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Abstract

In this paper, we consider the product space for two processes with independent
increments under nonlinear expectations. By introducing a discretization method, we
construct a nonlinear expectation under which the given two processes can be seen
as a new process with independent increments.
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1 Introduction

Peng [4, 5] introduced the notions of distribution and independence under nonlinear
expectation spaces. Under sublinear case, Peng [8] obtained the corresponding central
limit theorem for a sequence of i.i.d. random vectors. The limit distribution is called
G-normal distribution. Based on this distribution, Peng [6, 7] gave the definition of
G-Brownian motion, which is a kind of processes with stationary and independent
increments, and then discussed the Itô stochastic analysis with respect to G-Brownian
motion.

It is well-known that the existence for a sequence of i.i.d. random vectors is important
for central limit theorem. In the nonlinear case, Peng [9] introduced the product space
technique to construct a sequence of i.i.d. random vectors. But this product space
technique does not hold in the continuous time case. More precisely, let (Mt)t≥0 and
(Nt)t≥0 be two d-dimensional processes with independent increments defined respectively
on nonlinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2), we want to construct a
2d-dimensional process (M̃t, Ñt)t≥0 with independent increments defined on a nonlinear

expectation space (Ω,H, Ê) such that (M̃t)t≥0
d
= (Mt)t≥0 and (Ñt)t≥0

d
= (Nt)t≥0. Usually,
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Product space under nonlinear expectations

set Ω = Ω1 × Ω2, M̃t(ω) = Mt(ω1), Ñt(ω) = Nt(ω2) for each ω = (ω1, ω2) ∈ Ω, t ≥ 0. If
we use Peng’s product space technique, then we can only get a 2d-dimensional process
(M̃t, Ñt)t≥0 such that (M̃t)t≥0 is independent from (Ñt)t≥0 or (Ñt)t≥0 is independent
from (M̃t)t≥0. Different from linear expectation case, the independence is not mutual
under nonlinear case (see [2]). So this (M̃t, Ñt)t≥0 is not a process with independent
increments.

In this paper, we introduce a discretization method, which can overcome the problem
of independence. More precisely, for each given Dn = {i2−n : i ≥ 0}, we can construct a
nonlinear expectation Ên under which (M̃t, Ñt)t∈Dn possesses independent increments.
But Ên, n ≥ 1, are not consistent, i.e., the values of the same random variable under Ên

are not equal. Fortunately, we can prove that the limit of Ên exisits by using the notion
of tightness, which was introduced by Peng in [10] to prove central limit theorem under
sublinear case. Denote the limit of Ên by Ê, we show that (M̃t, Ñt)t≥0 is the process with
independent increments under Ê.

This paper is organized as follows: In Section 2, we recall some basic notions and
results of nonlinear expectations. The main theorem is stated and proved in Section 3.

2 Preliminaries

We present some basic notions and results of nonlinear and sublinear expectations in
this section. More details can be found in [1, 3, 9–11].

Let Ω be a given nonempty set and H be a linear space of real-valued functions on Ω

such that if X1,. . . ,Xd ∈ H, then ϕ(X1, X2, . . . , Xd) ∈ H for each ϕ ∈ Cb.Lip(Rd), where
Cb.Lip(R

d) denotes the set of all bounded and Lipschitz functions on Rd. H is considered
as the space of random variables. Similarly, {X = (X1, . . . , Xd) : Xi ∈ H, i ≤ d} denotes
the space of d-dimensional random vectors.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the
following properties: for each X,Y ∈ H,

(i) Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

(ii) Constant preserving: Ê[c] = c for c ∈ R;

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. If (i) and (ii) are satis-
fied, Ê is called a nonlinear expectation and the triple (Ω,H, Ê) is called a nonlinear
expectation space.

Let (Ω,H, Ê) be a nonlinear (resp. sublinear) expectation space. For each given
d-dimensional random vector X, we define a functional on Cb.Lip(Rd) by

F̂X [ϕ] := Ê[ϕ(X)] for each ϕ ∈ Cb.Lip(Rd).

It is easy to verify that (Rd, Cb.Lip(R
d), F̂X) forms a nonlinear (resp. sublinear) expecta-

tion space. F̂X is called the distribution of X. Two d-dimensional random vectors X1 and
X2 defined respectively on nonlinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2)

are called identically distributed, denoted by X1
d
= X2, if F̂X1

= F̂X2
, i.e.,

Ê1[ϕ(X1)] = Ê2[ϕ(X2)] for each ϕ ∈ Cb.Lip(Rd).

Similar to the classical case, Peng [10] gave the following definition of convergence
in distribution.

ECP 22 (2017), paper 11.
Page 2/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP46
http://www.imstat.org/ecp/


Product space under nonlinear expectations

Definition 2.2. Let Xn, n ≥ 1, be a sequence of d-dimensional random vectors defined
respectively on nonlinear (resp. sublinear) expectation spaces (Ωn,Hn, Ên). {Xn : n ≥ 1}
is said to converge in distribution if, for each fixed ϕ ∈ Cb.Lip(Rd), {F̂Xn [ϕ] : n ≥ 1} is a
Cauchy sequence. Define

F̂[ϕ] = lim
n→∞

F̂Xn [ϕ],

then the triple (Rd, Cb.Lip(R
d), F̂) forms a nonlinear (resp. sublinear) expectation space.

If Xn, n ≥ 1, is a sequence of d-dimensional random vectors defined on the same
sublinear expectation space (Ω,H, Ê) satisfying

lim
n,m→∞

Ê[|Xn −Xm|] = 0,

then we can deduce that {Xn : n ≥ 1} converges in distribution by

|F̂Xn [ϕ]− F̂Xm [ϕ]| = |Ê[ϕ(Xn)]− Ê[ϕ(Xm)]| ≤ CϕÊ[|Xn −Xm|],

where Cϕ is the Lipschitz constant of ϕ.
The following definition of tightness is important for obtaining a subsequence which

converges in distribution.

Definition 2.3. Let X be a d-dimensional random vector defined on a sublinear expecta-
tion space (Ω,H, Ê). The distribution of X is called tight if, for each ε > 0, there exist an
N > 0 and a ϕ ∈ Cb.Lip(Rd) with I{|x|≥N} ≤ ϕ such that F̂X [ϕ] = Ê[ϕ(X)] < ε.

Definition 2.4. Let {Êλ : λ ∈ I} be a family of nonlinear expectations and Ê be a
sublinear expectation defined on (Ω,H). {Êλ : λ ∈ I} is said to be dominated by Ê if, for
each λ ∈ I,

Êλ[X]− Êλ[Y ] ≤ Ê[X − Y ] for each X,Y ∈ H.

Definition 2.5. Let Xλ, λ ∈ I, be a family of d-dimensional random vectors defined
respectively on nonlinear expectation spaces (Ωλ,Hλ, Êλ). {F̂Xλ : λ ∈ I} is called
tight if there exists a tight sublinear expectation F̂ on (Rd, Cb.Lip(R

d)) which dominates
{F̂Xλ : λ ∈ I}.
Remark 2.6. A family of sublinear expectations {F̂Xλ : λ ∈ I} on (Rd, Cb.Lip(R

d)) is
tight if and only if F̂[ϕ] = supλ∈I F̂Xλ [ϕ] for each ϕ ∈ Cb.Lip(R

d) is a tight sublinear
expectation.

Theorem 2.7. ([10]) Let Xn, n ≥ 1, be a sequence of d-dimensional random vectors
defined respectively on nonlinear expectation spaces (Ωn,Hn, Ên). If {F̂Xn : n ≥ 1} is
tight, then there exists a subsequence {Xni : i ≥ 1} which converges in distribution.

The following definition of independence is fundamental in nonlinear expectation
theory.

Definition 2.8. Let (Ω,H, Ê) be a nonlinear expectation space. A d-dimensional random
vector Y is said to be independent from another m-dimensional random vector X under
Ê[·] if, for each test function ϕ ∈ Cb.Lip(Rm+d), we have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Remark 2.9. It is important to note that “Y is independent from X" does not imply that
“X is independent from Y " (see [2]).

Remark 2.10. In the above definitions, the condition “X is a d-dimensional random
vector" can be weakened to “X is a mapping from Ω into Rd such that ϕ(X) ∈ H for each
ϕ ∈ Cb.Lip(Rd)". In the latter case, the nonlinear expectation of X may not exist.
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Product space under nonlinear expectations

A d-dimensional stochastic process in a nonlinear expectation space (Ω,H, Ê) is
a family of mappings (Xt)t≥0 from Ω into Rd such that ϕ(Xt1 , . . . , Xtn) ∈ H for each
0 ≤ t1 < · · · < tn and ϕ ∈ Cb.Lip(Rn×d).
Definition 2.11. Two d-dimensional processes (Xt)t≥0 and (Yt)t≥0 defined respectively
on nonlinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) are called identically

distributed, denoted by (Xt)t≥0
d
= (Yt)t≥0, if for each n ∈ N, 0 ≤ t1 < · · · < tn,

(Xt1 , . . . , Xtn)
d
= (Yt1 , . . . , Ytn), i.e.,

Ê1[ϕ(Xt1 , . . . , Xtn)] = Ê2[ϕ(Yt1 , . . . , Ytn)] for each ϕ ∈ Cb.Lip(Rn×d).

Definition 2.12. A d-dimensional process (Xt)t≥0 with X0 = 0 on a nonlinear expecta-
tion space (Ω,H, Ê) is said to have independent increments if, for each 0 ≤ t1 < · · · < tn,
Xtn −Xtn−1

is independent from (Xt1 , . . . , Xtn−1
). A d-dimensional process (Xt)t≥0 with

X0 = 0 is said to have stationary increments if, for each t, s ≥ 0, Xt+s −Xs
d
= Xt.

We give a typical example of processes with stationary and independent increments.

Example 2.13. Let Γ be a given bounded subset in Rd×d, where Rd×d denotes the set
of all d× d matrices. Define G : S(d)→ R by

G(A) =
1

2
sup
Q∈Γ

tr[AQQT ] for each A ∈ S(d),

where S(d) denotes the set of all d × d symmetric matrices. A d-dimensional process
(Bt)t≥0 on a sublinear expectation space (Ω,H, Ê) is called a G-Brownian motion if the
following properties are satisfied:

(1) B0 = 0;

(2) It is a process with independent increments;

(3) For each t, s ≥ 0, Ê[ϕ(Bt+s−Bs)] = uϕ(t, 0) for each ϕ ∈ Cb.Lip(Rd), where uϕ is the
viscosity solution of the following G-heat equation:{

∂tu(t, x)−G(D2
xu(t, x)) = 0,

u(0, x) = ϕ(x).

Obviously, (3) implies that the process (Bt)t≥0 has stationary increments.

3 Main result

Let (Mt)t≥0 and (Nt)t≥0 be two d-dimensional processes with independent increments
defined respectively on nonlinear (resp. sublinear) expectation spaces (Ω1,H1, Ê1) and
(Ω2,H2, Ê2). We need the following assumption:
(A) There exist two sublinear expectations Ẽ1 : H1 → R and Ẽ2 : H2 → R satisfying:

(1) Ẽ1 and Ẽ2 dominate Ê1 and Ê2 respectively;
(2) For each t ≥ 0, the distributions of Mt and Nt are tight under Ẽ1 and Ẽ2 respec-

tively;
(3) For each t ≥ 0,

lim
s→t

(Ẽ1[|Ms −Mt| ∧ 1] + Ẽ2[|Ns −Nt| ∧ 1]) = 0.

Remark 3.1. Noting that for any K > 0,

|Ms −Mt| ∧K ≤ (K ∨ 1)(|Ms −Mt| ∧ 1),

the assumption (3) implies

lim
s→t

(Ẽ1[|Ms −Mt| ∧K] + Ẽ2[|Ns −Nt| ∧K]) = 0.
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Remark 3.2. If Ê1 and Ê2 are sublinear expectations, then we can get

lim
s→t

(Ê1[|Ms −Mt| ∧ 1] + Ê2[|Ns −Nt| ∧ 1]) = 0

by Ê1[·] ≤ Ẽ1[·] and Ê2[·] ≤ Ẽ2[·]. So we can replace Ẽ1 and Ẽ2 by Ê1 and Ê2 in the
assumption (A) respectively.

Now we give our main theorem.

Theorem 3.3. Let (Mt)t≥0 and (Nt)t≥0 be two d-dimensional processes with inde-
pendent increments defined respectively on nonlinear (resp. sublinear) expectation
spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) satisfying the assumption (A). Then there exists
a 2d-dimensional process (M̃t, Ñt)t≥0 with independent increments defined on a non-

linear (resp. sublinear) expectation space (Ω,H, Ê) such that (M̃t)t≥0
d
= (Mt)t≥0 and

(Ñt)t≥0
d
= (Nt)t≥0. Furthermore, (M̃t, Ñt)t≥0 is a process with stationary and independent

increments if (Mt)t≥0 and (Nt)t≥0 are two processes with stationary and independent
increments.

In the following, we only prove the sublinear expectation case. The nonlinear expec-
tation case can be proved by the same method. Moreover, the following lemma shows
that we only need to prove the theorem for t ∈ [0, 1].

Lemma 3.4. Let (Xi
t , Y

i
t )t∈[0,1], i ≥ 0, be a sequence of 2d-dimensional processes with

independent increments defined respectively on sublinear expectation spaces (Ω̄i, H̄i, Ēi)
such that (Xi

t)t∈[0,1]
d
= (Mi+t −Mi)t∈[0,1] and (Y it )t∈[0,1]

d
= (Ni+t −Ni)t∈[0,1]. Then there

exists a 2d-dimensional process (M̃t, Ñt)t≥0 with independent increments defined on a

sublinear expectation space (Ω,H, Ê) such that (M̃t)t≥0
d
= (Mt)t≥0 and (Ñt)t≥0

d
= (Nt)t≥0.

Proof. Set (Ω,H, Ê) = (Π∞i=0Ω̄i,⊗∞i=0H̄i,⊗∞i=0Ēi) which is the product space of
{(Ω̄i, H̄i, Ēi) : i ≥ 0} (see [9]). For each ω = (ωi)

∞
i=0, define

M̃t(ω) =

[t]−1∑
i=0

Xi
1(ωi) +X

[t]
t−[t](ω[t]), Ñt(ω) =

[t]−1∑
i=0

Y i1 (ωi) + Y
[t]
t−[t](ω[t]).

By Proposition 3.15 in Chapter I in [9], we can easily obtain that (M̃t, Ñt)t≥0 has inde-

pendent increments property, (M̃t)t≥0
d
= (Mt)t≥0 and (Ñt)t≥0

d
= (Nt)t≥0.

Set Ω = Ω1 × Ω2 = {ω = (ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}. For each ω = (ω1, ω2) ∈ Ω,
define

M̃t(ω) = Mt(ω1), Ñt(ω) = Nt(ω2) for t ∈ [0, 1].

For notation simplicity, we denote Xt = (M̃t, Ñt). Define the space of random variables
as follows:

H = {ϕ(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1) : ∀n ≥ 1,∀0 ≤ t1 < t2 < · · · < tn ≤ 1,

∀ϕ ∈ Cb.Lip(Rn×2d)}.

In the following, we will construct a sublinear expectation Ê : H → R such that

(M̃t)t∈[0,1]
d
= (Mt)t∈[0,1], (Ñt)t∈[0,1]

d
= (Nt)t∈[0,1] and (M̃t, Ñt)t∈[0,1] possessing indepen-

dent increments. In order to construct Ê, we set, for each fixed n ≥ 1,

Hn = {ϕ(Xδn , X2δn −Xδn , . . . , X2nδn −X(2n−1)δn) : ∀ϕ ∈ Cb.Lip(R2n×2d)},

where δn = 2−n. Define Ên : Hn → R as follows:
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Product space under nonlinear expectations

Step 1. For each given φ(Xiδn −X(i−1)δn) = φ(M̃iδn − M̃(i−1)δn , Ñiδn − Ñ(i−1)δn) ∈ Hn
with i ≤ 2n and φ ∈ Cb.Lip(R2d), define

Ên[φ(Xiδn −X(i−1)δn)] = Ê1[ψ(Miδn −M(i−1)δn)],

where

ψ(x) = Ê2[φ(x,Niδn −N(i−1)δn)] for each x ∈ Rd.

Step 2. For each given ϕ(Xδn , X2δn − Xδn , . . . , X2nδn − X(2n−1)δn) ∈ Hn with ϕ ∈
Cb.Lip(R

2n×2d), define

Ên[ϕ(Xδn , X2δn −Xδn , . . . , X2nδn −X(2n−1)δn)] = ϕ0,

where ϕ0 is obtained backwardly by Step 1 in the following sense:

ϕ2n−1(x1, x2, . . . , x2n−1) = Ên[ϕ(x1, x2, . . . , x2n−1, X2nδn −X(2n−1)δn)],

ϕ2n−2(x1, x2, . . . , x2n−2) = Ên[ϕ2n−1(x1, x2, . . . , x2n−2, X(2n−1)δn −X(2n−2)δn)],

...

ϕ1(x1) = Ên[ϕ2(x1, X2δn −Xδn)],

ϕ0 = Ên[ϕ1(Xδn)].

Lemma 3.5. Let (Ω,Hn, Ên) be defined as above. Then

(1) (Ω,Hn, Ên) forms a sublinear expectation space;

(2) For each 2 ≤ i ≤ 2n, Xiδn − X(i−1)δn is independent from (Xδn , . . . , X(i−1)δn −
X(i−2)δn);

(3) (M̃δn , M̃2δn−M̃δn , . . . , M̃2nδn−M̃(2n−1)δn)
d
= (Mδn ,M2δn−Mδn , . . . ,M2nδn−M(2n−1)δn),

(Ñδn , Ñ2δn − Ñδn , . . . , Ñ2nδn − Ñ(2n−1)δn)
d
= (Nδn , N2δn −Nδn , . . . , N2nδn −N(2n−1)δn).

Proof. (1) It is easy to check that Ên : Hn → R is well-defined. We only prove that Ên

satisfies monotonicity, the other properties can be similarly obtained. For each given
Y = ϕ1(Xδn , X2δn − Xδn , . . . , X2nδn − X(2n−1)δn), Z = ϕ2(Xδn , X2δn − Xδn , . . . , X2nδn −
X(2n−1)δn) ∈ Hn with Y ≥ Z, it is easy to verify that Y = (ϕ1 ∨ ϕ2)(Xδn , X2δn −
Xδn , . . . , X2nδn −X(2n−1)δn). Then by the definition of Ên and the monotonicity of Ê1 and

Ê2, we can get Ên[Y ] ≥ Ên[Z]. (2) and (3) can be easily obtained by the definition of
Ên.

Corollary 3.6. Set Dn = {i2−n : 0 ≤ i ≤ 2n}. Then

(1) For each 0 ≤ t1 < · · · < tm with ti ∈ Dn, i ≤ m, Xtm −Xtm−1
is independent from

(Xt1 , . . . , Xtm−1
) under Êk for any k ≥ n;

(2) For each 0 ≤ t1 < · · · < tm with ti ∈ Dn, i ≤ m, (M̃t1 , . . . , M̃tm)
d
= (Mt1 , . . . ,Mtm) and

(Ñt1 , . . . , Ñtm)
d
= (Nt1 , . . . , Ntm) under Êk for any k ≥ n.

Proof. Noting that Xtm −Xtm−1
is the sum of finite Xiδk −X(i−1)δk , then by Lemma 3.5

and the definition of independence and distribution, it is easy to obtain (1) and (2).
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Obviously, Hn ⊂ Hn+1 for each n ≥ 1. We set

L =
⋃
n≥1

Hn.

It is easily seen that L is a subspace of H such that if Y1,. . . ,Ym ∈ L, then ϕ(Y1, . . . , Ym) ∈
L for each ϕ ∈ Cb.Lip(Rm).

In the following, we want to define a sublinear expectation Ê : L → R. Unfortunately,
Ên+1[·] 6= Ên[·] on Hn, because the order of independence under sublinear expectation
space is unchangeable. For example, let (Mt)t≥0 and (Nt)t≥0 be two 1-dimensional G-
Brownian motions with the same G(a) = 1

2 (σ̄2a+ − σ2a−), where 0 ≤ σ2 < σ̄2 <∞. Since

Ê1[|Mt|k] + Ê2[|Nt|k] <∞ for any k ≥ 1 and t ≥ 0, we can use local Lipschitz functions to
define Hn (see [9]). Take ϕ(X2−1) = (M̃2−1)2Ñ2−1 ∈ H1, by simple calculation, we can
get Ê1[ϕ(X2−1)] = 0 and Ê2[ϕ(X2−1)] = 2−2(σ̄2 − σ2)Ê2[(N2−2)+] > 0. Thus Ê1[·] 6= Ê2[·]
on H1 for this case. But the following lemma will allow us to construct Ê.

Lemma 3.7. For each fixed n ≥ 1, let F̂nk , k ≥ n, be the distribution of (Xδn , X2δn −
Xδn , . . . , X2nδn −X(2n−1)δn) under Êk. Then {F̂nk : k ≥ n} is tight.

Proof. For each given N > 1, let ϕN ∈ Cb.Lip(R2n×2d) satisfy I{|x|≥N} ≤ ϕN ≤ I{|x|≥N−1}.
Taking x = (x1 − x0, y1 − y0, · · · , x2n − x2n−1, y2n − y2n−1), xi, yi ∈ Rd, i ≤ 2n, it is easy
to verify that

I{|x|≥N−1} ≤
2n∑
i=1

(I{|xi−xi−1|≥(N−1)
√

2−(n+1)} + I{|yi−yi−1|≥(N−1)
√

2−(n+1)})

≤ 2

2n∑
i=0

(I{|xi|≥(N−1)
√

2−(n+3)} + I{|yi|≥(N−1)
√

2−(n+3)})

≤ 2

2n∑
i=0

(ψN (xi) + ψN (yi)),

where ψN ∈ Cb.Lip(Rd) such that I{|z|≥(N−1)
√

2−(n+3)} ≤ ψN ≤ I{|z|≥(N−2)
√

2−(n+3)}. Thus
we have

F̂nk [ϕN ] = Êk[ϕN (Xδn , X2δn −Xδn , . . . , X2nδn −X(2n−1)δn)]

≤ 2

2n∑
i=1

(Êk[ψN (M̃iδn)] + Êk[ψN (Ñiδn)])

= 2

2n∑
i=1

(Ê1[ψN (Miδn)] + Ê2[ψN (Niδn)]),

where the last equality is due to (2) in Corollary 3.6. By (2) in the assumption (A) and
the definition of tightness, for each ε > 0, we can take N large enough such that

sup
k≥n

F̂nk [ϕN ] ≤ 2

2n∑
i=1

(Ê1[ψN (Miδn)] + Ê2[ψN (Niδn)]) < ε.

Thus {F̂nk : k ≥ n} is tight.

Now we will use this lemma to construct a sublinear expectation Ê : L → R.

Lemma 3.8. Set D = {i2−n : n ≥ 1, 0 ≤ i ≤ 2n}. Then there exists a sublinear
expectation Ê : L → R satisfying the following properties:
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(1) For each 0 ≤ t1 < · · · < tn with ti ∈ D, i ≤ n, Xtn − Xtn−1
is independent from

(Xt1 , . . . , Xtn−1
);

(2) For each 0 ≤ t1 < · · · < tn with ti ∈ D, i ≤ n, (M̃t1 , . . . , M̃tn)
d
= (Mt1 , . . . ,Mtn) and

(Ñt1 , . . . , Ñtn)
d
= (Nt1 , . . . , Ntn).

Proof. For n = 1, by Lemma 3.7, we know {F̂1
k : k ≥ 1} is tight. Then, by Theorem

2.7, there exists a subsequence {F̂1
k1j

: j ≥ 1} which converges in distribution, i.e., for

each ϕ ∈ Cb.Lip(R
2×2d), {F̂1

k1j
[ϕ] : j ≥ 1} is a Cauchy sequence. Note that F̂1

k1j
[ϕ] =

Êk
1
j [ϕ(X2−1 , X1 −X2−1)], then for each Y ∈ H1, {Êk

1
j [Y ] : j ≥ 1} is a Cauchy sequence.

For n = 2, by Lemma 3.7 and Theorem 2.7, we can find a subsequence {k2
j : j ≥ 1} ⊂

{k1
j : j ≥ 1} such that for each Y ∈ H2, {Êk

2
j [Y ] : j ≥ 1} is a Cauchy sequence.

Repeat this process, for each n ≥ 2, we can find a subsequence {knj : j ≥ 1} ⊂ {kn−1
j :

j ≥ 1} such that for each Y ∈ Hn, {Êk
n
j [Y ] : j ≥ 1} is a Cauchy sequence. Taking the

diagonal sequence {kjj : j ≥ 1}, then for each Y ∈ L, {Êk
j
j [Y ] : j ≥ 1} is a Cauchy

sequence, where Êk
j
j [Y ] =∞ if Y 6∈ Hk

j
j . Define

Ê[Y ] = lim
j→∞

Êk
j
j [Y ] for each Y ∈ L.

For each Y , Z ∈ L, there exists a j0 such that Y , Z ∈ Hk
j
j for j ≥ j0. From this we can

easily deduce that Ê is a sublinear expectation.

Now we prove that this Ê satisfies (1) and (2). For each 0 ≤ t1 < · · · < tn with ti ∈ D,

i ≤ n, there exists a j0 such that ϕ(Xt1 , . . . , Xtn−1 , Xtn − Xtn−1) ∈ Hk
j
j for each j ≥ j0

and ϕ ∈ Cb.Lip(Rn×2d). Thus, from (2) in Lemma 3.5, we can get

Ê[ϕ(Xt1 , . . . , Xtn−1
, Xtn −Xtn−1

)] = lim
j→∞

Êk
j
j [ϕ(Xt1 , . . . , Xtn−1

, Xtn −Xtn−1
)]

= lim
j→∞

Êk
j
j [ψj(Xt1 , . . . , Xtn−1

)],

where ψj(x1, . . . , xn−1) = Êk
j
j [ϕ(x1, . . . , xn−1, Xtn −Xtn−1

)] for each xi ∈ R2d, i ≤ n − 1.

Define ψ(x1, . . . , xn−1) = Ê[ϕ(x1, . . . , xn−1, Xtn −Xtn−1
)] for each xi ∈ R2d, i ≤ n− 1. In

order to prove (1), we only need to show that

lim
j→∞

Êk
j
j [ψj(Xt1 , . . . , Xtn−1)] = Ê[ψ(Xt1 , . . . , Xtn−1)]. (3.1)

It is clear that ψj , j ≥ j0, and ψ are bounded Lipschitz functions with the common bound
Kϕ and the common Lipschitz constant Lϕ, where Kϕ and Lϕ are respective the bound
and Lipschitz constant of ϕ. On the other hand, for each x = (x1

1, x
2
1, . . . , x

1
n−1, x

2
n−1) ∈

R(n−1)×2d, by the definition of Ê, we can get ψj(x) → ψ(x). Thus, from the common
Lipschitz constant Lϕ and pointwise convergence, we can easily obtain that {ψj : j ≥ j0}
converges uniformly to ψ on any compact set in R(n−1)×2d. For each given N > 0, we
have

|ψj(x)− ψ(x)| ≤ aj + 2KϕI{|x|>N} ≤ aj + 2Kϕ

n−1∑
i=1

(ϕN (x1
i ) + ϕN (x2

i )),

where aj = sup|x|≤N |ψj(x)− ψ(x)| and ϕN ∈ Cb.Lip(Rd) such that I{|z|≥ N√
2(n−1)

} ≤ ϕN ≤
I{|z|≥ N−1√

2(n−1)
}. From the uniform convergence on any compact set, we know aj → 0 as
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j →∞. Thus

|Êk
j
j [ψj(Xt1 , . . . , Xtn−1

)]− Êk
j
j [ψ(Xt1 , . . . , Xtn−1

)]|

≤ Êk
j
j [|ψj(Xt1 , . . . , Xtn−1

)− ψ(Xt1 , . . . , Xtn−1
)|]

≤ Êk
j
j [aj + 2Kϕ

n−1∑
i=1

(ϕN (M̃ti) + ϕN (Ñti))]

≤ aj + 2Kϕ

n−1∑
i=1

(Êk
j
j [ϕN (M̃ti)] + Êk

j
j [ϕN (Ñti)])

= aj + 2Kϕ

n−1∑
i=1

(Ê1[ϕN (Mti)] + Ê2[ϕN (Nti)]).

Noting that Êk
j
j [ψ(Xt1 , . . . , Xtn−1)]→ Ê[ψ(Xt1 , . . . , Xtn−1)] as j →∞, we have

lim sup
j→∞

|Êk
j
j [ψj(Xt1 , . . . , Xtn−1

)]− Ê[ψ(Xt1 , . . . , Xtn−1
)]|

≤ 2Kϕ

n−1∑
i=1

(Ê1[ϕN (Mti)] + Ê2[ϕN (Nti)]).

Due to the tightness of M and N , we get relation (3.1). Thus (1) is obtained. (2) is
obvious by the definition of Ê and (2) in Corollary 3.6.

Proof of Theorem 3.3. We first extend the sublinear expectation Ê : L → R to Ê : H →
R. Here we still use Ê for notation simplicity. For each ϕ(Xt1 , Xt2−Xt1 , . . . , Xtn−Xtn−1

) ∈
H with ϕ ∈ Cb.Lip(Rn×2d), we can choose tik ∈ D, k ≤ n, i ≥ 1, such that tik < tik+1 and
tik ↓ tk as i→∞. By (3) in the assumption (A), we have

|Ê[ϕ(Xti1
, Xti2

−Xti1
, . . . , Xtin

−Xtin−1
)]− Ê[ϕ(Xtj1

, Xtj2
−Xtj1

, . . . , Xtjn
−Xtjn−1

)]|
≤ LϕÊ[(

∑n
k=1 |Xtik

−Xtjk
−Xtik−1

+Xtjk−1
|) ∧ 2Kϕ

Lϕ
]

≤ LϕÊ[
∑n
k=1(|Xtik

−Xtjk
−Xtik−1

+Xtjk−1
| ∧ 2Kϕ

Lϕ
)]

≤ 2Lϕ
∑n
k=1{Ê[|M̃tik

− M̃tjk
| ∧ 2Kϕ

Lϕ
] + Ê[|Ñtik − Ñtjk | ∧

2Kϕ
Lϕ

]}
= 2Lϕ

∑n
k=1{Ê1[|Mtik

−Mtjk
| ∧ 2Kϕ

Lϕ
] + Ê2[|Ntik −Ntjk | ∧

2Kϕ
Lϕ

]}
≤ 2Lϕ

∑n
k=1{Ê1[|Mtik

−Mtk | ∧
2Kϕ
Lϕ

+ |Mtjk
−Mtk | ∧

2Kϕ
Lϕ

]

+Ê2[|Ntik −Ntk | ∧
2Kϕ
Lϕ

+ |Ntjk −Ntk | ∧
2Kϕ
Lϕ

]}
→ 0 as i, j →∞,

(3.2)

where Lϕ > 0 is the Lipschitz constant of ϕ, Kϕ = sup |ϕ| and ti0 = 0 for i ≥ 1. So we can
define

Ê[ϕ(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1
)] = lim

i→∞
Ê[ϕ(Xti1

, Xti2
−Xti1

, . . . , Xtin
−Xtin−1

)].

It is easy to check that the limit does not depend on the choice of tik by using the same
estimate as above.

Our next task is to show that Ê : H → R is well-defined, that is, if ϕ(Xt1 , Xt2 −
Xt1 , . . . , Xtn − Xtn−1) = ϕ̃(Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1) with ϕ, ϕ̃ ∈ Cb.Lip(R

n×2d),

then

Ê[ϕ(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1
)] = Ê[ϕ̃(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

)]. (3.3)
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Set

U1 = {(M̃t1(ω), M̃t2(ω)− M̃t1(ω), . . . , M̃tn(ω)− M̃tn−1
(ω)) : ω ∈ Ω},

U2 = {(Ñt1(ω), Ñt2(ω)− Ñt1(ω), . . . , Ñtn(ω)− Ñtn−1
(ω)) : ω ∈ Ω}.

It is clear that ϕ = ϕ̃ on U1 × U2, where Ui, i = 1, 2, is the closure of Ui. For each ε > 0,
denote

Uεi = {x ∈ Rn×d : d(x, Ui) < ε}, i = 1, 2.

By Tietze’s extension theorem, we can choose a Lipschitz function ψεi , i = 1, 2, such that
I(Uεi )c ≤ ψεi ≤ IUic . Then

|(ϕ− ϕ̃)(Xti1
, Xti2

−Xti1
, . . . , Xtin

−Xtin−1
)|

≤ (|ϕ− ϕ̃|IUε1×Uε2 + |ϕ− ϕ̃|I(Uε1×Uε2 )c)(Xti1
, Xti2

−Xti1
, . . . , Xtin

−Xtin−1
)

≤ (Lϕ + Lϕ̃)
√

2ε+ (Kϕ +Kϕ̃)(ψε1(M̃ti1
, M̃ti2

− M̃ti1
, . . . , M̃tin

− M̃tin−1
)

+ ψε2(Ñti1 , Ñti2 − Ñti1 , . . . , Ñtin − Ñtin−1
)),

where Lϕ̃, Kϕ̃ are defined as above. Taking Ê[·] on both sides, we have

|Ê[ϕ(Xti1
, Xti2

−Xti1
, . . . , Xtin

−Xtin−1
)]− Ê[ϕ̃(Xti1

, Xti2
−Xti1

, . . . , Xtin
−Xtin−1

)]|

≤ (Lϕ + Lϕ̃)
√

2ε+ (Kϕ +Kϕ̃)(Ê[ψε1(M̃ti1
, M̃ti2

− M̃ti1
, . . . , M̃tin

− M̃tin−1
)]

+ Ê[ψε2(Ñti1 , Ñti2 − Ñti1 , . . . , Ñtin − Ñtin−1
)])

= (Lϕ + Lϕ̃)
√

2ε+ (Kϕ +Kϕ̃)(Ê1[ψε1(Mti1
,Mti2

−Mti1
, . . . ,Mtin

−Mtin−1
)]

+ Ê2[ψε2(Nti1 , Nti2 −Nti1 , . . . , Ntin −Ntin−1
)]).

By the definition of M̃ , it is easy to see U1 = {(Mt1(ω1),Mt2(ω1)−Mt1(ω1), . . . ,Mtn(ω1)−
Mtn−1

(ω1)) : ω1 ∈ Ω1}, which implies ψε1(Mt1 ,Mt2 −Mt1 , . . . ,Mtn −Mtn−1
) = 0. Thus, by

the same method as (3.2), we have

|Ê1[ψε1(Mti1
,Mti2

−Mti1
, . . . ,Mtin

−Mtin−1
)]|

= |Ê1[ψε1(Mti1
,Mti2

−Mti1
, . . . ,Mtin

−Mtin−1
)− ψε1(Mt1 ,Mt2 −Mt1 , . . . ,Mtn −Mtn−1)]|

→ 0 as i→∞.

Similarly, Ê2[ψε2(Nti1 , Nti2 −Nti1 , . . . , Ntin −Ntin−1
)]→ 0 as i→∞. It follows that

lim sup
i→∞

|Ê[ϕ(Xti1
, Xti2

−Xti1
, . . . , Xtin

−Xtin−1
)]− Ê[ϕ̃(Xti1

, Xti2
−Xti1

, . . . , Xtin
−Xtin−1

)]|

≤ (Lϕ + Lϕ̃)
√

2ε.

Letting ε→ 0, we obtain (3.3).
Moreover, it is easy to verify that Ê is a sublinear expectation. By (2) in Lemma 3.8

and the assumption (A), we can deduce that (M̃t)t∈[0,1]
d
= (Mt)t∈[0,1] and (Ñt)t∈[0,1]

d
=

(Nt)t∈[0,1]. Then we verify that (Xt)t∈[0,1] has independent increments. For each 0 ≤ t1 <
· · · < tn ≤ 1, we can choose tik ∈ D as above. By the definition of Ê and (1) in Lemma 3.8,
we can get that for each ϕ ∈ Cb.Lip(Rn×2d),

Ê[ϕ(Xt1 , . . . , Xtn−1
, Xtn −Xtn−1

)] = lim
i→∞

Ê[ϕ(Xti1
, . . . , Xtin−1

, Xtin
−Xtin−1

)]

= lim
i→∞

Ê[ψi(Xti1
, . . . , Xtin−1

)],
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where ψi(x1, . . . , xn−1) = Ê[ϕ(x1, . . . , xn−1, Xtin
−Xtin−1

)]. Define

ψ(x1, . . . , xn−1) = Ê[ϕ(x1, . . . , xn−1, Xtn −Xtn−1
)].

Then

|ψi(x1, . . . , xn−1)− ψ(x1, . . . , xn−1)|

≤ LϕÊ[|Xtin
−Xtin−1

−Xtn +Xtn−1
| ∧ 2Kϕ

Lϕ
]

≤ Lϕ{Ê1[|Mtin
−Mtn | ∧

2Kϕ

Lϕ
+ |Mtin−1

−Mtn−1
| ∧ 2Kϕ

Lϕ
]

+ Ê2[|Ntin −Ntn | ∧
2Kϕ

Lϕ
+ |Ntin−1

−Ntn−1
| ∧ 2Kϕ

Lϕ
]},

which implies

|Ê[ψi(Xti1
, . . . , Xtin−1

)]− Ê[ψ(Xti1
, . . . , Xtin−1

)]|

≤ Lϕ{Ê1[|Mtin
−Mtn | ∧

2Kϕ

Lϕ
+ |Mtin−1

−Mtn−1
| ∧ 2Kϕ

Lϕ
]

+ Ê2[|Ntin −Ntn | ∧
2Kϕ

Lϕ
+ |Ntin−1

−Ntn−1
| ∧ 2Kϕ

Lϕ
]}.

From this we deduce

Ê[ϕ(Xt1 , . . . , Xtn−1 , Xtn −Xtn−1)] = lim
i→∞

Ê[ψ(Xti1
, . . . , Xtin−1

)]

= Ê[ψ(Xt1 , . . . , Xtn−1
)],

which proves that (Xt)t∈[0,1] has independent increments.
If (Mt)t∈[0,1] and (Nt)t∈[0,1] are two processes with stationary and independent incre-

ments, then from the construction of Ê, (Xt)t∈[0,1] has stationary increments. The proof
is complete.

In the following, we give an example to calculate Ê.

Example 3.9. Let Γi, i = 1, 2, be two given bounded subset in Rd×d. Define Gi : S(d)→
R by

Gi(A) =
1

2
sup
Q∈Γi

tr[AQQT ] for each A ∈ S(d).

Let (Bit)t≥0 be a d-dimensional Gi-Brownian motion defined on sublinear expectation
space (Ωi,Hi, Êi), i = 1, 2. In the above, we construct a sublinear expectation space
(Ω,H, Ê) and a 2d-dimensional process (B̃t)t≥0 = (B̃1

t , B̃
2
t )t≥0 with stationary and inde-

pendent increments satisfying (B̃1
t )t≥0

d
= (B1

t )t≥0 and (B̃2
t )t≥0

d
= (B2

t )t≥0. Since

Ê[|B̃t|3] ≤ 4(Ê[|B̃1
t |3] + Ê[|B̃2

t |3]) = 4(Ê1[|B1
t |3] + Ê2[|B2

t |3]) = 4Ct
3
2 ,

where C = Ê1[|B1
1 |3] + Ê2[|B2

1 |3], by Theorem 1.6 in Chapter III in [9], we can obtain that
(B̃t)t≥0 is a G-Brownian motion with

G(A) =
1

2
Ê[〈AB̃1, B̃1〉] for each A =

[
A1 D

DT A2

]
∈ S(2d).

By our construction, it is easy to check that Ên[〈DB̃2
1 , B̃

1
1〉] = Ên[−〈DB̃2

1 , B̃
1
1〉] = 0 for

each n ≥ 1. Thus Ê[〈DB̃2
1 , B̃

1
1〉] = Ê[−〈DB̃2

1 , B̃
1
1〉] = 0. By subadditivity, we can get

Ê[〈AB̃1, B̃1〉] = Ê[〈A1B̃
1
1 , B̃

1
1〉+ 〈A2B̃

2
1 , B̃

2
1〉]. Furthermore,

Ên[〈A1B̃
1
1 , B̃

1
1〉+ 〈A2B̃

2
1 , B̃

2
1〉] = Ê1[〈A1B

1
1 , B

1
1〉] + Ê2[〈A2B

2
1 , B

2
1〉]

for each n ≥ 1 by our construction. Thus G(A) = G1(A1) +G2(A2).
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Finally, we must observe that Ê in our main Theorem 3.3 may not be unique. This
point will be illustrated by an example.

Example 3.10. Let (Bit)t≥0 be a 1-dimensional G-Brownian motion defined on sublinear
expectation space (Ωi,Hi, Êi), i = 1, 2, where

G(a) =
1

2
(σ2a+ − σ2a−), a ∈ R,

here 0 ≤ σ2 < σ2 <∞. For each fixed λ ∈ [0, 1], define

G̃λ(A) = λG(a11 + a22) + (1− λ)[G(a11) +G(a22)] for each A = (aij) ∈ S(2).

Following Chapter III in [9], we can construct a sublinear expectation space (Ω,H, Êλ)

and a G̃λ-Brownian motion (B̃t)t≥0 = (B̃1
t , B̃

2
t )t≥0. By Proposition 1.4 in Chapter III in

[9], it is easy to verify that (B̃1
t )t≥0

d
= (B1

t )t≥0 and (B̃2
t )t≥0

d
= (B2

t )t≥0. Thus in Theorem
3.3 we can take Ê = Êλ, λ ∈ [0, 1], where Êλ1 6= Êλ2 for λ1 6= λ2.
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