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Abstract

In this paper, under the Dobrushin’s uniqueness condition, we obtain explicit esti-
mates of the geometrical convergence rate for the random scan Gibbs sampler in the
Wasserstein metric.
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1 Introduction
Let 1 be a Gibbs probability measure on £V with dimension N, i.e.,
G,V(xl’... ’IN)

= f..nfEN efv(xl’...,xN)ﬂ_(dml)...W(de)ﬂ-(

,LL(dSCI,'H 7d‘TN) dzl)ﬂ—(de)v

where 7 is some o-finite reference measure on E.

Let p;(-|x) (x = («!,--- ,2V) € EN) be the regular conditional distribution of z know-
ing (27,j # i) under s; and fi;(dylz) = (1,4 0 (d?) ) @ pus(dy’|)(product measure),
where §. is the Dirac measure at the point -. We see that

eVt a)

el |2) = G

m(dx?),

which is a one-dimensional measure, easy to simulate in practice.

In order to approximate p via iterations of the one-dimensional conditional distribu-
tions u;,7 = 1,--- , N, the various scan Gibbs samplers are often used (see [4]). In [6],
Wu and the author studied systematic scan Gibbs sampler by Dobrushin’s uniqueness
conditions. In this paper, we will study the random scan Gibbs sampler.

The scheme of the random scan Gibbs sampler approximating y is that, in each itera-
tion, one randomly chooses one coordinate to update according to the one-dimensional

conditional distributions p;,2 = 1,---, N. It is described as follows. Given any ini-
tial value Xy = (X3, --,X{) € EY, independently draw an index o from the uni-
form distribution on the index set {1,---,N}, then draw X¢ from p,(-|z) and take
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Xi = X},i # o, completing one iteration of the scheme. After m such iterations, we ob-
tain X,,, = (X}, -, XY). Thus this scan Gibbs sampler is exactly the time-homogeneous
Markov chain {X,, : m =0, 1, - - - } with invariant distribution ;, whose one step transition
probability P(z,dy) = & SN | jii(dylz).

Our objective is to study the convergence rate of the m—step transition probability
P™ to p under Dobrushin’s uniqueness conditions as m tends to co. To this end, by
coupling, our main idea is to establish some contractive properties in the sense of the
maximum or sum distance (respectively, see the two lemmas in Section 3). Although the
coupling is similar to [6], to prove the contractive properties is very different because of
this scan Gibbs sampler with the random index ¢ instead of the systematic scan in [6].

This paper is organized as follows. We present the main results in Section 2, and
then prove them in Section 3.

2 Main results

Throughout the paper FE is a Polish space with the Borel o-field 8, and d is a metric
on E such that d(-,-) is lower semi-continuous on E2. On the product space EV, we
consider the [{¥-metric

N
dlf](x’y) = Zd(lﬂ?y?)? T = (.1717"' amN)7y = (ylv' o 7yN) € EN (21)

i=1

The product space EY is always endowed with the dl{v-metric unless otherwise stated.
Let M;(FE) be the space of Borel probability measures on E, and

MI(E) = {u c ./\/ll(E);/Ed(xo,x)u(dx) < oo} .

(Here z( € E is some fixed point, but the definition above does not depend on z( by the
triangle inequality). Given vy, v, € M{(E), the L'-Wasserstein distance between vy, vy is
given by

W1 4(v1,v2) = inf // d(z,y)m(dz, dy), (2.2)
i EXE

where the infimum is taken over all probability measures # on E x E such that its
marginal distributions are respectively v and v, (called a coupling of v and v»).
Recall the Kantorovich-Rubinstein duality relation ([5])

flz
Wia(vy, ) = sup / fd(ri —va), | fllLipa) := sup
IfllLipay<1JE oty

Throughout the paper we assume that [, d(y’, z})du(y) < oo, p;(-|z) € M{(E) for
alli = 1,--- ,N and x € EV, where z, is some fixed point of EY, and z — p,(:|7) is
Lipschitzian from (E",d;x) to (M{(E), W1 4). For z = (z',--- ,2™),y = (y',--- ,y") €
EN | the expression

x =y offj

means that fork=1,--- | NV,

xk#yka if ]{3:]7
ok =gk if k£

Define the matrix of the d-Dobrushin interdependence coefficients C := (c¢;;)i j=1,.. v as

1% i\ s Mg\ " ..
(= sup 1,d(N(|$)M(|y)),z’j:1’,,,7]\]. (2.3)

r=y offj d(CCj, y])
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Obviously ¢;; = 0. By the triangle inequality of the metric W 4, for any =,y € EN,

N
Wa(ps(-|2), pally) < ed(a?,y), 1 <i < N. (2.4)

j=1

Then the well known Dobrushin uniqueness condition (see [1, 2] or [6]) is read as

N
(H1) reo:= 1211;2)%20” <1
Jj=1
or
N
H2 = ; 1
(H2) rq 1r<r;_a§XNZ;c” <
1=

Notice that r,, (or 1) coincides with the operator norm of the N by N matrix C
acting as an operator from lé\’o (or IV respectively) to itself.
Recall that for any function f : EV — R, [ flLip(a,v) = maxi<i<n 6:(f), where &;(f) :=
1

SUPg—y off i %

Theorem 2.1. (Convergence Rate 1) Under the Dobrushin uniqueness condition (H1),
we have:

(a) For any Lipschitzian function f on EV and two initial distributions vy, v, on E¥,

N

1 _ oo m i i
P =Pl < (1= 25 e BACK(), X52) 30, v > 1.
- =1

(2.5)
where (Xo(1), Xo(2)) is a coupling of (v1,1»), i.e., the law of X((j) isv; forj =1,2.
(b) In particular for any initial distribution v on E¥

1—r\™ , .
Wia,y (WP™, 1) < N (1 — NT ) max Bd(Xi(1), Xi(2)), Vm > 1,
1

1<i<N
where (Xo(1), X((2)) is a coupling of (v, ).

Theorem 2.2. (Convergence Rate 2) Under the Dobrushin uniqueness condition (H2),
we have:

(a) For any Lipschitzian function f on EVV and two initial distributions vy, v, on EV,

1—7’1

P g = aP" g1 = (125 ) it By (1), Xol2), ¥ 2 1, 2.6)

where (Xo(1), Xo(2)) is a coupling of (v, vs).
(b) In particular for any initial distribution v on E¥

1—7‘1

Wiy 0P ) < (1= 257 ) By (1) Xol2), ¥ > 1.

where (Xo(1), Xo(2)) is a coupling of (v, j1).

Remark 2.3. These results above show geometric convergences of the distribution of
X, to the invariant distribution p, which is useful in practice for the rapid convergence
of this sampler.
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Remark 2.4. As indicated by a referee, it is especially relevant for statistical applications
to investigate exponential concentration inequalities for the convergence of empirical
means - Zl L f(XG) to [ g~ fdp. But regretfully unlike the systematic scan sampler of
[6], because the current sampler has random index o, we don’t succeed in establishing
those concentration inequalities under the Dobrushin’s uniqueness condition.

3 Proofs of the main results

Given any two initial distributions v, and v, on EY, we construct our coupled homo-
geneous Markov chain (X,,, Y:,)m>0, which is quite close to the coupling by K. Marton
[3] (see also [6]).

Let (Xo, Yp) be a coupling of (v, v2). And given

(Xm-1,Ym_1) = (z,y) € EN x EN, o=k,

then

X’rln J; Y’V?L yl’ Z 7& k?

and
P((XE,YE) € (X1, Y1) = (2.3),0 = k) = 7(z.y).

m? m

where 7(-|z, y) is an optimal coupling of p(-|z) and ux(-|y) such that

[ e imtds.asie.) = Wy atuCa). ),
ie.,
E[d( X, Y )l(Xin—1, Y1) = (2,y), 0 = k] = Wi a(pe(-[2), i (-[9))-

Then we have:

Lemma 3.1. Under the Dobrushin uniqueness condition (H1), for any m > 1,

i i 1 —r m
K2 (2 < _ oo
1I§nia§>§vE[d(Xma5m)] < (1 N ) R Ed(XJ,Yy).

Proof. ForVi > 1,m > 1,

]E[d(XZ Yo l(Xm—1, Y1) = (z,9)]

N
= N Z m’ m |(X’mf17Ym71) = (-'L'7y),0' = ]{7]
- N Mz |.7J ,uz ‘y +Z 7y
k#i
1 T,
SN[ > cad(@®,y) + (N = Dd(a', )
k=1

where the last inequality above holds because of (2.4). And thus

E[d(X 1, V)| X1, Yim—1] < + lzczkd 1 Y1) + (N = 1d(X}, 1, Y1)
k=1
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hence

m—1 “m—1

Bld(X;,, Y] < [ZczkEd w1 Y1) + (N = DEd(X], 1, Yy, )

1 k
N <;Cik+N—1> I<r}€ax Ed(XF vk )

Too + N —1
< -
SRy R

1—7ry b &
<1 - N ) 1g}ca<XNEd(Xm 13Ym 1)

Yk

m—1> mf)

Because the inequalities hold for any 7 > 1, m > 1, and by induction,

1 —r m
i il < . 00
lgaS%E[d(Xm,Ym)] < (1 ~ ) o Ed(XE,Yy). O

Proof of Theorem 2.1. Let X,,,(1) = X,,,, X,,,(2) = Y,

(a) For any Lipschitzian function f : EN & R, by Lemma 3.1,

N
i P f — o P™ f| = [Ef(X (1) — Z FHEd(X}, (1), X7, (2))
. N B
< 1r<nza<>§vEd(X’ (1 )’X}n(2))zéi(f)

IN

1_p m ) N
(1-55) g B0, 52 30

1<i<

(b) For v1 = v, s = p, since uP = u, we have:

N
Wi, (VP™ 1) = Wi, (VP pP™) < Bdyy (X, Z]Ed (X1 (1), X%(2))

< i 7
< Nlrsrli%Ed(Xm(l),Xm@))

<N (1 1 _’"°°> max Ed(X{(1), Xi(2)).

N 1<i<N
O
Lemma 3.2. Under the Dobrushin uniqueness condition (H2), for any m > 1,
1— 71 m
Edl{\’ (va Ym) <|{1- ]Edl{\’ (XOa YO)
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Proof.

Eldyny (Xom, Yo )[(Xm—1, Yin-1) = (2,9)]

-z

Eld(X),, Vi) (X1, Y1) = (z,9)]

m? m

-

©
I
—

E[d(XZ Y )|(Xm717ym71) = (:C,y),a = k]

m? m

I
2|~
M-

Eld(X;,, Yo )|(Xm-1,Ym—1) = (2,y),0 = K]

m’ - m

2|

1
M= 1=

«
Il
-

W a(unCl2), e (ly) + Y d(a', )
ik

N
el () + 2 D0 Sl )

k=1 ik

==

——

IA
=i

N
crid(z’, y') + % O dty)

k=1 i#k

M-

«
Il
—

2=

I
2=
M= 1= TM= [0 1=
=

s
Il
-
£
Il
-
£
Il
-
-
|
-
£
Il
-

I
] =
a
&s

<
]
£

_|_

=

]
&

g@

<

s
I
—
£
I
-
-
I
-

I
M= =i-
a
aﬁ
N .
> —
)=
£
+
=
21
~

=

+
=
|

I
=
S
2
&
<
~
IN
7 N
—_
|

ie.,
1-— 1

]E[dliv (Xm7 Ym)‘mela mel] < (1 - ) dl{V (mela mel)a

and thus,
PZT ( )
Edl{\f ;cmflyimfl )

E[dl{v(Xma Ym)] < (1 -

and by induction, Ed;x (X, V) < (1 — 152)" Edyy (Xo, Yo). O

Proof of Theorem 2.2. Let X,,(1) = X,,,, X,;,,(2) = Yy
(a) For any Lipschitzian function f : EN & R, by Lemma 3.2,
[P f = va P f| = [Ef(Xin(1)) — Ef(Xm(2))]
< ”fHLip(le)Edl{V (X (1), X (2))

1-— T1 m
< (1 552) Wl By (Xa(0) Yol
(b) For v1 = v, vs = p, since uP = u, we have:

Wl,dl{v (menu’) = Wl,dl{\r (me“qu) S Edl{\f (Xm(1)7Xm(2))

< (1-152) Byt 0e). o
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