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Abstract

This paper studies a new type of filtering problem, where the diffusion coefficient of
the observation noise is strictly positive only in the interior of the bounded interval
where observation takes its values. We derive a Zakai and a Kushner–Stratonovich
equation, and prove uniqueness of the measure–valued solution of the Zakai equation.
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1 Introduction

We consider the following coupled pair of SDEs

Xt = X0 +

∫ t

0

f (s,Xs, Ys) ds+

∫ t

0

g (s,Xs, Ys) dBs (1.1)

and

Yt = y0 +

∫ t

0

h (s,Xs, Ys) ds+

∫ t

0

k (s, Ys) dWs, (1.2)

where the random process (X,Y ) takes its values in Rd ×R
The aim of this work is to study the filtering problem consisting in describing the law

of Xt, conditionally upon the observation of {Ys, 0 ≤ s ≤ t}. There is a large literature
on the filtering problem (see in particular [1, 3, 4]).

An essential assumption in all the filtering literature is that k2(t, Yt) > 0 for all t > 0.
We consider in this paper the case where y → k(t, y) vanishes at the boundary of an
interval [a, b], while the process Yt cannot leave the interval [a, b]. On the other hand, we
assume that

h(t, x, y) = h1(t, y) + h2(t, x, y),

where the drift h1 does not push Yt outside the interval [a, b], while k−2(t, y)h2(t, x, y) is
bounded, which forces h2(t, x, y) to vanish at y = a and y = b.

In this new set up, we derive the Zakai and Kushner-Stratonovich filtering equations,
and we shall establish uniqueness of the measure–valued solution of the Zakai equation.
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Nonlinear filtering with degenerate noise

In this paper, we shall restrict ourselves to a one–dimensional observation process
Yt. The reason for this restriction is twofold. First this allows us to formulate weak
assumptions on the diffusion coefficient k(t, y), exploiting the Yamada–Watanabe strong
uniqueness result. The second reason is that this one–dimensional set up is the only
one where, with independent signal and observation driving Brownian motions, we
can with a mild regularity assumption derive a “robust” version of the Zakai equation,
which is a crucial step for our uniqueness argument. We hope to treat the case of a
multidimensional observation process in another publication.

The paper is organized as follows. In Section 2, we describe a motivating example for
our new type of filtering problem. In Section 3, we formulate our precise assumptions,
and derive the Zakai and the Kushner–Stratonovich filtering equations. Finally in
Section 4, we prove that the unnormalized conditional distribution is the unique solution
of our Zakai equation.

2 A motivating example

Consider the following Wright–Fisher diffusion from population genetics.

dYt = βYt(1− Yt)dt+ [γ0(1− Yt)− γ1Yt]dt+
√
Yt(1− Yt)dWt,

where β ∈ R is the selection coefficient, γ0 ≥ 0 and γ1 ≥ 0 are mutation rates. Yt
represents the proportion of one allele (say A) in a two–alleles population (call a the
other allele). β > 0 means that the allele A has a selective advantage, while β < 0 means
that a has a selective advantage. γ0 is the rate of mutation of a a allele to a A allele,
while γ1 is the rate of mutation of a A allele to a a allele. Yt is the limit in law of a
sequence of Wright–Fisher discrete time processes. See e.g. [2].

Now assume that the selective advantage β changes randomly with time, due to e.g.
to environmental fluctuations. Call it ϕ(Xt). The model becomes

dYt = ϕ(Xt)Yt(1− Yt)dt+ [γ0(1− Yt)− γ1Yt]dt+
√
Yt(1− Yt)dWt.

We observe the proportion of A individuals, and want to “filter” the environmental
parameter Xt which modifies the selective advantage, and solves an SDE like (1.1).

Note that this model is perfectly adapted to our framework. Here

h1(y) = γ0(1− y)− γ1y, h2(x, y) = ϕ(x)y(1− y).

Indeed, ϕ(x) = k−2(y)h2(x, y) is bounded if ϕ is, hence the Assumption 3.5 below is
satisfied. We could in fact weaken that assumption. The crucial fact is that k−2(y)h2(x, y)

behaves well at y = 0 and at y = 1. Note that we could not let the parameter γ0 or γ1

depend upon Xt.

3 The filtering equations

Let
(

Ω,F , P̃
)

denote a complete probability space with a right continuous left limit

(rcll) filtration (Ft)t∈[0,T [ such that F0 contains all the P -negligible sets of F .
We assume that h(t, x, y) = h1(t, y)+h2(t, x, y). The point of this decomposition is that

h2(t, x, y) will be assumed to vanish – together with k(t, y) – for y outside an open interval
(a, b) ⊂ R, while h1(t, y) will be assumed to keep the observation Yt in the interval (a, b).
The idea is that we want the observation process Yt to stay in the interval [a, b] forever.
In particular we assume that a ≤ y0 ≤ b.

Since we want to exploit the one–dimensionality of the SDE for Yt, while the two
equations (1.1) and (1.2) are coupled, we will first solve the reduced one–dimensional

ECP 22 (2017), paper 44.
Page 2/14

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP74
http://www.imstat.org/ecp/


Nonlinear filtering with degenerate noise

equation

Yt = y0 +

∫ t

0

h1(s, Ys)ds+

∫ t

0

k(s, Ys)dW̃s, (3.1)

where (Bt, W̃t) is a standard k + 1–dimensional Ft–Brownian motion under P̃ , then solve
equation (1.1), and finally we shall make use of Girsanov’s theorem in order to recover
the original system. This motivates the following assumptions.

Claim 3.1. We assume that f and g are measurable maps from R+ ×Rd+1 into Rd and
Rd⊗Rk resp., that for each T > 0, x→ (f(t, x, y), g(t, x, y)) is locally Lipschitz, uniformly
w.r.t. (t, y) ∈ [0, T ]× [a, b], and moreover that there exists a constant CT such that for all
(t, x, y) ∈ [0, T ]×Rd × [a, b],

|f(t, x, y)|+ |g(t, x, y)| ≤ CT (1 + |x|).

In the next assumption, κ is a Borel function from (0,+∞) into itself, which is such
that

∫
0+
dr/κ(r) = +∞.

Claim 3.2. For any T > 0, y 7→ h1(t, y) is Lipschitz, uniformly w.r.t. t ∈ [0, T ], while for
some constant CT , |k(t, y)− k(t, y′)|2 ≤ CTκ(|y − y′|) for all y, y′ ∈ [a, b] and 0 ≤ t ≤ T .

Remark 3.3. Our assumption that Yt is one dimensional allows us to consider a diffusion
coefficient k such that y 7→ k(t, y) is 1/2–Hölder continuous. In case of a vector–valued
observation process Yt, we would be forced to make the stronger assumption of Lipschitz
regularity.

Claim 3.4. We assume moreover that k(t, y) > 0 for (t, y) ∈ R+ × (a, b), k(t, y) = 0 if
y 6∈ (a, b). We also assume that h1(t, y) ≥ 0 for y ≤ a, and h1(t, y) ≤ 0 for y ≥ b.

Let (t, x, y) → h2(t, x, y) be a measurable map from R+ × Rd × R into R, such that
for each t ≥ 0, (x, y) → h2(t, x, y) is continuous. We define furthermore for (t, x, y) ∈
R+ ×Rd × (a, b),

ψ(t, x, y) =
h2(t, x, y)

k2(t, y)
.

Claim 3.5. We assume that for all T > 0,

sup
{
‖ψ (t, x, y)‖ ; (t, x, y) ∈ [0, T ]×Rd × (a, b)

}
<∞.

In the case where the process Yt spends non zero time on the boundary {a, b} with
positive probability, we shall need the additional assumption

Claim 3.6. For all t > 0, there exists a continuous function (x, y) ∈ Rd × [a, b] 7→
ψ(t, x, y) ∈ R, which coincides with k−2(t, y)h2(t, x, y) for (t, x, y) ∈ R+ ×Rd × (a, b).

Lemma 3.7. Under Assumptions 3.2–3.4, the reduced observation equation (3.1) has a
unique strong solution, which takes its values in the set [a, b].

Proof. Existence and uniqueness of a strong solution follows from the Yamada–Watanabe
theorem, see e.g. Theorem IX.3.5 ii) in [6], or [7]. Let ϕ ∈ C2

b (R,R+) be such that
ϕ(y) = 0 iff a ≤ y ≤ b, ϕ′(y) ≤ 0 if y ≤ a and ϕ′(y) ≥ 0 if y ≥ b. It follows from the
Assumption 3.4 that ϕ′(y)k(t, y) ≡ 0 and ϕ′′(y)k2(t, y) ≡ 0, while ϕ′(y)h1(t, y) ≤ 0. It then
follows from Itô’s formula that

ϕ(Yt) ≤ ϕ(y0) = 0.

Consequently ϕ(Yt) = 0 for all t ≥ 0 a.s., hence P (Yt ∈ [a, b] for all t ≥ 0) = 1.

It is now plain that under our Assumption 3.1, assuming in addition that the Rd–
valued r.v. X0 is F0–measurable, the SDE (1.1) has a unique non exploding Rd–valued
solution {Xt, t ≥ 0}. We now define the probability measure P under which the process
(Xt, Yt) solves the system of SDEs (1.1)–(1.2).
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Nonlinear filtering with degenerate noise

Lemma 3.8. Under the Assumptions 3.5–3.6, there is a probability measure P such
that its restriction to each Ft is absolutely continuous with respect to P̃ and on Ft the
Radon-Nikodym derivative dP

dP̃
= Zt, where

Zt = exp

(∫ t

0

ψ (s,Xs, Ys) k(s, Ys)dW̃s −
1

2

∫ t

0

k2(s, Ys)ψ
2 (s,Xs, Ys) ds

)
, ∀t ≥ 0 . (3.2)

Under P , the process (Bt,Wt) is a Rk+1–valued standard Ft–Brownian motion, where∫ t

0

k(s, Ys)dWs = −
∫ t

0

h2 (s,Xs, Ys) ds+

∫ t

0

k(s, Ys)dW̃s. (3.3)

Proof. It is plain that our Assumptions 3.4, 3.5 and 3.6 imply that e.g. Novikov’s condition
is satisfied, so the Lemma follows from Girsanov’s theorem, see e.g. Theorem 2.51 in
[5].

It clearly follows from (3.3) that under P , (Xt, Yt) solves the system of SDEs (1.1)–
(1.2).

Remark 3.9. Our assumption 3.5 is more than enough to insure that Ẽ[Zt] = 1 for all
t > 0. We could weaken it, so that one of the conditions in Proposition 2.50 from [5] is
satisfied, or just assume that Ẽ[Zt] = 1 for all t > 0.

It follows from e.g. Proposition 2.2.1 in [4] that we have the following Kallianpur-
Striebel formula. For every real random variable ξ ∈ L1 (Ω,Ft, P ):

E [ξ|Yt] =
Ẽ [ξZt|Yt]
Ẽ [Zt|Yt]

, (3.4)

where for each t ≥ 0, Yt denotes the σ–algebra generated by {Ys; s ∈ [0, t]} and the
P̃ -negligible sets. Using Proposition 2.3.1 and Corollary 2.3.2 in [4], we deduce that the
process ζ given by

ζt = Ẽ [Zt|Yt] (3.5)

is a
(
P̃ ,Yt

)
–martingale with a continuous version. For any t > 0, the conditional law πt

of Xt given {Ys, 0 ≤ s ≤ t} is such that for every measurable function ϕ : R→ R+,

πt (ϕ) = E [ϕ (Xt) |Yt] . (3.6)

It is convenient to introduce the so–called “unnormalized conditional distribution” of X
defined by

ςt (ϕ) = Ẽ [ϕ (Xt)Zt|Yt] . (3.7)

From the Kallianpur-Striebel formula (3.4), we deduce that if 1 denotes the constant
function equal to one,

ςt (ϕ) = πt (ϕ) ςt (1) . (3.8)

On the other hand, for every positive and Fs–measurable random variable ξ, t > s,

Ẽ [ξZs|Ys] = Ẽ [ξZs|Yt] = Ẽ [ξZs|Y] , (3.9)

where Y := σ{Yt, t ≥ 0}. Indeed, it is plain that the filtration (Yt)t≥0 is a subfiltration

of the filtration
(
W̃t

)
t≥0

and since W̃ is a P̃ , Ft Brownian motion, hence Fs and W̃s,t

are independent, where W̃s,t = σ{W̃r − W̃s, 0 ≤ r ≤ s} up to null sets. Note that

W̃t = σ
(
W̃s ∪ W̃s,t

)
. In the same manner we can then replace in the identities (3.6) and

(3.7) the conditoning by Yt by conditoning by Y.
Before giving the first main theorem of this section, let us state a useful lemma which

is similar to Lemma 2.2.4 in [4].
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Lemma 3.10. Let (ξ, η) denote a Rk+1–valued progressively measurable process such
that for some t > 0,

E

[∫ t

0

(
‖ξs‖2 + (k(s, Ys)ηs)

2
)
ds

]
<∞. (3.10)

Then

Ẽ

[∫ t

0

〈ξs, dBs〉
∣∣∣Y] = 0, (3.11)

and ∫ t

0

Ẽ [ηsk (s, Ys) |Y] dW̃s = Ẽ

[∫ t

0

ηsk (s, Ys) dW̃s

∣∣∣Y] (3.12)

=

∫ t

0

Ẽ [ηs|Y] dYs −
∫ t

0

Ẽ [ηs|Y]h1 (s, Ys) ds.

Proof. Following Proposition 5.3 in [3], if

K (t) =
{

exp

(∫ t

0

ρ (s) k (s, Ys) dW̃s −
1

2

∫ t

0

k2 (s, Ys) ρ
2 (s) ds

)
;

k (·, Y·) ρ(·) ∈ L2 (]0, t[ ;R) a.s., where ρ (t) is a deterministic function
}

, (3.13)

then for any t > 0, the linear combinations of the r.v.’s fromK(t) are dense in L2
(

Ω,Yt, P̃
)

.

Therefore, the result is true if and only if for any t > 0 and any %t ∈ K (t),

Ẽ

[
%t

∫ t

0

ξsdBs

]
= 0 (3.14)

and

Ẽ

[
%t

∫ t

0

ηsk (., Y (.)) dW̃s

]
= Ẽ

{
%t

[∫ t

0

Ẽ [ηs|Y] dYs −
∫ t

0

Ẽ [ηs|Y]h1 (s, Ys) ds

]}
.

(3.15)
Now

Ẽ

[
%t

∫ t

0

ξsdBs

]
= Ẽ

[(
1 +

∫ t

0

%s (ρ (s)) k (s, Ys) dW̃s

)∫ t

0

ξsdBs

]
= 0.

The last identity follows from the fact that W̃ and B are independent Brownian motions
under P̃ . Similarly,

Ẽ

[
%t

∫ t

0

ηsk (s, Ys) dW̃s

]
= Ẽ

[(
1 +

∫ t

0

%sρ (s) k (s, Ys) dW̃s

)∫ t

0

ηsk (s, Ys) dW̃s

]
= Ẽ

[∫ t

0

%sηsρ (s) k2 (s, Ys) ds

]
= Ẽ

[∫ t

0

%sρ (s) k2 (s, Ys) Ẽ [ηs|Y] ds

]
= Ẽ

[
%t

∫ t

0

Ẽ [ηs|Y] k (s, Ys) dW̃s

]
= Ẽ

{
%t

[∫ t

0

Ẽ [ηs|Y] dYs −
∫ t

0

Ẽ [ηs|Y]h1 (s, Ys) ds

]}
.
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For ϕ ∈ C2(Rd), we define (with Dϕ denoting the gradient of ϕ, D2ϕ the matrix of
second order derivatives of ϕ, g∗ the transposed of the matrix g)

Atϕ (x) = 〈f (t, x, Yt) , Dϕ(x)〉+
1

2

(
gg∗(t, x, Yt)D

2ϕ(x)
)

. (3.16)

Now we state the first main theorem of this paper.

Theorem 3.11. Under Assumptions 3.1– 3.6 the following Duncan-Mortensen-Zakai
equation holds for all t > 0 and ϕ ∈ C2

c

(
Rd
)
,

ςt (ϕ) = ς0 (ϕ) +

∫ t

0

ςs (Asϕ) ds+

∫ t

0

ςs (ϕψ (s, ., Ys)) [dYs − h1 (s, Ys) ds]. (3.17)

Remark 3.12. We note that the Zakai equation here is very similar to the one for the
traditional filtering problem, see e.g. equation (Z) in Theorem 2.3.3 from [4], with the
small difference that dYt is replaced by dYt− h1(t, Yt)dt, which is quite natural, since the
Girsanov theorem here only suppresses the piece h2 of the drift h in equation (1.2).

Proof. Let ϕ ∈ C2
c

(
Rd
)
. (Zt)0≤t<T is a continuous martingale and from Itô’s formula

Ztϕ (Xt) = Z0ϕ (X0) +

∫ t

0

ZsAsϕ (Xs) ds+

∫ t

0

Zs〈Dϕ (Xt) g (s,Xs, Ys) , dBs〉

+

∫ t

0

Zsϕ (Xs)ψ (s,Xs, Ys) k(s, Ys)dW̃s.

Taking the conditional expectation under P̃ given Y in the above identity, we deduce that

Ẽ [Ztϕ (Xt) |Y] = Ẽ [Z0ϕ (X0) |Y] +

∫ t

0

Ẽ [ZsAsϕ (Xs) |Y] ds

+ Ẽ

[∫ t

0

Zs〈Dϕ(Xs)g(s,Xs, Ys), dBs〉
∣∣Y]

+

∫ t

0

Ẽ
[
Zsϕ (Xs)ψ (s,Xs, Ys) k(s, Ys)dW̃s|Y

]
.

We now deduce from Lemma 3.10,

Ẽ [Ztϕ (Xt) |Y] = Ẽ [Z0ϕ (X0) |Y] +

∫ t

0

Ẽ [ZsAsϕ (Xs) |Y] ds

+

∫ t

0

Ẽ
[
Zsϕ (Xs)ψ (s,Xs, Ys) k(s, Ys)dW̃s|Y

]
= Ẽ [Z0ϕ (X0) |Y] +

∫ t

0

Ẽ [ZsAsϕ (Xs) |Y] ds

−
∫ t

0

Ẽ [Zsϕ (Xs)ψ (s,Xs, Ys) |Y]h1 (s, Ys) ds

+

∫ t

0

Ẽ [Zsϕ (Xs)ψ (s,Xs, Ys) |Y] dYs.

Having in mind the definition of ςt the result follows.

We end this section with the second main result which shows that the process π
solves the Kushner-Stratonovich equation.
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Theorem 3.13. Under the assumptions of Theorem 3.11, ∀t ∈ [0, T ′], for all ϕ ∈ C2
c

(
Rd
)

the following Kushner-Stratonovich equation holds a.s. for all t ≥ 0:

πt (ϕ) = π0 (ϕ) +

∫ t

0

πs (Asϕ) ds (3.18)

+

∫ t

0

[πs (ϕψ (s, ., Ys))− πs(ϕ)πs (ψ (s, ., Ys))][dYs − πs (h (s, ., Ys)) ds]

Remark 3.14. Note that our Kushner–Stratonovich equation is rather similar to the
Kushner–Stratonovich equation in the traditional filtering problem, see e.g. equation
(KS) in Theorem 2.3.7 from [4]. The division by k2 which appears in that Theorem is
here implicit, since h2 is replaced by ψ = k−2h2. Note however that there is a difference
between the two equations, since here h is replaced by h2 in the integrand (i.e. the first
factor) of the second integral.

Proof. In this proof, we write h1(s) for h1(s, Ys). It follows from Theorem 3.11 that

ςt (ϕ) = ς0 (ϕ) +

∫ t

0

ςs (Asϕ) ds+

∫ t

0

ςs (ϕψ (s, ., Ys)) [dYs − h1(s)ds].

In particular

ςt (1) = 1 +

∫ t

0

ςs (ψ (s, ., Ys)) [dYs − h1(s)ds].

It follows from the Itô formula that

1

ςt (1)
= 1−

∫ t

0

ςs (ψ (s, ., Ys))

ςs (1)
2 [dYs − h1(s)ds] +

∫ t

0

ςs(ψ(s, ·, Ys))2

ςs (1)
3 k2(s, Ys)ds.

Since from (3.8) πs(ϕ) = ςs(ϕ)
ςs(1) , we have, applying the Itô formula for the product of the

two continuous scalar semi–martingales ςs(ϕ) and 1
ςs(1) ,

πt (ϕ) = π0 (ϕ) +

∫ t

0

πs (Asϕ) ds

+

∫ t

0

[πs (ϕψ (s, ., Ys))− πs(ϕ)πs (ψ (s, ., Ys))] [dYs − h1(s)ds]

−
∫ t

0

[πs(ϕψ(s, ·, Ys))− πs(ϕ)πs(ψ(s, ·, Ys)]πs(h2(s, ·, Ys))ds,

where we have noted that ψ(t, x, y)k2(t, y) = h2(t, x, y). The result follows.

4 Uniqueness for the Zakai equation

The measure valued process {ςt(ϕ), t ≥ 0} defined by (3.7) solves the Zakai equation
(3.17). In this section, we want to show that this is the unique solution of the Zakai
equation. We will assume

Claim 4.1. There exists p > 2 such that E[‖X0‖p] <∞.

We deduce from that assumption

Lemma 4.2. For any T > 0, 1 < q < p/2, with n2(x) := ‖x‖2,

Ẽ

(
sup

0≤t≤T
ςqt (n2)

)
<∞. (4.1)
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Proof. We first note that, as a consequence of Assumption 4.1, we can show, using
standard arguments, that for any T > 0, there exists cT such that

sup
0≤t≤T

Ẽ [‖Xt‖p|Y] ≤ cT a.s..

Now

ςqt (n2) =
(
Ẽ
[
‖Xt‖2Zt|Y

])q
≤ Ẽ

[
‖Xt‖2qZq

t |Y
]

≤
(
Ẽ [‖Xt‖p|Y]

)2q/p (
Ẽ
[
Z

pq/(p−2q)
t |Y

])(p−2q)/p

≤ 2q

p
Ẽ [‖Xt‖p|Y] +

p− 2q

p
Ẽ
[
Z

pq/(p−2q)
t |Y

]
,

where we have used Jensen’s and Hölder’s inequalities for the conditional expectation,
and Young’s inequality. Hence

Ẽ

(
sup

0≤t≤T
ςqt (n)

)
≤ 2q

p
cT +

p− 2q

p
Ẽ

(
sup

0≤t≤T
Z

pq/(p−2q)
t

)
≤ 2q

p
cT + CqẼ

(
Z

pq/(p−2q)
T

)
<∞,

where we have used Doob’s inequality for martingales, and the fact that the boundedness
of ψ implies that all moments of ZT are finite.

We now assume that the following additional regularity assumption is satisfied.

Claim 4.3. There exists Ψ ∈ C1,2,2
b (R+ ×Rd × [a, b]) such that ψ(t, x, y) = ∂yΨ(t, x, y) for

all (t, x, y) ∈ R+ ×Rd × [a, b].

It follows from Itô’s formula that

Ψ(t,Xt, Yt) = Ψ(0, X0, y0) +

∫ t

0

∂sΨ(s,Xs, Ys)ds

+

∫ t

0

AsΨ(s,Xs, Ys)ds+
1

2

∫ t

0

∂yψ(s,Xs, Ys)k
2(s, Ys)ds

+

∫ t

0

ψ(s,Xs, Ys)dYs +

∫ t

0

〈DxΨ(s,Xs, Ys), g(s,Xs, Ys)dBs〉.

Consequently,

Zt exp {−Ψ(t,Xt, Yt)} = exp {−Ψ(0, X0, y0)}

× exp
{
−
∫ t

0

∂sΨ(s,Xs, Ys)ds−
∫ t

0

AsΨ(s,Xs, Ys)ds

− 1

2

∫ t

0

∂yψ(s,Xs, Ys)k
2(s, Ys)ds

−
∫ t

0

〈DxΨ(s,Xs, Ys), g(s,Xs, Ys)dBs〉

−
∫ t

0

ψ(s,Xs, Ys)h1(s, Ys)ds−
1

2

∫ t

0

|kψ(s,Xs, Ys)|2ds
}
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Nonlinear filtering with degenerate noise

Hence from Itô’s formula,

Zt exp {−Ψ(t,Xt, Yt)} = exp {−Ψ(0, X0, y0)}

−
∫ t

0

Zse
−Ψ(s,Xs,Ys)

[
∂sΨ +AsΨ +

1

2
∂yψk

2

+ ψ h1 +
1

2
|kψ|2 − 1

2
‖g∗DxΨ‖2

]
(s,Xs, Ys)ds

−
∫ t

0

Zse
−Ψ(s,Xs,Ys)〈DxΨ(s,Xs, Ys), g(s,Xs, Y s)dBs〉.

On the other hand, if ϕ ∈ C2
b (Rd),

ϕ(Xt) = ϕ(X0) +

∫ t

0

Asϕ(Xs)ds+

∫ t

0

〈Dϕ(Xs), g(s,Xs, Ys)dBs〉.

Consequently

Zt exp {−Ψ(t,Xt, Yt)}ϕ(Xt) = exp {−Ψ(0, X0, y0)}ϕ(X0)

+

∫ t

0

Zse
−Ψ(s,Xs,Ys) [Asϕ(Xs)−〈gg∗DxΨ, Dϕ〉(s,Xs, Ys)] ds

−
∫ t

0

Zse
−Ψ(s,Xs,Ys)ϕ(Xs)

[
∂sΨ +AsΨ +

1

2
∂yψ k

2

+ ψ h1 +
1

2
|kψ|2 − 1

2
‖g∗DxΨ‖2

]
(s,Xs, Ys)ds

+

∫ t

0

Zse
−Ψ(s,Xs,Ys)〈Dϕ(Xs)

− ϕ(Xs)DxΨ(s,Xs, Ys), g(s,Xs, Ys)dBs〉.

Taking Ẽ[·|Y] of both sides of this identity, we deduce

Theorem 4.4. The measure–valued process

ςt(ϕ) = ςt

(
e−Ψ(t,.,Yt)ϕ

)
satisfies the following “robust version” of the Zakai equation

ςt(ϕ) = ς0(ϕ) +

∫ t

0

ςs(Asϕ+ c(s, .)ϕ)ds, (4.2)

where

Asϕ = Asϕ− 〈gsg∗sDxΨs, Dϕ〉, and

c(s, x) =

[
∂sΨ +AΨ +

1

2
∂yψk

2 + ψ h1 +
1

2
|kψ|2 − 1

2
‖g∗DxΨ‖2

]
(s, x, Ys).

Remark 4.5. It is not so easy to compare the present robust Zakai equation with e.g.
equation (ZR) in Theorem 4.2.2 from [4]. There k ≡ 1 and the drift in (1.2) does not
depend upon the observation process Yt. However, it is clear that the definition of
the process ςt in terms of the process ςt is very similar in spirit to the definition of σt

in terms of σt on page 116 in [4]. Note that even if we would take h2 not depending
upon the process Y , our ψ must depend upon Y . Hence there is no way that the
above transformation, which amounts in integrating by parts the stochastic integral∫ t

0
ψ (s,Xs, Ys) k(s, Ys)dW̃s which appears in the logarithm of Zt, in order to get rid of the

dYt integral, can be done in general when Yt is a vector–valued process, see Remark
4.12 below.
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Nonlinear filtering with degenerate noise

We now show that we can write equation (4.2) with a test function ϕ which is a
function of both t and x.

Proposition 4.6. For any ϕ ∈ C1,2
b (R+ ×Rd),

ςt(ϕ(t, .)) = ς0(ϕ(0, .)) +

∫ t

0

ςs
(
∂sϕ(s, .) +Asϕ(s, .) + csϕ(s, .)

)
ds.

Proof. For any t > 0, n ≥ 1, 0 = t0 < t1 < · · · < tn = t, from the “robust form” (4.2) of
Zakai’s equation,

ςt(ϕ(t, .))− ς0(ϕ(0, .)) =

n∑
i=1

[
ςti(ϕ(ti, .))− ςti−1

(ϕ(ti−1, .))
]

=

n∑
i=1

[
ςti(ϕ(ti, .)− ϕ(ti−1, .)) + (ςti − ςti−1)(ϕ(ti−1, .))

]
=

n∑
i=1

∫ ti

ti−1

[
ςti(∂sϕ(s, .)) + ςs({As + cs}ϕ(ti−1, .))

]
ds

The second term on the last right hand side converges to∫ t

0

ςs({As + cs}ϕ(s, .))ds

as sup1≤i≤n(ti − ti−1)→ 0, by a.e. convergence and uniform integrability which follows
from Lemma 4.2, and the fact that for all T > 0, there exists C such that for all
0 ≤ s, t ≤ T , ∣∣[(As + cs)ϕ(t, .)]

∣∣ ≤ C(1 + ‖x‖2).

Note that the conditional expectation in the expression for ςt is in fact a (partial)
expectation.

We now treat the first term on the right. First we note that for any ε > 0 and K ⊂⊂ Rd

a compact set, there exists φ ∈ C0,2
b (Rd) such that

|∂sϕ(s, x)− φ(s, x)| ≤ ε, for all (s, x) ∈ [0, t]×K.

Consequently, we can choose φ ∈ C0,2
b (Rd) such that

|∂sϕ(s, x)− φ(s, x)| ≤ ε(1 + ‖x‖2), for all (s, x) ∈ [0, t]×Rd,

which we assume from now on. Thanks to Lemma 4.2, there exists C such that

n∑
i=1

∫ ti

ti−1

|ςti(∂sϕ(s, .))− ςti(φ(s, .))| ≤ Ctε.

Moreover, making use of the fact that φ ∈ C0,2
b (Rd), taking advantage of (4.2) and again

of Lemma 4.2, we deduce that there exists C such that∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

[ςti(φ(s, .))− ςs(φ(s, .))] ds

∣∣∣∣∣ ≤
n∑

i=1

∫ ti

ti−1

∫ ti

s

∣∣ςr([Ar + cr]φ(s, .))
∣∣ dr ds

≤ C
n∑

i=1

∫ ti

ti−1

∫ ti

s

dr ds

≤ C

2
t sup

1≤i≤n
(ti − ti−1)

→ 0,

as sup1≤i≤n(ti − ti−1)→ 0. The result follows from the above arguments.
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Nonlinear filtering with degenerate noise

Consider the following adjoint backward parabolic PDE for T > 0 and κ ∈ Cb(R
d).

∂u

∂t
(t, x) +Atu(t, x) + c(t, x)u(t, x) = 0,

u(T, x) = κ(x).
(4.3)

Given an R–valued continuous process {Yt, t ≥ 0}, and {Bt, t ≥ 0} an independent
Rk–valued standard Brownian motion, we consider for each 0 ≤ t < T and x ∈ Rd, the
Rd–valued process {U t,x

s , t ≤ s ≤ T} solution of the SDE

U t,x
s = x+

∫ s

t

f(r, U t,x
r , Yr)dr +

∫ s

t

g(r, U t,x
r , Yr)dBr, (4.4)

where

f(t, x, y) = f(t, x, y)− (gg∗DxΨ)(t, x, y).

We assume that there exists C > 0 such that

Claim 4.7.

(i) ‖gg∗DxΨ‖(t, x, y) ≤ C(1 + ‖x‖), for all t ≥ 0, x ∈ Rd, y ∈ [a, b];

(ii) |c(t, x)| ≤ C, for all t ≥ 0, x ∈ Rd and a.s..

We now consider, for 0 ≤ t ≤ T and x ∈ Rd,

v(t, x) = E

[
κ(U t,x

T ) exp

{∫ T

t

c(s, U t,x
s )ds

}∣∣∣Y] . (4.5)

It follows from Theorem 3.42 in [5] that the function v(t, x) given by (4.5) is a viscosity
solution of the backward PDE (4.3). However, we want to prove more, and for that
purpose, we need to add some regularity assumptions.

Claim 4.8. The coefficients f, g, c are of class C0,2(R+ × Rd), the derivatives of order
one and two of f and g, c and its derivatives of order one and two being bounded.

We have the

Proposition 4.9. Under the assumptions 4.7 and 4.8, the function v(t, x) defined by
(4.5) is of class C1,2

b and it is a classical solution of the backward PDE (4.3).

Proof. It is not hard to deduce from the assumption 4.8 that x → U t,x is twice mean–
square differentiable, and the first and second order derivatives V t,x and Γt,x satisfy

V t,x
s = I +

∫ s

t

Dxf(r,Xr, Yr)V t,x
r dr +

d2∑
i=1

∫ s

t

Dxg.,i(r,Xr, Yr)V t,x
r dBi

r

Γt,x
s =

∫ s

t

Dxf(r,Xr, Yr)Γt,x
r dr +

∫ s

t

D2
xf(r,Xr, Yr)V t,x

r ⊗ V t,x
r dr

+

d2∑
i=1

∫ s

t

Dxg.,i(r,Xr, Yr)Γt,x
r dBi

r +

d2∑
i=1

∫ s

t

D2
xg.,i(r,Xr, Yr)V t,x

r ⊗ V t,x
r dBi

r

We note that under the Assumption 4.8, all moments of supt≤s≤T (‖V t,x
s ‖ + ‖Γt,x

s ‖) are
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Nonlinear filtering with degenerate noise

finite, and bounded as a function of (t, x) ∈ [0, T ]×Rd. Now

Dxv(t, x) = E

[
Dκ(U t,x

T )V t,x
T exp

{∫ T

t

c(s, U t,x
s )ds

}∣∣∣Y]

+ E

[
κ(U t,x

T ) exp

{∫ T

t

c(s, U t,x
s )ds

}∫ T

t

Dxc(s, U
t,x
s )V t,x

s ds
∣∣∣Y]

D2
xxv(t, x) = E

[
D2κ(U t,x

T )V t,x
T ⊗ V t,x

T exp

{∫ T

t

c(s, U t,x
s )ds

}∣∣∣Y]

+ E

[
Dκ(U t,x

T )Γt,x
T exp

{∫ T

t

c(s, U t,x
s )ds

}∣∣∣Y]

+ 2E

[
Dκ(U t,x

T )V t,x
T exp

{∫ T

t

c(s, U t,x
s )ds

}∫ T

t

Dxc(s, U
t,x
s )V t,x

s ds
∣∣∣Y]

+ E

[
κ(U t,x

T ) exp

{∫ T

t

c(s, U t,x
s )ds

}∫ T

t

Dxc(s, U
t,x
s )V t,x

s ds

⊗
∫ T

t

Dxc(s, U
t,x
s )V t,x

s ds
∣∣∣Y]

+ E

[
κ(U t,x

T ) exp

{∫ T

t

c(s, U t,x
s )ds

}∫ T

t

D2
xc(s, U

t,x
s )V t,x

s ⊗ V t,x
s ds

∣∣∣Y]

+ E

[
κ(U t,x

T ) exp

{∫ T

t

c(s, U t,x
s )ds

}∫ T

t

D2
xc(s, U

t,x
s )Γt,x

s ds
∣∣∣Y]

The continuity of (t, x) → (Dxv(t, x), D2
xxv(t, x)) is a consequence of the continuity

and the uniform integrability of the coefficients in the right hand side of the above
formulas. Its boundedness is a consequence of the Assumption 4.8 and the fact that
the moments of supt≤s≤T (‖V t,x

s ‖+ ‖Γt,x
s ‖) are bounded functions of (t, x). Consequently

(t, x)→ (v(t, x),Atv(t, x) + c(t, x)v(t, x)) is continuous. It remains to show that t→ v(t, x)

is of class C1, and to compute that derivative. For t ≤ s ≤ T , let µs denote the law of
U t,x
s . From the Markov property of the process U t,x

s , for any 0 ≤ h ≤ T − t,

µt+h(v(t+ h, ·)) = E

[
κ(U t,x

T ) exp

(∫ T

t+h

c(s, U t,x
s )ds

)]
.

Hence

1

h
[µt+h(v(t+ h, ·))− µt(v(t, ·))] = E

[
κ(U t,x

T ) exp

(∫ T

t+h

c(s, U t,x
s )ds

)
1− e

∫ t+h
t

c(s,Ut,x
s )ds

h

]
→ −c(t, x)v(t, x),

as h→ 0. However,

1

h
[µt+h(v(t+ h, ·))− µt(v(t, ·))] =

{
µt+h − µt

h

}
(v(t+ h, ·)) + µt

(
v(t+ h, ·)− v(t, ·)

h

)
.
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Nonlinear filtering with degenerate noise

Consequently

v(t+ h, x)− v(t, x)

h
= µt

(
v(t+ h, ·)− v(t, ·)

h

)
= −

{
µt+h − µt

h

}
(v(t+ h, ·)) +

1

h
[µt+h(v(t+ h, ·))− µt(v(t, ·))]

= − 1

h
E

∫ t+h

t

Av(t+ h, U t,x
s )ds+

1

h
[µt+h(v(t+ h, ·))− µt(v(t, ·))]

→ −Av(t, x)− c(t, x)v(t, x),

as h→ 0, where we have used Itô’s formula and the regularity of x→ v(t+h, x), together
with the just established convergence of the last term. Since v satisfies clearly the final
condition, we have established that v ∈ C1,2(R+ ×Rd) and is a classical solution of the
backward PDE (4.3).

We can now establish

Theorem 4.10. Under the assumptions 4.1, 4.3, 4.7 and 4.8, the robust Zakai equation
(4.2) has a unique solution.

Proof. We apply Proposition 4.6 with ϕ replaced by v, which is possible in view of
Proposition 4.9. Since v satisfies (4.3) and v(T, x) = κ, Proposition 4.6 implies that

ςT (κ) = ς0(v(0, .)).

This means that for any T > 0, κ ∈ Cb(R
d), ςT (κ) is uniquely determined, which

establishes the claimed uniqueness.

Corollary 4.11. Under the assumptions 4.1, 4.3, 4.7 and 4.8, the Zakai equation (3.17)
has a unique solution.

Proof. It suffices to notice that ςt(ϕ) = ςt
(
eΨ(t,.,Yt)ϕ

)
.

Remark 4.12. Would the observation process Yt be vector valued, then, in order to
establish the “robust form” of the Zakai equation, we would need, instead of Assumption
4.3, to assume that there exists Ψ ∈ C1,2,2

b (R+×Rd×R`) such that ψ(t, x, y) = ∇yΨ(t, x, y)

for all (t, x, y) ∈ R+ ×Rd ×R`, which is an extremely restrictive and not at all natural
assumption. This means that in case of vector–valued observation, there is no “robust
form” of the Zakai equation in our filtering problem in general.
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