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Boundaries of planar graphs: a unified approach
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Abstract

We give a new proof that the Poisson boundary of a planar graph coincides with the
boundary of its square tiling and with the boundary of its circle packing, originally
proven by Georgakopoulos [9] and Angel, Barlow, Gurel-Gurevich and Nachmias [2]
respectively. Our proof is robust, and also allows us to identify the Poisson boundaries
of graphs that are rough-isometric to planar graphs.

We also prove that the boundary of the square tiling of a bounded degree plane
triangulation coincides with its Martin boundary. This is done by comparing the square
tiling of the triangulation with its circle packing.
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1 Introduction

Square tilings of planar graphs were introduced by Brooks, Smith, Stone and Tutte [7],
and are closely connected to random walk and potential theory on planar graphs. Ben-
jamini and Schramm [5] extended the square tiling theorem to infinite, transient, uniquely
absorbing plane graphs (see Section 2.2). These square tilings take place on the cylinder
R/ηZ× [0, 1], where η is the effective conductance to infinity from some fixed root vertex
ρ of G. They also proved that the random walk on a transient, bounded degree, uniquely
absorbing plane graph converges to a point in the boundary of the cylinder R/ηZ× {1},
and that the limit point of a random walk started at ρ is distributed according to the
Lebesgue measure on the boundary of the cylinder.

Benjamini and Schramm [5] applied their convergence result to deduce that every
transient, bounded degree planar graph admits non-constant bounded harmonic func-
tions. Recall that a function h : V → R on the state space of a Markov chain (V, P ) is
harmonic if

h(u) =
∑
v∼u

P (u, v)h(v)
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Boundaries of planar graphs

for every vertex u ∈ V , or equivalently if 〈h(Xn)〉n≥0 is a martingale when 〈Xn〉n≥0 is a
trajectory of the Markov chain. If G is a transient, uniquely absorbing, bounded degree
plane graph, then for each bounded Borel function f : R/ηZ→ R, we define a harmonic
function h on G by setting

h(v) = Ev

[
f

(
lim
n→∞

θ(Xn)

)]

for each v ∈ V , where Ev denotes the expectation with respect to a random walk 〈Xn〉n≥0

started at v and θ(v) is the horizontal coordinate associated to the vertex v by the square
tiling of G (see Section 2.3). Georgakopoulos [9] proved that moreover every bounded
harmonic function on G may be represented this way, answering a question of Benjamini
and Schramm [5]. In other words, Georgakopoulos’s theorem identifies the geometric
boundary of the square tiling of G with the Poisson boundary of G (see Section 3).
Probabilistically, this means that the tail σ-algebra of the random walk 〈Xn〉n≥0 is trivial
conditional on the limit of θ(Xn).

In this paper, we give a new proof of Georgakopoulos’s theorem. We state our
result in the natural generality of plane networks. Recall that a network (G, c) is a
connected, locally finite graph G = (V,E), possibly containing self-loops and multiple
edges, together with a function c : E → (0,∞) assigning a positive conductance to
each edge of G. The conductance c(v) of a vertex v is defined to be the sum of the
conductances of the edges emanating from v, and for each pair of vertices u, v the
conductance c(u, v) is defined to be the sum of the conductances of the edges connecting
u to v. The random walk on the network is the Markov chain with transition probabilities
p(u, v) = c(u, v)/c(u). Graphs without specified conductances are considered networks
by setting c(e) ≡ 1. We will usually suppress the notation of conductances, and write
simply G for a network. Instead of square tilings, general plane networks are associated
to rectangle tilings, see Section 2.3. See Section 2.2 for detailed definitions of plane
graphs and networks. For each vertex v of G, I(v) ⊆ R/ηZ is an interval associated to v
by the rectangle tiling of G.

Theorem 1.1 (Identification of the Poisson boundary). Let G be a plane network and
let Sρ be the rectangle tiling of G in the cylinder R/ηZ × [0, 1]. Suppose that θ(Xn)

converges to a point in R/ηZ and that length(I(Xn)) converges to zero almost surely
as n tends to infinity. Then for every bounded harmonic function h on G, there exists a
bounded Borel function f : R/ηZ→ R such that

h(v) = Ev

[
f

(
lim
n→∞

θ(Xn)

)]
.

for every v ∈ V . That is, the geometric boundary of the rectangle tiling of G coincides
with the Poisson boundary of G.

The convergence theorem of Benjamini and Schramm [5] implies that the hypotheses
of Theorem 1.1 are satisfied when G has bounded degrees.

1.1 Circle packing

An alternative framework in which to study harmonic functions on planar graphs
is given by the circle packing theorem. A circle packing is a collection C of non-
overlapping (but possibly tangent) discs in the plane. Given a circle packing C, the
tangency graph of C is defined to be the graph with vertices corresponding to the
discs of C and with two vertices adjacent if and only if their corresponding discs are
tangent. The tangency graph of a circle packing is clearly planar, and can be drawn with
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Boundaries of planar graphs

Figure 1: The square tiling and the circle packing of the 7-regular hyperbolic triangula-
tion.

straight lines between the centres of tangent discs in the packing. The Koebe-Andreev-
Thurston Circle Packing Theorem [15, 22] states conversely that every finite, simple (i.e.,
containing no self-loops or multiple edges), planar graph may be represented as the
tangency graph of a circle packing. If the graph is a triangulation (i.e., every face has
three sides), its circle packing is unique up to Möbius transformations and reflections.
We refer the reader to [21] and [18] for background on circle packing.

The carrier of a circle packing is defined to be the union of all the discs in the
packing together with the bounded regions that are disjoint from the discs in the packing
and are enclosed by some set of discs in the packing corresponding to a face of the
tangency graph. Given some planar domain D, we say that a circle packing is in D if its
carrier is D.

The circle packing theorem was extended to infinite planar graphs by He and
Schramm [12, 13], who proved that every proper plane triangulation admits a locally
finite circle packing in the plane or the disc, but not both. We call a triangulation of the
plane CP parabolic if it can be circle packed in the plane and CP hyperbolic otherwise.
He and Schramm also proved that a bounded degree simple triangulation of the plane is
CP parabolic if and only if it is recurrent for the simple random walk.

Benjamini and Schramm [4] proved that, when a bounded degree, CP hyperbolic
triangulation is circle packed in the disc, the simple random walk converges to a
point in the boundary of the disc and the law of the limit point is non-atomic and
has full support. Angel, Barlow, Gurel-Gurevich and Nachmias [2] later proved that,
under the same assumptions, the boundary of the disc is a realisation of the Poisson
boundary of the triangulation. These results were extended to unimodular random
rooted triangulations of unbounded degree by Angel, Hutchcroft, Nachmias and Ray [3].
Our proof of Theorem 1.1 is adapted from the proof of [3], and also yields a new proof of
the Poisson boundary result of [2], which follows as a special case of both Theorems 1.2
and 1.3 below.

1.2 Robustness under rough isometries

The proof of Theorem 1.1 is quite robust, and also allows us to characterise the
Poisson boundaries of certain non-planar networks. Let G = (V,E) and G′ = (V ′, E′) be
two graphs, and let d and d′ denote their respective graph metrics. Recall that a function
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Boundaries of planar graphs

φ : V → V ′ is a rough isometry if there exist positive constants α and β such that the
following conditions are satisfied (in which case we say φ is an (α, β)-rough isometry):

1. (Rough preservation of distances.) For every pair of vertices u and v in G,

α−1d(u, v)− β ≤ d′(φ(u), φ(v)) ≤ αd(u, v) + β.

2. (Almost surjectivity.) For every vertex v′ ∈ V ′, there exists a vertex v ∈ V such
that d(φ(v), v′) ≤ β.

Rough isometries were introduced by Kanai [14] and Gromov [10, 11]. For background
on rough isometries and their applications, see [16, §2.6] and [20, §7]. We say that a
network G = (V,E) has bounded local geometry if there exists a constant M such
that deg(v) ≤M for all v ∈ V and M−1 ≤ c(e) ≤M for all e ∈ E.

Benjamini and Schramm [4] proved that every transient network of bounded local
geometry that is rough isometric to a planar graph admits non-constant bounded har-
monic functions. In general, however, rough isometries do not preserve the property of
admitting non-constant bounded harmonic functions [4, Theorem 3.5], and consequently
do not preserve Poisson boundaries.

Our next theorem establishes that, for a bounded degree graph G roughly isometric
to a bounded degree proper plane graph G′, the Poisson boundary of G coincides with the
geometric boundary of a suitably chosen embedding of G′, so that the same embedding
gives rise to a realisation of the Poisson boundaries of both G and G′. See Section 2.2
for the definition of an embedding of a planar graph.

Theorem 1.2 (Poisson boundaries of roughly planar networks). Let G be a transient
network with bounded local geometry such that there exists a proper plane graph G′

with bounded degrees and a rough isometry φ : G→ G′. Then there exists an embedding
z of G′ into D such that whenever 〈Xn〉n≥0 is a random walk on G, the sequence z ◦φ(Xn)

converges almost surely to a point in ∂D and the law of this limit point is non-atomic.
Moreover, for every such embedding z and for every bounded harmonic function h on G,
there exists a bounded Borel function f : ∂D→ R such that

h(v) = Ev

[
f

(
lim
n→∞

z ◦ φ(Xn)

)]
.

for every v ∈ V . That is, the geometric boundary of the disc coincides with the Poisson
boundary of G.

The part of Theorem 1.2 concerning the existence of an embedding is implicit in [4].

A further generalisation of Theorem 1.1 concerns embeddings of possibly irreversible
planar Markov chains: The only changes required to the proof of Theorem 1.1 in order
to prove the following are notational. We say that a Markov chain (V, P ) is locally finite
if the set {u ∈ V : P (v, u) > 0} is finite for every vertex v ∈ V .

Theorem 1.3. Let (V, P ) be a locally finite Markov chain such that the graph

G =
(
V, {(u, v) ∈ V 2 : P (u, v) > 0 or P (v, u) > 0}

)
is planar. Suppose further that there exists a vertex ρ ∈ V such that for every v ∈ V there
exists n such that Pn(ρ, v) > 0, and let 〈Xn〉n≥0 be a trajectory of the Markov chain. Let
z be a (not necessarily proper) embedding of G into the unit disc D such that 〈z(Xn)〉n≥0

converges to a point in ∂D almost surely and the law of the limit point is non-atomic.
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Boundaries of planar graphs

Then for every bounded harmonic function h on (V, P ), there exists a bounded Borel
function f : ∂D→ R such that

h(v) = Ev

[
f

(
lim
n→∞

z(Xn)

)]
.

for every v ∈ V .

The assumption that (V, P ) is locally finite is not really necessary, but removing it
would require a non-cosmetic modification of the proof.

1.3 The Martin boundary

In [2] it was also proven that the Martin boundary of a bounded degree CP hyperbolic
triangulation can be identified with the geometric boundary of its circle packing. Recall
that a function g : V → R on a network G is superharmonic if

g(u) ≥ 1

c(u)

∑
v∼u

c(u, v)g(v)

for every vertex u ∈ V . Let ρ be a fixed vertex of G and consider the space S+ of positive
superharmonic functions g on G such that g(ρ) = 1, which is a convex, compact subset
of the space of functions V → R equipped with the product topology (i.e. the topology
of pointwise convergence). For each v ∈ V , let Pv be the law of the random walk on
G started at v. We can embed V into S+ by sending each vertex u of G to its Martin
kernel

Mu(v) :=
Ev
[
#(visits to u)

]
Eρ
[
#(visits to u)

] =
Pv(hit u)

Pρ(hit u)
.

The Martin compactification M(G) of the network G is defined as the closure of
{Mu : u ∈ V } in S+, and the Martin boundary ∂M(G) of the network G is defined to
be the complement of the image of V ,

∂M(G) :=M(G) \ {Mu : u ∈ V }.

See [8, 17, 23] for background on the Martin boundary.
Our next result is that, for a triangulation of the plane with bounded local geometry,

the geometric boundary of the square tiling coincides with the Martin boundary.

Theorem 1.4 (Identification of the Martin boundary). Let T be a transient, simple, proper
plane triangulation with bounded local geometry. Let Sρ be a square tiling of T in a
cylinder R/ηZ× [0, 1]. Then

1. The sequence of Martin kernels 〈Mvn〉n≥0 associated to a sequence of vertices 〈vn〉n≥0

in T converges to a point in the Martin boundary of T if and only if y(vn) → 1 and
θ(vn) converges to a point in R/ηZ.

2. The map

M : θ 7−→Mθ := lim
n→∞

Mvn

where 〈vn〉n≥0 is a sequence of vertices
such that

(
θ(vn), y(vn)

)
→ (θ, 1),

which is well-defined by (1), is a homeomorphism from R/ηZ to the Martin boundary
∂M(T ) of T .

That is, the geometric boundary of the rectangle tiling of G coincides with the Martin
boundary of G.
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This will be deduced from the analogous statement for circle packings [2, Theorem
1.2] together with the following theorem, which states that for a bounded degree trian-
gulation T , the square tiling and circle packing of T define equivalent compactifications
of T .

Theorem 1.5 (Comparison of square tiling and circle packing). Let T be a transient,
simple, proper plane triangulation with bounded local geometry. Let Sρ be a rectangle
tiling of T in the cylinder R/ηZ × [0, 1] and let C be a circle packing of T in D with
associated embedding z. Then

1. The sequence of points 〈z(vn)〉n≥0 associated to a sequence of vertices 〈vn〉n≥0 in T
converges to a point in ∂D if and only if y(vn)→ 1 and θ(vn) converges to a point in
R/ηZ.

2. The map

θ : ξ 7−→ θ(ξ) := lim
n→∞

θ(vn)
where 〈vn〉n≥0 is a sequence
of vertices such that z(vn)→ ξ,

which is well-defined by (1), is a homeomorphism from ∂D to R/ηZ.

Theorem 1.5 also allows us to deduce the Poisson boundary results of [9] and [2]
from each other in the case of bounded degree triangulations.

Theorem 1.4 has the following immediate corollaries by standard properties of the
Martin compactification.

Corollary 1.6 (Continuity of harmonic densities). Let T be a transient proper simple
plane triangulation with bounded local geometry, and let Sρ be a rectangle tiling of T in
the cylinder R/ηZ× [0, 1]. For each vertex v of T , let ωv denote the harmonic measure
from v, defined by

ωv(A ) := Pv

(
lim
n→∞

θ(Xn) ∈ A
)

for each Borel set A ⊆ R/ηZ, and let λ = ωρ denote the Lebesgue measure on R/ηZ.
Then for every v of T , the density of the harmonic measure from v with respect to
Lebesgue measure is given by

dωv
dλ

(θ) = Mθ(v)

which is continuous with respect to θ.

Corollary 1.7 (Representation of positive harmonic functions). Let T be a transient
proper simple plane triangulation with bounded local geometry, and let Sρ be a rectangle
tiling of T in the cylinder R/ηZ× [0, 1]. Then for every positive harmonic function h on
T , there exists a unique measure µ on R/ηZ such that

h(v) =

∫
R/ηZ

Mθ(v) dµ(θ).

for every v ∈ V .

2 Background

2.1 Notation

We use e to denote both oriented and unoriented edges of a graph or network. An
oriented edge e is oriented from its tail e− to its head e+. Given a network G and a
vertex v of G, we write Pv for the law of the random walk on G started at v and Ev for
the associated expectation operator.
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2.2 Embeddings of planar graphs

Let G = (V,E) be a connected graph. For each edge e, choose an orientation of
e arbitrarily and let I(e) be an isometric copy of the interval [0, 1]. The metric space
G = G(G) is defined to be the quotient of the union

⋃
e I(e) ∪ V , where we identify

the endpoints of I(e) with the vertices e− and e+ respectively, and is equipped with
the path metric. An embedding of G into a surface S is a continuous, injective map
z : G → S. The embedding is proper if every compact subset of S intersects at most
finitely many edges and vertices of z(G). A connected graph is planar if and only
if it admits an embedding into R2. A plane graph is a connected planar graph G

together with an embedding of G = G(G) into a surface S homeomorphic to R2; It is
a proper plane graph if G is locally finite and the embedding z is proper. A (proper)
plane network is a (proper) locally finite plane graph together with an assignment of
conductances c : E → (0,∞). A proper, simple plane triangulation is a proper, simple
plane network such that for each face f of the network (i.e., connected component of
S \ z(G)), there exist three edges e1, e2, e3 such that the boundary of f is equal to the
union I(e1) ∪ I(e2) ∪ I(e3).

If C is a circle packing of a proper simple plane triangulation T with carrier D, then
we can define a proper embedding z of T into D by setting z(v) to be the centre of the
disc the center of the disc of C corresponding to v for every vertex v of T , and embedding
each edge of G as a straight line between the centers of the circles corresponding to
its endpoints. The fact that this embedding is proper is an easy consequence of the
definition of the carrier (and the implicit assumption that T is locally finite).

A set of vertices W ⊆ V is said to be absorbing if with positive probability the
random walk 〈Xn〉n≥0 on G is contained in W for all n greater than some random N . A
plane graph G is said to be uniquely absorbing if for every finite subgraph G0 of G,
there is exactly one connected component D of R2 \

⋃
{z(I(e)) : e ∈ G0} such that the

set of vertices {v ∈ V : z(v) ∈ D} is absorbing. (If G has locally finite dual, meaning that
every face has finitely many edges incident to it, then it is uniquely absorbing if any only
if G \G0 has exactly one absorbing connected component for every finite subgraph G0.)

2.3 Square tiling

Let G be a transient, uniquely absorbing plane network and let ρ be a vertex of G.
For each v ∈ V let y(v) denote the probability that the random walk on G started at v
never visits ρ, and let

η :=
∑
u∼ρ

c(ρ, u)y(u).

Let R/ηZ be the circle of length η. Then there exists a set

Sρ = {S(e) : e ∈ E}

of rectangles in the cylinder R/ηZ× [0, 1) such that the following hold:

1. For each oriented edge e of G such that y(e+) ≥ y(e−), S(e) ⊆ R/ηZ × [0, 1) is a
rectangle of the form

S(e) = I(e)×
[
y(e−), y(e+)

]
where I(e) ⊆ R/ηZ is an interval of length

length
(
I(e)

)
:= c(e)

(
y(e+)− y(e−)

)
.

If e is such that y(e+) < y(e−), we define I(e) = I(−e) and S(e) = S(−e). In
particular, the aspect ratio of S(e) is equal to the conductance c(e) for every edge
e ∈ E.
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2. The interiors of the rectangles S(e) are disjoint, and the union
⋃
e S(e) is equal to

R/ηZ× [0, 1).

3. For every vertex v ∈ V , the set I(v) =
⋃
e−=v I(e) is an interval and is equal to⋃

e+=v I(e).

4. For almost every θ ∈ R/ηZ and for every t ∈ [0, 1), the line segment {θ} × [0, t]

intersects only finitely many rectangles of Sρ.

Note that the rectangle corresponding to an edge through which no current flows is
degenerate, consisting of a single point. The existence of the above tiling was proven
by Benjamini and Schramm [5]. Their proof was stated for the case c ≡ 1 but extends
immediately to our setting, see [9].

Let us also note the following property of the rectangle tiling, which follows from the
construction given in [5].

(5) For each two edges e1 and e2 ofG, the interiors of the vertical sides of the rectangles
S(e1) and S(e2) have a non-trivial intersection only if e1 and e2 both lie in the
boundary of some common face f of G.

For each v ∈ V , we let θ(v) be a point chosen arbitrarily from I(v).

Let G be a uniquely absorbing proper plane network. Benjamini and Schramm [5]
proved that if G has bounded local geometry and 〈Xn〉n≥0 is a random walk on G started
at ρ, then θ(Xn) converges to a point in R/ηZ and the law of the limit point is equal to
the Lebesgue measure (their proof is given for bounded degree plane graphs but extends
immediately to this setting). An observation of Georgakopoulos [9, Lemma 6.2] implies
that, more generally, whenever G is such that θ(Xn) converges to a point in R/ηZ and
length(I(Xn)) converges to zero almost surely, the law of the limit point is equal to the
Lebesgue measure.

3 The Poisson boundary

Let (V, P ) be a Markov chain. Harmonic functions on (V, P ) encode asymptotic
behaviours of a trajectory 〈Xn〉n≥0 as follows. We call a sequence 〈xi〉Ii=0 in V with
I ∈ [0,∞] a path if p(xi, xi+1) > 0 for all 0 ≤ i < I, and let Ω denote the space of infinite
paths

Ω =
{
〈xi〉i≥0 ∈ V N : p(xi, xi+1) > 0 ∀i ≥ 0

}
and let B denote the Borel σ-algebra for the product topology on Ω. Let I denote the
invariant σ-algebra

I =
{

A ∈ B : 〈xi〉i≥0 ∈ A ⇐⇒ 〈xi+1〉i≥0 ∈ A ∀〈xi〉i≥0 ∈ Ω
}
.

Assume that there exists a vertex ρ ∈ V from which all other vertices are reachable:

∀v ∈ V ∃k ≥ 0 such that pk(ρ, v) > 0

which is always satisfied when P is the transition operator of the random walk on a
connected network G. Then there exists an invertible linear transformation H between
L∞(Ω, I, Pρ) and the space of bounded harmonic functions on G defined as follows; see
[6] and [16, Proposition 14.12]:

H : f 7−→ Hf(v) = Ev

[
f
(
〈Xn〉n≥0

)]
H−1 : h 7−→ h̃

(
〈xi〉i≥0

)
= lim
i→∞

h(xi) (3.1)

where the above limit exists for Pρ-a.e. sequence 〈xi〉i≥0 by the martingale convergence
theorem.
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Proposition 3.1 (Path-hitting criterion for the Poisson boundary). Let (V, P ) be a locally
finite Markov chain and let 〈Xn〉n≥0 be a trajectory of the Markov chain. Suppose that
ψ : V → M is a function from V to a metric space M such that ψ(Xn) converges to a
point in M almost surely. For each k ≥ 0, let 〈Zkj 〉j≥0 be a trajectory of the Markov chain
started at Xk that is conditionally independent of 〈Xn〉n≥0 given Xk, and let P denote
the joint distribution of 〈Xn〉n≥0 and each of the 〈Zkm〉m≥0. Suppose that almost surely,
for every path 〈vi〉i≥0 ∈ Ω started at ρ such that limi→∞ ψ(vi) = limn→∞ ψ(Xn), we have
that

lim sup
k→∞

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0}

∣∣∣ 〈Xn〉n≥0

)
> 0. (3.2)

Then for every bounded harmonic function h on (V, P ), there exists a bounded Borel
function f : M→ R such that

h(v) = Ev

[
f

(
lim
n→∞

ψ(Xn)

)]
for every v ∈ V .

Note that the function sending X to limn→∞(Xn) is an almost sure limit of measurable
functions and is therefore measurable. Note also that it suffices to define f on the
support of the law of limn→∞ ψ(Xn), which is contained in the set of accumulation points
of {ψ(v) : v ∈ V }.

Proof of Proposition 3.1. Since indicator functions of Borel sets have dense linear span
in L∞(Ω, I, Pρ), and using the correspondence (3.1), it suffices to prove that for every
invariant event A ∈ I there exists a Borel set B ⊆M such that

Pv

(
A4

{
lim
n→∞

ψ(Xn) ∈ B
})

= 0 for every vertex v ∈ V ,

where 4 denotes the symmetric difference.
To this end, let A ∈ I be an invariant event and let h be the harmonic function

h(v) := Pv(〈Xn〉n≥0 ∈ A ).

Lévy’s 0-1 law implies that

h(Xn)
a.s.−−−−→
n→∞

1
(
〈Xn〉n≥0 ∈ A

)
and so it suffices to exhibit a Borel set B ⊆M such that

Pρ

(
A4

{
lim
n→∞

ψ(Xn) ∈ B
})

= Pρ

({
lim sup
n→∞

h(Xn) > 0
}
4
{

lim
n→∞

ψ(Xn) ∈ B
})

= 0.

We may assume that Pρ(A ) > 0, otherwise the claim is trivial.

Let dM denote the metric of M. For each natural number m > 0, let N(m) be the
smallest natural number such that

Pρ

(
∃n ≥ N(m) such that dM

(
ψ(Xn), lim

k→∞
ψ(Xk)

)
≥ 1

m

)
≤ 2−m.

For each n, let m(n) be the largest m such that n ≥ N(m), so that m(n)→∞ as n→∞.
Since

∑
m≥0 2−m <∞, Borel-Cantelli implies that

dM

(
ψ(Xn), lim

k→∞
ψ(Xk)

)
≤ 1

m(n)
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for all but finitely many n almost surely.
Define a set B ⊆M by

B :={
x ∈M :

∃ a path 〈vi〉i≥0 in V with v0 = ρ such that dM(ψ(vi), x) ≤ 1/m(i)

for all but finitely many i and infi≥0 h(vi) > 0

}
.

To see that B is Borel, observe that, by an obvious compactness argument using the fact
that (V, P ) is locally finite, B may be written as

B =
⋃
k≥0

⋃
j≥0

⋂
I≥j

Bk,j,I

where Bk,j,I is defined to be the closed set

Bk,j,I =

x ∈M :
∃ a path 〈vi〉Ii=0 in V with v0 = ρ such that
dM(ψ(vi), x) ≤ 1/m(i) for all j ≤ i ≤ I and
h(vi) ≥ 1/k for all 0 ≤ i ≤ I

 .

It follows from the discussion in the paragraph before last that limn→∞ ψ(Xn) ∈ B
almost surely on the event that h(Xn) converges to 1: Simply take 〈vi〉i≥0 = 〈Xi〉i≥0 as
the required path. In particular, the event {limn→∞ ψ(Xn) ∈ B} has positive probability.
We now prove conversely that lim infn→∞ h(Xn) > 0 almost surely on the event that
limn→∞ ψ(Xn) ∈ B. Condition on this event, so that there exists a path 〈vi〉i≥0 in G

starting at ρ such that limi→∞ ψ(vi) = limn→∞ ψ(Xn) and infi≥0 h(vi) > 0. Fix one such
path. Applying the optional stopping theorem to 〈h(Zkm)〉m≥0, we have

h(Xk) ≥ P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0}

∣∣∣ 〈Xn〉n≥0

)
· inf{h(vi) : i ≥ 0}

and so, by our assumption (3.2), we have that

lim sup
k→∞

h(Xk) ≥ lim sup
k→∞

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0}

∣∣∣ 〈Xn〉n≥0

)
· inf{h(vi) : i ≥ 0}

is positive almost surely.

We remark that controlling the rate of convergence of the path in the definition of B
can be avoided by invoking the theory of universally measurable sets.

3.1 Proof of Theorem 1.1

Proof of Theorem 1.1. Let 〈Xn〉n≥0 and 〈Yn〉n≥0 be independent random walks on G

started at ρ, and for each k ≥ 0 let 〈Zkj 〉j≥0 be a random walk on G started at Xk that
is conditionally independent of 〈Xn〉n≥0 and 〈Y 〉n≥0 given Xk. Let P denote the joint
distribution of 〈Xn〉n≥0, 〈Yn〉n≥0 and all of the random walks 〈Zkm〉m≥0. Given two points
θ1, θ2 ∈ R/ηZ, we denote by (θ1, θ2) ⊂ R/ηZ the open arc between θ1 and θ2 in the
counter-clockwise direction. For each such interval (θ1, θ2) ∈ R/ηZ, let

q(θ1,θ2)(v) := Pv

(
lim
n→∞

θ(Xn) ∈ (θ1, θ2)

)
.

be the probability that a random walk started at v converges to a point in the inter-
val (θ1, θ2).

Since the law of limn→∞ θ(Xn) is equal to the Lebesgue measure and hence non-
atomic, the two random variables θ+ := limn→∞ θ(Xn) and θ− := limn→∞ θ(Yn) are
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Figure 2: Illustration of the proof. Conditioned on the random walk 〈Xn〉n≥0, there
exists a random ε > 0 such that almost surely, for infinitely many k, a new random walk
〈Zkm〉m≥0 (red) started from Xk has probability at least ε of hitting the path 〈vi〉i≥0 (blue).

almost surely distinct. We can therefore write R/ηZ \ {θ+, θ−} as the union of the two
disjoint non-empty intervals R/ηZ× {1} \ {θ+, θ−} = (θ+, θ−) ∪ (θ−, θ+). Let

Qk := q(θ−,θ+)(Xk) = P

(
lim
m→∞

θ(Zkm) ∈ (θ−, θ+)

∣∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
be the probability that a random walk started at Xk, that is conditionally independent of
〈Xn〉n≥0 and 〈Yn〉n≥0 given Xk, converges to a point in the interval (θ−, θ+).

We claim that the random variable Qk is uniformly distributed on [0, 1] conditional
on 〈Xn〉kn=0 and 〈Yn〉n≥0. Indeed, since the law of θ+ given Xk is non-atomic, for each
s ∈ [0, 1] there exists1 θs = θs(Xk, θ

−) ∈ R/ηZ such that

P
(
θ+ ∈ (θ−, θs)

∣∣Xk, θ
−) = s.

The claim follows by observing that

P
(
Qk ∈ [0, s]

∣∣∣ 〈Xn〉kn=0, 〈Yn〉n≥0

)
= P

(
θ+ ∈ (θ−, θs) | Xk, θ

−) = s.

As a consequence, Fatou’s lemma implies that for every ε > 0,

P(Qk ∈ [ε, 1− ε] infinitely often) = E

[
lim sup
k→∞

1
(
Qk ∈ [ε, 1− ε]

)]
≥ lim sup

k→∞
P
(
Qk ∈ [ε, 1− ε]

)
= 1− 2ε.

and so
lim sup
k→∞

min{Qk, 1−Qk} > 0 almost surely. (3.3)

Let 〈vi〉i≥0 be a path in G started at ρ such that limi→∞ θ(vi) = θ+ and the height
y(vi) tends to 1. Observe (Figure 1) that for every k ≥ 0, the union of the traces
{vi : i ≥ 0} ∪ {Yn : n ≥ 0} either contains Xk or disconnects Xk from at least one of
the two intervals (θ−, θ+) or (θ+, θ−). That is, for at least one of the intervals (θ−, θ+)

1In the present setting, θs is unique since the law of θ+ given Xk has full support.
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or (θ+, θ−), any path in G started at Xk whose image under θ converges to this interval
must intersect {vi : i ≥ 0} ∪ {Yn : n ≥ 0}. It follows that

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0} ∪ {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
≥ min{Qk, 1−Qk}.

and so, applying (3.3),

lim sup
k→∞

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0} ∪ {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
> 0 (3.4)

almost surely. We next claim that

P
(
〈Zkm〉m≥0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
a.s.−−−−→
k→∞

0. (3.5)

Indeed, we have that

P
(
〈Zkm〉m≥0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
= P

(
〈Zkm〉m≥0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉kn=0, 〈Yn〉n≥0

)
= P

(
〈Xm〉m≥k hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉kn=0, 〈Yn〉n≥0

)
.

The rightmost expression converges to zero almost surely by an easy application of
Lévy’s 0-1 law: For each k0 ≤ k, we have that

P
(
〈Zkm〉m≥0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
≤ P

(
〈Xm〉m≥k0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉kn=0, 〈Yn〉n≥0

)
a.s.−−−−→
k→∞

1(〈Xm〉m≥k0 hits {Yn : n ≥ 0}),

and the claim follows since 1(〈Xm〉m≥k0 hits {Yn : n ≥ 0})→ 0 a.s. as k0 →∞.
Combining (3.4) and (3.5), we deduce that

lim sup
k→∞

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0}

∣∣∣ 〈Xn〉n≥0

)
= lim sup

k→∞
P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
> 0

almost surely. Applying Proposition 3.1 with ψ = (θ, y) : V → R/ηZ× [0, 1] completes the
proof.

3.2 Proof of Theorem 1.2

In this subsection we prove Theorem 1.2. We begin with the following simple lemma,
which is implicit in [19]. Recall that the Dirichlet energy of a function f : V → R is
defined by

EG(f) =
1

2

∑
e∈E

c(e)
∣∣f(e+)− f(e−)

∣∣2 .
Lemma 3.2. Let φ : V → V ′ be a rough isometry from a network G with bounded local
geometry to a network G′ with bounded local geometry. Then there exists a constant C
such that

EG(f ◦ φ) ≤ CEG′(f). (3.6)

for all functions f : V ′ → R.
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Proof. Let α and β be constants such that φ is an (α, β)-rough isometry. For each pair of
adjacent vertices u and v in G, we have that d′(φ(u), φ(v)) ≤ α+ β, and so there exists a
path in G′ from φ(u) to φ(v) of length at most α+ β. Fix one such path Φ(u, v) for each u
and v. Since there at most α+ β edges of G in each path Φ(u, v), and the conductances
of G are bounded, there exists a constant C1 such that

EG(f ◦ φ) =
∑
e∈E

c(e)
(
f ◦ φ(e+)− f ◦ φ(e−)

)2
=
∑
e∈E

c(e)
( ∑
e′∈Φ(e)

f(e′+)− f(e′−)
)2

≤ C1

∑
e∈E

∑
e′∈Φ(e)

(
f(e′+)− f(e′−)

)2
. (3.7)

Let e′ be an edge of G′. If e1 and e2 are two edges of G such that Φ(e−1 , e
+
1 ) and Φ(e−1 , e

+
1 )

both contain e′, then d′(φ(e−1 ), φ(e−2 )) ≤ 2(α+ β) and so

d(e−1 , e
−
2 ) ≤ α

(
d′
(
φ(e−1 ), φ(e−2 )

)
+ β

)
≤ α(2α+ 3β).

Thus, the set of oriented edges e of G such that Φ(e−, e+) contains e′ is contained a ball
of radius α(2α+ 3β) in G. Since G has bounded degrees, the number of edges contained
in such a ball is bounded by some constant C2. Combining this with the assumption that
the conductances of G′ are bounded below by some constant C3, we have that

EG(f ◦ φ) ≤ C1

∑
e∈E

∑
e′∈Φ(e)

(
f(e′+)− f(e′−)

)2
≤ C1C2

∑
e′∈E′

(
f(e′+)− f(e′−)

)2 ≤ C1C2C3EG′(f).

Now suppose that G = (V,E) is a transient network with bounded local geometry
such that there exists a proper plane graph G′ = (V ′, G′) with bounded degrees and a
rough isometry φ : V → V ′. Then G′ is also transient [16, §2.6]. We may assume that G′

is simple, since φ remains a rough isometry if we modify G′ by deleting all self-loops and
identifying all multiple edges between each pair of vertices. In this case, there exists a
simple, bounded degree, proper plane triangulation T ′ containing G′ as a subgraph [4,
Lemma 4.3]. The triangulation T ′ is transient by Rayleigh’s monotonicty principle, and
since it has bounded degrees it is CP hyperbolic by the He-Schramm Theorem [13]. Let
C be a circle packing of T ′ in the disc D and let z be the embedding of G′ defined by this
circle packing, so that for each v ∈ V ′, z(v′) is the center of the circle of C corresponding
to v′, and each edge of G′ is embedded as a straight line between the centers of the
circles corresponding to its endpoints.

The proofs of Lemmas 3.3 and 3.4 below are adapted from [2].

Lemma 3.3. Let 〈Xn〉n≥0 denote the random walk on G. Then z ◦ φ(Xn) converges to a
point in ∂D almost surely.

Proof. Ancona, Lyons and Peres [1] proved that for every function f of finite Dirichlet
energy on a transient network G, the sequence f(Xn) converges almost surely as n→∞.
Thus, it suffices to prove that each coordinate of z◦φ has finite Dirichlet energy. Applying
the inequality (3.6), it suffices to prove that each coordinate of z has finite energy. For
each vertex v′ of G′, let r(v′) denote the radius of the circle corresponding to v′ in C.
Then, letting z = (z1, z2),

EG′(z1) + EG′(z2) =
∑
e′∈E′

∣∣z(e+)− z(e−)
∣∣2 =

∑
e′

(
r(e+) + r(e−)

)2
≤ 2 max

(
deg(v′)

) ∑
v′∈V ′

r(v)2 ≤ 2 max
(
deg(v′)

)
<∞
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since
∑
πr(v)2 ≤ π is the total area of all the circles in the packing.

Lemma 3.4. The law of limn→∞ z ◦ φ(Xn) does not have any atoms.

The proof will require the following well-known inequality [16, Exercise 2.36]: If G is
a finite network, v is a vertex of G, and A and B are two sets of vertices of G, then

Pv(hit A before B) ≤ Ceff(v ↔ A;G)

Ceff(v ↔ A ∪B;G)
. (3.8)

Proof of Lemma 3.4. Let Bk(ρ) be the set of vertices of G at graph distance at most k
from ρ, and let Gk be the subnetwork of G induced by Bk(ρ) (i.e. the induced subgraph
together with the conductances inherited from G). Recall that the free effective
conductance between a set A and a set B in an infinite graph G is given by

C F
eff(A↔ B ; G) = min

{
E(F ) : F (a) = 1 ∀a ∈ A, F (b) = 0 ∀b ∈ B

}
.

The same variational formula also defines the effective conductance between two sets A
and B in a finite network G, denoted Ceff(A↔ B;G). A related quantity is the effective
conductance from a vertex v to infinity in G

Ceff(v →∞;G) := lim
k→∞

C F
eff(v ↔ V \Bk(ρ);G) = lim

k→∞
C F

eff(v ↔ V \Bk(ρ);Gk+1),

which is positive if and only if G is transient. See [16, §2 and §9] for background on
electrical networks. The inequality (3.6) above implies that there exists a constant C
such that

C F
eff(A↔ B ; G) ≤ CC F

eff

(
φ(A)↔ φ(B) ; G′

)
(3.9)

for each two sets of vertices A and B in G.
Let ρ ∈ V and ξ ∈ ∂D be fixed, and let

Aε(ξ) := {v ∈ V : |z ◦ φ(v)− ξ| ≤ ε}.

In [2, Corollary 5.2], it is proven that

lim
ε→0

C F
eff

(
φ(ρ)↔ φ(Aε(ξ)) ; T ′

)
= 0.

Applying the inequality (3.9) and Rayleigh’s monotonicity principle, we have that

C F
eff

(
ρ↔ Aε(ξ) ; G

)
≤ CC F

eff

(
φ(ρ)↔ φ(Aε(ξ)) ; G′

)
≤ CC F

eff

(
φ(ρ)↔ φ(Aε(ξ)) ; T ′

)
−−−→
ε→0

0. (3.10)

Applying the inequality (3.8) yields that

Pρ(hit Aε(ξ) before V \Bk(ρ)) ≤
Ceff

(
ρ↔ Aε(ξ) ∩Bk(ρ);Gk+1

)
Ceff

(
ρ↔ Aε(ξ) ∪ V \Bk(ρ);Gk+1

)
≤

Ceff

(
ρ↔ Aε(ξ) ∩Bk(ρ);Gk+1

)
Ceff

(
ρ↔ V \Bk(ρ);Gk+1

) .

Applying the exhaustion characterisation of the free effective conductance [16, §9.1],
which states that

C F
eff(A↔ B;G) = lim

k→∞
Ceff(A↔ B;Gk),

we have that

Pρ
(
hit Aε(ξ)

)
= lim
k→∞

Pρ(hit Aε(ξ) before V \Bk(ρ))

≤ lim
k→∞

Ceff

(
ρ↔ Aε(ξ) ∩Bk(ρ);Gk+1

)
Ceff

(
ρ↔ V \Bk(ρ);Gk+1

) =
C F

eff

(
ρ↔ Aε(ξ);G

)
Ceff (ρ→∞;G)

. (3.11)
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Combining (3.10) and (3.11) we deduce that

Pρ

(
lim
n→∞

z ◦ φ(Xn) = ξ

)
≤ lim
ε→0

Pρ
(
hit Aε(ξ)

)
= 0.

Remark 3.5. The statement that P(hit Aε(ξ)) converges to zero as ε tends to zero for
every ξ ∈ ∂D can also be used to deduce convergence of z ◦ φ(Xn) without appealing to
the results of [1]: Suppose for contradiction that with positive probability z ◦ φ(Xn) does
not converge, so that with positive probability there exist two (random) boundary points
ξ1, ξ2 ∈ ∂D in the closure of {z ◦ φ(Xn) : n ≥ 0}. It is not hard to see that in this case the
closure of {z ◦ φ(Xn) : n ≥ 0} must contain at least one of the boundary intervals [ξ1, ξ2]

or [ξ2, ξ1]. However, if the closure of {z ◦ φ(Xn) : n ≥ 0} contains an interval of positive
length with positive probability, then there exists a point ξ ∈ ∂D that is contained in the
closure of {z ◦ φ(Xn) : n ≥ 0} with positive probability. This contradicts the convergence
of P(hit Aε(ξ)) to zero.

Proof of Theorem 1.2. The part of the theorem concerning the existence of an embed-
ding z of G′ in D such that z ◦ φ(Xn) converges to a point in ∂D almost surely and that
the law of the limit is non-atomic follows immediately from Lemmas 3.3 and 3.4. Fix
one such embedding z. Let 〈Xn〉n≥0 and 〈Yn〉n≥0 be independent random walks on G

started at ρ, and for each k ≥ 0 let 〈Zkj 〉j≥0 be a random walk on G started at Xk that
is conditionally independent of 〈Xn〉n≥0 and 〈Y 〉n≥0 given Xk. Let P denote the joint
distribution of 〈Xn〉n≥0, 〈Yn〉n≥0 and all of the random walks 〈Zkm〉m≥0.

Since the law of limn→∞ z◦φ(Xn) is non-atomic, the random variables ξ+ = limn→∞ z◦
φ(Xn) and ξ− = limn→∞ z ◦ φ(Yn) are almost surely distinct. Let

Qk := P

(
lim
m→∞

z ◦ φ(Zkm) ∈ (ξ−, ξ+)

∣∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
.

Using the non-atomicity of the law of limn→∞ z ◦ φ(Xn), the same argument as in the
proof of Theorem 1.1 also shows that

lim sup
k→∞

min{Qk, 1−Qk} > 0 almost surely. (3.12)

We now come to a part of the proof that requires more substantial modification. Let
〈vi〉i≥0 be a path in G starting at ρ such that z ◦ φ(vi)→ ξ+.

Let Φ be as in the proof of Lemma 3.2. Given a path 〈ui〉i≥0 in G, let Φ(〈ui〉i≥0) denote
the path in G′ formed by concatenating the paths Φ(ui, ui+1) for i ≥ 0. For each k ≥ 0,
let τk be the first time t such that the path Φ(Zkt−1, Z

k
t ) intersects the union of the traces

of the paths Φ(〈vi〉i≥0) and Φ(〈Yn〉n≥0). Observe that for every k ≥ 0, the union of the
traces of the paths Φ(〈vi〉i≥0) and Φ(〈Yn〉n≥0) either contains φ(Xk) or disconnects φ(Xk)

from at least one of the two intervals (ξ−, ξ+) or (ξ+, ξ−), meaning that any path in G′

starting at φ(Xk) whose image under z converges to this interval must intersect one of
the paths Φ(〈vi〉i≥0) or Φ(〈Yn〉n≥0). Thus, we have that

P
(
τk <∞

∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
≥ min{Qk, 1−Qk}

and hence that
lim sup
k→∞

P
(
τk <∞

∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
> 0 (3.13)

almost surely by (3.12).
On the event that τk is finite, by definition of Φ, there exists a vertex u ∈ {vi :

i ≥ 0} ∪ {Yn : n ≥ 0} such that d′(φ(Zτk), φ(u)) ≤ 2α + 2β, and consequently that
d(Zτk , u) ≤ α(2α + 3β) since φ is a rough isometry. Since G has bounded degrees and
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edge conductances bounded above and below, c(e)/c(w) ≥ δ for some δ > 0 and every
e ∈ E and w ∈ V . Thus, by the strong Markov property,

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0} ∪ {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0, {τk <∞}
)

≥ δα(2α+3β) > 0 (3.14)

for all k ≥ 0. Combining (3.13) and (3.14) yields

lim sup
k→∞

P
(
〈Zkm〉m≥0 hits {vi : i ≥ 0} ∪ {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
> 0 (3.15)

almost surely. The same argument as in the proof of Theorem 1.1 also implies that

P
(
〈Zkm〉m≥0 hits {Yn : n ≥ 0}

∣∣∣ 〈Xn〉n≥0, 〈Yn〉n≥0

)
a.s.−−−−→
k→∞

0. (3.16)

We conclude by combining (3.15) with (3.16) and applying Proposition 3.1 to ψ = z ◦ φ :

V → D ∪ ∂D.

4 Identification of the Martin boundary

In this section, we prove Theorem 1.5 and deduce Theorem 1.4. We begin by proving
that the rectangle tiling of a bounded degree triangulation with edge conductances
bounded above and below does not have any accumulation points of rectangles other
than at the boundary circle R/ηZ× {1}.
Proposition 4.1. Let T be a transient, simple, proper plane triangulation with bounded
local geometry. Then for every vertex v of T and every ε > 0, there exist at most finitely
many vertices u of T such that the probability that a random walk started at u visits v is
greater than ε.

Proof. Let C be a circle packing of T in the unit discD, with associated proper embedding
z of T into D. Benjamini and Schramm [4, Lemma 5.3] proved that for every ε > 0 and
κ > 0, there exists δ > 0 such that for any v ∈ Ṽ with |z(v)| ≥ 1− δ, the probability that a
random walk from v ever visits a vertex u such that |z(u)| ≤ 1 − κ is at most ε. (Their
proof is given for c ≡ 1 but extends immediately to this setting.) By setting κ = 1− |z(v)|,
it follows that for every ε > 0, there exists δ > 0 such that for every vertex u with
|z(u)| ≥ 1 − δ, the probability that a random walk started at u hits v is at most ε. The
claim follows since |z(u)| ≥ 1− δ for all but finitely many vertices u of T .

Since the height y(v) of each vertex v in the rectangle tiling is equal to the probability
that the random walk started at v never visits ρ, we obtain the following immediate
corollary.

Corollary 4.2. Let T be a transient proper plane triangulation with bounded local
geometry, and let Sρ be a rectangle tiling of T . Then for every t ∈ [0, 1), the cylinder
R/ηZ× [0, t] intersects only finitely many rectangles S(e) ∈ Sρ.

We also require the following simple geometric lemma.

Lemma 4.3. Let T be a transient proper plane triangulation with bounded local geom-
etry, and let Sρ be the square tiling of T in the cylinder R/ηZ × [0, 1]. Then for every
sequence of vertices 〈vn〉n≥0 such that y(vn) → 1 and θ(vn) → θ0 for some (θ0, y0) as
n → ∞, there exists a path 〈γn〉n≥0 containing {vn : n ≥ 0} such that y(γn) → 1 and
θ(γn)→ θ0 as n→∞.
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Proof. Define a sequence of vertices 〈v′n〉n≥0 as follows. If the interval I(vn) is non-
degenerate (i.e. has positive length), let v′n = vn. Otherwise, let 〈ηj〉j≥0 be a path
from vn to ρ in T , let j(n) be the smallest j > 0 such that the interval I(ηj(n)) is non-
degenerate, and set v′n = ηj(n). Observe that y(v′n) = y(vn), that the interval I(v′n)

contains the singleton I(vn), and that the path η̃n = 〈ηnj 〉
j(n)
j=0 from vn to v′n in T satisfies

(I(η̃j), y(η̃j)) = (I(vn), y(vn)) for all j < j(n).

Let θ′(v′n) ∈ I(v′n) be chosen so that the line segment `n between the points
(θ′(v′n), y(v′n)) and (θ′(v′n+1), y(v′n+1)) in the cylinder R/ηZ × [0, 1] does not intersect
any degenerate rectangles of Sρ or a corner of any rectangle of Sρ (this is a.s. the case if
θ′(v′n) is chosen uniformly from I(vn) for each n). By Corollary 4.2, the line segment `n
intersects some finite sequence of non-degenerate rectangles of Sρ, corresponding to a
finite sequence of edges en1 , . . . , e

n
l(n) of G. Let eni be oriented so that y(en+

i ) > y(en−i ) for
every i and n. For each 1 ≤ i ≤ l(n)− 1, either

1. the vertical sides of the rectangles S(eni ) and S(eni+1) have non-disjoint interiors, in
which case eni and eni+1 lie in the boundary of a common face of T , or

2. the horizontal sides of the rectangles S(eni ) and S(eni+1) have non-disjoint interiors,
in which case eni and eni+1 share a common endpoint.

In either case, since T is a triangulation, there exists an edge in T connecting en+
i to

en−i+1 for each i and n. We define a path γn by alternatingly concatenating the edges eni
and the edges connecting en+

i to en−i+1 as i increases from 1 to l(n). Define the path γ by
concatenating all of the paths

η̃n ◦ γn ◦ (−η̃n+1)

where −η̃n+1 denotes the reversal of the path η̃n+1.

Let M be an upper bound for the degrees of T and for the conductances and resis-
tances of the edges of T . For each vertex v of T , there are at most M rectangles of Sρ
adjacent to I(v) from above, so that at least one of these rectangles has width at least
length(I(v))/M . This rectangle must have height at least length(I(v))/M2. It follows that

length(I(v)) ≤M2
(
1− y(v)

)
(4.1)

for all v ∈ T , and so for every edge e of T ,

|y(e−)− y(e+)| ≤ 1

c(e)
length

(
I(e−)

)
≤M3

(
1− y(e−)

)
(4.2)

Let w be a vertex visited by the path η̃n ◦ γn ◦ (−η̃n+1). By construction, w has an
edge emanating from it such that the associated rectangle intersects the line segment
`n, and consequently a neighbouring vertex w′ such that y(w′) ≥ min{y(vn), y(vn+1)}.
Applying (4.2), we deduce that

y(w) ≥ (1 +M3) min{y(vn), y(vn+1)} −M3

for all vertices w visited by the path η̃n ◦ γn ◦ (−η̃n+1). Since y(vn) → 1 as n → ∞, it
follows that y(γk)→ 1 as k →∞. The estimate (4.1) then implies that length(I(γk))→ 0

as k →∞. Since I(w) intersects the projection to the boundary circle of the line segment
`n for each vertex w visited by the path η̃n ◦ γn ◦ (−η̃n+1), we deduce that θ(γk)→ θ0 as
k →∞.

We also have the following similar lemma for circle packings.
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Lemma 4.4. Let T be a CP hyperbolic plane triangulation, and let C be a circle packing
of T in D with associated embedding z. Then for every sequence 〈vn〉n≥0 such that z(vn)

converges as n→∞, there exists a path 〈γn〉n≥0 in T containing {vn : n ≥ 0} such that
z(γn) converges as n→∞.

Proof. The proof is similar to that of Lemma 4.3, and we provide only a sketch. Draw
a straight line segment in D between the centres of the circles corresponding to each
consecutive pair of vertices vn and vn+1. The set of circles intersected by the line
segment contains a path γn in T from vn to vn+1. (If this line segment is not tangent to
any of the circles of C, then the set of circles intersected by the segment is exactly a path
in T .) The path γ is defined by concatenating the paths γn. For every ε > 0, there are
at most finitely many v for which the radius of the circle corresponding to v is greater
than ε, since the sum of the squared radii of all the circles in the packing is at most 1.
Thus, for large n, all the circles corresponding to vertices used by the path γn are small.
The circles that are intersected by the line segment between z(vn) and z(vn+1) therefore
necessarily have centers close to ξ0 for large n. We deduce that z(γi)→ ξ0 as i→∞.

Proof of Theorem 1.5. Let 〈Xn〉n≥0 be a random walk on T . Our assumptions guarantee
that θ(Xn) and z(Xn) both converge almost surely as n→∞ and that the laws of these
limits are both non-atomic and have support R/ηZ and ∂D respectively.

Suppose that γ is a path in T that visits each vertex at most finitely often. We claim
that θ(γi) converges if and only if z(γi) converges. To prove this, it suffices to show
that both forms of convergence are equivalent to the property that the random walk Xn

almost surely does not hit γi infinitely often.
We now prove that θ(γi) converges if and only if Xn almost surely does not hit

γi infinitely often. The proof of the corresponding statement for z(γi) is similar. If
θ(γi) converges, then Xn almost surely does not hit γi infinitely often, since otherwise
limi→∞ θ(γi) would be an atom in the law of limn→∞ θ(Xn). Conversely, if θ(γi) does not
converge, then there exist at least two distinct points θ1, θ2 ∈ R/ηZ such that (θ1, 1) and
(θ2, 1) are in the closure of {(θ(γi), y(γi)) : n ≥ 0}. Let 〈Yn〉n≥0 be a random walks started
at ρ independent of 〈Xn〉n≥0. Since the law of limn→∞ θ(Xn) has full support, we have
with positive probability that both limn→∞ θ(Xn) ∈ (θ1, θ2) and limn→∞ θ(Yn) ∈ (θ2, θ1).
On this event, the union of the traces {Xn : n ≥ 0} ∪ {Yn : n ≥ 0} disconnects (θ1, 1) from
(θ2, 1), and consequently the path 〈γi〉n≥0 must hit {Xn : n ≥ 0} ∪ {Yn : n ≥ 0} infinitely
often. By symmetry, there is a positive probability that 〈Xn〉n≥0 hits the trace {γi : n ≥ 0}
infinitely often as claimed.

It follows from the above claim together with Lemmas 4.3 and 4.4 that for any
sequence of vertices 〈vi〉i≥0 in T that includes each vertex of T at most finitely often, the
sequence θ(vi) converges if and only if z(vi) converges, and hence that the map

θ : ξ 7−→ θ(ξ) := lim
n→∞

θ(vn)
where 〈vn〉n≥0 is a sequence
of vertices such that z(vn)→ ξ

is well defined and bijective. To see that this map is a homeomorphism, suppose that ξn
is a sequence of points in ∂D converging to a point ξ ∈ ∂D. For every n, there exists a
vertex vn ∈ V such that |ξn − z(vn)| ≤ 1/n and |θ(ξn)− θ(vn)| ≤ 1/n. Thus, z(vn)→ ξ and
we have

|θ(ξ)− θ(ξn)| ≤ |θ(ξ)− θ(vn)|+ |θ(vn)− θ(ξn)| −−−−→
n→∞

0.

The proof of the continuity of the inverse is similar.

Proof of Theorem 1.4. By [2, Theorem 1.2], a sequence of vertices 〈vi〉i≥0 converges to
a point in the Martin boundary of T if and only if z(vi) converges to a point in ∂D, and
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the map
ξ 7→Mξ := lim

ß→∞
Mvi where z(vi)→ ξ

is a homeomorphism from ∂D to ∂M(T ). Combining this with Theorem 1.5 completes
the proof.
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