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Abstract

In this paper we consider Bernoulli percolation on an infinite connected bounded
degrees graph G. Assuming the uniqueness of the infinite open cluster and a quasi-
multiplicativity of crossing probabilities, we prove the existence of Kesten’s incipient
infinite cluster. We show that our assumptions are satisfied if G is a slab Z2 ×
{0, . . . , k}d−2 (d ≥ 2, k ≥ 0). We also argue that the quasi-multiplicativity assumption
should hold for G = Zd when d < 6, but not when d > 6.
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1 Introduction

Let G be an infinite connected bounded degrees graph with a vertex set V . Let ρ be
the graph metric on V , and define for v ∈ V and positive integers m ≤ n,

B(v, n) = {x ∈ V : ρ(v, x) ≤ n}, S(v, n) = {x ∈ V : ρ(v, x) = n},

A(v,m, n) = B(v, n) \B(v,m− 1).

Consider Bernoulli bond percolation on G with parameter p ∈ [0, 1] and denote the
corresponding probability measure by Pp. The open cluster of v ∈ V is denoted by C(v).
Let pc be the critical threshold for percolation, i.e., for v ∈ V ,

pc = inf {p : Pp[|C(v)| =∞] > 0} .

For x, y ∈ V and X,Y, Z ⊂ V , we write x↔ y in Z if there is a nearest neighbor path of
open edges such that all its vertices are in Z, X ↔ Y in Z if there exist x ∈ X and y ∈ Y
such that x↔ y in Z, and x↔ Y in Z, if there exist y ∈ Y such that x↔ y in Z. If Z = V ,
we omit “in Z” from the notation. We use = instead of↔ to denote complements of the
respective events.

In this note we are interested in the existence and equality of the limits

lim
n→∞

Ppc [E | w ←→ S(w, n)] and lim
p↘pc

Pp [E | |C(w)| =∞] , (1.1)
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where E is a cylinder event. The question is highly non-trivial if Ppc [|C(w)| =∞] = 0.
The seminal result of Kesten [18, Theorem (3)] states that if G is from a class of planar
graphs, such as Z2, then the above two limits exist and have the same value νG,w(E).
By Kolmogorov’s extension theorem, νG,w extends uniquely to a probability measure on
configurations of edges, which is often called Kesten’s incipient infinite cluster measure.
It is immediate that νG,w[|C(w)| =∞] = 1. Kesten’s argument is based on the existence
of an infinite collection of open circuits around w in disjoint annuli and the properties that
(a) each path from w to infinity intersects every such circuit and (b) by conditioning on
the innermost open circuit in an annulus, the occupancy configuration in the region not
surrounded by the circuit is still an independent Bernoulli percolation. These properties
are no longer valid when one considers higher dimensional lattices. In fact, the existence
of Kesten’s IIC on Zd for d ≥ 3 is still an open problem. Partial progress has been
recently made in sufficiently high dimensions by Heydenreich, van der Hofstad and
Hulshof [14, Theorem 1.2], who showed using lace expansions the existence of the first
limit in (1.1) under the assumption that n−2Ppc [0 ←→ S(0, n)] converges. Concerning
low dimensional lattices, almost nothing is known there about critical and near critical
percolation, and the existence of Kesten’s IIC seems particularly hard to show. Several
other constructions of incipient infinite clusters are obtained by Járai [17] for planar
lattices and van der Hofstad and Járai [15] for high dimensional lattices.

The main result of this note is the existence and the equality of the two limits in
(1.1) for graphs satisfying two assumptions: (A1) uniqueness of the infinite open cluster
and (A2) quasi-multiplicativity of crossing probabilities. While (A1) is satisfied by many
amenable graphs, most notably Zd, (A2) can be expected only in low dimensional graphs.
For instance, we argue below that (A2) should hold for Zd when d < 6, but not when
d > 6. In our second result, we prove that (A2) is satisfied by slabs Z2 × {0, . . . , k}d−2

(d ≥ 2, k ≥ 0), thus showing for these graphs the existence and equality of the limits in
(1.1). We now state the assumptions and the main result, and then comment more on
the assumptions.

(A1) (Uniqueness of the infinite open cluster) For any p ∈ [0, 1] there exists almost surely
at most one infinite open cluster.

(A2) (Quasi-multiplicativity of crossing probabilities) Let v ∈ V and δ > 0. There exists
c∗ > 0 such that for any p ∈ [pc, pc + δ], integer m > 0, a finite connected set Z ⊂ V
such that Z ⊇ A(v,m, 4m), and sets X ⊂ Z ∩B(v,m) and Y ⊂ Z \B(v, 4m),

Pp[X ↔ Y in Z] ≥ c∗ · Pp[X ↔ S(v, 2m) in Z] · Pp[Y ↔ S(v, 2m) in Z]. (1.2)

Theorem 1.1. Assume that the graph G satisfies the assumptions (A1) and (A2) for some
choice of v ∈ V and δ > 0. Then, for any cylinder event E, the two limits in (1.1) exist
and have the same value.

If the assumptions (A1) and (A2) are satisfied at p = pc, then the first limit in (1.1)
exists.

Before we discuss the strategy of the proof, let us comment on the assumptions.

Comments on (A1):

1. (A1) is satisfied by many sufficiently regular (e.g., vertex transitive) amenable
graphs, most notably lattices Zd and slabs Z2 × {0, . . . , k}d−2 (d ≥ 2, k ≥ 0), see,
e.g., [4].

2. (A1) is equivalent to the assumption that for some δ > 0 there exists at most one
infinite open cluster for any fixed p ∈ [pc, pc + δ]. Indeed, if for a given p the infinite
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open cluster is unique almost surely, then the same holds for any p′ > p, see, e.g.,
[11, 22].

3. For v ∈ V and m ≤ n, let E1(v,m, n) = {S(v,m) ↔ S(v, n)} and E2(v,m, n) the
event that in the annulus A(v,m, n) there are at least two disjoint open crossing
clusters.

Assumption (A1) is equivalent to the following one, which will be used in the proof
of Theorem 1.1: For any v ∈ V , ε > 0 and m ∈ N, there exists n > 4m such that

sup
p∈[0,1]

Pp [E2(v,m, n)] < ε (1.3)

or, equivalently,

sup
p∈[0,1]

Pp [E2(v,m, n) | E1(v,m, n)] < ε. (1.4)

The equivalence of the claims (1.3) and (1.4) follows from the inequalities

Pp [E2(v,m, n)] ≤ Pp [E2(v,m, n) | E1(v,m, n)] ≤ Pp [E2(v,m, n)]
1
2 ,

where the second one is a consequence of the BK inequality.

It is elementary to see that (1.3) implies (A1). On the other hand, if (1.3) does
not hold, then there exist v0 ∈ V , ε0 > 0 and m0 ∈ N such that for all n > 4m0,
supp∈[0,1]Pp [E2(v0,m0, n)] ≥ ε0. The function Pp [E2(v0,m0, n)] is continuous in
p ∈ [0, 1] and monotone decreasing in n. Thus, there exists p0 ∈ [0, 1] such that
Pp0 [E2(v0,m0, n)] ≥ ε0 for all n > 4m0. By passing to the limit as n → ∞, we
conclude that for p = p0, with positive probability there exist at least two infinite
open clusters and (A1) does not hold.

Comments on (A2):

4. If there exists a unique infinite cluster at some p′ > pc, i.e., (A1) holds at p = p′,
then (1.2) automatically holds at p = p′ with c∗ = c∗(p

′) > 0. However, (A1) does
not imply that there exists c∗ > 0 such that (1.2) holds for all p′ near pc, see, e.g.,
the discussion about G = Zd with d > 6 below.

5. It follows from the Russo-Seymour-Welsh theorem [21, 23] and planar arguments
that (A2) holds for planar graphs, such as Z2, considered by Kesten in [18]. RSW
ideas have been recently extended to slabs in [20, 3], after the absence of percola-
tion at criticality in slabs was proved by Duminil-Copin, Sidoravicius and Tassion
[9]. In Section 3 we show that (A2) is fulfilled by slabs Z2 × {0, . . . , k}d−2 (d ≥ 2,
k ≥ 0). Our proof is based on an adaptation of planar arguments to slabs and uses
recent results and ideas of Newman, Tassion and Wu [20]. A classical observation
is that in the plane the existence of two open paths from X ⊂ B(v,m) to S(v, 2m)

and from Y ⊂ Zd \ B(v, 2m) to S(v,m) and an open circuit in A(v,m, 2m) around
B(v,m) implies the existence of an open path from X to Y , since the two “short”
paths are always linked through the circuit. This is no longer the case on slabs,
nevertheless it is still true that with positive probability, if such two short paths
and a circuit exist then they are connected, and this along with RSW results from
[20] suffices for (A2). We prove this fact by adapting a local modification argument
(“glueing” an open path to an open circuit) from [20].

6. We believe that assumption (A2) holds for lattices Zd if d < 6, but does not hold
if d > 6. Dimension dc = 6 is called the upper critical dimension above which the
percolation phase transition should be described by mean-field theory, see, e.g., [7].
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This was rigorously confirmed in sufficiently high dimensions by Hara and Slade
[13, 12] and recently in d > 10 by Fitzner and van der Hofstad [10].

It is easy to see that the mean-field behavior excludes (A2). Indeed, it is believed
that above dc, the two point function decays as

Ppc [x↔ y] � (1 + ρ(x, y))2−d.

(Here f(z) � g(z) if for some c, cf(z) ≤ g(z) ≤ c−1f(z) for all z.) Hara [12] proved
it rigorously in sufficiently high dimensions. Given this asymptotics, Aizenman
showed in [1, Theorem 4(2)] that for all m(n) ≤ n such that m(n)

n2/(d−4) → ∞ (which
exists only if d > 6),

Ppc [S(0,m(n))↔ S(0, n)]→ 1, as n→∞,

and Kozma and Nachmias [19] that Ppc [0↔ S(0, n)] � n−2. Thus, the inequality

Ppc [0↔ S(0, n)] ≥ cPpc [0↔ S(0,m(n))]Ppc [S(0,m(n))↔ S(0, n)]

cannot hold for large n if n2/(d−4) � m(n)� n.

The situation below dc is much more subtle. With the exception of d = 2, where
planarity helps enormously, the (near-)critical behavior below dc is widely unknown.
Let us nevertheless give a few words about why we think (A2) should hold below
dc. It is believed that the number of clusters crossing any annulus A(0,m, 2m) is
bounded uniformly in m if d < dc and grows at p = pc like md−6 above dc, with
log-correction for d = dc, and this dichotomy is intimately linked to the transition
at dc from the hyperscaling to the mean-field; see [6, 5]. Thus, it would be not
unreasonable to expect that below dc, for some c > 0,

Pp[∃! crossing cluster of A(0,m, 2m) | X ↔ S(0, 2m) in Z, Y ↔ S(0,m) in Z] ≥ c,

which is enough to establish (A2). We are not able to prove it yet or give a simpler
sufficient condition for it. It would already be very nice if, for instance, (A2) was
derived from the assumption that Pp[∃! crossing cluster of A(0,m, 2m)] ≥ c or from
the assumptions of [5].

We finish the introduction with a brief description of the proof of Theorem 1.1. Our
proof follows the general scheme proposed by Kesten in [18] by attempting to decouple
the configuration near w from infinity on multiple scales. The implementations are
however rather different. Using (1.4) we identify a sufficiently fast growing sequence Ni
such that given w ↔ S(w, n), the probability that the annulus A(v,Ni, Ni+1) ⊂ B(w, n)

contains a unique crossing cluster is asymptotically close to 1; see (2.2). Next, let an
annulus A(v,Ni, Ni+1) contain a unique crossing cluster. We explore all the open clusters
in this annulus that intersect the interior boundary S(v,Ni), call their union Ci, and
let Di be the subset of S(v,Ni+1 + 1) of vertices connected by an open edge to Ci; see
(2.3). Then, the state of the edges not incident to any vertex of Ci is distributed as the
original independent percolation and every vertex from Di is connected by an edge to
the same (crossing) cluster from Ci. Thus, w ↔ S(w, n) if and only if (a) w is connected
to Di (this event only depends on the edges intersecting S(v,Ni) ∪ Ci) and (b) Di is
connected to S(w, n) outside Ci (this only depends on the edges outside Ci). This allows
to factorize Pp[E, w ↔ S(w, n)]; see (2.4). The rest of the proof is essentially the same
as that of Kesten [18]. We repeat the described factorization on several scales, obtaining
in (2.6) an approximation of Pp[E|w ↔ S(w, n)] in terms of products of positive matrices.
Finally, we use (A2) to prove that the matrix operators are uniformly contracting, which
is enough to conclude the proof; see (2.7) and the text below.
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2 Proof of Theorem 1.1

We will prove the first claim of the theorem. The proof of the second one follows from
the proof below by replacing everywhere p by pc. The general outline of the proof is the
same as the original one of Kesten [18, Theorem (3)], but the choice of scales and the
decoupling are done differently.

First of all, it suffices to prove that for any w ∈ V and a cylinder event E,

Pp[E|w ↔ S(w, n)] converges to some νp(E) uniformly on [pc, pc + δ] for some δ > 0.
(2.1)

Indeed, (2.1) implies the existence of the first limit in (1.1) and that νp(E) is continuous.
Since for any p > pc, νp(E) = Pp[E | |C(v)| = ∞], the existence of the second limit in
(1.1) and its equality to the first one follows from the continuity of νp(E).

Actually, by the inclusion-exclusion formula, it suffices to prove (2.1) for all events E
of the form {edges e1, . . . , ek are open}. Although our proof could be implemented for
any cylinder event E, calculations are neater for increasing events.

Fix w ∈ V and an increasing event E. Also fix v ∈ V and δ > 0 for which the
assumption (A2) is satisfied. Consider a sequence of scales Ni such that Ni+1 > 4Ni
for all i, B(v,N0) contains w and the states of its edges determine E. We will write
Bi = B(v,Ni), Si = S(v,Ni) and Ai = A(v,Ni, Ni+1). Let Fi be the event that there
exists a unique open crossing cluster in Ai. Define

εi = sup
p∈[pc,pc+δ]

Pp [F ci | Si ↔ Si+1] .

By (1.4), we can choose the scales Ni so that εi → 0 as i→∞.

We first note that for n > Ni+1 +N0,

Pp[w ↔ S(w, n), F ci ] ≤ c−2
∗ εi · Pp[w ↔ S(w, n)], (2.2)

where c∗ is the constant in the assumption (A2). Indeed, by independence,

Pp[w ↔ S(w, n), F ci ] ≤ Pp[w ↔ Si] · Pp[Si ↔ Si+1, F
c
i ] · Pp[Si+1 ↔ S(w, n)]

≤ εi · Pp[w ↔ Si] · Pp[Si ↔ Si+1] · Pp[Si+1 ↔ S(w, n)]

≤ c−2
∗ εi · Pp [w ↔ S(w, n)] ,

where the last inequality follows from the assumption (A2).

We begin to describe the main decomposition step. Consider the random sets

Ci = {x ∈ B(v,Ni+1) : x↔ B(v,Ni) in B(v,Ni+1)} ,
Di = {x ∈ S(v,Ni+1 + 1) : ∃ y ∈ Ci, a neighbor of x, such that edge 〈x, y〉 is open} .

(2.3)
Note that Ci contains B(v,Ni), the event {Ci = U} depends only on the states of edges in
B(v,Ni+1) with at least one end-vertex in U , and either {Ci = U} ⊂ Fi or {Ci = U}∩Fi = ∅.
Also note that the event {Ci = U, Di = R} depends only on the states of edges in
B(v,Ni+1 + 1) with at least one end-vertex in U .

For any U ⊂ B(v,Ni+1) and R ⊂ S(v,Ni+1 + 1), consider the event

Fi(U,R) = {Ci = U, Di = R},

and let Πi be the collection of all such pairs (U,R) that {Ci = U} ⊂ Fi and Fi(U,R) 6= ∅.
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Then Fi = ∪(U,R)∈Πi
Fi(U,R), and for all n > Ni+1 +N0,

Pp [E,w ↔ S(w, n), Fi] =
∑

(U,R)∈Πi

Pp [E,w ↔ S(w, n), Fi(U,R)]

=
∑

(U,R)∈Πi

Pp [E,w ↔ Si+1, Fi(U,R)] · Pp [R↔ S(w, n) in B(w, n) \ U ] .

Together with (2.2), this gives the inequality∣∣∣Pp [E,w ↔ S(w, n)]

−
∑

(U,R)∈Πi

Pp [E,w ↔ Si+1, Fi(U,R)] · Pp [R↔ S(w, n) in B(w, n) \ U ]
∣∣∣

≤ c−2
∗ εi · Pp[w ↔ S(w, n)] ≤ c−2

∗ εi
Ppc [E]

· Pp[E,w ↔ S(w, n)], (2.4)

where the last step follows from the FKG inequality, since E is increasing. Define the
constant C∗ = (c2∗Ppc [E])−1 and for (U,R) ∈ Πi, let

u′p(U,R) = Pp [E,w ↔ Si+1, Fi(U,R)] ,

u′′p(U,R) = Pp [w ↔ Si+1, Fi(U,R)] ,

γp(U,R, n) = Pp [R↔ S(w, n) in B(w, n) \ U ] .

In this notation, (2.4) becomes

(1− C∗εi) Pp [E,w ↔ S(w, n)] ≤
∑

(U,R)∈Πi

u′p(U,R) γp(U,R, n)

≤ (1 + C∗εi) Pp [E,w ↔ S(w, n)]

and by replacing E above with the sure event, we also get

(1− C∗εi) Pp [w ↔ S(w, n)] ≤
∑

(U,R)∈Πi

u′′p(U,R) γp(U,R, n)

≤ (1 + C∗εi) Pp [w ↔ S(w, n)] .

Now we iterate. Let (U,R) ∈ Πi. We can apply a similar reasoning as in (2.2) and
(2.4) to γp(U,R, n) and obtain that for any j > i+ 2 and n > Nj+1 +N0,∣∣∣γp(U,R, n)−

∑
(U ′,R′)∈Πj

Pp [R↔ Sj+1 in Bj+1 \ U,Fj−1, Fj(U
′, R′)] · γp(U ′, R′, n)

∣∣∣
≤ c−2
∗ (εj−1 + εj) · γp(U,R, n). (2.5)

For j > i+ 2, (U,R) ∈ Πi and (U ′, R′) ∈ Πj , define

Mp(U,R; U ′, R′) = Pp [R↔ Sj+1 in Bj+1 \ U,Fj−1, Fj(U
′, R′)] .

Then (2.5) becomes

(1− c−2
∗ (εj−1 + εj)) γp(U,R, n) ≤

∑
(U ′,R′)∈Πj

Mp(U,R; U ′, R′) γp(U
′, R′, n)

≤ (1 + c−2
∗ (εj−1 + εj)) γp(U,R, n).
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Iterating further gives that for any ε > 0 and s ∈ N, there exist indices i1, . . . , is such
that ik+1 > ik + 2 and for all n > Nis+1 +N0,

e−εPp [E |w ↔ S(w, n)] ≤∑
u′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs) γp(Us, Rs, n)∑
u′′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs) γp(Us, Rs, n)

≤ eεPp [E |w ↔ S(w, n)] , (2.6)

where the two sums are over (U1, R1) ∈ Πi1 , . . . , (Us, Rs) ∈ Πis .
We will prove that (A2) implies that there exists κ > 1 such that for all i, j > i+ 2, all

pairs (U1, R1), (U2, R2) ∈ Πi, (U ′1, R
′
1), (U ′2, R

′
2) ∈ Πj , and all p ∈ [pc, pc + δ],

Mp(U1, R1; U ′1, R
′
1)Mp(U2, R2; U ′2, R

′
2)

Mp(U1, R1; U ′2, R
′
2)Mp(U2, R2; U ′1, R

′
1)
≤ κ2. (2.7)

(This is an analogue of [18, Lemma (23)].) Before giving the proof of (2.7), we show how
to use it to finish the proof of the theorem. Although the argument is essentially the
same as in [18, pages 377-378], we provide the details for completeness.

For a pair of vectors v′ and v′′ of the same dimension and strictly positive components,

define osc(v′, v′′) = maxi,j

∣∣∣ v′iv′′i − v′j
v′′j

∣∣∣. Hopf’s contraction theorem [16, Theorem 1] (see

also [18, (24) and (25)]) states that if u′ and u′′ are vectors in Rm with strictly positive
components andM is anm×n–matrix with strictly positive real entries such that for some
κ > 1 and all indices i, j, k, l, maxi,j,k,l

Mij Mkl

MilMkj
≤ κ2, then osc(u′M,u′′M) ≤ κ−1

κ+1 osc(u′, u′′).

Applying this theorem to the vectors u′p and u′′p and the matrices Mp, we obtain that

max
(Us,Rs),(U ′s,R

′
s)∈Πis

∣∣∣∣
∑

u′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs)∑
u′′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs)

−
∑

u′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , U ′s, R
′
s)∑

u′′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , U ′s, R
′
s)

∣∣∣∣
≤
(
κ− 1

κ+ 1

)s−1

osc(u′p, u
′′
p) ≤

(
κ− 1

κ+ 1

)s−1

,

where each sum is over all pairs (U1, R1) ∈ Πi1 , . . . , (Us−1, Rs−1) ∈ Πis−1
.1 In particular,

there exists ξ ≤ 1, which depends on E, p, and the scales i1, . . . , is, such that

max
(Us,Rs)∈Πis

∣∣∣∣
∑

u′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs)∑
u′′p(U1, R1)Mp(U1, R1; U2, R2) . . .Mp(Us−1, Rs−1; , Us, Rs)

− ξ
∣∣∣∣

≤
(
κ− 1

κ+ 1

)s−1

.

In combination with (2.6), this gives that for all n > Nis+1 +N0,

e−ε

(
ξ −

(
κ− 1

κ+ 1

)s−1
)
≤ Pp [E |w ↔ S(w, n)] ≤ eε

(
ξ +

(
κ− 1

κ+ 1

)s−1
)
. (2.8)

It follows from (2.8) and the fact that ξ ≤ 1 that for any m,n > Nis+1 + N0 and p ∈
[pc, pc + δ],∣∣∣Pp [E |w ↔ S(w,m)]− Pp [E |w ↔ S(w, n)]

∣∣∣ ≤ (eε − e−ε)+
(
eε + e−ε

) (κ− 1

κ+ 1

)s−1

,

1The corresponding inequality in [18]—the first inequality on [18, page 378]—contains a mathematical typo,
osc(u′, u′′) is missing. However, one can show using RSW techniques that the missing term there is bounded
from above by a constant independent of j1, and the remaining argument goes through. In our case, the
situation is simpler, since for our choice of u′ and u′′, osc(u′, u′′) ≤ 1.
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which implies (2.1).

It remains to prove (2.7). Let j > i+ 2. Consider the random sets

Xj = {x ∈ Aj−1 : x↔ Sj in Aj−1} ,
Yj = {y ∈ S(v,Nj−1 − 1) : ∃x ∈ Xj , a neighbor of y, such that the edge 〈x, y〉 is open} .

Note that Xj contains Sj , the event {Xj = X} depends only on the states of edges in Aj−1

with at least one end-vertex in X, and either {Xj = X} ⊂ Fj−1 or {Xj = X} ∩ Fj−1 = ∅.
Also note that the event {Xj = X, Yj = Y } depends only on the states of edges in Bj
with at least one end-vertex in X. For any X ⊂ Aj−1 and Y ⊂ S(v,Nj−1 − 1), consider
the event

Gj(X,Y ) = {Xj = X, Yj = Y },

and let Γj be the collection of all such pairs (X,Y ) that {Xj = X} ⊂ Fj−1 and Gj(X,Y ) 6=
∅. Then Fj−1 = ∪(X,Y )∈Γj

Gj(X,Y ) and for any (U,R) ∈ Πi, (U ′, R′) ∈ Πj ,

Mp(U,R; U ′, R′)

=
∑

(X,Y )∈Γj

Pp [R↔ Y in Bj \ (X ∪ U)] · Pp [Gj(X,Y ), Fj(U
′, R′), Y ↔ R′] .

By the assumption (A2),

Pp [R↔ Y in Bj \ (X ∪ U)]

≥ c∗ · Pp [R↔ S(v, 2Ni+1) in B(v, 2Ni+1) \ U ] · Pp [S(v, 2Ni+1)↔ Y in Bj \X]

≥ c∗ · Pp [R↔ Y in Bj \ (X ∪ U)] .

This easily implies (2.7) with κ = c−1
∗ . The proof of Theorem 1.1 is complete.

Remark 2.1. Instead of conditioning on the events {w ↔ S(w, n)}, one could condition
on {w ↔ Yn in Zn}, where Zn ⊃ B(w, n) and Yn ⊆ Zn \ B(w, n), and obtain the same
limits as in (1.1). Indeed, by going through the same proof one observes that Pp[E|w ↔
Yn in Zn] satisfies inequalities (2.8) with the same ξ.

3 Quasi-multiplicativity for slabs

In this section we prove that the assumption (A2) is fulfilled by slabs Z2×{0, . . . , k}d−2

for any d ≥ 2 and k ≥ 0 and for any δ > 0 such that pc + δ < 1, thus proving

Theorem 3.1. The two limits (1.1) exist and coincide on Z2×{0, . . . , k}d−2 (d ≥ 2, k ≥ 0).

Fix d ≥ 2 and k ≥ 0 and define S = Z2 × {0, . . . , k}d−2. For positive integers m ≤ n,
let Q(n) = [−n, n]2 × {0, . . . , k}d−2 be the box of side length 2n in S centered at 0,
∂Q(n) = Q(n) \ Q(n − 1) the inner boundary of Q(n), and An(m,n) = Q(n) \ Q(m − 1)

the annulus of side lengths 2m and 2n. We will prove the following lemma.

Lemma 3.2. Let d ≥ 2 and k ≥ 0. Let δ > 0 such that pc + δ < 1. There exists c > 0

such that for any p ∈ [pc, pc + δ], integer m > 0, any finite connected Z ⊂ S such that
Z ⊇ An(m, 3m), and any X ⊂ Z ∩Q(m) and Y ⊂ Z \Q(3m),

Pp[X ↔ Y in Z] ≥ c · Pp[X ↔ ∂Q(2m) in Z] · Pp[Y ↔ ∂Q(2m) in Z]. (3.1)

To see that Lemma 3.2 implies (A2), note that it suffices to prove (1.2) for m ≥ m0 and
sufficiently large m0. One can choose m0 = m0(d, k) large enough so that A(0,m, 4m) ⊃
An(m, 3m). Thus, Lemma 3.2 implies (A2).
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Proof of Lemma 3.2. Instead of (3.1), it suffices to prove that there exists c > 0 such
that for any m > 0, any finite connected Z ⊂ S such that Z ⊇ An(2m, 3m), and any
X ⊂ Z ∩Q(2m) and Y ⊂ Z \Q(3m),

Pp[X ↔ Y in Z] ≥ c · Pp[X ↔ ∂Q(3m) in Z] · Pp[Y ↔ ∂Q(2m) in Z]. (3.2)

Indeed, for Z as in the statement of the lemma, by (3.2),

Pp[X ↔ ∂Q(3m) in Z] ≥ c · Pp[X ↔ ∂Q(2m) in Z] · Pp[∂Q(
4

3
m)↔ ∂Q(3m) in Z],

and Pp[∂Q( 4
3m)↔ ∂Q(3m) in Z] ≥ Ppc [∂Q( 4

3m)↔ ∂Q(3m)] ≥ c > 0, as proved in [3, 20].

We proceed to prove (3.2). Let E be the event that there exists an open circuit
(nearest neighbor path with the same start and end points) around Q(2m) contained in
An(2m, 3m). It is shown in [20] that Pp[E] ≥ Ppc [E] > c > 0 for some c > 0 independent
of m. Thus, by the FKG inequality,

Pp[X ↔ ∂Q(3m) in Z, Y ↔ ∂Q(2m) in Z, E]

≥ c · Pp[X ↔ ∂Q(3m) in Z] · Pp[Y ↔ ∂Q(2m) in Z].

Consider an arbitrary deterministic ordering of all circuits in S, and for a configuration
in E, let Γ be the minimal (with respect to this ordering) open circuit around Q(2m)

contained in An(2m, 3m). For W ⊂ S, let

W = {z = (z1, . . . , zd) ∈ S : (z1, z2, x3, . . . , xd) ∈W for some x3, . . . , xd }.

Note that

Pp[X ↔ ∂Q(3m) in Z, Y ↔ ∂Q(2m) in Z, E] ≤ Pp[X ↔ Γ in Z, Y ↔ Γ in Z, E].

Thus, to prove (3.2), it suffices to show that for some C <∞,

Pp[X ↔ Γ in Z, Y ↔ Γ in Z, E] ≤ C · Pp[X ↔ Y in Z].

This will be achieved using local modification arguments similar to those in [20]. In fact,
for the above inequality to hold, it suffices to show that for some C <∞,

Pp[X ↔ Γ in Z, Y ↔ Γ in Z, E,X = Y in Z] ≤ C · Pp[X ↔ Y in Z]. (3.3)

We write the event in the left hand side of (3.3) as the union of three subevents satisfying
additionally

(a) X = Γ in Z, Y = Γ in Z,

(b) X = Γ in Z, Y ↔ Γ in Z,

(c) X ↔ Γ in Z, Y = Γ in Z.

It suffices to prove that the probability of each of the three subevents can be bounded
from above by C · Pp[X ↔ Y in Z]. The cases (b) and (c) can be handled similarly, thus
we only consider (a) and (b).

Case (a): We prove that for some C <∞,

Pp

[
X ↔ Γ in Z, Y ↔ Γ in Z, E,X = Y in Z

X = Γ in Z, Y = Γ in Z

]
≤ C · Pp[X ↔ Y in Z]. (3.4)
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Denote by Ea the event on the left hand side. It suffices to construct a map f : Ea →
{X ↔ Y in Z} such that for some constant D <∞, (1) for each ω ∈ Ea, ω and f(ω) differ
in at most D edges, (2) at most D ω’s can be mapped to the same configuration, i.e., for
each ω ∈ Ea, |{ω′ ∈ Ea : f(ω′) = f(ω)}| ≤ D. If so, the desired inequality is satisfied with
C = D

min(pc,1−pc−δ))D .

Take a configuration ω ∈ Ea. Let U be the set of all points u ∈ Γ such that u is
connected to X in Z by an open self-avoiding path that from the first step on does not
visit {u}. For each u ∈ U , choose one such open self-avoiding path and denote it by πu.
Similarly, let V be the set of all points v ∈ Γ such that v is connected to Y in Z by an
open self-avoiding path that from the first step on does not visit {v}. For each v ∈ V ,
choose one such open self-avoiding path and denote it by πv.

Assume first that we can choose u ∈ U and v ∈ V such that {u} = {v}. For such ω’s,
the configuration f(ω) is defined as follows. We

(a) close all the edges with an end-vertex in {u} except for the (unique) edge of πu, the
(unique) edge of πv, and the edges belonging to Γ,

(b) open all the edges in {u} that belong to a shortest path ρ (line segment if d = 3)
between u and Γ in {u},

(c) open all the edges in {u} that belong to a shortest path between v and Γ ∪ ρ in {u}.

Notice that ω and f(ω) differ in at most 2d (k+ 1)d−2 edges. Also, since u, v and Γ are all
in different open clusters in ω, after connecting them by simple open paths as in (b) and
(c), no new open circuits are created. Thus, the set {u} can be uniquely reconstructed in
f(ω) as the unique set of the form {z} where X (and Y ) is connected to Γ.

Assume next that U ∩V = ∅. Choose u ∈ U and v ∈ V . Note that {u} is not connected
to Y in Z and {v} is not connected to X in Z. The configuration f(ω) is defined as follows.
We

(a) close all the edges with an end-vertex in {u} ∪ {v} except for those of πu, πv and Γ,

(b) open all the edges in {u} that belong to a shortest path between u and Γ in {u},
(c) open all the edges in {v} that belong to a shortest path between v and Γ in {v}.

Notice that ω and f(ω) differ in at most 4d (k + 1)d−2 edges. Step (a) of the construction
does not alter the paths πu and πv. Finally, since u, v, and Γ are all in different open
clusters in ω, after connecting u, v, and Γ by simple open paths as in (b) and (c), no new
open circuits are created. Thus, the set {u} ∪ {v} can be uniquely reconstructed in f(ω)

as the unique such set where X and Y are connected to Γ.
The constructed function f satisfies the requirement (1) with D = 4d (k + 1)kd−2 and

the requirement (2) with D = 24d (k+1)d−2

. The proof of (3.4) is complete.

Case (b): We prove that for some C <∞,

Pp

[
X ↔ Γ in Z, Y ↔ Γ in Z, E,X = Y in Z

X = Γ in Z, Y ↔ Γ in Z

]
≤ C · Pp[X ↔ Y in Z]. (3.5)

Denote by Eb the event on the left hand side. As in Case (a), (3.5) will follow if we
construct a map f : Eb → {X ↔ Y in Z} such that for some constant D < ∞, (1) for
each ω ∈ Eb, ω and f(ω) differ in at most D edges, (2) at most D ω’s are mapped to the
same configuration.

Take a configuration ω ∈ Eb. Let U be the set of all points u ∈ Γ such that u is
connected to X in Z by an open self-avoiding path that from the first step on does not
visit {u}. For each u ∈ U , choose one such open self-avoiding path and denote it by πu.
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We first assume that there exists u ∈ U such that Y is connected to Γ in Z \ {u}. For
such ω’s, we define f(ω) as follows. We

(a) close all the edges with an end-vertex in {u} except for the edges of πu and Γ,

(b) open all the edges in {u} that belong to a shortest path between u and Γ in {u}.

Notice that ω and f(ω) differ in at most 2d (k+1)d−2 edges. Y is connected to Γ in Z \{u}
in the configuration f(ω). Finally, since u and Γ are in different open clusters in ω, after
connecting u and Γ by a simple open path as in (b), no new open circuits are created.
Thus, the set {u} can be uniquely reconstructed in f(ω) as the unique such set where X
is connected to Γ.

Assume next that for any u ∈ U , Y is not connected to Γ in Z \ {u}. Take u ∈ U . There
exists v ∈ {u} such that v is connected to Y in Z by an open self-avoiding path that from
the first step on does not visit {v}. Choose one such open self-avoiding path and denote
it by πv. For such ω’s, we define f(ω) exactly as in the first part of Case (a). We

(a) close all the edges with an end-vertex in {u} except for the edges of πu, πv, and Γ,

(b) open all the edges in {u} that belong to a shortest path ρ between u and Γ in {u},
(c) open all the edges in {u} that belong to a shortest path between v and Γ ∪ ρ in {u}.

Notice that unlike in Case (a), it is allowed here that v ∈ Γ, but this makes no difference
for the construction. Indeed, after closing edges as in (a), Y remains connected to Γ only
if v ∈ Γ. Thus, after modifying ω according to (a), either u, v, and Γ are all in different
open clusters or v ∈ Γ and the clusters of u and Γ are different. In both cases, after
connecting u, v, and Γ by simple open paths as in (b) and (c), no new open circuits are
created. Thus, the set {u} can be uniquely reconstructed in f(ω) as the unique set of the
form {z} where X (and Y ) is connected to Γ.

The function f satisfies requirements (1) and (2), and the proof of (3.5) is complete.

Since the proof of Case (c) is essentially the same as the proof of Case (b), we omit it.
Cases (a)-(c) imply (3.3). The proof of Lemma 3.2 is complete.

Remark 3.3. (1) Theorem 3.1 and Remark 2.1 are used in [2] to extend various results
of Járai [17] to slabs. For instance, to prove that the local limit of the occupancy
configurations around vertices in the bulk of a crossing cluster of large box is given
by the IIC measure from Theorem 3.1.

(2) Using Lemma 3.2, one can show that the expected number of vertices of the IIC in
Q(n) is comparable to n2P[0↔ ∂Q(n)].

(3) In [8], the so-called multiple-armed IIC measures were introduced for planar
lattices, which are supported on configurations with several disjoint infinite open
clusters meeting in a neighborhood of the origin. These measures describe the
local occupancy configurations around outlets of the invasion percolation [8] and
pivotals for open crossings of large boxes [2]. It would be interesting to construct
multiple-armed IIC measures on slabs, but at the moment it seems quite difficult.
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