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Abstract

We consider shifts Πn,m of a partially exchangeable random partition Π∞ ofN obtained
by restricting Π∞ to {n+1, n+2, . . . , n+m} and then subtracting n from each element
to get a partition of [m] := {1, . . . ,m}. We show that for each fixed m the distribution
of Πn,m converges to the distribution of the restriction to [m] of the exchangeable
random partition of N with the same ranked frequencies as Π∞. As a consequence,
the partially exchangeable random partition Π∞ is exchangeable if and only if Π∞ is
stationary in the sense that for each fixed m the distribution of Πn,m on partitions of
[m] is the same for all n. We also describe the evolution of the frequencies of a partially
exchangeable random partition under the shift transformation. For an exchangeable
random partition with proper frequencies, the time reversal of this evolution is the
heaps process studied by Donnelly and others.
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1 Introduction

A random partition Π∞ of the set N of positive integers arises naturally in a number
of different contexts. The fields of application include population genetics [6] [14],
statistical physics [11], Bayesian nonparametric statistics [7] and many others. Moreover,
this subject has some purely mathematical interest. We also refer to [19] for various
results on random partitions.

There are two convenient ways to encode a random partition Π∞ of the set N as
a sequence whose nth term ranges over a finite set of possible values. One way is
to identify Π∞ with its sequence of restrictions Πn to the sets [n] := {1, . . . , n}, say
Π∞ = (Πn) where n will always range over N. Another encoding is provided by the
allocation sequence (An) with An = j iff n ∈ Cj where Π∞ = {C1, C2, . . .} with the
clusters Cj of Π∞ listed in increasing order of their least elements, also called order of
appearance. Commonly, random partitions Π∞ of N are generated by some sequence
of random variables (Xn), meaning that (Cj) is the collection of equivalence classes
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An ergodic theorem for partially exchangeable random partitions

for the random equivalence relation m ∼ n iff Xm = Xn. Every random partition of N
is generated in this way by its own allocation sequence. If F is a random probability
distribution, and given F the sequence (Xn) is i.i.d. according to F , and then Π∞
is generated by (Xn), say Π∞ is generated by sampling from F . Kingman [14] [15]
developed a theory of random partitions that are exchangeable in the sense that for each
n the distribution of Πn on the set of partitions of [n] is invariant under the natural action
on these partitions by permutations of [n]. Kingman’s main results can be summarized
as follows:

• every exchangeable random partition Π∞ of N has the same distribution as one
generated by sampling from some random distribution F on the real line;

• the distribution of Π∞ generated by sampling from F depends only on the joint
distribution of the list

(
P ↓j
)

of atom sizes of the discrete component of F , in weakly
decreasing order.

Two immediate consequences of these results are:

• every cluster Cj of an exchangeable random partition Π∞ of N has an almost sure
limiting relative frequency Pj;

• ranking those limiting relative frequencies gives the distribution of ranked atoms(
P ↓j
)

required to replicate the distribution of Π∞ by random sampling from an F
with those ranked atom sizes.

Kingman’s method of analysis of exchangeable random partitions of N, by working
with the distribution of its ranked frequencies (P ↓j ), continues to be used in the study
of partition-valued stochastic processes [16]. But well known examples, such as the
random partition of N whose distribution of Πn is given by the Ewens sampling formula
[5] [21], show it is often more convenient to encode the distribution of an exchangeable
random partition of N by the distribution of its frequencies of clusters (Pj) in their order
of appearance, rather than in weakly decreasing order. This idea was developed in
Pitman [17], together with a more convenient encoding of the distribution of Πn. Call
Π∞ a partially exchangeable partition (PEP) of N if for each fixed n the distribution of
Πn is given by the formula

P(Πn = {C1, . . . , Ck}) = p(#C1, , . . . ,#Ck) (1.1)

for each particular partition of [n] with k clusters C1, . . . , Ck in order of appearance,
of sizes #C1, . . . ,#Ck, for some function p(n1, . . . , nk) of compositions of n, meaning
sequences of positive integers (n1, . . . , nk) with

∑k
i=1 ni = n for some 1 ≤ k ≤ n. This

function p associated with Π∞ is called its partially exchangeable partition probability
function (PEPPF). The main results of [17] can be summarized as follows. See also [19,
Chapters 2, 3].

• There is a one-to-one correspondence between distributions of partially exchange-
able partitions of N and non-negative functions p of compositions of positive inte-
gers subject to the normalization condition p(1) = 1 and the sequence of addition
rules

p(n) = p(n+ 1) + p(n, 1),

p(n1, n2) = p(n1 + 1, n2) + p(n1, n2 + 1) + p(n1, n2, 1)
(1.2)

and so on.

• Π∞ is exchangeable iff Π∞ is partially exchangeable with a p(n1, . . . , nk) that is for
each fixed k a symmetric function of its k arguments.
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• Every cluster Cj of a partially exchangeable random partition Π∞ of N has an
almost sure limiting relative frequency Pj , with Pj = 0 iff Cj is a singleton, meaning
#Cj = 1.

• The distribution of the sequence of cluster frequencies (Pj) and the PEPPF p

determine each other by the product moment formula

p(n1, . . . , nk) = E

k∏
i=1

(1−Ri−1)Pni−1
i where Ri :=

i∑
j=1

Pj (1.3)

is the cumulative frequency of the first i clusters of Π∞.

• The set of all PEPPFs p is a convex set in the space of bounded real-valued func-
tions of compositions of positive integers, compact in the topology of pointwise
convergence.

• The extreme points of this convex compact set of PEPPFs are given by the for-
mula (1.3) for non-random sequences of sub-probability cluster frequencies (Pj),
meaning that Pj ≥ 0 and

∑
j Pj ≤ 1.

• The formula (1.3), for a random sub-probability distribution (Pj), provides the
unique representation of a general PEPPF as an integral mixture of these extreme
PEPPFs.

• The family of distributions of partitions of N with PEPPFs (1.3), as a fixed sequence
(Pj) varies over all sub-probability distributions, and the E can be omitted, provides
for every exchangeable or partially exchangeable random partition Π∞ of N a
regular conditional distribution of Π∞ given its cluster frequencies (Pj) in order of
appearance.

These results provide a theory of partially exchangeable random partitions of N that
is both simpler and more general than the theory of exchangeable random partitions. The
structure of partially exchangeable random partitions of N is nonetheless very closely
tied to that of exchangeable random partitions, due to the last point above. Starting from
the simplest exchangeable random partition of N with an infinite number of clusters,
whose cumulative frequencies (Rk) have the same distribution as the sequence of record
values of an i.i.d. uniform [0, 1] sequence, given by the stick-breaking representation

1−Rk =

k∏
i=1

(1−Hi), k = 1, 2, . . . , (1.4)

for Hi a sequence of i.i.d. uniform [0, 1] variables, the most general extreme partially
exchangeable random partition Π∞ of N with fixed cluster frequencies (Pj) may be
regarded as derived from this record model by conditioning its cluster frequencies. See
[13] for further development of this point. Less formally, a PEP is as exchangeable as
it possibly can be, given that its distribution of cluster frequencies (Pj) in appearance
order has been altered beyond the constraints on the frequencies of an exchangeable
random partition of N. For proper frequencies (Pj), with

∑
j Pj = 1 almost surely, those

constraints are that

• a partially exchangeable Π∞ with proper frequencies (Pj) is exchangeable iff

(Pj)
d
= (P ∗j ) where (P ∗j ) is a size-biased random permutation of (Pj).

Then (Pj) is said to be in size-biased random order or invariant under size-biased random
permutation [3] [18].

For a partially exchangeable random partition Π∞, consider for each n = 0, 1, 2, . . . the
random partition Π

(n)
∞ ofN defined by first restricting Π∞ to {n+1, n+2, . . .}, then shifting
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indices back by n to make a random partition of {1, 2, . . .} instead of {n + 1, n + 2, . . .}.
This procedure appeared in our paper [20] as discussed further in Section 3 below. If Π∞

is exchangeable, then obviously so is Π
(n)
∞ , because Π

(n)
∞

d
= Π∞ for every n. Moreover,

the sequence of random partitions
(
Π

(n)
∞ , n = 0, 1, . . .

)
is a stationary random process

to which the ergodic theorem can be immediately applied. According to Kingman’s
representation, this process of shifts of Π∞ is ergodic iff the ranked frequencies of Π∞
are constant almost surely. For more general models with random ranked frequencies,
the asymptotic behavior of functionals of Π

(n)
∞ can be read from the ergodic case by

conditioning on the ranked frequencies.
If Π∞ is only partially exchangeable, it is easily shown that Π

(n)
∞ is also partially

exchangeable for every n. The PEPPF p(n) of Π
(n)
∞ is obtained by repeated application of

the following simple transformation from the PEPPF p of Π∞ to the PEPPF p(1) of Π
(1)
∞ :

p(1)(n) = p(1, n) + p(n+ 1),

p(1)(n1, n2) = p(1, n1, n2) + p(n1 + 1, n2) + p(n1, n2 + 1)
(1.5)

and so on, in parallel to the basic consistency relations (1.2) for a PEPPF. If Π∞ is

partially exchangeable, with Π
(1)
∞

d
= Π∞, or equivalently p(1)(· · · ) = p(· · · ), then call Π∞

stationary. Its sequence of shifts (Π
(n)
∞ , n = 0, 1, . . .) is then a stationary random process

to which the ergodic theorem can be applied. That raises two questions:

(i) Are there any partially exchangeable random partitions of N which are stationary
but not exchangeable?

(ii) If a partially exchangeable random partition of N is not stationary, what can be
provided as an ergodic theorem governing the long run behavior of its sequence of
shifts?

Since Π∞ is exchangeable iff p is symmetric, the answer to the question (i) is “yes” if
and only if

every function p of compositions that is bounded between 0 and 1 and
satisfies both systems of equations (1.2) and (1.5) is a symmetric function
of its arguments.

(1.6)

So it seems the matter should be resolved by analysis of the combined system of
equations. Surprisingly, this does not seem to be easy. Still, we claim that every partially
exchangeable and stationary random partition of N is in fact exchangeable, so (1.6) is
true. We do not know how to prove this without dealing with question (ii) first. But that
question is of some independent interest, so we formulate the following theorem:

Theorem 1.1. Let Π∞ be a partially exchangeable random partition of positive integers
with ranked frequencies

(
P ↓j
)
, and let

(
P

(n)
j

)
for each n = 0, 1, . . . be the frequencies of

clusters of Π∞ in order of appearance of these clusters in Π
(n)
∞ . Then:

• As n→∞, the distribution of Π
(n)
∞ converges weakly to that of the exchangeable

random partition Π̃∞ of N with ranked frequencies
(
P ↓j
)
, meaning that the PEPPF

p(n)(· · · ) of Π
(n)
∞ converges pointwise to the EPPF p(∞)(· · · ) of Π̃∞.

• As n→∞, the finite dimensional distributions of
(
P

(n)
j

)
converge weakly to those

of (Pj), the list of frequencies in order of appearance of an exchangeable random
partition of N with ranked frequencies

(
P ↓j
)
, which for proper

(
P ↓j
)

with
∑
j P
↓
j = 1

is a size-biased random permutation of
(
P ↓j
)
, or of

(
P

(n)
j

)
for any fixed n.

• Π∞ is exchangeable iff the partition-valued process Π
(n)
∞ is stationary, meaning

that Π
(n)
∞

d
= Π∞ for n = 1, hence for all n ≥ 1, or, equivalently, the PEPPF p(n)(· · · )

equals the PEPPF p(· · · ) of Π∞ for n = 1, hence for all n ≥ 1.
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In view of the one-to-one correspondence between the law of a partially exchangeable
partition Π∞ and the law of its frequencies of clusters in order of appearance, this
theorem has the following corollary:

Corollary 1.2. In the setting of the previous theorem, with
(
P

(n)
j

)
for each n = 0, 1, . . .

the frequencies of a partially exchangeable partition Π∞ in their order of appearance
when Π∞ is restricted to {n+ 1, n+ 2, . . .},

• the sequence
((
P

(n)
j

)
, n = 0, 1, . . .

)
is a Markov chain with stationary transition

probabilities on the space of sub-probability distributions of N; for n ≥ 1 the
forwards transition mechanism from

(
P

(n−1)
j

)
to
(
P

(n)
j

)
is by a top to random move,

whereby given
(
P

(n−1)
j

)
= (Pj) the value

(
P

(n)
j

)
is either (P2, P3, . . .) if P1 = 0, or

(P2, . . . , PX , P1, PX+1, PX+2, . . . ) if P1 > 0,

for some random position X ∈ N with the proper conditional distribution

P[X > k | (Pj)] =

k∏
i=1

(
1− P1

1− P2 − P3 − · · · − Pi

)
, k = 1, 2 . . . ; (1.7)

• Π∞ is exchangeable if and only if the Markov chain
(
P

(n)
j

)
is stationary, meaning

that
(
P

(n)
j

) d
=
(
P

(0)
j

)
for n = 1 and hence for all n ≥ 1;

• if Π∞ is exchangeable the reversed transition mechanism from
(
P

(n)
j

)
to
(
P

(n−1)
j

)
is by a random to top move, whereby with probability 1−

∑
j P

(n)
j the frequency 0

is prepended to the sequence
(
P

(n)
j

)
, otherwise with probability P (n)

j the frequency

P
(n)
j is removed and put in place 1.

According to the last part of the Corollary, when Π∞ is exchangeable, with proper
frequencies, the time-reversed random-to-top evolution of the cluster frequencies

(
P

(n)
j

)
of Π

(n)
∞ is the mechanism of the heaps process studied by Donnelly [2], also called a

move-to-front rule. The mechanism of this chain has been extensively studied, mostly
in the case of finite number of nonzero frequencies, due to its interest in computer
science [8] [1]. Donnelly’s result that proper frequencies (Pj) are in a size-biased order
iff the distribution of (Pj) is invariant under this transition mechanism is an immediate
consequence of the above corollary. It seems surprising, but nowhere in Donnelly’s
article, or elsewhere in the literature we are aware of, is it mentioned that the random-
to-top rule is the universal time-reversed evolution of cluster frequencies in order of
appearance for shifts of any exchangeable random partition ofN with proper frequencies.
We are also unaware of any previous description of the time-forwards evolution of these
cluster frequencies, as detailed in the corollary.

The rest of this article is organized as follows. Theorem 1.1 is proved in Section 2.
In Section 3 we first recall an idea from [20] which led us to develop the results of
this article. This leads to a proposition which we combine with Theorem 1.1 to obtain
Corollary 1.2. Finally, Section 4 provides some references to related literature.

2 Proof of Theorem 1.1

Proof. The convergence in distribution of Π
(n)
∞ to Π̃∞ is obtained by a coupling argument.

Given the frequencies
(
P

(0)
j

)
of Π∞ and the independent i.i.d. sequence (Uj) of uniform

on [0, 1] random variables, let us construct a partially exchangeable random partition Π̂∞
distributed as Π∞, and an exchangeable random partition Π̃∞ such that the convergence
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of Π̂
(n)
∞ to Π̃∞ holds almost surely. Set Rk :=

∑k
i=1 P

(0)
i and construct Π̂∞ as the partition

generated by values of the table allocation process (An) defined by A1 := 1 and given
that A1, . . . , An have been assigned with k = max1≤i≤nAi distinct tables, An+1 = j if
Un+1 ∈ (Rj−1, Rj ] for some 1 ≤ j ≤ k and An+1 = k + 1 if Un+1 ∈ (Rk, 1]. The limiting

exchangeable random partition Π̃∞ is conveniently defined on the same probability space
to be the random partition of N whose list of clusters with strictly positive frequencies is
C̃k := {n : Un ∈ (Rk−1, Rk]} for k with Rk−1 < Rk, and with each remaining element of N
a singleton cluster. Let Ck be the kth cluster of Π̂∞ in order of appearance, and let K̂n

be the number of clusters of Π̂∞ restricted to [n]. The key observation is that for each
n ≥ 1 the intersections of Ck and C̃k with [n+ 1,∞) are identical on the event (K̂n ≥ k).
In more detail, if say K̂n = k, then for all i > n

• if Ui ≤ Rk then almost surely both i ∈ Cj and i ∈ C̃j for some 1 ≤ j ≤ k;

• if Ui > R∞ := limmRm then i ∈ Cj for some j > k, while {i} is a singleton cluster

of Π̃∞;

• if Ui ∈ (Rk, R∞] then i ∈ Cj and i ∈ C̃` for some j > k and ` > k.

Consider the restrictions Π̂[n+1,n+m] and Π̃[n+1,n+m] of Π̂∞ and Π̃∞ to the interval of
integers [n+ 1, n+m] and call their clusters which are non-empty intersections of Cj for
1 ≤ j ≤ k with [n + 1, n + m] old and all other clusters new. It follows from the above
description that old clusters are the same for both partitions, and only new clusters may
differ. However it turns out that if n is large and m is fixed, with high probability all new
clusters are singletons in both partitions. Indeed, for a new cluster C of Π̂[n+1,n+m] to
contain an element j > i := min C, Uj must hit some interval (R`−1, R`] with ` > k, and in

particular must hit (Rk, R∞]. For a new cluster C̃ of Π̃[n+1,n+m] to contain two elements i
and j, Ui and Uj both should get into some interval (R`−1, R`] with ` > k. Thus there is
the coupling bound

P(Π̂[n+1,n+m] 6= Π̃[n+1,n+m]) ≤ mE(R∞ −RK̂n
). (2.1)

But as n → ∞, there is almost sure convergence of RK̂n
to R∞ ≤ 1, so the bound

converges to 0 for each fixed m. This proves pointwise convergence of the PEPPF of
Π

(n)
∞ to the EPPF of Π̃∞. The convergence of finite-dimensional distributions of

(
P

(n)
j

)
to

those of (Pj) follows from [17, Theorem 15]. The final assertion, not obvious only in part

that if Π
(n)
∞ is stationary, then Π∞ is exchangeable, follows immediately.

3 Sampling frequencies in size-biased order

Let C1, C2, . . . be the list of clusters of an exchangeable random partition Π∞, in the
appearance order of their least elements. Let Mi,1 := min Ci, and assuming that Ci
is infinite let Mi,1 < Mi,2 < · · · be the elements of Ci listed in increasing order. So
in particular 1 = M1,1 < M2,1 < · · · is the list of least elements of clusters C1, C2, . . ..
Observe that the number of clusters Kn of Πn is Kn =

∑n
i=1 1(Mi,1 ≤ n). Let X be the

number of distinct clusters of Π∞, including the first cluster, which appear before the
second element of the first cluster appears at time M1,2. That is, with K(n) instead of
Kn for ease of reading:

X := K(M1,2). (3.1)

As explained below, if Π∞ is exchangeable with proper random frequencies (Pj) in
size-biased order, then X has the same distribution as a size-biased pick from (Pj):

P(X = k) = EPk (k = 1, 2, . . .). (3.2)
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An extended form of this identity in distribution, giving an explicit construction from
Π∞ of an i.i.d. sample of arbitrary size from the frequencies of Π∞ in size-biased order,
played a key role in [20]. If (Pj) is defined by the limiting cluster frequencies of Π∞ in
their order of discovery in the restriction of Π∞ to {2, 3, . . .}, then it is easily seen from
Kingman’s paintbox construction of Π∞, that X really is a size-biased pick from (Pj):

P(X = k | (Pj)) = Pk (k = 1, 2, . . .) (3.3)

from which (3.2) follows by taking expectations. But if (Pj) is taken to be the frequencies
of clusters of Π∞ in their order of discovery in {1, 2, 3, . . .}, then (3.3) is typically false,
which makes (3.2) much less obvious. This gives the identity (3.2) a “now you see it, now
you don’t” quality. You see it by conditioning on the frequencies of clusters of Π∞∩ [2,∞)

in their order of appearance, but you don’t see it by conditioning on the frequencies of
Π∞ in their usual order of least elements.

It is instructive to see exactly what is the conditional distribution of X given (Pj),
for (Pj) the original frequencies of Π∞ in order of appearance. To deal with non-proper
frequencies let us extend the definition (3.1) by assuming that X = ∞ if the cluster
C1 = {1} in Π∞. As indicated in the Introduction, the conditional distribution of any
exchangeable random partition Π∞ of N, given its list of cluster frequencies (Pj) in
order of appearance, is that of the extreme partially exchangeable random partition of
N with the given cluster frequencies (Pj). Regarding (Pj) as a list of fixed frequencies
Pj ≥ 0 with

∑
j Pj ≤ 1, the distribution of this random partition Π∞ is described by the

extreme CRP with fixed frequencies (Pj). In terms of the Chinese Restaurant metaphor
in this model [19, Section 3.1], customer 1 sits at table 1; thereafter,

given k tables are occupied and there are ni customers at table i for
1 ≤ i ≤ k with n1 + · · · + nk = n, customer n + 1 sits at table i with
probability Pi for 1 ≤ i ≤ k, and at the new table k + 1 with probability
1− P1 − · · · − Pk.

(3.4)

Formally, “customer i sits at table j” means in present notation that i ∈ Cj . The identity
(3.2) now becomes the special case when Π∞ is fully exchangeable of the following
description of the law of X given (Pj) for any partially exchangeable random partition
Π∞ of N with limit frequencies (Pj):

Proposition 3.1. Let Π∞ be a partially exchangeable random partition of N with limit
frequencies (Pj), and let X be defined as above by (3.1), with X =∞ if C1 = {1}. Then

• the event (X <∞) equals the event (P1 > 0);

• the conditional distribution of X given (Pj) is defined by the stick-breaking formula

P[X = k | (Pj)] = Hk

k−1∏
i=1

(1−Hi) for k = 1, 2, . . . (3.5)

with

H1 := P1 and Hk :=
P1

1− P2 − P3 − · · · − Pk
for k = 2, 3, . . . ; (3.6)

• the unconditional probability P(X = k) is the expected value of the product in
(3.5);

• if Π∞ is exchangeable then P(X = k) = EPk for all k = 1, 2, . . ., meaning that X
has the same distribution as a size-biased pick from (Pj).

Proof. The first claim follows directly from the definitions, since X = ∞ iff {1} is
a singleton cluster of Π∞, which is equivalent to P1 = 0. By the general theory of
exchangeable and partially exchangeable random partitions recalled in the Introduction,
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it is enough to prove the formula (3.5) for an arbitrary fixed sequence of frequencies
(Pj). The case j = 1, with P[X = 1] = P1, is obvious from the extreme CRP (3.4), because
the event (X = 1) is identical to the event (M1,2 = 2) that the second customer is seated
at table 1. Consider next the event

(X = 2) = (2 = M2,1 < M1,2 < M3,1)

Conditioning on the value ` of M1,2−M2,1− 1 on this event, the extreme CRP description
(3.4) gives

P(X = 2) =

∞∑
`=0

(1− P1)P `2 P1 =
(1− P1)P1

(1− P2)
= (1−H1)H2

for Hj as in (3.6). By the same method, conditioning on values ` of M3,1 −M2,1 − 1 and
m of M1,2 −M3,1 − 1 on the event (X = 3) = (2 = M2,1 < M3,1 < M1,2 < M4,1), gives

P(X = 3) =

∞∑
`=0

∞∑
m=0

(1− P1)P `2 (1− P1 − P2)(P2 + P3)m P1

=
(1− P1)(1− P1 − P2)P1

(1− P2)(1− P2 − P3)

= (1−H1)(1−H2)H3,

and so on. This gives the stick-breaking formula (3.5). Taking expectations gives the
unconditional distribution of X.

The last part of the proposition is a restatement of (3.2), which was explained above
for the case of proper frequencies (Pj). For general case when the frequencies of an
exchangeable partition may be non-proper, it is a consequence of the more general
formula (3.5) for partially exchangeable partitions. That P(X = k) = EPk is obvious for
k = 1. For k = 2 and k = 3 this assertion becomes

EP2 = E
P1(1− P1)

(1− P2)
, (3.7)

EP3 = E
P1(1− P1)(1− P1 − P2)

(1− P2)(1− P2 − P3)
(3.8)

and so on. These identities are not so obvious. However, they all follow from the conse-
quence of exchangeability of Π∞ that for every k ≥ 1 such that P

(
Πk =

{
{1}, . . . , {k}

})
>

0, the joint law of P1, . . . , Pk given this event is exchangeable [17]. Consequently, in view
of (3.4), for every non-negative Borel measurable function g defined on [0, 1]k,

Eg(P1, . . . , Pk)

k−1∏
i=1

(1− P1 − · · · − Pi) = Eg(Pσ(1), . . . , Pσ(k))

k−1∏
i=1

(1− P1 − · · · − Pi). (3.9)

For proper frequencies this identity is known [18, Theorem 4] to characterize the
collection of all possible joint distributions of frequencies (Pj) of exchangeable random
partitions Π∞ relative to the larger class of all (Pj) with Pj ≥ 0 and

∑
j Pj ≤ 1 which

can arise from partially exchangeable partitions. Take g(P1, P2) = P2(1 − P1)−1 and
(σ(1), σ(2)) = (2, 1) to recover (3.7) from (3.9). Take g(P1, P2, P3) = P3(1 − P1)−1(1 −
P1 − P2)−1 and (σ(1), σ(2), σ(3)) = (2, 3, 1) to recover (3.8) from (3.9). For general
k, the required evaluation of EPk is obtained by a similar substitution in (3.9) for
g(P1, . . . , Pk) = Pk

∏k−1
i=1 (1− P1 − · · · − Pi)−1 and σ = (2, . . . , k, 1).

Proof of Corollary 1.2. The fact that
((
P

(n)
j

)
, n = 0, 1, . . .

)
is a Markov chain with station-

ary transition probabilities as indicated follows easily from the description (3.4) of the

ECP 22 (2017), paper 64.
Page 8/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP95
http://www.imstat.org/ecp/


An ergodic theorem for partially exchangeable random partitions

extreme CRP. If the cluster C containing n is a singleton in Π∞, then P1 = P
(n−1)
1 = 0 and

frequencies
(
P

(n)
j

)
of Π∞ restricted to {n+ 1, n+ 2, . . . } are (P2, P3, . . . ). Otherwise the

cluster C is infinite and it obtains a new place as in Proposition 3.1. The rest of the corol-
lary follows easily from the theorem and the general theory of partially exchangeable
random partitions of N presented in the Introduction.

The above argument places the identity (3.5) in a larger context of identities compa-
rable to (3.7) and (3.8), which follow from (3.9) for other choices of σ besides the cyclic
shift. For each k = 3, 4, . . . there are k!− 2 more such identities. For instance, for k = 3

there are four more expressions for EP3, corresponding to the choices of σ = (3, 2, 1),
(3, 1, 2), (1, 3, 2) and (2, 1, 3) respectively, with varying amounts of cancellation of factors,
depending on σ:

EP3 = E
P1(1− P1)(1− P1 − P2)

(1− P3)(1− P2 − P3)
(3.10)

= E
P2(1− P1)(1− P1 − P2)

(1− P3)(1− P1 − P3)
(3.11)

= E
P2(1− P1 − P2)

(1− P1 − P3)
(3.12)

= E
P3(1− P1)

(1− P2)
. (3.13)

4 Related literature

There is a substantial literature of various models of partial exchangeability for
sequences and arrays of random variables, which has been surveyed in [12]. The article
[4, §6.2] places the theory of partially exchangeable partitions of N in a larger context
of boundary theory for Markov chains evolving as a sequence of connected subsets of
a directed acyclic graph that grow in the following way: initially, all vertices of the
graph are unoccupied, particles are fed in one-by-one at a distinguished source vertex,
successive particles proceed along directed edges according to an appropriate stochastic
mechanism, and each particle comes to rest once it encounters an unoccupied vertex.
The article [9] discusses questions related to the size of the first cluster in a PEP, and its
interaction with other clusters. Gnedin [10] indicates an application of PEPs to records
in a partially ordered set.
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