is necessary
that s+ i < r. Under the conditions of this claim, πn(1), . . . , πn(r) > r, since otherwise
πn would have a k-separated point at position i for some −r+ 1 ≤ k ≤ r− 1 and 1 ≤ i ≤ r.
Hence, one must move backwards from πn at least r − i+ 1 times to create a fixed point
at i, showing that this circumstance can never occur.

The second difference in the algorithm is that points in the point processes are not
shifted by 1/n at each step. One could equally well define the algorithm giving Tn only

in terms of the order of the points in ξ
(n)
−r+1, . . . , ξ

(n)
r−1, and doing this one sees that the

shifting of points by 1/n would not change Tn.

As n → ∞, the condition in this claim holds with probability approaching 1, as we
showed with a union bound in the proof of Proposition 3.5. Thus we only need to show
that Tn converges in distribution to the r-ball around the root in T , that is, that

ϕr

(
πn(1)

n
, . . . ,

πn(r)

n
; ξ

(n)
−r+1, . . . , ξ

(n)
r−1

)
d−→ϕr

(
U1, . . . , Ur; ξ−r+1, . . . , ξr−1

)
.

Once we show that ϕr is continuous on a set that almost surely contains(
U1, . . . , Ur; ξ−r+1, . . . , ξr−1

)
,

Proposition 3.5 and the continuous mapping theorem [5, Theorem 2.7] immediately give
us this result.

We claim that ϕ is continuous at any point
(
u1, . . . , ur; ζ−r+1, . . . , ζr−1

)
where all atoms

of the point process configurations ζ−r+1, . . . , ζr−1 are distinct, all u1, . . . , ur ∈ [0, 1] are
distinct from each other and any points in the configurations. In fact, ϕr is constant
on a neighborhood of

(
u1, . . . , ur; ζ−r+1, . . . , ζr−1

)
, as a slight perturbation that does not

change the order of any of the points u1, . . . , ur or the points in ζ−r+1, . . . , ζr−1 does not
change the resulting tree. As

(
U1, . . . , Ur; ξ−r+1, . . . , ξr−1

)
has these properties almost

surely, this proves the continuity property of ϕr that we needed.
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As a consequence of Theorem 3.6, any statistic of πn determined by its r-neighborhood
in Fn converges in distribution to the corresponding statistic of the limit tree T . This
excludes many statistics like the distance from πn to the nearest leaf of Fn, which is
nearly local but cannot be deduced from the r-neighborhood of πn for any fixed value of
r. The following corollary addresses this by a truncation argument.

Corollary 3.8. Let f be a function defined on rooted trees, and suppose that min(f(T0), r)

is determined by the r-neighborhood of the root of T0, for any rooted tree T0 and any

r > 0. Then f(Fn)
d−→ f(T ).

Proof. By assumption, we have min(f(Fn), r) = γ(Fn(r)), where Fn(r) denotes the r-
ball around the root of Fn and γ is some deterministic function on rooted trees. By

Theorem 3.6, as n→∞ we have Fn(r)
d−→T (r) with respect to the discrete topology on

rooted trees. Hence, by the continuous mapping theorem, γ(Fn(r))
d−→ γ(T (r)), and in

our original notation, min(f(Fn), r)
d−→ min(f(T ), r). As P[X 6 x] = P[min(X, r) 6 x] for

x < r, it holds for any x where the distribution function P[f(T ) 6 x] is continuous that

lim
n→∞

P [f(Fn) 6 x] = lim
n→∞

P[min(f(Fn), x+ 1) 6 x]

= P[min(f(T ), x+ 1) 6 x] = P[f(T ) 6 x].

4 Combinatorics of paths to leaves

In the next section, we will be interested in the limiting distributions of the shortest
and longest distance of a random permutation to a leaf. In preparation for this, we
consider the combinatorics related to the shortest and longest path to a leaf in this
section.

For a permutation π ∈ Sn, let T (π) be the fixed point tree with π as root. We call i a
true fixed point of π if π(i) = i and i 6= 1.

Proposition 4.1. Given π ∈ Sn, a shortest path from π to a leaf in T (π) is obtained by
bumping the rightmost true fixed point at each step.

Remark 4.2. Note that the procedure of picking the rightmost true fixed point in π ∈ Sn

and then bumping the letter can be reformulated in the following way. Replace each
letter in the one-line notation for π by its k-separation. Then scan the word from right to
left and successively pick the first k = 0, 1, 2, . . . until no further subsequent bigger k can
be picked to the left. Picking 0 in position 1 is not allowed. The letters in these positions
in the original π are the letters that are bumped.

For example, take π = 32415. The k-separation word is given by 2013̄0 (where as in
Figure 3 a negative separation is indicated in red). The selected positions are underlined
2013̄0, meaning that the letters 5, 4, 3 are bumped in this order:

32415→ 53241→ 45321→ 34521. (4.1)

Proof of Proposition 4.1. Let v = (v0, v1, . . . , v`) with v0 = π and v` a leaf be a sequence
of vertices in which at some step, the rightmost true fixed point is not bumped. Let vk
be the last vertex (meaning k is maximal) where anything other than the rightmost true
fixed point is bumped in the step vk → vk+1. Denote by v′ = (vk = v′k, v

′
k+1, . . . , v

′
`′) the

path in which the rightmost true fixed point is always bumped. We will show that `′ 6 `.
Then moving from right to left replacing all non-rightmost bumps produces a (weakly)
shorter path than v, which shows that the path where the rightmost true fixed point is
always bumped is a shortest path.

Let f1, . . . , fa be the true fixed points in vk = v′k ordered from left to right and suppose
that fi with 1 6 i < a is the fixed point bumped to reach vk+1. Since k is maximal
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such that vk → vk+1 does not bump the rightmost true fixed point, both (vk+1, . . . , v`)

and (v′k, . . . , v
′
`′) follow the algorithm outlined in Remark 4.2 starting at vk+1 and v′k,

respectively. Note that by Remark 4.2, the length of the path formed by always choosing
the rightmost true fixed point can be read off directly from the first vertex (in our case
vk+1 and v′k, respectively) by determining the longest consecutive sequence 0, 1, 2, . . .

from right to left in the corresponding separation word. Now the separation word of
vk+1 does not differ from that of v′k in the positions to the right of the position of fi. In
the positions to the left of the position of fi, the separations of vk+1 are one less than
those of v′k and shifted one position to the right. In addition there is a new separation
of value i− 1 in position 1. Hence the chosen 0, 1, 2, . . . sequence in vk+1 is at most one
shorter than that in v′k. This proves that `′ 6 `.

Proposition 4.3. Given π ∈ Sn, the longest path from π to a leaf in T (π) is obtained by
bumping the leftmost true fixed point at each step.

Proof. Let v = (v0, v1, . . . , v`) with v0 = π and v` a leaf be a sequence of vertices in which
at some step, the leftmost true fixed point is not bumped. We will show the existence of a
strictly longer path to a leaf. Let vk be the last vertex such that from vk → vk+1 anything
but the leftmost true fixed point is bumped. Denote by f1, . . . , fa the true fixed points in
vk ordered from left to right and suppose that fi with i > 1 is the fixed point bumped in
the transition vk → vk+1.

We are going to construct a new path to a leaf v′ = (v′0, . . . , v
′
`+1) as follows. First,

v′i = vi for all 0 6 i 6 k. In the step v′k → v′k+1 the true fixed point fi−1 is bumped. Except
for the letters fi−1 versus fi, v′k+1 and vk+1 are the same on the first fi−1 positions.
Hence we can bump the same letters in v and v′ until a letter beyond position fi−1 is
bumped in vh → vh+1 (with h > k). At this point, the letter fi is bumped in v′h → v′h+1,
which is still a true fixed point (no letters to the right of position fi−1 have changed
position up to this point in the bumping process). The letters in positions weakly between
fi−1 + 2 and fi agree in vh and v′h+1. The letters different from fi−1 and fi weakly before
position fi−1 + 1 are shifted one position to the right in v′h+1 compared to vh. Denote
the sequence of bumped letters in vh → vh+1 → · · · → v` by R1L1R2L2 . . ., where Li
are letters in positions weakly before position fi−1 + 1 and Ri are letters after position
fi−1 +1. Write Ri = R′iri, where ri is a single letter. Then the sequence R′1L1r1R

′
2L2r2 . . .

is a bumpable sequence on v′h+1 due to the relative shift of letter in the left fi−1 + 1

positions. This indeed shows that v′ is strictly longer than v.
Hence the path given by always bumping the leftmost true fixed point is the unique

longest path to a leaf.

Note that unlike for the longest path to a leaf, the shortest path is not unique.

Example 4.4. Take π = 32415. Then the longest path to a leaf is of length 9:

32415→ 23415→ 52341→ 25341→ 32541→ 23541→ 42351

→ 24351→ 32451→ 23451.

The shortest path to a leaf given by always bumping the rightmost fixed point is given
in (4.1). Here is another shortest path:

32415→ 23415→ 52341→ 45231.

Denote by B := B(π) the set of bumped values in the longest path from π to a leaf.
For example, B(32415) = {2, 3, 4, 5} as can be seen from Example 4.4. We now provide
a characterization of the set B that enables us to determine if π(i) ∈ B given only
knowledge of π(i+ 1), . . . , π(n).
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Local limit of the fixed point forest

Lemma 4.5. For π ∈ Sn and 1 6 i 6 n,

π(i) ∈ B ⇐⇒ π(i) 6= 1 and 0 6 π(i)− i 6 #{j > i | π(j) ∈ B}. (4.2)

Proof. Let π(i) ∈ B. First we show that then the conditions on the right of (4.2) hold.
Since only true fixed points can be bumped, we certainly have π(i) 6= 1. Note that π(i)− i
is the i-separation of π(i) at position i. In the longest path to a leaf, a letter in one-line
notation either stays in its position or moves to the right unless it is bumped. Hence the
separation of a letter either remains the same or becomes smaller (unless it is bumped).
This implies that a letter with a negative separation can never be bumped, which shows
that 0 6 π(i)− i. Now suppose that π(i)− i = k, meaning that π(i) is k-separated. Since
π(i) ∈ B and hence must be bumped in the path to the leaf, there must be at least k
letters to the right of π(i) that are bumped to move π(i) k positions to the right and make
it 0-separated. This is precisely the condition π(i)− i 6 #{j > i | π(j) ∈ B}.

Conversely, suppose that π(i) satisfies the conditions on the right of (4.2) and set
π(i) − i = k. By Proposition 4.3, the longest path is obtained by always bumping the
leftmost true fixed point, and hence any point that becomes 0-separated will eventually
be bumped. Since by assumption 0 6 k 6 #{j > i | π(j) ∈ B}, there are at least k points
to the right of π(i) that get bumped, which makes π(i) eventually 0-separated, and hence
π(i) ∈ B.

Using the above ideas, we can give a bound on the length of the longest path to a
leaf, which will be useful in Section 5. For π ∈ Sn, we denote by `(π) the length of the
longest path from π to a descendent leaf.

Lemma 4.6. Fix π ∈ Sn and let B := B(π) = {b1, b2, . . . , bk}, where k = |B| and 2 6 b1 <

b2 < · · · < bk 6 n. Then

`(π) 6 1 +

k−1∑
m=1

m∏
i=1

(
1 +

1

bi − i

)
6 k

k−1∏
i=1

(
1 +

1

bi − i

)
. (4.3)

Proof. Let Ni denote the number of times bi is bumped in the longest path in T (π) and
let Mi =

∑
j>iNj . With this notation `(π) = M1.

Every time the letter bj is bumped to the beginning, it needs to be moved to the right
one position at a time by bj − 1 bumps of letters to the right of bj . The position of bj can
only be increased once by bumps of smaller letters bi < bj . At least bj − j letters greater
than bj must be bumped for the value bj to return to position bj and be eligible to be
bumped again. Therefore Nj 6 1 + 1

bj−jMj+1, and hence

Mj 6 1 +

(
1 +

1

bj − j

)
Mj+1.

By inductively applying this inequality starting from Mk ≤ 1, we obtain

Mj 6 1 +

k−1∑
m=j

m∏
i=j

(
1 +

1

bi − i

)
for j = 1, . . . , k. Thus

`(π) = M1 6 1 +

k−1∑
m=1

m∏
i=1

(
1 +

1

bi − i

)

6 1 + (k − 1)

k−1∏
i=1

(
1 +

1

bi − i

)
6 k

k−1∏
i=1

(
1 +

1

bi − i

)
.

The first bound in (4.3) is sharp, giving the correct length 2n−1 − 1 for the identity
permutation of length n.
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5 Limiting distributions and higher moments

In this section we compute the limiting distributions of two statistics of the fixed
point tree Fn using the local weak limit we have constructed in Section 3. As usual, πn is
a uniformly random permutation of length n. We study two statistics related to leaves:

1. the distance Mn from πn to the nearest leaf descending from it;

2. the distance Ln from πn to the farthest leaf descending from it.

We use Geo(q) to refer to the geometric distribution on {0, 1, . . .} with parameter q, the
number of failures before the first success in independent trials that are successful with
probability q. This distribution places probability (1− q)kq on k and has mean (1− q)/q.
Theorem 5.1.

(i) Let M ∼ Poi(1). As n→∞, we have Mn
d−→M and EMp

n → EMp for all p > 0.

(ii) Let L ∼ Geo
(
e−1
)
. As n→∞, we have Ln

d−→L and ELpn → ELp for all p > 0.

Proof. We will prove thatMn
d−→M and Ln

d−→L in Propositions 5.3 and 5.5, respectively.
In Proposition 5.11, we will show that supnEM

p
n < ∞ and supnEL

p
n < ∞ for any

p > 0. It is a standard result that this proves the convergence of all moments (see [7,
Theorem 4.5.2], for instance).

An interesting open problem is to determine the limiting distribution of the number
of steps from πn to a leaf when moving randomly towards a leaf.

Sections 5.1 and 5.2 are devoted to proving the convergence of Mn and Ln to their
limiting distributions. Both Mn and Ln are functionals of Fn satisfying the criteria of
Corollary 3.8. This corollary then proves that Mn and Ln converge in distribution to
the corresponding functionals of the limit tree. Thus, our task in these sections is to
work out the distributions of the distances in T from the root to the nearest and farthest
leaves descending from it.

Section 5.3 gives our proof that Mn and Ln are bounded in Lp, establishing the
convergence of moments. We emphasize that this result is not just a technicality. The
reentry phenomenon mentioned on Page 4 can cause Ln to be extremely large. For
example, if πn begins with the string 1 · · · k, then Ln > 2k−1, with the same small letters
bumped repeatedly. The probability of such reentry is vanishingly small, making it
irrelevant to the distributional convergence of Ln. But these unlikely events nonetheless
contribute to the moments of Ln, and a priori it is plausible that even the expectation of
Ln tends to infinity. To prove that this is not the case, we are forced to develop several
bounds that should be useful in future work on the fixed point forest.

5.1 Shortest distance to a leaf

Our first lemma is the limiting analogue of Proposition 4.1.

Lemma 5.2. A shortest path from the root of T to a descendant leaf is obtained by
bumping the rightmost abstracted fixed point at each step.

Proof. The statement can be proved in an analogous fashion to Proposition 4.1.

Proposition 5.3. The distance Mn
d−→Poi(1) as n→∞.

Proof. LetM be the distance in the random tree T from the root to its nearest descendent
leaf. As we mentioned in our summary of Section 5, Corollary 3.8 shows that Mn →M

in distribution, and thus we need only show that M ∼ Poi(1). By Lemma 5.2, M is the
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number of steps taken if we start at the root of T and bump the rightmost fixed point
until no fixed points remain.

Walking towards a leaf in the tree in this way can be viewed as follows. Recall that
ρ is the root of T . If ξρ0 has no points, then the walk is over, and M = 0. Otherwise, let
X1 be the rightmost point of ξρ0 , and let v1 be the child of ρ corresponding to bumping
it. Now, if ξv10 has no points, then the walk is over and M = 1. Otherwise, let X2 be its
rightmost point of ξv10 , which is necessarily to the left of X1, since ξv10 = ξρ1 |[0,X1)+ξ

ρ
0 |(X1,0].

Continue in this way, making a sequence of vertices ρ, v1, . . . , vM and a sequence of points
corresponding to them, X1, . . . , XM .

In this procedure, X1 is the rightmost point of ξρ0 , then X2 is the rightmost point of
ξρ1 |[0,X1), then X3 is the rightmost point of ξρ2 |[0,X2), and so on. We can interpret this
as follows: We start at 1, moving backwards in a Poisson process until we encounter a
point, which takes Exp(1) time to arrive. Then, looking at a different Poisson process,
we move backwards until we encounter a point, which again will arrive in Exp(1) time,
independent of the first arrival. We then continue on in this way, and M is the total
number of points encountered before we make it backwards to time 0. This is the same
as counting the number of arrivals in a single Poisson process between time 0 and 1,
which is distributed as Poi(1).

5.2 Farthest distance to a leaf

The next lemma is the limiting analogue of Proposition 4.3.

Lemma 5.4. The unique longest path from the root of T to a descendent leaf is obtained
by bumping the leftmost abstracted fixed point at each step.

Proof. Suppose we have some sequence of points bumped in a path from the root of T to
a descendent leaf in which some point y was not the leftmost when it was bumped. We
will show the existence of a strictly longer path to a leaf. Let x < y be a point that could
have been bumped instead of y. Decompose the original sequence of bumped points as

PyL1a1L2a2 · · · ar−1Lr. (5.1)

Capital letters in (5.1) denote (possibly empty) strings of points and lowercase letters
denote single points. The string P consists of all bumped points prior to y. Next, L1 is
made up of points smaller than x, and a1 is the first point larger than x. Then L2 consists
of points smaller than x, and a2 is the next subsequent point larger than x, and so on.
Note that almost surely, no point of ξρ0 , ξ

ρ
1 , . . . occurs more than once, so we never need

to worry about repeated values in these sequences.
We claim that we can instead bump the following sequence of points:

PxL1yL2a1L3a2 · · · ar−2Lrar−1. (5.2)

As this sequence is one longer than (5.1), this claim completes the proof. Thus, we
just need to show that this sequence is in fact bumpable, by which we mean that when
each point is bumped in turn, the next one is an abstracted fixed point. Before we do
this, we make a key observation: Suppose that z1 · · · zk and z′1 · · · z′k are two bumpable
sequences, each of which contains the same number of points larger than z. Then
z1 · · · zkz is bumpable if and only if z′1 · · · z′kz is bumpable.

Clearly, Px is bumpable. Since all points in L1 are smaller than x and x < y, as
each point of L1 is encountered in (5.1) and (5.2) the same number of larger points has
already been encountered in each sequence. By our observation, the bumpability of
PyL1 implies the bumpability of PxL1. Next, since Py is bumpable and all points in xL1

are smaller than y, the sequence PxL1y is also bumpable. Repeating this reasoning,
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bumpability of PyL1a1L2 implies bumpability of PxL1yL2, and bumpability of PyL1a1
implies bumpability of PxL1yL2a1. Continuing in this way, we arrive at the bumpability
of (5.2).

The following proof involves a continuous-time Markov chain known as a Yule process.
At state k, it jumps to k + 1 at rate k, with no other transitions allowed. It is well
known that if (Yt)t>0 is a Yule process starting at 1, then Yt − 1 ∼ Geo

(
e−t
)
; see [11,

Section 4.1.D], for example.

Proposition 5.5. As n→∞, we have Ln
d−→Geo

(
e−1
)
.

Proof. Let L be the length of the longest path in the limit tree T from the root to a

descendent leaf. By Corollary 3.8, we have Ln
d−→L. By Lemma 5.4 the random variable

L is the length of the path down T given by bumping the leftmost fixed point until none
remain.

First, we sketch one way to compute the distribution of L. Suppose we start at the
root ρ of T . With probability e−1, there are no points in ξρ0 , and L = 0. If not, we bump
the leftmost point X of ξρ0 to move to a vertex v. The next set of abstracted fixed points is
ξv0 , which is equal to ξρ1 on [0, X) and to ξρ0 on (X, 1]. This is a new Poisson point process
independent of the past, and so again we stop with probability e−1 and L = 1. Continuing
on in this way, L is the number of failures before the first success in independent trials
that succeed with probability e−1.

The above argument works and is the most direct, but we give a different proof now
whose ideas will be useful in Section 5.3. Let B ⊆ [0, 1] be the set of points bumped in
the longest path in T from the root to a descendent leaf. Lemma 4.5 can be restated in
this setting: A point x of ξρk is an element of B if and only if 0 6 k 6 |B ∩ (x, 1]|. Thus, we
can progressively build our set B by the following procedure. Start with B empty. Scan
ξρ0 from right to left starting at time 1 until a point is encountered, and add it to B. Now,
scan ξρ0 and ξρ1 from right to left from this point until a point is encountered, and add it
to B. Now scan ξρ0 , ξρ1 , and ξρ2 , and so on, stopping when we reach time 0.

In this procedure, the first point arrives at rate 1, since it is the first arrival time of a
unit intensity Poisson process. The next point arrives at rate 2, since it is the first arrival
time of two independent unit intensity Poisson processes, and the next at rate 3, and so
on. Thus, the size of B is the number of increases of a Yule process in time 1, which is
distributed as Geo

(
e−1
)
.

It follows from this proposition that the root of T has finitely many descendants
almost surely. In forthcoming work, this will be investigated further, and it will be shown
that the expected number of descendants is infinite.

5.3 Higher moments

To bound the moments of Ln and Mn, we must leave behind the limit tree T and work
directly with the finite fixed point forest. Since Mn 6 Ln and we are only looking for
upper bounds, we will deal exclusively with Ln. Our first result gives an upper bound
on Ln in terms of B = B(πn) = {b1, b2, . . . , bk}, the set of letters bumped in the longest
path from πn to a descendent leaf. Since b1 < b2 < · · · < bk is increasing, bi − i is weakly
increasing. Fix some x > 0 and denote by Bx the subset of B such that bi − i < x for
bi ∈ Bx.

Lemma 5.6. Fix x > 0. Then

Ln 6 2|Bx||B|
(

1 +
1

x

)|B|
. (5.3)
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Proof. For bi ∈ Bx, we have 1 + 1
bi−i 6 2 and for bi ∈ B\Bx, we have 1 + 1

bi−i < 1 + 1
x .

With this, the bound in (5.3) follows directly from Lemma 4.6.

We will bound ELpn using (5.3) by showing that |Bx| and |B| are unlikely to be large.
Our first result in this direction, interesting in its own right, is an exponential tail bound
on |B|. Proposition 5.5 exactly computes the distribution of the corresponding quantity
in the limit case as Geo

(
e−1
)
. Our proof here follows the same intuition, but it will be

considerably more difficult.

Proposition 5.7. For some constant C < 1, it holds for all k, n > 0 that

P
[
|B| > k

]
6 Ck.

We will need several preliminary lemmas first. Recall from Lemma 4.5 that B can
be constructed by moving leftward through the random permutation πn, successively
revealing πn(n), πn(n − 1), . . . , πn(1) and tracking the set B as we go. Reversing the
indexing so that we can count up instead of down, define

Xi = #{j > n− i | πn(j) ∈ B}.

This yields a pure birth process (that is, one that either stays the same or increases by
one at each step) starting at X0 = 0 and ending at Xn = |B|. Our goal is to prove an
exponential tail bound for Xn that does not depend on n. In Theorem 5.5, we show that
the analogous process for the limit tree is a Yule process. The process (Xi)06i6n is not
as straightforward, but the following lemma shows that it approximates a Yule process
in the sense that it increases with probability approximately proportional to its current
value.

Lemma 5.8. For k < n/2,

P[Xi+1 = Xi + 1 | Xi = k] 6
1 + k

n− 2k
. (5.4)

Proof. For a given permutation σ ∈ Sn, let xi(σ) = #{j > n − i | σ(j) ∈ B}, so that
Xi = xi(πn). Taking i and k to be fixed, define

T` = {σ ∈ Sn | xi(σ) = k, σ(n− i) = n− i+ `},
U = {σ ∈ Sn | xi(σ) = k}.

By Lemma 4.5, the process xi(σ) increases in its next step if and only if 0 6 σ(n− i)−
(n− i) 6 xi(σ) and σ(n− i) 6= 1, showing that

P[Xi+1 = Xi + 1 | Xi = k] 6

∑k
`=0|T`|
|U|

. (5.5)

Now, we compare the sizes of T` and U by a combinatorial switching argument. Suppose
that σ ∈ T`. For any j ∈ [n], let σj = (σ(n − i), σ(j)) ◦ σ, the permutation given by
swapping the values at positions n− i and j in σ. Given σj , i, `, and n but without σ or j,
we can recover σ by the formula σ = (n− i+`, σj(n− i))◦σj and j by j = (σj)−1(n− i+`).
This shows that the map from T` × [n]→ Sn given by (σ, j) 7→ σj is injective.

We claim that for any σ ∈ T`, the permutation σj falls in U if either of the following
holds:

(i) j 6 n− i;

(ii) j > n− i+ ` and σ(j) /∈ B(σ).
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Indeed, in the first case, σ and σj differ only at locations n− i and smaller. Since xi(σ) is
determined by σ(n− i+ 1), . . . , σ(n), we have xi(σj) = xi(σ) = k, and hence σj ∈ U. In
the second case, the only way for xi(σj) to be different from xi(σ) is if σj(j) ∈ B. But
this cannot occur, since σj(j) = σ(n− i) ≤ n− i+ ` and j > n− i+ `.

For σ ∈ T`, there are n− i choices of j satisfying (i). There are another i− ` choices
of j satisfying j > n− i+ `; at most xi−`(σ) 6 xi(σ) = k of these have σ(j) ∈ B(σ), giving
us at least i− `− k choices of j satisfying (ii). Thus, for each σ ∈ T`, there are at least
n− `− k choices of j for which σj ∈ U. By injectivity of the map (σ, j) 7→ σj ,

|U| ≥ (n− `− k)|T`| ≥ (n− 2k)|T`|

for ` ≤ k. Substituting this into (5.5) gives (5.4).

Now, we couple Xi with a true Yule process, whose marginal distributions we know
to be exactly geometrically distributed. The only complication is that we lose control of
(Xi) if it becomes too large, which we deal with by considering it only up to a stopping
time.

Lemma 5.9. Let Yt be a Yule process starting from 1. Let S = min{i | Xi > n/4}, taking
S = n if the minimum is over the empty set. The processes (Xi)06i6n and (Yt)06t64 can
be coupled so that

1 +Xi 6 Y4i/n

for all i 6 S.

Proof. Essentially, we just need to confirm that Xi is less likely to increase from time i to
i+ 1 than Y is from time 4i/n to 4(i+ 1)/n. Formally, we start with (Xi, i ∈ [n]) and then
build up the Yule process inductively on the same probability space. Since a Yule process
is Markov, we can construct (Yt) up to some time t0 and then extend it by attaching to
its end a new Yule process starting at Yt0 .

Assume for some j ∈ {0, . . . , n} that we have already constructed a Yule process
(Yt)06t64j/n so that 1+Xi 6 Y4i/n for i 6 min(j, S). Note that this is trivial in the starting
case j = 0. We want to show that if S > j, then we can extend (Yt) up to time 4(j + 1)/n

so that 1 +Xj+1 6 Y4(j+1)/n. (If S 6 j, then we can just extend (Yt) up to time 4(j + 1)/n

independently from Xj+1, since the relationship between the two is irrelevant.)
So, we assume S > j, which implies that Xj < n/4. According to Lemma 5.8,

P[Xj+1 = Xj + 1 | Xj ] 6
1 +Xj

n− 2Xj
6

2(1 +Xj)

n

under this assumption. The next increase of a Yule process at Y4j/n arrives at rate Y4j/n.
Thus, conditional on Y4j/n, the probability that a Yule process increases from Y4j/n to
Y4j/n + 1 within time 4/n is

1− exp

(
−

4Y4j/n

n

)
> 1− exp

(
−4(1 +Xj)

n

)
>

2(1 +Xj)

n
.

The first inequality uses the inductive hypothesis that 1 + Xj 6 Y4j/n, and the second
uses the inequality 1 − e−x > x/2, which holds for 0 6 x 6 1. Thus, conditional on Xj

and Y4j/n, a Yule process starting at Y4j/n is more likely to increase in time 4/n than is
the process (Xi) from time j to j + 1. Thus, conditionally on Xj and Y4j/n, we can couple
a Yule process starting at Y4j/n of duration 4/n with (Xi) so that it increases only if (Xi)

does from j to j + 1. Tacking this Yule process onto the end of (Yt), we have extended
our coupling as desired.
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Proof of Proposition 5.7. Recall that Xn = |B|. Couple (Xi) and (Yt) according to
Lemma 5.9. Fix k 6 n/4, and let S′ = min{i | Xi > k}, taking S′ = n if the mini-
mum is over the empty set. Since S′ 6 S, we have 1 +XS′ 6 Y4S′/n.

We claim that if Xn > k, then Y4 > 1 + k. To see this, observe that if Xn > k, then
XS′ > k. Thus

Y4 > Y4S′/n > 1 +XS′ > 1 + k.

This demonstrates that

P[Xn > k] 6 P[Y4 − 1 > k] = (1− e−4)k 6 exp
(
−e−4k

)
(5.6)

since Yt − 1 is distributed as Geo
(
e−t
)

(see [11, Section 4.1.D], for example).
For n/4 < k 6 n,

P[Xn > k] 6 P[Xn > n/4] 6 exp

(
−e
−4n

4

)
6 exp

(
−e
−4k

4

)
. (5.7)

The right hand side of (5.7) is larger than that of (5.6). As Xn does not take values larger
than n, this shows that (5.7) holds for all k > 0.

Next, we prove a subexponential tail bound on the size of Bx for any fixed x.

Lemma 5.10. For x > 0 and t 6 n− x,

P[|Bx| > t] 6

(
t+ x

t

) t∏
i=1

(
x

n− i

)
6

(
ex

t

)t
. (5.8)

Proof. In order for each of the first t values in B to satisfy bi − i < x, we must have that
all of the values are less than t+ x. For a specific choice of letters 1 < c1 < · · · < ct, let
E(c1, . . . , ct) denote the event that the first t values of B are c1, . . . , ct. If |Bx| > t then
E(c1, . . . , c2) holds for one of at most

(
t+x
t

)
possible choices of (c1, . . . , ct).

For a particular choice of letters c1 < · · · < ct < t+ x,

P[E(c1, . . . , ct)] ≤ P

[
t⋂
i=1

{π−1n (ci) < x+ i}

]
=

t∏
i=1

x

n− i+ 1
.

To prove the final bound in (5.8), we apply the union bound and evaluate(
t+ x

t

) t∏
i=1

(
x

n− i+ 1

)
=
xt(x+ t) · · · (x+ 1)

t! n · · · (n− t+ 1)
6
xt

t!
,

since x + t 6 n under the assumptions of the lemma, and then we apply the bound
t! > (t/e)t.

Proposition 5.7 and Lemma 5.10 now combine to bound ELpn.

Proposition 5.11. For any p > 0, it holds that supnEL
p
n <∞.

Proof. Fix p > 0, and choose x large enough that (1 + 1
x )2p < C−1 for the constant C

from Proposition 5.7. By (5.3) and the Cauchy–Schwarz inequality,

ELpn 6 E

[
22p|Bx|

]1/2
E

[
|B|2p

(
1 +

1

x

)2p|B|
]1/2

. (5.9)
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By Proposition 5.7,

E

[
|B|2p

(
1 +

1

x

)2p|B|
]
6
∞∑
t=0

Ctt2p
(

1 +
1

x

)2pt

, (5.10)

which is summable. Similarly, applying Lemma 5.10 and using |Bx| 6 n,

E
[
22p|Bx|

]
6
n−x∑
t=0

P
[
|Bx| = t

]
22pt + P

[
|Bx| > n− x

]
22pn

6
∞∑
t=0

(
ex

t

)t
22pt +

(
ex

n− x

)n−x
22pn.

The first term is finite, and the last term vanishes as n→∞. Together with (5.10), this
yields an upper bound on (5.9) with no dependence on n.

6 Further Questions

Many of the open questions in [13] about the global properties of the fixed point
forest Fn remain unanswered. Recall that each base of Fn is a permutation with 1 as a
fixed point. Let Tn denote the tree in Fn with the identity permutation as its base. In
fact, Tn is the largest tree in Fn, which can be seen as follows. Let π be any base with
π(1) = 1. Let i be the largest index of such that π(i) 6= i. Then π(i) is never bumped, so
switching π(i) and π(1) creates a new permutation π′ with subtree at least as big as the
tree with base π. Note that π′ ∈ Tn, since all letters after 1 are fixed points. Hence an
isomorphic copy of the tree starting from π is also in Tn.

In [13, Propositions 24 and 25], it is shown that for a uniformly random permutation
πn,

1

n
6 P[πn ∈ Tn] 6

e

n
,

and it is conjectured that P[πn ∈ Tn] ∼ 1
n . We highlight this question here and tack on a

few more of our own:

Question 6.1. Prove that nP[πn ∈ Tn] converges as n → ∞ and determine its limit.
Characterize all permutations in Tn. How do the next largest components compare in
size to it?

Another question posed in [13] is:

Question 6.2. Let Rn be the distance from πn to the base of its tree in the fixed point
forest. What are the limiting asymptotics of ERn?

One could also ask about the limiting fluctuations of Rn from its mean.
Though some of our work in Section 4 could be helpful in addressing these questions,

our limit tree has nothing to say about them. For example, the limiting tree has no base
at all, reflecting that questions about the distance from πn to a base are not local. One
could instead look for a different limit of the fixed point forest where edges are scaled so
that the diameter of each component of the forest stays bounded, along the lines of the
continuum random tree (see [1]).

The present work has created other avenues to explore. Continuing in the same
theme as Section 5, what can we say about paths from root to leaf in the limiting tree
besides the longest and shortest ones? In particular,

Question 6.3. Walk from the root towards the leaves in the limiting tree by choosing
randomly among all children at each step. What is the distribution of the number of
steps before reaching a leaf?
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Other properties of the tree are interesting as well:

Question 6.4. Is simple random walk on the limiting tree transient or recurrent? What
is the branching number (see [12, Section 1.2]) of the tree?

A random walk on the nonlimit fixed point forest can be interpreted as a stochastic
version of the bumping process where we randomly bump and unbump letters of a
permutation. A solution to the above problem would likely give information on how
quickly this process moves from the starting permutation.

Another problem is to determine what happens when the root of the fixed point forest
is chosen nonuniformly:

Question 6.5. Determine the local limit of the fixed point forest when the root is sampled
from the Ewens or Mallows distributions.

The fixed point of Mallows distributions are not distributed evenly over the permutation,
so we would expect convergence to a limiting tree defined by Poisson point processes of
nonuniform intensity.
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