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Abstract

Gaussian Volterra processes are processes of the form (Xt :=
∫
T
k(t, s)dWs)t∈T where

(Wt)t∈T is Brownian motion, and k is a deterministic Volterra kernel. On integrating
the kernel k an information loss may occur, in the sense that the filtration of the
Volterra process needs to be enlarged in order to recover the filtration of the driving
Brownian motion. In this note we describe such enlargement of filtrations in terms
of the Volterra kernel. For kernels of the form k(t, s) = k(t− s) we provide a simple
criterion to ensure that the aforementioned filtrations coincide.
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1 Introduction

Let T be a time interval, say [0, T ] or R, and let (Wt)t∈T be a Brownian motion.
Consider a process of the form

Xt :=

∫
T

k(t, s)dWs, t ∈ T, (1.1)

where k : T × T → R is a Volterra kernel, i.e., a square integrable deterministic
function ensuring that the right-hand side of equation (1.1) is well-defined, and such that

k(t, s) = 0, t < s. (1.2)

In what follows we shall refer to (Xt)t∈T as a Volterra process driven by (Wt)t∈T
although we acknowledge here that such a process may receive other names in the
literature. The function k will be referred to as the kernel of (Xt)t∈T.

Volterra processes has been successfully applied in different fields such as mathe-
matical finance, electronics, hydrology, network traffic, and telecommunications (see for
instance [1, 2, 3, 4, 6, 9] and references therein). One important reason for this relays
on the fact that such processes have a versatile covariance structure that can adjusted
by the means of the kernel function k. For instance, we can obtain a Volterra processes
with long range dependence by matching covariance of fractional Brownian motion with
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1
2 < H < 1. This can be done by taking T = [0, T ] and the so-called Molchan-Golosov
kernel (see [10]) defined by

kH(t, s) := (H − 1
2 )s

1
2−H

√
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

∫ t

s

(u− s)H− 3
2uH−

1
2 du, (1.3)

where Γ is the Gamma function, and kH(t, s) := 0 for t < s. Alternatively, we can take
T = R and the so-called Mandelbrot–Van Ness kernel (see [8]) defined by

k̄H(t, s) :=
1

Γ(H + 1
2 )

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
. (1.4)

Although both alternatives lead to Volterra process with the same covariance struc-
ture, the filtrations generated in each case are different —see [7, 11]. Indeed, in the
former case the natural filtration generated by the Volterra process FX = (FXt )t∈T coin-
cides with the natural filtration generated by the driving Brownian motion FW = (FWt )t∈T.
However, in the latter case an information loss occurs on integrating the kernel: whereas
FXt = FWt for t ≥ 0, but FXt ( FWt if t < 0. This information loss is undesirable from the
applications point of view.

The purpose of this note is precisely to show how the Volterra process filtration
needs to be enlarged in order to recover information given by the driver. In Section 2
an explicit construction of this enlargement is given in Theorem 2.2. Then in Corollary
2.3 we prove that if a kernel k(t, s) does not depend on t and s independently but on
only on their difference t − s, then a sufficient condition for FX = FW is that k has a
non-vanishing Laplace transform. We conclude the exposition with some examples in
Section 3.

2 The result

For simplicity in the exposition we shall focus on the interval T = [0, T ]. In what
follows will consider the Hilbert space L2([0, T ],dx), where dx denotes the Lebesgue mea-

sure and the inner product will be denoted by 〈f, g〉L2([0,T ],dx) :=
∫ T

0
f(x)g(x)dx. Given

S ⊆ L2([0, T ],dx), the linear subspace spanned by S will be denoted by spL2([0,T ],dx)S, and
its closure be denoted by spL2([0,T ],dx)S. Analogous notation will be used for L2(Ω,F ,P),
where we shall denote its inner product by 〈F,G〉L2(Ω,F,P) := E[GF ]. In addition, let us
introduce the following definition.

Definition 2.1. For every T ′ ∈ (0, T ] consider the vector space Vk(T ′) given by

Vk(T ′) := spL2([0,T ′],dx) {k(t, ·) : [0, T ]→ R, t ∈ (0, T ′]} .

The kernel k is said to be non-degenerate at T ′ if Vk(T ′) = L2([0, T ′],dx). If Vk(T ′)

is strictly contained in L2([0, T ′],dx) then the kernel k is said to be degenerate at T ′.
Moreover, the kernel k is said to be degenerate (resp., non-degenerate) if it is degenerate
(resp., non-degenerate) at T ′ for every T ′ ∈ (0, T ].

In these terms, we have the following.

Theorem 2.2. Let FX = (FXt )t∈[0,T ] and FW = (FWt )t∈[0,T ] be natural filtration gener-
ated by a Volterra process and its driver. In the terminology of Definition 2.1, if V ⊥k (t) is
the orthogonal complement of Vk(t), then the following decomposition holds true

FWt = FXt ∨ σ
(∫ t

0

g(s)dWs, g ∈ V ⊥k (t)

)
, 0 ≤ t ≤ T. (2.1)

In particular, if the kernel k is non-degenerate at t then FXt = FWt .
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Proof. The Hilbert space Ht(X) := spL2(Ω,F,P) {Xs, s ≤ t} can be identified with a sub-
space of

Ht(W ) := spL2(Ω,F,P)

{∫ t

0

g(s)dWs, g ∈ L2([0, T ],dx)

}
.

We can see that the orthogonal complement of Ht(X) is given by

H⊥t (X) := spL2(Ω,F,P)

{∫ t

0

g(s)dWs, g ∈ V ⊥k (t)

}
.

Indeed, notice that for every G :=
∫ t

0
g(s)dWs ∈ Ht(W ) and F :=

∑
j ajXtj ∈ Ht(X) we

have

〈F,G〉L2(Ω,F,P) = E

∑
j

ajXtj

(∫ t

0

g(s)dWs

)
= E

∫ t

0

∑
j

ajk(tj , s)dWs

(∫ t

0

g(s)dWs

)
=

∫ t

0

∑
j

ajk(tj , x)

 g(x)dx =

〈∑
j

ajk(tj , ·), g

〉
L2([0,T ],dx)

,

where the third equivalence follows from the Itô isometry. Hence G belongs to H⊥t (X)

if and only if the last identity vanishes for every choice of aj ∈ R and tj ∈ [0, t]. That is
equivalent to say that g belongs to the orthogonal complement of Vk(t).

With the equation Ht(W ) = Ht(X) ⊕ H⊥t (X) at hand, we can see that that the
Brownian motion W can be written as a linear combination of elements from H(X) and
H⊥(X); and thus FWt = σ

(
F ∈ Ht(X), G ∈ H⊥t (X)

)
. On the other hand, the σ-algebras

FXt = σ (F ∈ Ht(X)) and σ
(
G ∈ H⊥t (X)

)
= σ

(∫ t
0
g(s)dWs, g ∈ V ⊥k (t)

)
are independent

due to the independence –as Gaussian random variables– of the elements of H⊥t (X) and
Ht(X). Altogether we get the identity in (2.1).

We finish this section by showing that in some cases it is possible to establish a simple
criterion to determine if a given kernel is non-degenerate. In such cases Theorem 2.2
imply that the natural filtration of the Volterra process coincides with that of its driver.
Hereafter L will stand for the Laplace transform.

Corollary 2.3. Consider a kernel of the form k(t, s) = k(t − s), that is, k(t, s) does
not depend on t and s independently but only on their difference t − s. If there is a
positive interval (a, b) such that L[k](s) 6= 0 for every s ∈ (a, b), then the kernel k is
non-degenerate. Moreover, FX = FW .

Proof. We shall prove that, for every T ′ ∈ (0, T ], the space V ⊥k (T ′) is trivial so that the
kernel k is non-degenerate at T ′. Let us start by noticing that if f ∈ V ⊥k (T ′), i.e.,

〈v, f〉L2([0,T ′],dx) =

∫ T ′

0

v(x)f(x)dx = 0, ∀ v ∈ Vk(T ′),

then it follows from the definition of Vk(T ′) that in particular we must have∫ T ′

0

k(t, x)f(x)dx =

∫ t

0

k(t, x)f(x)dx =

∫ t

0

k(t−x)f(x)dx = (k∗f)(t) = 0, ∀ t ∈ (0, T ′],
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where the second equivalence comes from the Volterra condition (1.2). Now, assume
that L[k](s) 6= 0 for every s in certain positive interval (a, b). Notice that the fact that
f ∈ L2([0, T ′],dx) implies by Hölder’s inequality that f also belongs to L1([0, T ′],dx).
Thus the region of convergence of L[f ] contains Re(s) > 0, and so L[f ] is well-defined
on (a, b). Hence we can apply the Laplace transform to the convolution k ∗ f in order to
show that L[k]L[f ] = L[k ∗ f ] = 0 on (a, b), and consequently L[f ] = 0 on (a, b). In light of
[5, Lemma 2.3] this implies that f = 0 as desired.

3 Examples

We conclude this note with a series of examples. Our first example shows that the
aforementioned information loss may occur even when the resulting Volterra process is
again a Brownian motion. The rest of the examples are relevant due to their applications.

Example 3.1. For every θ > − 1
2 define the Volterra process

Xθ
t :=

∫ t

0

(
1 + θ

θ
− 1 + 2θ

θ

uθ

tθ

)
dWu, t ∈ [0, T ],

and let kθ(t, u) denote the correspondent Volterra kernel. One can easily check that
(Xθ

t )t∈[0,T ] defines a Brownian motion. However, its filtration does not coincide with that
of (Wt)t∈[0,T ]. Indeed, for t ∈ (0, T ] and g(x) := a+ bx one can see that

〈kθ(t, ·), g〉L2([0,t],dx) =
θ

1 + θ
at− θ − 1

4 + 2θ
bt2

Suppose we choose a 6= 0 and set b in such a way that the right-hand side of the equation
above becomes zero. Then we have that g belongs to the orthogonal complement of
Vkθ (t) and, in light of (2.1), we get FXθt ( FWt as claimed.

Example 3.2. Consider the Mandelbrot–Van Ness kernel (1.4) restricted to [0, T ], i.e.,

kH,+(t, s) :=
(t− s)H−

1
2

+

Γ(H + 1
2 )

, s, t ∈ [0, T ].

This kernel was used by [4] in order to work on an extension of the classical Black–
Scholes model for option pricing. In such extension the volatility parameter is not
assumed to be constant anymore but a stochastic process having long-memory features
and properties.

In order to show that the kernel kH,+ is non-degenerate, it suffices to notice that a
standard computation leads to

L
[
kH,+(t)

]
(s) =

1

Γ(H + 1
2 )

L
[
tH−

1
2

]
(s) =

1

sH+ 1
2

which does not vanish for s in, for instance, the interval (0, 1).

Example 3.3. Consider now kν,λ(t, s) := (t − s)ν−1e−λ(t−s)1[0,∞)(t − s) with ν > 1
2 and

λ > 0, a kernel which is used to model turbulent flows in physics [1]. Analogously to the
previous example we have

L [kν,λ(t)] (s) = L
[
tν−1e−λt

]
(s) = L

[
tν−1

]
(s+ λ) =

Γ(ν)

(s+ λ)ν
,

for s ∈ (0, 1), and thus kν,λ is non-degenerate.
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Example 3.4. Let (XsupOU
t )t∈[0,T ] be a superposition of Ornstein-Uhlenbeck processes,

i.e., for every 0 ≤ t ≤ T we have

XsupOU
t :=

n∑
j=1

wj

∫ t

0

e−αj(t−s)dWs, (3.1)

where the parameters αj > 0 are all different, and the weights wj > 0 satisfy
∑n
j=1 wj = 1.

Let us denote the correspondent kernel by kOU (t, s) :=
∑n
j=1 wje

−αj(t−s)1[0,∞)(t− s).
As pointed out by [2], one of the main interests in the process (XsupOU

t )t∈[0,T ] defined
in (3.1) is that many specialized features can be recovered by a suitable choice of
parameters (αj , wj , j = 1, ..., n). In particular, it is possible to construct a limit model
exhibiting long-range or quasi long-range dependence.

In order to show kOU is non-degenerate it suffices to notice that

L[kOUn (t)](s) =

n∑
j=1

wj
s+ αj

does not vanish for s ∈ (0, 1).
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