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Abstract

We define some new sequences of recursively constructed random combinatorial trees,
and show that, after properly rescaling graph distance and equipping the trees with
the uniform measure on vertices, each sequence converges almost surely to a real tree
in the Gromov-Hausdorff-Prokhorov sense. The limiting real trees are constructed
via line-breaking the half real-line with a Poisson process having rate (`+ 1)t`dt, for
each positive integer `, and the growth of the combinatorial trees may be viewed as
an inhomogeneous generalization of Rémy’s algorithm.
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1 Introduction

Understanding the structure of large random trees and graphs is an important
topic of much recent interest in mathematics, statistics, and science. Random trees
appear in population genetics and computer science, and statistical data with network
structure is now generated in many fields. One important approach to studying a large
random discrete structure is to determine limiting behavior as its size tends to infinity,
in particular the structure may converge in a suitable sense to a limit object. Two well-
known illustrations of this approach are the classical functional central limit theorem
and the recently developed notion of dense graph limits (so-called graphons). In this
paper we are interested in a third setting that has been an important and active research
area for the last 25 years: continuum tree limits of combinatorial (i.e., graph-theoretic)
trees; here trees are viewed as measured metric spaces and convergence is in the
Gromov-Hausdorff-Prokhorov (GHP) topology. Necessary background on GHP topology
is provided in Section 2, but roughly speaking, two measured metric spaces are close in
the GHP topology if each can be isometrically embedded into a common metric space
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Scaling limits for some random trees constructed inhomogeneously

so that both of their Hausdorff distance and the Lévy-Prokhorov distance between the
push-forwards of their measures are small.

To clarify the upcoming discussion, we first mention how trees are viewed as metric
spaces; see Evans [16] for a more thorough treatment. Throughout the article, trees are
not embedded in the plane (i.e., they are unordered). A compact metric space (T ,dlen)

is a real tree if the following two properties hold for every x, y ∈ T .

1. There is a unique isometric map fx,y from [0,dlen(x, y)] into T such that fx,y(0) = x

and fx,y(dlen(x, y)) = y.

2. If g is a continuous injective map from [0, 1] into T such that g(0) = x and g(1) = y,
then we have g([0, 1]) = fx,y([0,dlen(x, y)]).

We call the metric dlen the intrinsic length metric on T . For every x, y ∈ T , we call fx,y
a (non-graph-theoretic) path in T , and denote by |fx,y| := dlen(x, y) the intrinsic length
of the path. For ease of notation, write T , instead of (T ,dlen), for a real tree. A leaf of a
real tree T is a point x ∈ T such that T \ {x} is connected.

To emphasize the difference from real trees, we call graph-theoretic trees combina-
torial trees. Given a combinatorial tree T , let v(T ) be the vertex-set of T , denote by dgr

the graph distance on T , and view T as the metric space (v(T ),dgr). All edges and paths
in a combinatorial tree are of graph-theoretic sense (i.e., an edge has length 1, and the
length of a path is the number of edges in it). We often consider rooted trees which are
pairs (T, u), where T is a combinatorial (resp. real) tree, and u is a distinguished vertex
(resp. point) of T . We call u the root of (T, u).

The fundamental results for tree convergence in our setting are due to Aldous [4, 5, 6],
who constructed and studied a limit object now called the Brownian continuum random
tree (BCRT). Aldous showed that the BCRT is the

1. limit as the number of vertices tends to infinity of certain random combinatorial
trees with rescaled edge-lengths (more specifically, the combinatorial trees are
those formed from a critical Galton-Watson branching process with finite variance
offspring distribution and conditioned on their numbers of vertices),

2. limit of a Poisson line-breaking construction,

3. real tree with contour process equal in distribution to Brownian excursion, and

4. real tree having a certain finite-dimensional distribution on k-leaf trees obtained as
subtrees spanned by the root and k leaves chosen independently according to a
mass measure.

There has been an enormous amount of literature extending, generalizing, and em-
bellishing the results of [4–6]. One direction of extension is showing convergence of
other families of rescaled combinatorial trees to the BCRT; see, e.g., Haas & Miermont
[20], Kortchemski [22], Marckert & Miermont [24], Rizzolo [34]. Another type of exten-
sion, and that considered in this paper, is constructing and studying other continuum
random trees (CRTs) via some analog of part or all of Items (1-4) above. Well-known
examples are the inhomogeneous CRT; see Aldous & Pitman [8, 9], Aldous, Miermont &
Pitman [10]; the self-similar fragmentation trees; see Haas & Miermont [20]; and stable
trees; see Duquesne & Le Gall [15], Goldschmidt & Haas [17]; see also the references in
those papers.

The general versions of the constructions of Items (1) and (2) are most important
for this paper. Focusing on Item (1), an important class of combinatorial trees that
converge to CRTs are those given by various recursive constructions. In these models,
a growing sequence of random combinatorial trees (T(n) : n ∈ N) is defined so that
T(n + 1) is constructed conditionally on T(n) by adding vertices and edges according
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to specified random rules. Examples of such constructions are Rémy’s algorithm for
recursively constructing uniformly chosen leaf-labeled full binary trees; [32]; Marchal’s
generalization of Rémy’s algorithm; [23]; Ford’s α-model and generalizations; Chen,
Ford & Winkel [12]; and others: Haas & Stephenson [21], Pitman & Winkel [29], Pitman,
Rizzolo & Winkel [31], Pitman & Winkel [30], Rembart & Winkel [33].

The (sometimes Poisson) line-breaking constructions of Item (2) starts with a se-
quence of growing random real trees (Tk : k ∈ N), and then a real tree is defined to be
the closure of the union of the sequence. The sequence is recursively constructed: given
Tk, we create Tk+1 by attaching the end of a branch of a random length to a randomly
chosen point of Tk. To describe the Poisson line-breaking construction of the (scaled)
BCRT, let C1, C2, . . . be the points of an inhomogeneous Poisson process on (0,∞) with
intensity measure 2tdt. Then we set T1 to be a single branch of length C1, and recursively
construct Tk+1 from Tk by attaching the end of a branch of length Ck+1−Ck to a uniform
point of Tk. The closure of this sequence is a compact metric space with a measure sup-
ported on the leaves that is the weak limit of the uniform measure on the sequence trees.
An important remark for our purposes is that it is possible to embed Rémy’s algorithm
into this Poisson line-breaking construction of BCRT, and this embedding can be used to
show that uniformly chosen full binary trees with rescaled edge-lengths converge to the
BCRT as the number of vertices goes to infinity. Similarly, Marchal’s algorithm can be
embedded into a line-breaking construction of stable trees, and this embedding can be
used to show convergence of Marchal’s trees with rescaled edge-lengths to continuum
stable trees [17].

In this paper, we extend these ideas by defining a new family of sequences of growing
recursively constructed combinatorial trees in the spirit of Rémy’s algorithm and show
these sequences of trees can be embedded into appropriate Poisson line-breaking
constructions. We use this embedding to show that the sequence of combinatorial trees,
equipped with the uniform measure on vertices, almost surely converges in the GHP
topology to the closure of the union of the line-breaking constructed trees equipped
with a probability measure supported on the leaves. Curien & Haas [13] recently
systematically studied the trees that appear as limits, and determined useful properties
regarding compactness, boundedness, asymptotic height, and Hausdorff dimension. See
also the recent works of Amini, Devroye, Griffiths & Olver [11] and Haas [18] for related
constructions and discussions.

1.1 Main result

For each ` ∈ N := {1, 2, 3, . . .}, we define a sequence of growing random combinatorial
trees endowed with the uniform probability measure and a real tree limit. To ease
notation, fix ` ∈ N.

Construction of the combinatorial trees

Consider growing a sequence of random combinatorial trees (T(n) : n ∈ N) in the
following inhomogeneous manner. Let T(0) be a single (graph-theoretic) edge, call one
endpoint a leaf, denoted by L1, and call the other endpoint the root of T(0), denoted by
v0. For each n ∈ N, given T(n− 1), insert a new vertex vn in the interior of a uniformly
chosen edge of T(n− 1). If ` divides n, then, at the same time as vn appears, insert an
edge connecting vn and a new leaf, denoted by L1+n

`
. The resulting tree T(n) is rooted

at v0. Note that for k ∈ N, T(k`− 1) has k leaves and T(k`) has k + 1 leaves. In addition,
for all n ∈ N, let νn be the uniform probability measure over v(T(n)). Note that for ` > 2

there are degree-2 vertices in the trees and that the case ` = 1 coincides with Rémy’s
algorithm [32].
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Construction of the limiting real trees

The limiting real trees have been recently studied [13] and are generalizations of the
line-breaking construction for the BCRT described above and due to Aldous [6]. Given
a = (ak : k ∈ N) ⊂ R+, we construct a sequence of random real trees (T ak : k ∈ N) by
starting with T a1 , which is made of a single branch of length a1. For integer k ≥ 2, we
recursively construct T ak from T ak−1 by attaching the end of a branch of length ak to a
point chosen uniformly from T ak−1. For all k ∈ N, root T ak at an arbitrarily fixed end of the
initial branch. Furthermore, let T a be the closure of T ak as k →∞. Next, write C0 = 0,
and let C1, C2, . . . be the times in (0,∞) of an inhomogeneous Poisson process of rate

(`+ 1)t`dt. For all k ∈ N, write Tk = T (Ci−Ci−1:i∈N)
k . Finally, let T be the completion of Tk

as k →∞, which is a random real tree with intrinsic length metric dlen. Curien & Haas
[13] show that the limit tree T is almost surely compact and has a natural “uniform”
probability measure supported on the leaves; see Theorems 1.5 and 1.7 below. Note that
` = 1 corresponds to line-breaking construction of the BCRT.

We can now state our main result. For any a > 0, write a · dgr for the metric so that
(a · dgr)(x, y) = a · dgr(x, y). For the remainder of the paper, define

α = α(`) =
`

`+ 1
and c = c(`) =

`α

`+ 1
.

Theorem 1.1. There is a probability space where we can construct copies of (T(n) :

n ∈ N) and (Tk : k ∈ N) such that the following holds. There almost surely exists a
probability measure µ supported by the leaves of T such that(

v(T(n)),
c

nα
· dgr, νn

)
→ (T ,dlen, µ)

almost surely for the Gromov-Hausdorff-Prokhorov topology as n→∞.

The proof of Theorem 1.1 follows from three main steps. First, we can embed
the combinatorial trees into the Poisson line-breaking trees (Proposition 1.2). The
embedding follows from beta-gamma algebra and is similar in spirit to that described
in [17, Proposition 3.7] for Marchal’s algorithm. Second, we can use the embedding
to show that for Tk(n) defined to be the subtree of T(n) spanned by the root and the
first k leaves, Tk(n) is close to Tk even for growing k (Proposition 1.3). Essentially this
requires careful analysis of distances and masses in the combinatorial tree, which in turn
boils down to understanding a time inhomogeneous Pólya urn model studied by Peköz,
Röllin & Ross [27, 28], where distributional convergence results complementary to this
paper are derived. Note also that once the correspondence to the urn model is made (in
Section 5.1), the choice of the scaling constant c agrees with that of [28, Proposition 2.1];
in our work, c is chosen to cancel the leading term in (4.7). Finally, we show what is
left over in T(n) outside of Tk(n) is sufficiently small (Proposition 1.4). This tightness
argument requires careful analysis of two Pólya urn models and an understanding of
exchangeable random “decorated” masses.

The layout of the remainder of the paper is as follows. We present the three key
propositions and a detailed proof outline in the last subsection of this introduction. In
Section 2, we provide necessary background on GHP convergence, and then we prove
the three propositions in Sections 3, 4, and 5. We conclude this subsection of the
introduction with a few remarks contextualizing our result and discussing further work.

For related work, as previously discussed, there is much interest in limits of recur-
sively constructed trees. However, typically the models considered have some nice
consistency properties such as Markov branching (see [19] for a recent review), perhaps
with some consistent leaf-labeling, e.g., a regenerative structure as in [31], or having
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fully exchangeable leaf-labels. By consideration of small cases, it is clear that the leaf-
labeling in our models is not exchangeable and the combinatorial trees do not have the
Markov branching property so we cannot directly apply the general theory developed
for such models. Also, it is unusual for recursively built combinatorial tree models of
the kind studied here to allow for degree-2 vertices and this case is excluded from some
studies. Having GHP convergence results for an example falling outside the general
theory is interesting in its own right, but may also lead to further natural classes of
models and general theory.

There are many avenues for future study. The most obvious open problem is to provide
a description analogous to Items (3) and (4) above for the limit trees. Moreover, there
are many other decompositions and properties of recursively defined trees and their
limits that are important and appear in the CRT literature – what are the analogs of these
in our setting? Note that our combinatorial trees provide one path to understanding
properties of the limit trees.

1.2 Proof outline of Theorem 1.1

First, we examine the topologies of the combinatorial trees and the real trees. The
idea is to embellish the real trees with random vertices so that the resulting trees,
equipped with the graph distance, have the same law as the combinatorial trees.

Embellished trees

Write T (0) = T1. For each k ∈ N and i ∈ {1, . . . , `−1}, let T ((k−1)`+ i) be obtained from
inserting a vertex at a random point uniformly chosen with respect to the normalized
Lebesgue measure over T ((k−1)`+i−1). Let T ′k be formed by inserting a vertex uniformly
in T ((k − 1)`+ `− 1) and define T (k`) by attaching a branch of length Ck+1 − Ck to this
last inserted vertex. We call T (1), T (2), . . . the embellished trees, rooted at the same
point as T1. This construction is analogous to that of the combinatorial trees.

All vertices inserted in the above manner are called the embellished vertices. For
all k ∈ N and i ∈ {1, . . . , ` − 1}, if we forget about the embellished vertices, then
T ((k − 1)`+ i) with the intrinsic length metric has the same law as the real tree Tk. A
leaf of the embellished tree T ((k − 1)`+ i) is the corresponding leaf of Tk. A vertex of
the embellished tree T (n) is either an embellished vertex, a leaf, or the root. Denote
by v(T (n)) the set of vertices of T (n). We view T (n) as the union of the (non-graph-
theoretic) branches and the vertices, i.e., a hybrid of the real tree and the combinatorial
tree.

For all integers n, k with n ≥ (k− 1)`, let Tk(n) be the subtree of the embellished tree
T (n) spanned by the root and the first k leaves (in the order of appearance). Analogously,
write Tk(n) for the subtree of T(n) spanned by the root and the first k leaves.

The embellished trees give a way to couple T(n) and T (n) as follows. Recall that we
often write Tk(n) =

(
v(Tk(n)),dgr

)
and Tk =

(
Tk,dlen

)
.

Proposition 1.2. There is a probability space where we can construct copies of (T(n) :

n ∈ N), (T (n) : n ∈ N), and (Tk : k ∈ N) such that(
v(Tk(n)),dgr

)
= Tk(n) and

(
Tk(n),dlen

)
= Tk,

for all integers k, n with n ≥ (k − 1)`, equalities considered up to isometry-equivalence.

The proof of Proposition 1.2, given in Section 3, relies on that when vertices are
inserted into the embellished tree, branches are fragmented into Dirichlet-distributed
lengths.

Proposition 1.2 gives us a direct coupling to compare the rescaled graph-theoretic
path-lengths of Tk(n) and the corresponding intrinsic path-lengths of Tk, which leads to
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our next result showing that the combinatorial trees spanned by a subset of leaves and
the analogous subtree of the limit tree are close.

Before stating the result, we need some facts and notation. Firstly, as discussed in
greater detail just below and in Section 2, all the metric spaces appearing in this paper
are compact, and so in fact we can define a distance on such metric spaces (modulo
isometry-equivalence), denoted dGHP, which induces the GHP topology. Next, for all
k ∈ N, let µk be the normalized Lebesgue length measure on Tk. For all integers k, n
with n ≥ (k − 1)`, write νk,n for the uniform probability measure over v(Tk(n)). For two
sequences g(n), f(n), write g(n) = Ω(f(n)) if there exists C > 0 such that g(n) ≥ Cf(n)

for all n, and g(n) = o(f(n)) if g(n)/f(n)→ 0, as n→∞.

Proposition 1.3. Suppose k : N→ N satisfies k(n) = Ω
(
(log n)10

)
and k(n) = o

(
n1/10

)
.

In the probability space where the equalities of Proposition 1.2 hold, almost surely as
n→∞,

dGHP

((
v(Tk(n)(n)),

c

nα
· dgr, νk(n),n

)
,
(
Tk(n),dlen, µk(n)

))
→ 0.

The proof of Proposition 1.3 is given in Section 4 and relies on a concentration result
(Lemma 4.4 and Corollary 4.5), which says that the number of vertices along a path in
Tk(n)(n) has order c−1nα times the Lebesgue length of the path, and that the vertices
are regularly distributed.

Next, to ensure that Tk(n) is close to T(n), we need a tightness property of the
sequence (Tk(n) : k ∈ N, n ≥ k`), i.e., the Hausdorff distance between Tk(n)(n) and
T(n) is diminishing, and the Lévy-Prokhorov distance between their uniform probability
measures also vanishes in the limit. Recall that νn is the uniform probability measure
over v(T(n)).

Proposition 1.4. Suppose k : N→ N satisfies k(n) = Ω
(
n1/100

)
and k(n) = o

(
n1/3

)
and

assume now ` > 2. Then, almost surely as n→∞,

dGHP

((
v(Tk(n)(n)),

c

nα
· dgr, νk(n),n

)
,
(
v(T(n)),

c

nα
· dgr, νn

))
→ 0.

Note the restriction in Proposition 1.4 to ` > 2, which stems from Lemma 5.4 and
in particular the proof of Lemma 5.12. The restriction is due to balancing asymptotic
terms and probably some version of the proposition and these lemmas hold for ` = 1, but
convergence in this case is well-covered in the literature and so it is enough for us to
consider ` > 2. All other lemmas and propositions in the paper hold for ` = 1.

To establish Proposition 1.4, we deduce a height bound for the subtrees of T(n)

pendant to Tk(n)(n), and we also show that subtrees pendant to Tk(n)(n) are “uniformly
asymptotically negligible” (a similar property is used in Addario-Berry & Wen [3], Wen
[36]). That is, Lemmas 5.1 and 5.2 imply that with 1 − o(1) probability, the maximal
height of the subtrees of T(n) pendant to Tk(n)(n) has order o(nα) (yielding GH con-
vergence) and Lemma 5.12 implies that the maximal size of the subtrees has order
o
(
n · k(n)−8/(3(`+1))

)
. By projecting the masses of pendant subtrees onto Tk(n)(n), we

can deduce a bound on the relevant Lévy-Prokhorov distance. Details are given in
Section 5.

As shown in the next several results of [13], T is almost surely compact, which allows
for the convergence to hold in the GHP topology instead of, say, the local GHP topology.

Theorem 1.5. ([13, Theorem 1]). Suppose that there exists α′ ∈ (0, 1] such that for
a := (ak : k ∈ N) ⊂ R+ we have ak ≤ k−α

′+o(1) and
∑k
i=1 ai = k1−α′+o(1) as k →∞. Then

T a is almost surely a compact real tree.

Fact 1.6. ([13]). If ak = Ck − Ck−1 for n ∈ N, then almost surely a := (ak : k ∈ N)

satisfies the assumption in Theorem 1.5 for α′ := `
`+1 .
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Theorem 1.7. ([13, Theorem 4]). Almost surely, there exists a probability measure µ
supported by the leaves of T such that µk → µ weakly as k →∞.

With these results we can now prove Theorem 1.1.

Proof of Theorem 1.1. The case ` = 1 is just the well-known almost sure GHP conver-
gence of uniform ordered binary trees with uniform measure to the BCRT (e.g, Curien &
Haas [14, Theorem 5]), so we assume ` > 2. We work on the probability space where the
equalities of Proposition 1.2 hold, and condition on the a.s. event that T is compact and
µ exists, where µ is the uniform probability measure supported by the leaves of T .

Let k : N → N be such that k(n) = Ω
(
n1/100

)
and k(n) = o

(
n1/10

)
. For all n ∈

N, write T̂(n) =
(
v(T(n)), c

nα · dgr, νn
)
, T̂k(n) =

(
v(Tk(n)(n)), c

nα · dgr, νk(n),n

)
, T k(n) =(

Tk(n),dlen, µk(n)

)
, and T = (T ,dlen, µ). Note that

dGHP

(
T̂(n),T

)
≤ dGHP

(
T̂(n), T̂k(n)

)
+ dGHP

(
T̂k(n),T k(n)

)
+ dGHP

(
T k(n),T

)
. (1.1)

By Propositions 1.3 and 1.4, a.s. as n→∞,

dGHP

(
T̂(n), T̂k(n)

)
+ dGHP

(
T̂k(n),T k(n)

)
→ 0. (1.2)

Furthermore, since Tk := (Tk,dlen) is separable, the weak convergence of mea-
sures, i.e., µk → µ (a.s. exists by Theorem 1.7), is equivalent to the convergence of
measures in the Lévy-Prokhorov metric, i.e., dP(µk, µ) → 0, where dP denotes the
Lévy-Prokhorov distance (defined in Section 2) on T :=

⋃
k∈N Tk (a.s. compact by Theo-

rem 1.5), and µk is viewed as the measure on T such that µk(T \ Tk) = 0. It follows that
a.s. dGHP

(
T k(n),T

)
→ 0. Together with (1.1) and (1.2), this completes the proof.

2 Gromov-Hausdorff-Prokhorov topology

In this section we review the definition of GHP distance and the topology it induces,
referring the reader to the papers by Miermont [26, Section 6.2] and Addario-Berry,
Broutin, Goldschmidt & Miermont [2, Section 2.1] for greater details and further refer-
ences.

We first give the standard and intuitive definition of GHP distance. A measured metric
space is a triple (V, d, ν) where (V, d) is a metric space and ν is a finite non-negative
Borel measure on V . Let Z := (Z, δ) be a metric space. Given non-empty A ⊂ Z and ε > 0,
the ε-neighborhood of A is Aε := Aεδ := {x ∈ Z : ∃y ∈ A, δ(x, y) < ε}. The Hausdorff
distance δH between two non-empty subsets X,Y of Z is

δH(X,Y ) = inf (ε > 0 : X ⊂ Y ε, Y ⊂ Xε) .

Next, denote by P(Z) the collection of all finite non-negative Borel measures on the
measurable space (Z,B(Z)), where B(Z) denotes the Borel σ-algebra of Z. The Lévy-
Prokhorov distance δP : P(Z)2 → [0,∞) between two measures ν and ν′ on Z is

δP(ν, ν′) = inf {ε > 0 : ν(A) ≤ ν′(Aε) + ε and ν′(A) ≤ ν(Aε) + ε,∀A ∈ B(Z)} .

We can now define the standard metric used to define the Gromov-Hausdorff-Prokhorov
topology. For two measured metric spaces V = (V, d, ν) and V′ = (V ′, d′, ν′), define

d◦GHP(V,V′) = inf max {δH(ϕ(V ), ϕ′(V ′)), δP(ϕ∗ν, ϕ
′
∗ν
′)} ,

where the infimum is over all metric space Z and all isometries ϕ,ϕ′ from V,V′ into Z,
and where ϕ∗ν and ϕ′∗ν

′ denote push-forward measures. On the space of measured metric
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spaces modulo isometry-equivalence (measured metric spaces (V, d, ν) and (V ′, d′, ν′) are
isometry-equivalent if there exists a measurable bijective isometry Φ : V → V ′ such that
Φ∗ν = ν′), d◦GHP is a metric that induces the GHP topology.

The definition above can be difficult to use, so we now state some alternative notions
and results for showing GHP convergence. For (V, d) and (V ′, d′) two metric spaces, a
correspondence between V and V ′ is a set R ⊂ V ×V ′ such that for every x ∈ V , there is
x′ ∈ V ′ with (x, x′) ∈ R, and vice versa. We write R(V, V ′) for the set of correspondences
between V and V ′. The distortion of any R ∈ R(V, V ′) with respect to d and d′ is

dis (R; d, d′) = sup {|d(x, y)− d′(x′, y′)| : (x, x′) ∈ R, (y, y′) ∈ R} .

Furthermore, let M(V, V ′) be the set of finite non-negative Borel measures on V × V ′.
Denote by p and p′ the projections from V × V ′ to V and V ′, respectively. Let ν and ν′ be
finite non-negative Borel measures on (V, d) and (V ′, d′), respectively. The discrepancy
of π ∈M(V, V ′) with respect to ν and ν′ is

D (π; ν, ν′) = ‖ν − p∗π‖+ ‖ν′ − p′∗π‖,

where ‖ · ‖ denotes the total variation for a signed measure. Given measured metric
spaces V = (V, d, ν) and V′ = (V ′, d′, ν′), we define the Gromov-Hausdorff-Prokhorov
distance by

dGHP(V,V′) = inf max

{
1

2
· dis(R; d, d′),D(π; ν, ν′), π(Rc)

}
,

where the infimum is over all R ∈ R(V, V ′) and π ∈M(V, V ′).
Writing K for the set of all compact measured metric spaces modulo isometry-

equivalence, (K,dGHP) is a Polish space; see Abraham, Delmas & Hoscheit [1]. GHP
convergence refers to convergence in this space. (It can be shown that d◦GHP and dGHP

induce the same topology on K.)
The Gromov-Hausdorff distance between two metric spaces (V, d) and (V ′, d′) is given

by dGH ((V, d), (V ′, d′)) = inf 1
2 · dis(R; d, d′), where the infimum is over all R ∈ R(V, V ′).

3 Coupling between combinatorial trees and real trees

We prove Proposition 1.2 in this section, starting by recalling some basic facts
about Dirichlet distributions. Let a = (a1, . . . , an) ∈ Rn+. The Dirichlet distribution
with parameter a, denoted by Dir(a), has density f(x1, . . . , xn;a) = 1

B(a)

∏n
i=1 x

ai−1
i ,

for x1, . . . , xn > 0 with
∑n
i=1 xi = 1 and B(a) :=

∏n
i=1 Γ(ai)

Γ(
∑n
i=1 ai)

. Let Gi ∼ Gamma(ai) be

independent variables for i = 1, . . . , n. It is well-known that
(

G1∑n
i=1 Gi

, . . . , Gn∑n
i=1 Gi

)
∼

Dir(a), and this is independent of
∑n
i=1Gi ∼ Gamma (

∑n
i=1 ai).

Lemma 3.1. ([17, Lemma 2.2]). Suppose that (X1, . . . , Xn) ∼ Dir(1, . . . , 1). Let J
have the conditional distribution P (J = j | X1, . . . , Xn) = Xj . Then P (J = j) = 1

n .
Furthermore, conditioned on J = j, (X1, . . . , Xn) ∼ Dir(1, . . . , 1︸ ︷︷ ︸

j−1

, 2, 1, . . . , 1︸ ︷︷ ︸
n−j

). Finally, if U

is an independent Uniform(0, 1)-variable, then, conditioned on J = j,

(X1, . . . , Xj−1, U ·Xj , (1− U) ·Xj , Xj+1, . . . , Xn) ∼ Dir(1, . . . , 1︸ ︷︷ ︸
n+1

).

Fact 3.2. Fix k ∈ N and let B ∼ Beta(k, 1). If (X1, . . . , Xk) ∼ Dir(1, . . . , 1), independent
of B, then (B ·X1, . . . , B ·Xk, 1−B) ∼ Dir(1, . . . , 1).
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Scaling limits for some random trees constructed inhomogeneously

Recall that the real trees T1, T2, . . . are constructed by aggregating random intervals
of lengths C1, C2 − C1, . . ., for which we derive the following representation.

Fact 3.3. Let E1, E2, . . . be independent Exponential(1)-variables, and let C1 = E
1
`+1

1 .
Let C1, B1, B2, . . . be independent variables such that Bk ∼ Beta((`+ 1)k, 1) for all k ∈ N.
For all integers k ≥ 2, let

Ck =
C1

B1 · · ·Bk−1
, (3.1)

then Ck has the same distribution as (E1+· · ·+Ek)
1
`+1 , and is independent ofB1, . . . , Bk−1.

Moreover, (Ck : k ∈ N) are the points of an inhomogeneous Poisson process on (0,∞)

with intensity (`+ 1)t`dt.

Facts 3.2 and 3.3 follow from standard calculations, so we omit the proof.

Remark 3.4. In the sequel, we use the representation (3.1) of Ck for all integer k ≥ 2.

Next, recall the definition of the embellished tree T (n) from Section 1. A (non-graph-
theoretic) path, S, in an embellished tree T (n) is defined as the corresponding path in
the underlying real tree, and the path-length, |S|, is equal to the intrinsic length of S. An
edge in an embellished tree is a path between two adjacent vertices, and the edge-length
refers to the path-length of the edge. We show that the rescaled edge-lengths of the
embellished tree T (n) are Dirichlet distributed.

Recall that, for all k ∈ N, T ′k is the embellished tree T (k`) without the latest branch
(i.e., the (k+1)-th branch, of length Ck+1−Ck), but it includes the the embellished vertex
to which the (k + 1)-th branch is to be attached. For all k ∈ N and i ∈ {0, . . . , `− 1}, let
Ek,i(0), . . . , Ek,i((k−1)(`+1)+i) be the edge-lengths of the embellished tree T ((k−1)`+i),
in the order of appearance. For i = `, let Ek,i(0), . . . , Ek,i((k − 1)(`+ 1) + i) be the edge-
lengths of T ′k . Finally, let Ek+1,0((`+ 1)k) = Ck+1 − Ck. If two edges appear at the same
time, the one closer to the root has a smaller index.

Lemma 3.5. For all k ∈ N and i ∈ {0, . . . , `},

1

Ck
· (Ek,i(0), . . . , Ek,i((k − 1)(`+ 1) + i)) ∼ Dir(1, . . . , 1).

Proof. We prove by induction on i and k. Let U ∼ Uniform(0, 1), independent of
everything else. For k = 1 and i = 1, we may assume that E1,1(0) = C1U and
E1,1(1) = C1(1− U). So 1

C1
· (E1,1(0), E1,1(1)) ∼ Dir(1, 1).

Now suppose that the claim holds for some k ∈ N and i ∈ {0, . . . , ` − 1}. We are
about to insert a vertex uniformly over T ((k − 1)` + i), for the normalized Lebesgue
length measure. Let V ∼ Uniform(0, 1), independent of everything else. Conditioned on
selecting the edge with length Ek,i(j) to insert such a vertex, for an appropriate j, by
Lemma 3.1 we have that the (k − 1)(`+ 1) + i+ 2 dimensional vector

1

Ck
· (Ek,i(0), . . . , Ek,i(j)V,Ek,i(j)(1− V ), . . . , Ek,i((k − 1)(`+ 1) + i)) ∼ Dir(1, . . . , 1).

The above holds regardless of the choice of j, so it also holds without conditioning and
the claim follows for k and i+ 1.

Next, we show that the claim holds for k + 1 and i = 0 as well. Recall that T (k`) is
obtained from attaching a branch of length Ck+1 − Ck to T ′k . So

(Ek+1,0(0), . . . , Ek+1,0((`+ 1)k)) = (Ek,`(0), . . . , Ek,`((k − 1)(`+ 1) + `), Ck+1 − Ck) .

It follows from Fact 3.3 that we may write Ck = BkCk+1 for Bk ∼ Beta((` + 1)k, 1),
independent of Ck+1. So Ck+1 −Ck = Ck+1(1−Bk) where 1−Bk ∼ Beta(1, (`+ 1)k). We
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Scaling limits for some random trees constructed inhomogeneously

have proved that the claim holds for k and i = `:(
Ek,`(0)

Ck
, . . . ,

Ek,`((k − 1)(`+ 1) + `)

Ck

)
∼ Dir(1, . . . , 1).

Then by Fact 3.2,

1

Ck+1
· (Ek,`(0), . . . , Ek,`((k − 1)(`+ 1) + `), Ck+1(1−Bk)) ∼ Dir(1, . . . , 1︸ ︷︷ ︸

(`+1)k+1

).

The lemma follows by induction.

Recall that v(T (n)) is the union of the embellished vertices, the leaves, and the root,
and recall the definition of the combinatorial tree T(n) from Section 1.

Lemma 3.6. There exists a probability space where

((v(T (n)),dgr) : n ∈ N) = ((v(T(n)),dgr) : n ∈ N) =: (T(n) : n ∈ N), (3.2)

considered up to isometry-equivalence.

Proof. We prove by induction on n. For n = 0, (v(T (0)),dgr) = T(0) (both consist of an
edge). Now assume that, for n ∈ N such that ` does not divide n, (v(T (n− 1)),dgr) =

T(n−1). We are about to insert a vertex into T (n−1) and T(n−1) respectively. It follows
from Lemmas 3.1 and 3.5 that the new vertex has equal probability to land on any edge
of T (n − 1). This holds true for the insertion into T(n − 1) as well, by construction. It
then follows from the induction hypothesis that (v(T (n)),dgr) and T(n) have the same
law. We may and shall assume that (v(T (n)),dgr) = T(n).

Next, we show that the claim also holds for n ∈ N such that ` divides n, assuming
that (v(T (n− 1)),dgr) = T(n− 1). After inserting a vertex into both T (n− 1) and T(n− 1)

as above, we additionally attach a new branch to the last inserted vertex. The resulting
trees are T (n) and T(n). It is easily seen that their laws are the same, and we may view
them equal. The lemma then follows by induction.

This lemma immediately yields Proposition 1.2. Recall that Tk(n) is the subtree of
T (n) spanned by the root and the first k leaves.

Proof of Proposition 1.2. By the constructions above, (Tk : k ∈ N) has the same dis-
tribution as ((Tk((k − 1)`),dlen) : k ∈ N) = ((Tk((k − 1)`+ 1),dlen) : k ∈ N) = . . . We may
and shall assume that

(Tk(n),dlen) = Tk (3.3)

for all k, n ∈ N with n ≥ (k − 1)`. In the product of the probability spaces where (3.2)
and (3.3) hold respectively, the proposition easily follows.

4 Almost sure convergence for subtrees with finite leaves

Hereafter, we work in the probability space where the equalities of Proposition 1.2
hold. In this section we prove Proposition 1.3, which requires the following lemmas.

Lemma 4.1. For all integer k > (7/3)4, P
(∣∣C`+1

k − k
∣∣ ≥ k3/4

)
≤ 2e−k

1/2/4.

Corollary 4.2. Let k : N → N be such that k(n)α = o(nα−1/4) and k(n) → ∞. Then

for sufficiently large n, with probability greater than 1 − 2
bn/`c∑
m=k(n)

e−m
1/2/4, we have∣∣∣Ck(n) − k(n)

1
`+1

∣∣∣ < 10k(n)
1
`+1−

1
4 and

(
n
`

)α ( 1
α −

5
n1/4

)
<
∑bn/`c
m=k(n)

1
Cm

<
(
n
`

)α ( 1
α + 5

n1/4

)
.
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We defer the straightforward proofs of Lemma 4.1 and Corollary 4.2 to Section 6.
For all k ∈ N, let B+

k be the Borel σ-algebra of Tk (i.e., of (Tk(n),dlen), in view of
Proposition 1.2). Note that conditioned on Tk, we do not know any information of the
embellished vertices. Given S ∈ B+

k , write |S| = µk(S) ·Ck; so when S is a path, |S| is the
intrinsic path-length. For all integer n ≥ (k − 1)`, let M(S, n) be the number of vertices
of Tk(n) on S, and write

M̂(S, n) =
c

nα
·M(S, n).

Fact 4.3. Fix k ∈ N and S ∈ B+
k . Then for all integer j ≥ k, given Tk and Cj ,

M(S, j`)−M(S, (j − 1)`) ∼ Binomial

(
`,
|S|
Cj

)
,

and given Ck, Ck+1, . . ., the variables (M(S, j`)−M(S, (j − 1)`) : j > k) are independent.

We first define a nice event, then prove an exponential bound given such an event.
For all k, n ∈ N with n ≥ k`, define the event Fk,n as

Fk,n :=


bn/`c∑
m=k

1

Cm
∈
((n

`

)α
·
(

1

α
± 5

n1/4

))⋂{∣∣∣Ck − k 1
`+1

∣∣∣ < 10k
1
`+1−

1
4

}
. (4.1)

Given k : N → N such that k(n) → ∞ and k(n) = o(n1/2), by Corollary 4.2, with
sufficiently large n,

P
(
Fk(n),n

)
> 1− 2

bn/`c∑
m=k(n)

e−m
1/2/4. (4.2)

Given an event F , the notation F c denotes the complement of F .
The next result is the key to the results of this section, which says that the rescaled

number of vertices falling into a subset S of the tree has the same asymptotics as |S|.
Lemma 4.4. Let k : N → N be such that k(n) = Ω((log n)10) and k(n) = o(n1/2). Then

for sufficiently large n, for ε = εn > 80αk(n)
1
`+1n−1/4, and for all S ∈ B+

k(n),

P

(∣∣∣M̂(S, n)− |S|
∣∣∣ ≥ ε, Fk(n),n

∣∣∣∣ Tk(n)

)
≤ 2 exp

(
− ε2nα

32ck(n)
1
`+1

)
; (4.3)

it follows that

E

[
P

(∣∣∣M̂(S, n)− |S|
∣∣∣ ≥ ε ∣∣∣∣ Tk(n)

)]
≤ 2 exp

(
− ε2nα

32ck(n)
1
`+1

)
+ e−k(n)1/3

, (4.4)

where the second term e−k(n)1/3

comes from E
[
P
(
F ck(n),n

∣∣∣Tk(n)

)]
, not depending on ε.

Proof. Let n ∈ N be sufficiently large (to be made precise) and write k = k(n), ε = εn.
Conditioned on Tk, fix S ∈ B+

k . To ease notation, assume that ` divides n. Write
M = M(S, n). By Markov’s inequality, for any t > 0,

P

(
M ≥ nα

c
(|S|+ ε), Fk,n

∣∣∣∣ Tk) ≤ E [etM · 1[Fk,n]

∣∣∣∣ Tk] · e− tnαc (|S|+ε). (4.5)

Now we take a closer look at the bound (4.5). Write M0 = M(S, (k− 1)`), and for integer
k ≤ m ≤ n/`, write Bm = M(S,m`) −M(S, (m − 1)`); so given Ck, . . . , Cn/`, Fact 4.3
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implies the Bm’s are independent Binomial(`, |S|Cm
)-variables. Then M = M0 +

∑n/`
m=k Bm.

For t ∈ (0, 1], et − 1 ≤ t+ t2 and log
{

1 + |S|
Cm

(et − 1)
}
≤ |S|

Cm
(et − 1), so

E

[
etM · 1[Fk,n]

∣∣∣∣ Tk,M0, Ck, . . . , Cn/`

]
= 1[Fk,n] · etM0 ·

n/`∏
m=k

E

[
etBm

∣∣∣∣ Tk, Ck, . . . , Cn/`]
= 1[Fk,n] · etM0 · e`

∑n/`
m=k log{1+

|S|
Cm

(et−1)}

≤ 1[Fk,n] · etM0 · e`(t+t
2)
∑n/`
m=k

|S|
Cm .

Note that M0 ≤ (`+ 1)k and 1[Fk,n] ≤ 1. Together with (4.1) and (4.5), by averaging over
Ck, . . . , Cn/`, we have

P

(
M ≥ nα

c
(|S|+ ε), Fk,n

∣∣∣∣ Tk) ≤ 1[Fk,n] · e
(`+1)tk+`(t+t2)|S|(n` )

α
(

1
α+ 5

n1/4

)
− tnαc (|S|+ε)

.

(4.6)

Recall that c = `α

`+1 and α = `
`+1 , so `t|S|

(
n
`

)α 1
α −

tnα

c |S| = 0. Hence, by rearrangement
and cancellation, the exponent of (4.6) is simplified as follows:

(`+ 1)tk + `(t+ t2)|S|
(n
`

)α( 1

α
+

5

n1/4

)
− tnα

c
(|S|+ ε) (4.7)

= (`+ 1)tk + (t+ t2)nα−1/4 · 5|S|α
c

+ t2nα · |S|
c
− tnα · ε

c
.

Furthermore, since |S| ≤ Ck, k = k(n) = o(n1/2), and ε = εn > 80αk(n)
1
`+1n−1/4,

there exists n1 ∈ N such that for all n ≥ n1, (`+ 1)k · c < nα · ε8 , and, on the event Fk,n,

nα−1/4 · 5|S|α < nα−1/4 · 10k
1
`+1α < nα · ε8 ; so nα · ε2 − (`+ 1)k · c− nα−1/4 · 5α|S| > nα · ε4 .

Below we assume Tk is given and Fk,n holds. Assume n ≥ n1, and take

t = min

{
1

8
,
nα · ε/2− (`+ 1)k · c− nα−1/4 · 5α|S|

nα · |S|+ nα−1/4 · 5α|S|

}
.

It follows that 0 < t ≤ 1
8 . We first consider the case 1

8 > t = nα·ε/2−(`+1)k·c−nα−1/4·5α|S|
nα·|S|+nα−1/4·5α|S| :

the last equality immediately yields (`+ 1)tk+ (t+ t2)nα−1/4 · 5|S|α
c + t2nα · |S|c = tnα · ε2c ,

so we easily obtain that

(`+ 1)tk + (t+ t2)nα−1/4 · 5|S|α
c

+ t2nα · |S|
c
− tnα · ε

c
= −tnα · ε

2c
. (4.8)

Moreover, given that 1
8 > t = nα·ε/2−(`+1)k·c−nα−1/4·5α|S|

nα·|S|+nα−1/4·5α|S| > nα·ε/4
2nα·|S| , by increasing n if

necessary, we have t > nα·ε/4
2nα·|S| ≥

ε
8Ck

> ε

16k
1
`+1

. So the right-hand side of (4.8) is upper

bounded by − ε2nα

32ck
1
`+1

. Next consider the case t = 1
8 ≤

nα·ε/2−(`+1)k·c−nα−1/4·5α|S|
nα·|S|+nα−1/4·5α|S| < ε

2|S| :

in this case |S| < 4ε and, by substituting t = 1
8 and using the inequality (`+ 1)k · c < nα · ε8

again,

(`+ 1)tk + (t+ t2)nα−1/4 · 5|S|α
c

+ t2nα · |S|
c
− tnα · ε

c

≤ nα · ε

64c
+ nα−1/4 · 9

64
· 20εα

c
+ nα · 4ε

64c
− nα · ε

8c

= − nα · 3ε

64c
+ nα−1/4 · 45εα

16c
< − ε2nα

32ck
1
`+1

.
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Together with (4.6), for sufficiently large n we have

P

(
M ≥ nα

c
(|S|+ ε), Fk,n

∣∣∣∣ Tk) ≤ exp

(
− ε2nα

32ck
1
`+1

)
.

Similarly, we deduce that P

(
nα

c |S| −M ≥
nα

c ε, Fk,n

∣∣∣∣ Tk) ≤ exp

(
− ε2nα

32ck
1
`+1

)
. (4.3) then

follows by the triangle inequality.

Finally, by averaging over all Tk, it follows from (4.2) that, by increasing n if necessary,

E
[
P
(
F ck,n

∣∣∣Tk)] = P
(
F ck,n

)
≤ 2

n/`∑
m=k

e−m
1/2/4 ≤ e−k

1/3

,

where the last inequality is because k = k(n) = Ω((log n)10). Then it follows by (4.3) that

E

[
P

(∣∣∣M̂(S, n)− |S|
∣∣∣ ≥ ε ∣∣∣∣ Tk)] ≤ E [P(∣∣∣M̂(S, n)− |S|

∣∣∣ ≥ ε, Fk,n ∣∣∣∣ Tk)]
+ E

[
P
(
F ck,n

∣∣∣Tk)]
≤ 2 exp

(
− ε2nα

32ck
1
`+1

)
+ e−k

1/3

.

Notice that the second term e−k
1/3

in the bound does not depend on ε.

Lemma 4.4 easily leads to the Gromov-Hausdorff (GH) version of Proposition 1.3; see
(4.9) for an argument. To extend the result to GHP convergence (see Section 2), we need
to consider the measures on the trees. First we simplify notation; given appropriate
k : N→ N, write

T n = Tk(n)(n).

We need to bound the minimal discrepancy with respect to the uniform probability
measures νk(n),n on (v(T n),dn) and µk(n) on (T n,dlen). To accomplish that, we show that
νk(n),n and µk(n) are close.

Corollary 4.5. Fix ε > 0. Let k : N → N be such that k(n) = Ω
(
(log n)10

)
and k(n) =

o(n1/10). Then for all S ∈ B+
k(n), as n→∞,

E

[
P

(∣∣νk(n),n(v(S))− µk(n)(S)
∣∣ > ε

11k(n)
2
`+1

∣∣∣∣ Tk(n)

)]
= o(n−3),

where the rate of decay does not depend on S.

Proof. Fix sufficiently large n ∈ N and write k = k(n). Let S ∈ B+
k . Recall that

|S| = µk(S) · Ck, |νk,n(v(S))| ≤ 1, and

M̂(S, n) =
c

nα
·M(S, n) =

c

nα
· νk,n(v(S)) · |v(T n)|.

Next, note that, conditioned on Tk, the event {|νk,n(v(S))− µk(S)| > 2ε} is a subset of{∣∣∣∣νk,n(v(S))

Ck
· c · |v(T n)|

nα
− µk(S)·

∣∣∣∣ > ε

}⋃{∣∣∣∣c · |v(T n)|
nα

− Ck
∣∣∣∣ · νk,n(v(S)) > ε · Ck

}
.
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On the event Fk,n from (4.1), we have Ck > 1, and from this fact and the triangle
inequality, it follows that

E

[
P

(
|νk,n(v(S))− µk(S)| > 2ε

∣∣∣∣ Tk)]
≤ E

[
P

(∣∣∣M̂(S, n)− |S|
∣∣∣ > ε, Fk,n

∣∣∣∣ Tk)]
+ E

[
P

(∣∣∣∣c · |v(T n)|
nα

− Ck
∣∣∣∣ > ε, Fk,n

∣∣∣∣ Tk)]+ 2E
[
P
(
F ck,n

∣∣∣Tk)]
≤ 4 exp

(
− ε2nα

32ck
1
`+1

)
+ 2e−k

1/3

;

the last inequality follows by applying Lemma 4.4 twice. Now, replacing ε by ε

2·11k
2
`+1

in the above inequality and noticing that given the event Fk,n, ε

11k
2
`+1

satisfies the

assumption in Lemma 4.4, we obtain

E

[
P

(
|νk,n(v(S))− µk(S)| > ε

11k
2
`+1

∣∣∣∣ Tk)] ≤ 4 exp

(
−ε2nα

32 · 22 · 112 · ck
5
`+1

)
+ 2e−k

1/3

.

The lemma then follows from that k = k(n) = Ω((log n)10) and k(n) = o(n1/10).

It may be helpful to recall the definitions relating to GHP convergence in Section 2
before reading the next proof.

Proof of Proposition 1.3. For most part of the proof we fix a large enough n and write
k = k(n) for simplicity, unless we consider varying n. Let εn = k−

1
`+1 . Since the total

length of T n is Ck, we may cover T n by Mn :=
⌈
ε−1
n Ck

⌉
balls, denoted by Bn,1, . . . , Bn,Mn ,

each with diameter at most εn. Let An,1 = Bn,1, and for i > 1, let An,i = Bn,i \
⋃i−1
j=1Bn,j .

Then {An,1, . . . , An,Mn} is a covering of (T n,dlen) by disjoint sets of diameter at most εn.

Next, define Sn =
⋃Mn

i=1 v(An,i) × An,i, then Sn is a correspondence between v(T n)

and T n. Moreover, for each 1 ≤ i ≤Mn, let wi be the element of v(An,i) such that wi is
closest to the root of T n. Write dn = c

nα · dgr. The distortion of Sn can be bounded as
follows:

disn := dis(Sn; dn,dlen)

= sup {|dn(x, y)− dlen(x′, y′)| : (x, x′) ∈ Sn, (y, y′) ∈ Sn}
= max

1≤i≤j≤Mn

sup {|dn(x, y)− dlen(x′, y′)| : (x, x′) ∈ v(An,i)×An,i, (y, y′) ∈ v(An,j)×An,j}

≤ max
1≤i≤j≤Mn

sup
{
|dn(wi, wj)− dlen(wi, wj)|+ dn(wi, x) + dn(wj , y)

+ dlen(wi, x
′) + dlen(wj , y

′) : (x, x′) ∈ v(An,i)×An,i, (y, y′) ∈ v(An,j)×An,j
}

≤ max
1≤i≤j≤Mn

|dn(wi, wj)− dlen(wi, wj)|+
2c

nα
sup

16i6Mn

|v(An,i)|+ 2εn.

Now, given x, y ∈ v(T n), write [x, y) for the path in T n from x (included) to y (excluded).
So dn(x, y) = M̂([x, y), n) and dlen(x, y) = |[x, y)|. Together with the triangle inequality,
we have

disn ≤ max
1≤i≤j≤Mn

∣∣∣M̂([wi, wj), n)− |[wi, wj)|
∣∣∣+

2c

nα
max

16i6Mn

M(An,i, n) + 2εn

≤ max
1≤i≤j≤Mn

∣∣∣M̂([wi, wj), n)− |[wi, wj)|
∣∣∣+ 2 max

16i6Mn

∣∣∣M̂(An,i, n)− |An,i|
∣∣∣+ 2εn + 2εn.
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Recall the definition of the event Fk,n from (4.1) and note that on this event, we have

Mn ≤ mn :=
⌈
ε−1
n k

1
`+1

(
1 + 10k−

1
4

)⌉
=
⌈
k

2
`+1

(
1 + 10k−

1
4

)⌉
. Then for any ε > 0, it

follows that

P (disn > 4εn + 3ε) ≤ P (disn > 4εn + 3ε, Fk,n) + P
(
F ck,n

)
≤ P

(
max

1≤i≤j≤Mn

∣∣∣M̂([wi, wj), n)− |[wi, wj)|
∣∣∣ > ε, Fk,n

)
+ P

(
max

1≤i≤Mn

∣∣∣M̂(An,i, n)− |An,i|
∣∣∣ > ε, Fk,n

)
+ P

(
F ck,n

)
≤ E

 ∑
1≤i≤j≤Mn

P
(∣∣∣M̂([wi, wj), n)− |[wi, wj)|

∣∣∣ > ε, Fk,n

)
+ E

 ∑
16i6Mn

P
(∣∣∣M̂(An,i, n)− |An,i|

∣∣∣ > ε, Fk,n

)+ P
(
F ck,n

)
.

Applying Lemma 4.4 with S = [wi, wj) and S = An,i yields that

P (disn > 4εn + 3ε) ≤ 4m2
n exp

(
− ε2nα

32ck(n)
1
`+1

)
+ e−k(n)1/3

.

Noting that εn → 0, k(n) = Ω
(
(log n)10

)
, k(n) = o

(
n1/10

)
, and mn < 11k(n)

2
`+1 , it is

easily seen that
∑
n∈NP (disn > 4εn + 3ε) <∞, and so by the Borel-Cantelli lemma,

disn → 0 a.s., (4.9)

and the GH convergence is shown.
To show GHP convergence, we follow [2, Proof of Proposition 4.8] and define π◦n on

the product space v(T n)× T n as follows. Given 1 ≤ i ≤Mn, for Borel sets X ⊂ v(An,i)

of (v(T n),dn) and Y ⊂ An,i of (T n,dlen), define

π◦n(X,Y ) =
νk,n(X) · µk(Y )

max {νk,n(v(An,i)), µk(An,i)}
.

For i 6= j, let π◦n(v(An,i), An,j) = 0; so

π◦n(Scn) = 0. (4.10)

Such rectangles X × Y form a π-system generating the product σ-algebra, so π◦n extends
uniquely to a measure πn on the product σ-algebra of (v(T n),dn) and (T n,dlen).

Now we derive the discrepancy Dn := D(πn; νk,n, µk) of πn with respect to νk,n and
µk. Note that πn(v(An,i), An,i) = min {νk,n(v(An,i)), µk(An,i)}. Writing p and p′ for the
projections of v(T n)× T n to the first and the second coordinates respectively, an easy
calculation shows that

Dn = ‖νk,n − p∗πn‖+ ‖µk − p′∗πn‖

=

Mn∑
i=1

[νk,n(v(An,i))−min {νk,n(v(An,i)), µk(An,i)}]

+

Mn∑
i=1

[µk(An,i)−min {νk,n(v(An,i)), µk(An,i)}]

=

Mn∑
i=1

|νk,n(v(An,i))− µk(An,i)| .
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Note that on the event Fk,n, Mn 6 mn, so for any ε > 0,

P (Dn > ε) ≤E

[
P

(
Mn∑
i=1

|νk,n(v(An,i))− µk(An,i)| > ε, Fk,n

∣∣∣∣ Tk
)]

+ P
(
F ck,n

)
≤E

[
1[Mn6mn]

Mn∑
i=1

P

(
|νk,n(v(An,i))− µk(An,i)| >

ε

mn
, Fk,n

∣∣∣Tk)]+ P
(
F ck,n

)
.

We now use the notation k(n) to emphasize that k(n) changes with n and note that

mn < 11k(n)
2
`+1 and k(n) = o(n1/10). Summing over n ∈ N and applying Corollary 4.5

then yields that

E

[
1[Mn6mn]

Mn∑
i=1

P
(
|νk,n(v(An,i))− µk(An,i)| > ε/Mn, Fk,n

∣∣∣ Tk)] 6 mn · o(n−3),

and so this combined with Lemma 4.4 to bound P
(
F ck,n

)
yields∑

n∈N
P (Dn > ε) 6

∑
n∈N

(
mn · o(n−3) + e−k(n)1/3

)
<∞.

Hence,
Dn → 0 a.s. (4.11)

Finally, note that for all n ∈ N,

dGHP

((
v(T n),dn, νk(n),n

)
,
(
T n,dlen, µk(n)

))
≤ max {disn/2,Dn, πn(Scn)} .

It follows from (4.9), (4.10), and (4.11) that, a.s.,

dGHP

((
v(T n),dn, νk(n),n

)
,
(
T n,dlen, µk(n)

))
→ 0.

Since we are working in the probability space where the equalities of Proposition 1.2
hold, the proof is completed.

5 Tightness property

In Section 5.1, we describe how the combinatorial tree T(n) relates to an infinite-
colors Pólya urn, which helps us analyse the heights and sizes of subtrees in T(n). In
Section 5.2, we establish Proposition 1.4, with the proofs of several lemmas deferred to
the subsequent subsections.

5.1 An infinite-colors Pólya urn

At time 0, an urn contains only one ball of color 1. At time n ∈ N, pick a ball from the
urn uniformly at random, return the ball to the urn along with another ball of the same
color. In addition, if ` divides n, and if the urn contains balls of colors 1, . . . , k − 1, then
an additional ball of color k is added to the urn. For n, k ∈ N with n ≥ (k − 1)`, let Uk(n)

be the number of balls of color k at time n, and let Mk(n) = U1(n) + . . . + Uk(n). Note
that at time k`, there are (`+ 1)k + 1 balls of colors 1, . . . , k + 1 (the extra 1 accounts for
the initial ball of color 1), and there is only 1 ball of color k + 1.

Recall the construction of the combinatorial tree T(n) from Section 1. For all k ∈ N,
vk` is a branchpoint, i.e., a vertex with degree at least 3. For all k, n ∈ N with n ≥ (k−1)`,
we call the (graph-theoretic) path in T(n) from vk` to the leaf L1+k branch k. The length
of a path in T(n) is the number of (graph-theoretic) edges in it. Note that the lengths of
branches 1, . . . , k in T(n) have the same law as (U1(n), . . . , Uk(n)), and (M1(n), . . . ,Mk(n))

have the same law as the number of edges in (T1(n), . . . ,Tk(n)). We may and shall use
Uk(n) to denote the length of branch k in T(n).
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5.2 Outline and proof for Proposition 1.4

We first outline the essential step to prove the GH version of Proposition 1.4: to obtain
a height bound for the subtrees of T(n) pendant to Tk(n), where Tk(n) is the subtree
of T(n) spanned by the root and the first k leaves. To accomplish this, we express the

height bound of the subtrees in terms of
∑bn/`c+1
i=k(n)+1

(Ci−Ci−1)Ui(n)
Ci

, in Lemma 5.1; then
deduce a bound for this sum, in Lemma 5.2. Write Fk,n for the σ-algebra generated by
Ck, . . . , Cbn/`c+1, Uk+1(n), . . . , Ubn/`c+1. For all i ∈ N write ∆Ci = Ci − Ci−1.

Lemma 5.1. Fix n, k ∈ N with n ≥ k`, and let u be a uniformly chosen vertex from
v (T(n)) \ v (Tk(n)). Then for positive λ ≤

{
maxk+1≤i≤bn/`c+1 Ui(n)

}−1
,

E
[
exp (λ · dgr(u,Tk(n)))

∣∣∣ Fk,n] ≤ exp

λ`+ 5λ

bn` c+1∑
i=k+1

∆CiUi(n)

Ci

 .

Lemma 5.2. Let ε ∈ (0, 1). Let k : N → N be such that k(n) = Ω
(
n1/100

)
and k(n) =

o
(
n

`
2`+1

)
. Then

∑
n∈N

n ·P

 bn` c+1∑
i=k(n)+1

k(n)α−ε
∆CiUi(n)

nαCi
> 1 or max

k(n)+1≤i≤bn−1
` c+1

Ui(n) > nαk(n)−α+ε

 <∞.

We defer the proofs of Lemmas 5.1 and 5.2 to Sections 5.3 and 5.4, respectively.
They lead to a tightness property of (Tk(n) : k ∈ N, n ≥ k`), i.e., the GH version of
Proposition 1.4. To wit, for all k, n ∈ N with n ≥ k`, let

Dk,n =
c

nα
·max {dgr (w,Tk(n)) : w ∈ v(T(n)) \ v(Tk(n))} .

It follows from the definition of GH distance that

dGH

((
v(Tk(n)),

c

nα
· dgr

)
,
(
v(T(n)),

c

nα
· dgr

))
≤ Dk,n.

We use Lemmas 5.1 and 5.2 below to show that for an appropriate sequence of increasing
k(n), Dk(n),n → 0 a.s.; details are given in the proof of Proposition 1.4.

Next, we take the measures into consideration and prove Proposition 1.4. We start by
stating a fact about the GHP distance between subspaces that follows in a straightforward
way from constructions and definitions; more general statements appear in [3, Fact
6.4] and [36, Fact 6.6]. For all k, n ∈ N with n ≥ (k − 1)`, let νk,n be the projection of
the uniform probability measure νn of v(T(n)) onto v(Tk(n)), i.e., for any w ∈ v(Tk(n)),
write w for the maximal subset of v(T(n)) such that the removal of w disconnects
w from Tk(n), and let νk,n(w) = νn(w ∪ {w}). Write T̂(n) =

(
v(T(n)), c

nα · dgr, νn
)
,

Tk(n) =
(
v(Tk(n)), c

nα · dgr, νk,n
)
, and T̂k(n) =

(
v(Tk(n)), c

nα · dgr, νk,n
)
.

Fact 5.3. For all k, n ∈ N with n ≥ (k − 1)`,

dGHP

(
T̂(n),Tk(n)

)
≤ Dk,n.

Upon showing that Dk(n),n → 0 a.s. for an appropriate k = k(n), to prove Propo-

sition 1.4 it suffices to bound dGHP

(
Tk(n), T̂k(n)

)
. Note that Tk(n) and T̂k(n) differ

only in their measures, so dGHP

(
Tk(n), T̂k(n)

)
= dk,n(νk,n, νk,n), where dk,n denotes the

Lévy-Prokhorov distance on the metric space (v(Tk(n)), c
nα · dgr). We show the following

lemma in Section 5.5.
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Lemma 5.4. Let k : N → N be such that k(n) = Ω
(
n1/100

)
and k(n) = o

(
n1/3

)
and

assume ` > 2. Then, almost surely as n→∞,

dk(n),n

(
νk(n),n, νk(n),n

)
→ 0.

We can now make the discussion above into a precise proof.

Proof of Proposition 1.4. Fix a sufficiently large n and write k = k(n), until near the
end of the proof when we let n vary. It then follows from Fact 5.3 that

dGHP

(
T̂(n), T̂k(n)

)
≤ dGHP

(
T̂(n),Tk(n)

)
+ dGHP

(
Tk(n), T̂k(n)

)
≤ Dk,n + dk,n(νk,n, νk,n). (5.1)

Now, we deduce a bound for Dk,n. Set ε = α/4, and define the event

En =


bn` c+1∑
i=k+1

kα−ε
∆CiUi(n)

nαCi
≤ 1

⋂
{

max
k+1≤i≤bn` c+1

Ui(n) ≤ nαk−α+ε

}
.

Choose u uniformly at random from v (T(n)) \ v (Tk(n)), and take λ(n) = n−αkα−ε > 0

in Lemma 5.1, noticing that, on the event En, λ(n) ≤
{

maxk+1≤i≤bn` c+1 Ui(n)
}−1

. Recall

that our choice of n is large enough, so λ(n) ≤ 1. It then follows from Markov’s inequality
and Lemma 5.1 that

P
(
dgr(u,Tk(n)) ≥ nαk−α+2ε

)
≤ P

(
dgr(u,Tk(n)) ≥ nαk−α+2ε, En

)
+ P (Ecn)

≤
E
[
1[En] · E

[
exp (λ(n) · dgr(u,Tk(n)))

∣∣∣ Fk,n]]
exp (λ(n)nαk−α+2ε)

+ P (Ecn)

≤ exp (λ(n)`+ 5λ(n) · nαk−α+ε)

exp (λ(n) · nαk−α+2ε)
+ P (Ecn)

≤ exp (`+ 5− kε) + P (Ecn) .

Recall that ε = α/4, so −α/2 = −α+ 2ε. It then follows from a union bound that

P
(
Dk,n ≥ c · k−α/2

)
≤ E

 ∑
w∈v(T(n))\v(Tk(n))

P
(
dgr(w,Tk(n)) ≥ nαk−α+2ε

)
≤ 2n · {exp (`+ 5− kε) + P (Ecn)} .

Now we use the notation k(n) and sum over n on both sides of the above inequality:∑
n∈N

P
(
Dk(n),n ≥ c · k(n)−α/2

)
≤
∑
n∈N

2n · {exp (`+ 5− k(n)ε) + P (Ecn)} .

Since k(n) = Ω
(
n1/100

)
,
∑
n∈N n · exp (`+ 5− k(n)ε) <∞. Moreover, Lemma 5.2 implies

that
∑
n∈N n ·P (Ecn) <∞. It then follows from the Borel-Cantelli lemma that Dk(n),n → 0

a.s.. Together with (5.1) and Lemma 5.4, we may conclude the proof.

We only have left to prove Lemmas 5.1, 5.2, and 5.4, which we do in the forthcoming
Sections 5.3, 5.4, and 5.5, respectively.
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5.3 Height bound

In this subsection we prove Lemma 5.1. Recall from Section 1 that, T ′k is obtained
from inserting ` vertices uniformly over T ((k−1)`), i.e., T ′k is T (k`) without the (k+1)-th
branch. Now, for all k ∈ N, let Xk be the last inserted vertex of T ′k ; so Xk has the uniform
law over T ′k with respect to the Lebesgue measure.

Next, we construct a sequence of new embellished trees (T ◦k : k ∈ N), coupled with

a sequence of vertices (X◦k : k ∈ N), such that (T ◦k , X◦k)
d
= (T ′k , Xk). Our construction is a

variant of the one in [13, Section 1.2].

A coupling. Let (Wk, Vk : k ∈ N) be i.i.d. Uniform(0, 1)-variables. We construct T ◦1 by

(1) inserting `− 1 vertices at uniform points over a branch of length C1; and

(2) letting X◦1 be the point at distance V1C1 from a fixed endpoint X◦0 of the branch.

Given the pairs (T ◦i , X◦i ) for i = 1, . . . , k for some k ∈ N, we construct (T ◦k+1, X
◦
k+1) as

follows. Note that, before (T ◦k+1, X
◦
k+1) is constructed, we do not know yet whether to

view X◦k as a vertex (in the upcoming case (a)) or just a point (case (b)). The reason to
emphasize the difference between vertices and points is to align with the distribution of
T ′k , which is viewed as a union of a real tree and vertices, and the last ` vertices in T ′k
each has 1/` probability of becoming a junction vertex in T (k`) (forgetting the order of
those ` vertices), but a random point has 0 probability of becoming a junction. Recall
that ∆Ck+1 = Ck+1 − Ck.

(a) If Wk+1 ≤ ∆Ck+1

Ck+1
, then let T ◦k+1 be obtained from T ◦k by

(1) attaching a branch of length ∆Ck+1 to X◦k ;
(2) inserting a vertex, denoted X◦k+1, in the latest branch at distance ∆Ck+1Vk+1

from X◦k ; and
(3) inserting `− 1 vertices at random points of the existing tree, uniform for the

Lebesgue measure.

We view X◦k as a vertex in this case.

(b) If Wk+1 >
∆Ck+1

Ck+1
, then let T ◦k+1 be obtained from T ◦k by

(1) inserting a vertex at a random point of T ◦k , uniform for the Lebesgue measure;
(2) attaching a branch of length ∆Ck+1 to this last inserted vertex of T ◦k ; and
(3) inserting `− 1 vertices at random points of the existing tree, uniform for the

Lebesgue measure.

Let X◦k+1 = X◦k , viewed as a random point rather than a vertex.

Note that the projection of X◦j to T ◦k is X◦k for all integers j ≥ k ≥ 1.

Lemma 5.5. For all k ∈ N, X◦k and Xk are respectively uniform over T ◦k and T ′k for the

Lebesgue measure, and (T ◦k , X◦k)
d
= (T ′k , Xk).

Proof. First note that Xk, the last inserted vertex of T ′k , is uniform over T ′k for the
Lebesgue measure. Next, we show by induction on k that X◦k has the uniform law over
T ◦k for the Lebesgue measure. Base case k = 1 is trivially verified. Given that X◦k is

uniform over T ◦k for some k ∈ N, since X◦k+1 has ∆Ck+1

Ck+1
probability of landing on a

uniform location of branch k + 1, with the complement probability of being X◦k which
is uniform on T ◦k , it is clear that X◦k+1 has the uniform law over T ◦k+1 for the Lebesgue
measure.

Furthermore, it is easily seen that the (k+ 1)-th branch is attached to a uniform point
of T ◦k , for the Lebesgue measure, for all k ∈ N (step (1) of case (a): X◦k is uniform over
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T ◦k ; step (2) of case (b): the last inserted vertex of T ◦k is uniform over T ◦k ). Moreover,

given T ◦k , the first vertex to be inserted has ∆Ck+1

Ck+1
probability of landing on a uniform

location of the (k + 1)-th branch (step (2) of case (a)), with the complement probability
of landing on a uniform point of T ◦k (step (1) of case (b)). Also, the next ` − 1 vertices
to be inserted are uniform over the existing tree (step (3) in both cases). We thus have

T ◦k+1
d
= T ′k+1. It follows by induction that T ◦k

d
= T ′k for all k ∈ N. Since both X◦k and

Xk are respectively uniform over these two trees for the Lebesgue measure, we have

(T ◦k , X◦k)
d
= (T ′k , Xk).

For ease of notation, fix k, n ∈ N with n ≥ k`, and let m be the largest integer such
that n ≥ m`. For all integer 1 ≤ i ≤ m, given that Wi ≤ ∆Ci

Ci
, write Si for the path

[X◦i−1, X
◦
i ) in T ◦m, and write M◦(Si,m) for the number of vertices on Si in T ◦m. Let T ◦k,m

(resp. T ′k,m) be the subtree of T ◦m (resp. T ′m) spanned by the root and the first k leaves.
Denote by E◦ the event that X◦m /∈ T ◦k,m, and analogously denote by E the event that
Xm /∈ T ′k,m.

Recall from Section 5.1 that Ui(m`) has the law of the number of vertices in the i-th
branch in T ◦m (it can also be viewed as the number of balls of color i at time m` in the
Pólya urn model therein). Let L denote law.

Lemma 5.6. Conditioned on E, dgr

(
Xm, T ′k,m

)
d
=
∑m
i=k+1dViUi(m`)e · 1[Wi≤

∆Ci
Ci

]
; when

m = k the summation is 0.

Proof. Without loss of generality, assume that m > k. It follows from Lemma 5.5 and the
constructions of T ′k,m and T ◦k,m that

L
(
dgr

(
Xm, T ′k,m

) ∣∣E) = L
(
dgr

(
X◦m, T ◦k,m

) ∣∣E◦) (5.2)

Moreover, it follows from the construction of T ◦k,m that, conditioned on E◦,

dgr

(
X◦m, T ◦k,m

) d
=

m∑
i=k+1

M◦(Si,m) · 1
[Wi≤

∆Ci
Ci

]
. (5.3)

Now, due to the definition of Ui(·) and that the X◦i are placed uniformly according to
normalized Lebesgue measure, we have(

1
[Wi≤

∆Ci
Ci

]
M◦(Si,m)

)m
i=k+1

d
=

(
1

[Wi≤
∆Ci
Ci

]
dViUi(m`)e

)m
i=k+1

.

Together with (5.2) and (5.3) we may conclude the proof.

Proof of Lemma 5.1. This proof is an easy generalization of the argument in [13,
Section 1.2]. Note that λ·Ui(m`) ≤ 1 for all k+1 ≤ i ≤ m. Using the bound ex−1 ≤ x+x2

for 0 ≤ x ≤ 1, we have E [exp(λ · ViUi(m`))] = exp(λ·Ui(m`))−1
λ·Ui(m`) ≤ 1 + λ · Ui(m`). Then,

applying Lemma 5.6 yields that, for λ > 0,

E
[
exp

(
λ · dgr(Xm, T ′k,m)

) ∣∣∣ E,Fk,n]
≤

m∏
i=k+1

(
Ci−1

Ci
+
Ci − Ci−1

Ci
· E [exp(λ+ λ · ViUi(m`))]

)

≤
m∏

i=k+1

(
1− ∆Ci

Ci
+

∆Ci
Ci
· eλ · (1 + λ · Ui(m`))

)

=

m∏
i=k+1

(
1 +

∆Ci
Ci
· (eλ − 1) + λeλ · ∆CiUi(m`)

Ci

)
.
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Notice that 0 ≤ λ ≤ 1, so eλ− 1 ≤ λ+λ2 ≤ 2λ ≤ 2λUi(m`) and λeλ ≤ 3λ. Thus, the above
quantity is bounded by

m∏
i=k+1

(
1 +

5λ∆CiUi(m`)

Ci

)
≤ exp

(
5λ

m∑
i=k+1

∆CiUi(m`)

Ci

)
.

Finally, for a tree T , write e(T ) for the set of edges of T . Given the event E, it follows
from Lemma 3.5 and the first assertion of Lemma 5.5 that Xm is on an edge uniformly
chosen from e(T ′m) \ e(T ′k,m). Now, recall that u is uniform over v(T(n)) \ v(Tk(n)), where
T(n) = (T (n),dgr). Since n < m`+ `, it follows that that

L
(

dgr (u,Tk(n))
∣∣∣ Fk,n) st

6 L
(
`+ dgr

(
Xm, T ′k,m

) ∣∣∣ E,Fk,n) ,
where

st
6 denotes stochastic domination. The lemma easily follows.

5.4 Moment bound for Pólya urn

In this subsection, we prove Lemma 5.2 under the framework of Section 5.1. Denote
by P

(
b
w ;m

)
the distribution of white balls in a classical Pólya urn after m completed

draws, starting with b black and w white balls. Denote by P`Im
(
b
w ;m

)
the number of white

balls after m completed steps in the Pólya urn with immigration, starting with b black
and w white balls: at the nth step, a ball is picked at random from the urn and returned
along with an additional ball of the same color; additionally, if n is a multiple of `, then a
black ball is added after the n-th draw and return. We use the notation L (·) to denote
the law of some random variable.

Lemma 5.7. ([27, Lemma 2.2 with s = ms = 1]). For all k, n ∈ N with n ≥ k`,

Mk(n) ∼ P`Im
(

1

(`+1)k
;n− k`

)
and

L
(
Uk(n)|Mk(n)

)
= P

(
(k−1)(`+1)

1 ;Mk(n)− (k − 1)(`+ 1)− 1
)
. (5.4)

Lemma 5.8. Fix k, n, q ∈ N with n ≥ k`. There is a constant c > 0 depending only on q, `
such that

E [Mk(n)(Mk(n) + 1) · · · (Mk(n) + q(`+ 1)− 1)] 6 ckqnq`. (5.5)

Proof. From [27, Lemma 4.1], for Y ∼ P`Im
(

1
w ; t
)

and integer q > 0,

E [Y (Y + 1) · · · (Y + q(`+ 1)− 1)] =

q(`+1)−1∏
j=0

(w + j)

t−1∏
i=0

(
1 +

q(`+ 1)

w + 1 + i+ bi/`c

)
.

Setting T = b t−1
` c, we calculate

E [Y (Y + 1) · · · (Y + q(`+ 1)− 1)]

=

q(`+1)−1∏
j=0

(w + j)

t−1∏
i=0

(
1 +

q(`+ 1)

w + 1 + i+ bi/`c

)

=

q(`+1)−1∏
j=0

(w + j)

T−1∏
r=0

`−1∏
i=0

(
1 +

q(`+ 1)

w + 1 + i+ r(`+ 1)

) t−1∏
p=`T

(
1 +

q(`+ 1)

w + 1 + p+ T

)

= w

q−2∏
j=0

(w + 1 + `+ j(`+ 1))

T+q−1∏
r=T

`−1∏
i=0

(w + 1 + i+ r(`+ 1))

t−1∏
p=`T

(
1 +

q(`+ 1)

w + 1 + p+ T

)

≤ (w + (q − 1)(`+ 1))q(w + q(`+ 1) + T (`+ 1))q`
(

1 +
q(`+ 1)

w + 1 + T (`+ 1)

)`
,
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where for the last equality we have rewritten the denominator double products as

T−1∏
r=0

`−1∏
i=0

(w + 1 + i+ r(`+ 1))

=

q−1∏
j=0

`−1∏
k=0

(w + 1 + k + j(`+ 1))

T−1∏
r=q

`−1∏
i=0

(w + 1 + i+ r(`+ 1))

=

∏q(`+1)−1
j=1 (w + j)∏q−2

j=0(w + 1 + `+ j(`+ 1))

T−q−1∏
r=0

`−1∏
i=0

(w + 1 + i+ (r + q)(`+ 1)) ,

made cancellations, and reindexed. Now setting w = (`+ 1)k and t = n− k` and noting
that with this choice of parameters,

w + T (`+ 1) 6 1 + (n− 1)
`+ 1

`
+ `,

we find

E [Mk(n)(Mk(n) + 1) · · · (Mk(n) + q(`+ 1)− 1)]

≤ ((`+ 1)(k − s+ q))
q

(
1 + q(`+ 1) + `+ n

`+ 1

`

)q`(
1 +

q(`+ 1)

1 + (n− 1) `+1
`

)`
.

Lemma 5.9. Fix k, n, q ∈ N with n ≥ k`. There is a constant c = c(q, `) > 0 such that for
all positive integer j 6 q(`+ 1),

E
[
Mk(n)j

]
6 ckj/(`+1)nj`/(`+1).

Proof. For j 6 q(`+ 1), Jensen’s (or Hölder’s) inequality implies

E
[
Mk(n)j

]
6
(
E
[
Mk(n)q(`+1)

])j/(q(`+1))

. (5.6)

Using (5.5) now implies

E [Mk(n)(Mk(n) + 1) · · · (Mk(n) + q(`+ 1)− 1)] 6 ckqnq`,

and the result for j ≤ q(`+ 1) easily follows from this and (5.6).

Lemma 5.10. Fix k, n, p ∈ N with n ≥ k`. There is a constant c = c(p, `) > 0 such that

E [Uk(n)p] ≤ c
(n
k

)p`/(`+1)

and

E

[(
∆CkUk(n)

Ck

)p]
≤ cnp`/(`+1)k−p(2`+1)/(`+1).

Proof. Recall from (5.4) of Lemma 5.7 that

L
(
Uk(n)|Mk(n)

)
= P

(
(k−1)(`+1)

1 ;Mk(n)− (k − 1)(`+ 1)− 1
)
.

Let the random variable B ∼ Beta[1, (k− 1)(`+ 1)] be independent of Mk(n). Conditional
on B and Mk(n), let X(Mk(n), B) be binomial with parameters Mk(n)− (k− 1)(`+ 1)− 1

and B. By the de Finetti representation of the classical Pólya urn, we have

L
(
Uk(n)|Mk(n)

)
= L

(
(1 +X(Mk(n), B))|Mk(n)

)
. (5.7)
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Hölder’s inequality implies that for non-negative x, y and positive integer p, (x+ y)p 6
2p−1(xp + yp), and so starting from (5.7), we have

E
[
Uk(n)p

∣∣Mk(n)
]
6 2p−1 (1 + E [X(Mk(n), B)p]) . (5.8)

Now note that, if L (Y ) = Binomial(N, q), then for positive integer p, and denoting
Stirling numbers of the second kind by

{
p
j

}
(and note these are non-negative),

E [Y p] =

p∑
j=0

{
p

j

}
E [Y (Y − 1) · · · (Y − j + 1)] 6

p∑
j=0

{
p

j

}
(Nq)j ,

where the inequality follows from the binomial distribution falling factorial moment
formula E [Y (Y − 1) · · · (Y − j + 1)] = N(N − 1) · · · (N − j+)qj . So from (5.8), condition
on Mk(n) (noting that Mk(n) is independent of B) to find

E
[
Uk(n)p

∣∣Mk(n)
]
6 2p−1

1 +

p∑
j=0

{
p

j

}
Mk(n)jE

[
Bj
] . (5.9)

Standard formulas for beta moments imply

E
[
Bj
]

=
Γ(j + 1)Γ(1 + (k − 1)(`+ 1))

Γ(1 + (k − 1)(`+ 1) + j)
6 ck−j , (5.10)

where c = c(`, j) is a constant. Taking the expectation on both sides of (5.9), together
with Lemma 5.9 and (5.10), yields that, for some c = c(p, `),

E [Uk(n)p] ≤ 2p−1

1 +

p∑
j=0

{
p

j

}
E
[
Mk(n)j

]
E
[
Bj
]

≤ c
p∑
j=0

kj/(`+1)−jnj`/(`+1) ≤ c
(n
k

)p`/(`+1)

.

To deduce the last inequality, note that, under the notation of Fact 3.3,

∆Ck
Ck

d
= 1−

(
E1 + · · ·+ Ek−1

E1 + · · ·+ Ek

) 1
`+1

∼ 1− Beta((`+ 1)(k − 1), 1) ∼ Beta(1, (`+ 1)(k − 1)).

(5.10) then leads to E

[(
∆Ck
Ck

)2p
]
≤ ck−2p. By the Cauchy-Schwarz inequality and the

inequalities in the previous two displays,

E

[(
∆CkUk(n)

Ck

)p]
≤

(
E

[(
∆Ck
Ck

)2p
]
· E
[
Uk(n)2p

])1/2

≤ ck−p
(n
k

)p`/(`+1)

.

Proof of Lemma 5.2. Recall that α = `/(`+ 1). For sufficiently large n, the event
bn` c+1∑
i=k(n)+1

k(n)α−ε
∆CiUi(n)

nαCi
> 1


is a subset of the union of the events

{
∆CiUi(n)
nαCi

> cαi
−α−1+ε/2

}
, over the indices i =

k(n) + 1, . . . , bn` c + 1 and for a sufficiently small constant cα. This is because on the
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complement of this union, the sum is no greater than one. Next, we use Lemma 5.10,
noting that k(n) = O(n`/(2`+1)), to find for integer q > 2/(ε(`+ 1)),

bn` c+1∑
i=k(n)+1

P

(
∆CiUi(n)

nαCi
> cαi

−α−1+ε/2

)
6

bn` c+1∑
i=k(n)+1

E

[(
∆CiUi(n)
nαCi

)q(`+1)
]

c
q(`+1)
α i(−α−1+ε/2)q(`+1)

6 c

bn` c+1∑
i=k(n)+1

i(α+1−ε/2)q(`+1)−q(2`+1) = O
(
k(n)−εq(`+1)/2+1

)
,

where c is a constant depending only on q, `. Multiplying by n both sides of the above
inequalities and then summing over n ∈ N yields

∑
n∈N

n · P

k(n)α−ε
bn` c+1∑
i=k(n)+1

∆CiUi(n)

nαCi
> 1

 = O

(∑
n∈N

n2 · k(n)−εq(`+1)/2+1

)
. (5.11)

Since k(n) = Ω(n1/100), we choose q large enough so that
∑
n∈N n

2k(n)−εq(`+1)/2+1 <∞.
Furthermore, using a union bound, Markov’s inequality, and Lemma 5.10,

P

(
max

k(n)+1≤i≤bn−1
` c+1

Ui(n) > nαk(n)−α+ε

)
≤

bn` c+1∑
i=k(n)+1

P
(
Ui(n) > nαk(n)α+ε

)

≤
bn` c+1∑
i=k(n)+1

E [Ui(n)p]

npαk(n)−pα+pε
≤ ak(n)1−pε,

for any p ∈ N and some a = a(p, `). Now take p large enough to get∑
n∈N

n · P
(

max
k(n)+1≤i≤bn/`c+1

Ui(n) > nαk(n)−α+ε

)
<∞. (5.12)

The lemma then follows from (5.11), (5.12), and the triangle inequality.

5.5 Convergence of measures

In this subsection, we prove Lemma 5.4. Fix k, n ∈ N with n ≥ (k−1)` unless specified
otherwise. Recall from Section 1 that vi denotes the vertex inserted in a uniform edge
of the combinatorial tree T(i− 1), and, if ` divides i, vi is a branchpoint (i.e., there is a
new edge attached to vi at the time vi appears). Note that {v0, v1, . . . , vk`, L1, . . . , Lk} ⊂
v(Tk(n)), where v0 is the root, L1, . . . , Lk are the first k leaves. Hereafter, conditioned on
|v(Tk(n))| = (`+1)k+m+1 for some appropriate integer m := m(Tk(n)), list the internal
vertices of Tk(n) as (v1, . . . , vk`, vi1 , . . . , vim), in the order of appearance; the other k + 1

vertices of Tk(n) are the leaves and the root. For convenience, denote i0 = k`.
Given w ∈ v(Tk(n)), recall that w is the maximal subset of v(T(n)) such that the

removal of w disconnects w from Tk(n); so for 1 ≤ i ≤ k` − 1, vi = ∅. For all integer
0 ≤ j ≤ m, let Tij be the subtree of T(n) restricted to vij ∪ {vij}, and let

nij = |v(Tij )|.

If ` divides ij , then vij 6= ∅ and nij > 1, otherwise, vij = ∅ and nij = 1.
Next, list the vertices vi0 , vi1 , . . . , vim in breadth-first search order of Tk(n), as

w0, w1, . . . , wm. So there is a bijection f : {i0, . . . , im} → {0, . . . ,m} such that, in Tk(n),
vij is identified with wf(ij) and Tij is attached to wf(ij). Now, let σ := (σ(ij) : 0 ≤ j ≤ m)
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be a uniformly chosen random permutation of i0, . . . , im. We construct a random tree
T(n, σ) by identifying the vertex wj of Tk(n) with the vertex vσ(ij) of Tσ(ij), for each
0 ≤ j ≤ m. Since each vij is inserted in a uniform edge of the existing tree Tk(ij − 1),
uniformly permuting the attaching locations of Tij does not change the law of the re-

sulting tree. It thus follows that T(n, σ)
d
= T(n). Write |nm,k,n|2 = (

∑m
j=0 n

2
ij

)1/2 and
Nn = |v(T(n))| = n+ bn/`c+ 2. Recall that m := |v(Tk(n))| − (`+ 1)k − 1 is the number
of the internal vertices of Tk(n) except for {v1, . . . , vk`}.
Lemma 5.11. Let k : N→ N be such that k(n) = Ω((log n)10) and k(n) = o(n1/2). For all
n ∈ N, denote the event

Fn =
{∣∣∣Ck(n) − k(n)

1
`+1

∣∣∣ < 10k(n)
1
`+1−

1
4

}⋂{∣∣∣ c
nα
· |v(Tk(n)(n))| − Ck(n)

∣∣∣ < 1
}
.

Fix a sufficiently large n and write k = k(n), m = m(n) = |v(Tk(n))| − (`+ 1)k − 1. Then

for any V ⊂ v(Tk(n)) and t > 4c(`+ 4) · nαk
1
`+1 ,

P

(
|νk,n(V )− νk,n(V )| > 2t

Nn

∣∣∣∣ Fn) ≤ 2E

[
exp

(
− 2t2

|nm,k,n|22

)]
.

Proof. For the duration of the proof, let V ⊂ v(Tk(n)), and write V ′ = V
⋂
{vi0 , . . . , vim},

N = Nn = |v(T(n))|. Recall that σ = (σ(ij) : 0 ≤ j ≤ m) is a uniform permutation of
i0, . . . , im. Write σj = σ(ij) for each 0 ≤ j ≤ m. By definition,

νk,n(V ) =

∑
vij∈V ′

nij + |V \ V ′|

N

d
=

∑
vσj∈V ′

nσj + |V \ V ′|

N
:=

∑
vσj∈V ′

|v(Tσj )|+ |V \ V ′|

N
,

where the second equality follows from the fact that T(n, σ)
d
= T(n), so

∑
vij∈V ′

nij
d
=∑

vσj∈V ′
nσj . Note that, exchangeability resulting from the uniform permutation σ only

exhibits through (nσj : 0 ≤ j ≤ m), but not V \ V ′. Let n′ =
∑m
j=0 nij = N − (` + 1)k.

To use exchangeability to deduce the tail bound for |νk,n(V )− νk,n(V )|, we first show

that it is close to

∣∣∣∣∑vσj
∈V ′ nσj

n′ − |V ′|
m+1

∣∣∣∣, and then employ exchangeability to bound the

latter. Indeed, by the triangle inequality, writing M = Mn = |v(Tk(n))| and noting that
νk,n(V ) = |V |

M , we have

|νk,n(V )− νk,n(V )| d
=

∣∣∣∣∣
∑
vσj∈V ′

nσj + |V \ V ′|

N
− |V |
M

∣∣∣∣∣
≤ n′

N
·

∣∣∣∣∣
∑
vσj∈V ′

nσj

n′
− |V ′|
m+ 1

∣∣∣∣∣+

∣∣∣∣ |V \ V ′|N
− |V |
M

+
|V ′|
m+ 1

· n
′

N

∣∣∣∣ .
Hence, even conditionally,

P

(∣∣∣νk,n(V )− νk,n(V )
∣∣∣ > 2t

N

∣∣∣∣ Fn)

≤ P

∣∣∣ ∑
vσj∈V ′

nσj
n′
− |V ′|
m+ 1

∣∣∣ > t

n′

∣∣∣∣ Fn
 (5.13)

+ P

(∣∣∣ |V \ V ′|
N

− |V |
M

+
|V ′|
m+ 1

· n
′

N

∣∣∣ > t

N

∣∣∣∣ Fn) . (5.14)

We now compute (5.14). It is convenient to keep in mind that we have chosen n

sufficiently large, and the variables k = k(n), M = Mn = |v(Tk(n))|, m = m(n) =
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M − (`+ 1)k− 1, N = Nn = |v(T(n))|, depend on n. Note that |V \ V ′| ≤ (`+ 1)k + 1 and

t > 4c(`+ 4) · nαk
1
`+1 , so t > 2|V \ V ′| for large enough n. It follows that{∣∣∣∣ |V \ V ′|N

− |V |
M

+
|V ′|
m+ 1

· n
′

N

∣∣∣∣ > t

N

}
⊂
{
|V \ V ′|
N

>
t

2N

}⋃{∣∣∣∣ |V |M − |V ′|
m+ 1

· n
′

N

∣∣∣∣ > t

2N

}
= ∅

⋃{∣∣∣∣|V | · NM − |V ′| · n′

m+ 1

∣∣∣∣ > t

2

}
. (5.15)

Given the event Fn, it is easily seen that 1
2c · n

αk
1
`+1 ≤ M ≤ 2

c · n
αk

1
`+1 . Also, we have

N = Nn = Θ(n) and n′ = N − (`+ 1)k, so

N

M
6

n′

m+ 1
=
N − (`+ 1)k

M − (`+ 1)k
≤ N

M
+

(`+ 1)kn

M(M − (`+ 1)k)
.

Note also that |V \ V ′| ≤ (`+ 1)k+ 1, |V ′| ≤M − (`+ 1)k, and N ≤ n(1 + 1/`) + 2, it then
follows by the triangle inequality that on the event Fn,∣∣∣∣|V | · NM − |V ′| · n′

m+ 1

∣∣∣∣ ≤ ∣∣∣∣|V | · NM − |V ′| · N
M

∣∣∣∣+ |V ′| · (`+ 1)kn

M(M − (`+ 1)k)

= |V \ V ′| · N
M

+ |V ′| · (`+ 1)kn

M(M − (`+ 1)k)

≤ ((`+ 1)k + 1) · N
M

+
(`+ 1)kn

M

≤ (2`+ 3) · kn
M
≤ 2c(2`+ 3) · n1−αk

`
`+1 ,

where the last inequality is due to M ≥ 1
2c · n

αk
1
`+1 on Fn. Since t > 4c(` + 4) · nαk

1
`+1 ,

we thus have{∣∣∣∣|V | · NM − |V ′| · n′

m+ 1

∣∣∣∣ > t

2

}
⊂
{

2c(2`+ 3) · n1−αk
`
`+1 > 2c(`+ 4) · nαk

1
`+1

}
= ∅,

where the last equality is due to the fact that α ≥ 1
2 , and when α = 1

2 we have ` = 1.
Combined with (5.15), we have

P

(∣∣∣ |V \ V ′|
N

− |V |
M

+
|V ′|
m+ 1

· n
′

N

∣∣∣ > t

N

∣∣∣∣ Fn) = 0. (5.16)

It remains to bound (5.13), shown below. The rest of the proof follows a similar
argument as in [3, Lemma 5.3], so we only point out the differences, and refer the reader
to that work for omitted explanations. Let r0, . . . , rm be independent random variables
with uniform law over {i0, . . . , im}. Recall that n′ =

∑m
j=0 nij . It follows by symmetry

that

E

 ∑
vrj∈V ′

nij

∣∣∣∣ n′
 = E

 m∑
j=0

nij · 1[vrj∈V ′]

∣∣∣∣ n′
 = n′ · P (vr1 ∈ V ′) = n′ · |V

′|
m+ 1

.

Taking a :− 4t
|nm,k,n|22

and applying Markov’s inequality as in [25, Theorem 2.5] gives a
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Hoeffding-type inequality for
∑
vσj∈V ′

nσj : for any t > 0,

P

∣∣∣ ∑
vσj∈V ′

nσj
n′
− |V ′|
m+ 1

∣∣∣ > t

n′

∣∣∣∣ Fn
 = P

∣∣∣ ∑
vσj∈V ′

nσj − n′ ·
|V ′|
m+ 1

∣∣∣ > t

∣∣∣∣ Fn


≤ e−at · E

exp
(
a ·
∣∣∣ ∑
vσj∈V ′

nσj − n′ ·
|V ′|
m+ 1

∣∣∣) ∣∣∣∣Fn


≤ e−at · E

exp
(
a ·
∣∣∣ ∑
vrj∈V ′

nrj − n′ ·
|V ′|
m+ 1

∣∣∣) ∣∣∣∣Fn


≤ 2E

[
exp

(
− 2t2

|nm,k,n|22

)]
;

the first inequality follows from Markov’s inequality; the second one is due to [7, Propo-
sition 20.6] and [35, Theorem 2]; the last inequality follows from a straightforward
calculation as in [25, Lemma 2.6]. Together with (5.13) and (5.16), we may conclude the
proof.

Given a graph G and a subgraph G′ of G, write G − G′ for the set of components
obtained by removing all edges and vertices of G′ from G. For all k, n ∈ N with
n ≥ (k − 1)`, let

Sk,n = S (Tk(n)) = max {|v(T )| : T ∈ T(n)− Tk(n)} . (5.17)

Lemma 5.12. Let k : N→ N be such that k(n) = Ω
(
n1/100

)
and k(n) = o(n) and restrict

` > 2. There is a constant a = a(`) > 0 such that, for sufficiently large n,

P
(
Sk(n),n ≥ n · k(n)−

8
3(`+1)

)
≤ a · n−2.

The proof of Lemma 5.12 is deferred to Section 5.6.

Proof of Lemma 5.4. For all n ∈ N, let εn = k(n)−
1

12(`+1) and

Mn =
⌈
ε−1
n ·

c

nα
· |v(Tk(n)(n))|

⌉
.

In the remaining proofs we fix a large n ∈ N and write k = k(n), unless we consider
varying n. With a similar argument as in Proposition 1.3, we find a covering, denoted
by {Bn,1, . . . , Bn,Mn}, of (v(Tk(n)), c

nα · dgr), with diameter at most εn. Let An,1 = Bn,1,

and for i > 1, let An,i = Bn,i \
⋃i−1
j=1Bn,j . Then {An,1, . . . , An,Mn

} forms a disjoint cover
of (v(Tk(n)), c

nα · dgr), with diameter at most εn.
This paragraph follows a similar argument as in [3, Corollary 6.2], and we refer the

reader to that work for omitted details. Recall that dk,n denotes the Lévy-Prokhorov
distance on (v(Tk(n)), c

nα · dgr). We claim that,

{dk,n (νk,n, νk,n) > εn} ⊂
{
|νk,n(An,j)− νk,n(An,j)| >

εn
Mn

for some 1 ≤ j ≤Mn

}
;

a quick proof is provided as follows. Suppose that dk,n (νk,n, νk,n) > εn. Then there exists
a set S ⊂ v(Tk(n)) such that either νk,n(Sεn) < νk,n(S)− εn or νk,n(Sεn) < νk,n(S)− εn.
Since {An,1, . . . , An,Mn

} is a disjoint cover of Tk(n), there exists j such that either

νk,n(Sεn ∩An,j) < νk,n(S ∩An,j)− εn/Mn or
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νk,n(Sεn ∩An,j) < νk,n(S ∩An,j)− εn/Mn.

So S ∩An,j 6= ∅. Since the diameter of An,j is at most εn, we have An,j ⊂ Sεn . So, either

νk,n(An,j) < νk,n(An,j)− εn/Mn or νk,n(An,j) < νk,n(An,j)− εn/Mn.

Hence the claim.
Next, let as before

Fn =
{∣∣∣Ck(n) − k(n)

1
`+1

∣∣∣ < 10k(n)
1
`+1−

1
4

}⋂{∣∣∣ c
nα
· |v(Tk(n)(n))| − Ck(n)

∣∣∣ < 1
}
,

and note that it follows from Lemma 4.1 and Lemma 4.4 that, for sufficiently large n,

P (Fn) > 1− 2e−k(n)1/2/4 − 2 exp

(
− 1 · nα

32ck(n)
1
`+1

)
− e−k(n)1/3

> 1− 2e−k(n)1/3

. (5.18)

We now easily obtain that

P (dk,n (νk,n, νk,n) > εn, Fn)

≤ P

(
|νk,n(An,j)− νk,n(An,j)| >

εn
Mn

for some 1 ≤ j ≤Mn, Fn

)
. (5.19)

On the event Fn, we have

Mn ≤ mn :=
⌈
ε−1
n

{
1 + k(n)

1
`+1

(
1 + 10k(n)−

1
4

)}⌉
= Θ

(
ε−1
n k(n)

1
`+1

)
.

Furthermore, let Nn = |v(T(n))| = n+bn/`c+2, m = m(n) = |v(Tk(n))|−(`+1)k−1, and

write |nn|2 =
(∑m

j=0 n
2
ij

)1/2

; nn here is nm,k,n in Lemma 5.11. Set t = εnNn
2mn

and note that

since k(n) = o(n1/3), it is easily checked that t = Θ
(
n · k(n)−

7
6(`+1)

)
> 4c(`+ 4)nαk1/(`+1)

for large n and so satisfies the assumption in Lemma 5.11. Applying the bound on Mn

and Lemma 5.11 to (5.19), it follows that

P
(
dk(n),n (νk,n, νk,n) > εn

∣∣∣ Fn) ≤ mn · 2E
[
exp

(
− 2ε2

nN
2
n

|nn|22 · 4m2
n

)]
. (5.20)

Now bound

|nn|22 6

m(n)∑
j=0

nij

 max
0≤j≤m(n)

nij 6 n · Sk(n),n,

where Sk(n),n = max0≤j≤m(n) nij + 1. Thus,

ε2
nN

2
n

|nn|22m2
n

= Ω

(
ε2
nn

Sk(n),nm2
n

)
= Ω

(
n · k(n)−

7
3(`+1)

Sk(n),n

)
. (5.21)

Since Fn and Sk(n),n are independent, it then follows from the triangle inequality, (5.20),
(5.21), and Lemma 5.12 that

P
(
dk(n),n

(
νk(n),n, νk(n),n

)
> εn, Fn

)
≤ P

(
dk(n),n

(
νk(n),n, νk(n),n

)
> εn, Sk(n),n < n · k(n)−

8
3(`+1) , Fn

)
+ P

(
Sk(n),n ≥ n · k(n)−

8
3(`+1)

)
= O

(
mn · exp

(
−n · k(n)−

7
3(`+1)

n · k(n)−
8

3(`+1)

))
+O

(
n−2

)
= O

(
mn · exp

(
−k(n)

1
3(`+1)

))
+O

(
n−2

)
.
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Together with (5.18), we further deduce

P
(
dk(n),n

(
νk(n),n, νk(n),n

)
> εn

)
≤ P

(
dk(n),n

(
νk(n),n, νk(n),n

)
> εn, Fn

)
+ P (F cn)

= O
(
mn · exp

(
−k(n)

1
3(`+1)

)
+ n−2 + e−k(n)1/3

)
.

Finally, recalling that mn = Θ
(
k(n)

13
12(`+1)

)
and k(n) = Ω

(
n1/100

)
, summing over n and

applying the Borel-Cantelli lemma yields the almost sure convergence.

5.6 Maximal occupation of an infinite-colors Pólya urn

In this subsection we prove Lemma 5.12, by viewing sizes of the subtrees as the
occupations of a modified version of the infinite-colors Pólya urn, introduced below.

At time 0, the urn contains b ∈ N black balls and w ∈ N balls of color 1. At time t ∈ N,
a ball is chosen at random from the urn and returned along with an additional ball of
the same color. Additionally, if ` divides t and the urn has black balls and balls of color
{1, . . . , p}, then (i) if the chosen ball is black, add a ball of color p+ 1; or (ii) if the chosen
ball is non-black, add a ball of the same color as the chosen ball. For each i ∈ N, let
Ui(t; b, w) be the number of color-i balls and let U0(t; b, w) be the number of black balls in
the urn after t ∈ N draws. LetMi(t; b, w) = U1(t; b, w) + · · ·+ Ui(t; b, w), noticing that the
sum does not include U0(t; b, w). Let Si(b, w) be the random time that color i appears.

Recalling the definition (5.17), the key relation between this urn model and the
quantities appearing in Lemma 5.12 is

Sk,n := max {|v(T )| : T ∈ T(n)− Tk(n)} d
= max

i∈N
Ui (n− k`; (`+ 1)k, 1) .

We prove the lemma by deducing moment bounds of Sk,n from moment bounds of the Ui.
For the moment-bounds on Ui(t; b, w) (and Mi(t; b, w)), we consider the following

auxiliary 2-colors Pólya urn, which is equivalent to the above urn by regarding color
1 as white and {2, 3, . . .}-colors as black. At time 0, the urn contains b ∈ N black balls
and w ∈ N white balls. At time t ∈ N, a ball is chosen at random from the urn and
returned along with an additional ball of the same color. Additionally, if ` divides t, then
an additional ball of the chosen color is added. Let W (t; b, w) be the number of white
balls in the urn after t draws.

Fact 5.13. Fix b, w, i ∈ N. WriteMj(·) =Mj(·; b, w), Uj(·) = Uj(·; b, w), and Sj = Sj(b, w),
for all j ∈ N. Given Si, for integer t > Si,

E
[
Mi(t)

∣∣Si,U0(Si),Mi(Si)
] d

= W (t− Si;U0(Si),Mi(Si)) (5.22)

and
E
[
Ui(t)

∣∣Mi(t),Mi(Si)
] d

= W (Mi(t)−Mi(Si);Mi(Si)− 1, 1) . (5.23)

Fact 5.13 can be shown similarly as for Lemma 5.7 so we omit the proof.

Lemma 5.14. Fix b, w ∈ N. For all non-negative integers t and p, there is a constant
fp,` > 0 not depending on b, w such that

E [W (t; b, w)p] ≤ fp,` · wp ·
(

1 +
t

α(b+ w)

)p
·
{

1 + log

(
1 +

t

α(b+ w)

)}
=: dt,p. (5.24)

Proof. Write nj = b + w + j + bj/`c and Wj = W (j; b, w) for all non-negative integer j.
Since for all t ∈ N,

P
(
Wt = Wt−1 + 1 + 1[`|t]

∣∣Wt−1

)
= 1− P

(
Wt = Wt−1

∣∣Wt−1

)
=
Wt−1

nt−1
,
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it follows that, for all p ∈ N and some positive constants e′p, ep only depending on p

(noting that Wt > 1 for all t),

E
[
W p
t

∣∣Wt−1

]
=

Wt−1

nt−1
·
{

(Wt−1 + 1)p · 1[`-t] + (Wt−1 + 2)p · 1[`|t]
}

+
nt−1 −Wt−1

nt−1
·W p

t−1

=
Wt−1

nt−1
·
[
(Wt−1 + 1)p + 1[`|t] · {(Wt−1 + 2)p − (Wt−1 + 1)p}

]
+
nt−1 −Wt−1

nt−1
·W p

t−1

≤ W p
t−1 +

W p
t−1

nt−1
·
{

(Wt−1 + 1)(1 + 1/Wt−1)p−1 + p · 1[`|t] · (1 + 2/Wt−1)p−1 −Wt−1

}
≤ W p

t−1 +
W p
t−1

nt−1
·
{

(Wt−1 + 1)

(
1 +

p− 1

Wt−1
+

e′p
W 2
t−1

)
+ p · 1[`|t] ·

(
1 +

e′p
Wt−1

)
−Wt−1

}
≤ W p

t−1 ·
(

1 +
p(1 + 1[`|t])

nt−1

)
+W p−1

t−1 ·
ep
nt−1

. (5.25)

Next, we use induction on p to prove the bound (5.24). Clearly (5.24) is true for p = 0.
Now assume that it holds for p− 1 where p ∈ N and for all non-negative integer t. We
are to show that it also holds for p. Averaging (5.25) over Wt−1 and using the induction
hypothesis yields that, for all t ∈ N,

E [W p
t ] ≤ E

[
W p
t−1

]
·
(

1 +
p(1 + 1[`|t])

nt−1

)
+ dt−1,p−1 ·

ep
nt−1

,

recalling the definition of dt−1,p−1 from (5.24). For m ≤ t, let

γm,t−1 =

t−1∏
j=m

(
1 +

p(1 + 1[`|(j+1)])

nj

)
,

where
∏t−1
j=t(·) := 1. Applying the inequality above recursively, we find

E [W p
t ] ≤ wpγ0,t−1 +

t−1∑
i=0

di,p−1ep
ni

γi+1,t−1. (5.26)

To bound and simplify γm,t−1, write t′ = b t`c, m
′ = bm` c and using the inequality 1+x ≤ ex

for all x ∈ R,

γm,t−1 6
t−1∏
j=`m′

(
1 +

p(1 + 1[`|(j+1)])

nj

)

≤
t′∏

r=m′

(
1 +

2p

b+ w + r(`+ 1)

) t′∏
s=m′

`−1∏
j=1

(
1 +

p

b+ w + s(`+ 1) + j

)

≤
t′∏

r=m′

(
1 +

2p

b+ w + r(`+ 1)

) t′∏
s=m′

(
1 +

p

b+ w + s(`+ 1) + 1

)`−1

≤ exp

2p

t′∑
r=m′

1

b+ w + r(`+ 1)

 · exp

p(`− 1)

t′∑
s=m′

1

b+ w + s(`+ 1) + 1


6 exp

p(`+ 1)

t′∑
r=m′

1

b+ w + r(`+ 1)

 .
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Since
∫ a

0
dx

γ+βx = 1
β log

(
1 + aβ

γ

)
, t′ ≤ t

` , and (using b+ w > 1) there is a constant f ′` not

depending on b, w,m, t such that

α(b+ w) +m

α(b+ w) + `m′
6 f ′`,

the inequalities above give, for some positive constant f ′p,`,

γm,t−1 ≤ f ′p,` ·
(
b+ w + t′(`+ 1)

b+ w +m′(`+ 1)

)p
≤ f ′p,` ·

(
α(b+ w) + t

α(b+ w) +m

)p
. (5.27)

Now, since ni = b+ w + i+ bi/`c and

di,p−1 = fp−1,` · wp−1 ·
(

1 +
i

α(b+ w)

)p−1

· log

(
1 +

i

α(b+ w)

)
,

we have

t−1∑
i=0

di,p−1ep
ni

γi+1,t−1

6
(
fp−1,`epf

′
p,`

)
· wp ·

(
1 +

t

α(b+ w)

)p
·
t−1∑
i=0

(
α(b+ w)

α(b+ w) + i

) log
(

1 + i
α(b+w)

)
ni

6
(
fp−1,`epf

′
p,`

)
· wp ·

(
1 +

t

α(b+ w)

)p
· log

(
1 +

t

α(b+ w)

)
, (5.28)

where we have used again log(1 + x) 6 x and that the sum is bounded by the appropriate
integral. Combining (5.26), (5.27) with m = 0, and (5.28) implies that there is a constant
fp,` such that

E [W p
t ] ≤ fp,` · wp ·

(
1 +

t

α(b+ w)

)p
·
{

1 + log

(
1 +

t

α(b+ w)

)}
,

and now (5.24) follows by induction.

Lemma 5.15. Fix b, w, p, i ∈ N. There is a constant gp,` > 0 independent of b, w, t such
that for t > i`

E [Ui(t; b, w)p] ≤ gp,` ·
(
α(b+ w)− 1 + t

α(b+ w)− 1 + i`

)p+1

.

Proof. Write Mj(·) = Mj(·; b, w), Uj(·) = Uj(·; b, w), and Sj = Sj(b, w), for all j ∈ N. It
follows from (5.23) and (5.24) that for all t > 1 (note that the inequality trivially holds
for t 6 Si),

E
[
Ui(t)p

∣∣Mi(t),Si,Mi(Si),U0(Si)
]

≤ fp,` ·
(

1 +
Mi(t)−Mi(Si)

αMi(Si)

)p(
1 + log

(
1 +
Mi(t)−Mi(Si)

αMi(Si)

))
6 g′p,` ·

(
Mi(t)

Mi(Si)

)p+1/2

,

where the last inequality follows from α 6 1/2 and Mi(t) > Mi(Si), log(x) 6
√
x for

x > 1, and g′p,` > 1 (WLOG) is a constant. Averaging over Mi(t) and using Jensen’s
inequality then yields

E
[
Ui(t)p

∣∣Si,Mi(Si),U0(Si)
]
≤

g′p,`
Mi(Si)p+1/2

· E
[
Mi(t)

p+1
∣∣∣Si,Mi(Si),U0(Si)

] p+1/2
p+1

.
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Furthermore, applying (5.22) and (5.24), we have for t > Si,

E
[
Mi(t)

p+1
∣∣Si,Mi(Si),U0(Si)

]
≤ fp+1,` · Mi(Si)p+1 ·

(
1 +

t− Si
α(U0(Si) +Mi(Si))

)p+1

×
(

1 + log

(
1 +

t− Si
α(U0(Si) +Mi(Si))

))
.

Now, since Si ≥ i` and U0(Si) +Mi(Si) = b+ w + Si + bSi/`c is the total number of balls
in the urn at time Si, we have for t > i` and some positive constant g′′p,`,

E
[
Mi(t)

p+1
∣∣∣Si,Mi(Si),U0(Si)

]
≤ g′′p,` · Mi(Si)p+1 ·

(
α(b+ w)− 1 + t

α(b+ w)− 1 + i`

)p+3/2

.

Altogether,

E
[
Ui(t)p

∣∣Si,U0(Si),Mi(Si)
]

≤ gp,`
Mi(Si)p+1/2

·

(
Mi(Si)p+1 ·

(
α(b+ w)− 1 + t

α(b+ w)− 1 + i`

)p+3/2
) p+1/2

p+1

≤ gp,` ·
(
α(b+ w)− 1 + t

α(b+ w)− 1 + i`

)p+1

.

Since the bound does not depend on Si, U0(Si), orMi(Si), the lemma follows.

Proof of Lemma 5.12. Given b, w, p ∈ N, it follows from a union bound, Markov’s
inequality, and Lemma 5.15 that for any x > 0,

P

(
max
i∈N
Ui(t; b, w) ≥ t/x

)
≤
∑
i∈NE [Ui(t; b, w)p]

tp/xp

≤ gp,`
xp

tp

∑
1≤i≤bt/`c

(
α(b+ w)− 1 + t

α(b+ w)− 1 + i`

)p+1

≤ gp,`
xp

tp
· (α(b+ w)− 1 + t)p+1

`

∫ t

0

1

(α(b+ w)− 1 + x)p+1
dx

≤ gp,`
xp(α(b+ w)− 1 + t)((α(b+ w)− 1)t−1 + 1)p

`p(α(b+ w))p

6 gp,`
xp(α(b+ w)− 1 + t)(t−1 + (α(b+ w))−1)p

`p

Next, note that for any k, n ∈ N with n ≥ k`,

Sk,n := max {|v(T )| : T ∈ T(n)− Tk(n)} d
= max

i∈N
Ui (n− k`; (`+ 1)k, 1) .

Then, for any p ∈ N and for sufficiently large (n− k`), taking t = n− k` and x = k
8

3(`+1)

in the above inequalities and recalling that k = o(n) yields

P

(
Sk,n >

n− k`
k

8
3(`+1)

)
= O

(
k

8p
3(`+1)

−p · n
)

Now using that k(n) = Ω
(
n1/100

)
, ` > 2, and fixing p > 9000(`+ 1), we have

P
(
Sk(n),n ≥ n · k(n)−

8
3(`+1)

)
= O(n−2).
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6 Proofs for generalized gamma distributions

Proof of Lemma 4.1. For all ε ∈ (0, 3/7], − ε3 + ε2

4 −
ε3

5 + · · · ≤ ε
3 + ε2

4 + ε3

5 + · · · ≤
ε
3 + ε2

3 + · · · = ε
3(1−ε) ≤

1
4 , so (1 − ε)−k = e−k log(1−ε) = e

k
(
ε+ ε2

2 + ε3

3 +···
)
≤ e

k
(
ε+ 3ε2

4

)
,

and (1 + ε)−k = e−k log(1+ε) = e
k
(
−ε+ ε2

2 −
ε3

3 +···
)
≤ e

k
(
−ε+ 3ε2

4

)
. Next, let E1, E2, . . . be

independent Exponential(1)-variables. For k ∈ N, we may write Ck = (E1 + · · ·+ Ek)
1
`+1 .

By Markov’s inequality and the previous derivation, for all k ∈ N and ε ∈ (0, 3/7],

P
(
C`+1
k − k ≥ εk

)
≤
e−εk

(
E
[
eεE1

])k
eε2k

= e−εk−ε
2k · (1− ε)−k

≤ e−εk−ε
2k · eεk+3ε2k/4 = e−ε

2k/4.

Similarly, for ε ∈ (0, 3/7], P
(
k − C`+1

k ≥ εk
)
≤ eεk(E[e−εE1 ])

k

eε2k
≤ eεk−ε

2k · (1 + ε)−k ≤
eεk−ε

2k · e−εk+3ε2k/4 = e−ε
2k/4. Now, take ε = k−1/4. For k = ε−4 ≥ (7/3)4, the bounds

above and the triangle inequality imply P
(∣∣C`+1

k − k
∣∣ ≥ k3/4

)
≤ 2e−ε

2k/4 = 2e−k
1/2/4.

Corollary 6.1. For large enough k ∈ N, with probability greater than 1− 2e−k
1/2/4,

k−
1
`+1 ·

(
1− 2

`+ 1
· k− 1

4

)
<

1

Ck
< k−

1
`+1 ·

(
1 +

2

`+ 1
· k− 1

4

)
.

Proof. By Lemma 4.1, for large enough k ∈ N, P
(∣∣C`+1

k − k
∣∣ ≥ k3/4

)
≤ 2e−k

1/2/4. So

with probability greater than 1− 2e−k
1/2/4,

k−
1
`+1 ·

(
1 + k−1/4

)− 1
`+1

<
1

Ck
< k−

1
`+1 ·

(
1− k−1/4

)− 1
`+1

.

Taylor expansion then yields that

(
1− k−1/4

)− 1
`+1

= 1 +
1

`+ 1
k−1/4 +

1

`+ 1

(
1 +

1

`+ 1

)
k−1/2

2!
+ · · · .

For large k, (1+ 1
`+1 )k−1/4 < 1. It follows that

(
1− k−1/4

)− 1
`+1 < 1+ 2

`+1 ·k
−1/4. Similarly,(

1 + k−1/4
)− 1

`+1 > 1− 2
`+1 · k

−1/4.

Proof of Corollary 4.2. It follows from Lemma 4.1 that, for large enough n, with prob-

ability greater than 1− 2e−k(n)1/2/4, we have
∣∣∣C`+1
k(n) − k(n)

∣∣∣ < k(n)3/4, so

Ck(n) <
(
k(n) + k(n)3/4

) 1
`+1

= k(n)
1
`+1 (1 + k(n)−1/4)

1
`+1 ,

and

Ck(n) >
(
k(n)− k(n)3/4

) 1
`+1

= k(n)
1
`+1 (1− k(n)−1/4)

1
`+1 .

Using the same logic as in the proof of Corollary 6.1, we have (1 + k(n)−1/4)
1
`+1 =

1+ 1
`+1k(n)−1/4 + 1

`+1

(
1
`+1 − 1

)
k(n)−1/2

2! + · · · < 1+10k(n)−
1
4 ; similar for the lower bound.

Together with Corollary 6.1, with probability greater than 1 − 2
bn/`c∑
m=k(n)

e−m
1/2/4, for
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sufficiently large n we simultaneously have
∣∣∣Ck(n) − k(n)

1
`+1

∣∣∣ < 10k(n)
1
`+1−

1
4 and

bn/`c∑
m=k(n)

1

Cm
>

bn/`c∑
m=k(n)

m−
1
`+1 − 2

`+ 1

bn/`c∑
m=k(n)

m−
1
`+1−1/4

≥ 1

α
·
{(⌊n

`

⌋)α
− k(n)α

}
− 2

`+ 1
· 1

α− 1/4
·
{(⌊n

`

⌋)α−1/4

− k(n)α−1/4

}
≥ 1

α
·
(⌊n

`

⌋)α
− 5

n1/4
·
(⌊n

`

⌋)α
,

and
∑bnc/`c
m=k(n)

1
Cm

< 1
α ·
(⌊
n
`

⌋)α
+ 5

n1/4 ·
(⌊
n
`

⌋)α
.
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