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Abstract

We prove an upper bound of 1.5321n logn for the mixing time of the random-to-random
insertion shuffle, improving on the best known upper bound of 2n logn. Our proof is
based on the analysis of a non-Markovian coupling.
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1 Introduction

How many shuffles does it take to mix up a deck of cards? Mathematicians have
long been attracted to card shuffling problems. This is partly because of their natural
beauty, and partly because they provide a testing ground for the more general problem
of finding the mixing time of a Markov chain, which has applications to computer science,
statistical physics and optimization.

Let Xt be a Markov chain on a finite state space V that converges to the uniform
distribution. For probability measures µ and ν on V , define the total variation distance
||µ− ν|| = 1

2

∑
x∈V |µ(x)− ν(x)|, and define the ε-mixing time

Tmix(ε) = min{t : ||Pr(Xt = ·)− U|| ≤ ε for all x ∈ V } ,

where U denotes the uniform distribution on V .
The random-to-random insertion shuffle has the following transition rule. At each

step choose a card uniformly at random, remove it from the deck and then re-insert
in to a random position. It has long been conjectured that the mixing time for the
random-to-random insertion shuffle on n cards exhibits cutoff at a time on the order of
n log n. That is, there is a constant c such that for any ε ∈ (0, 1), the ε-mixing time is
asymptotic to cn log n. It has further been conjectured (see [4]) that the constant c = 3

4 .
Uyemura-Reyes [9] proved a lower bound of 1

2n log n. This was improved by Subag
[7] to the conjectured value of 3

4n log n. However, a matching upper bound has not been
found. Diaconis and Saloff-Coste [5] used comparison techniques to prove a O(n log n)

upper bound. The constant was improved by Uyemura-Reyes [9] and then by Saloff-Coste
and Zuniga [8], who proved upper bounds of 4n log n and 2n log n, respectively. The main
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Random-to-random shuffle

contribution of this paper is to improve the constant in the upper bound to 1.5321. We
achieve this via a non-Markovian coupling that reduces the problem of bounding the
mixing time to finding the second largest eigenvalue of a certain Markov chain on 10

states. We also use the technique of path coupling (see [1]).

2 Main result

For sequences an and bn, we write an ∼ bn if limn→∞
an
bn

= 1 and an . bn if
lim supn→∞

an
bn
≤ 1. Let P be the transition matrix of the random-to-random insertion

shuffle. Define

d(t) = max
y
||P t(y, ·)− U|| .

When the number of cards is n, we write dn(t) for the value of d(t), and T (n)
mix(ε) for the

ε-mixing time of the random-to-random insertion shuffle. Our main result is the following
upper bound on T (n)

mix(ε).

Theorem 2.1. For any ε ∈ (0, 1) we have T (n)
mix(ε) . 1.5321n log n.

We think of a permutation π in Sn as representing the order of a deck of n cards, with
π(i) = position of card i. Say x and x′ are adjacent, and write x≈x′, if x′ = (i, j)x for a
transposition (i, j). We prove Theorem 2.1 using a path coupling argument (see [1]) and
the following lemma.

Lemma 2.2. If n is sufficiently large and x and x′ are adjacent permutations in Sn, then
there exist positive constants c and α such that

||P t(x, ·)− P t(x′, ·)|| ≤ c

n1+α
for all t > 1.5321n log n .

The proof of Lemma 2.2, which uses a non-Markovian coupling, is deferred to Section
3.

Proof of Theorem 2.1. Suppose that t > 1.5321n log n. By convexity of the l1-norm, and
since U = 1

n!

∑
z∈Sn P

t(z, ·), it follows that for any state y we have

||P t(y, ·)− U|| ≤ max
z
||P t(y, ·)− P t(z, ·)|| . (2.1)

Since any permutation in Sn can be written as a product of at most n− 1 transpositions,
by the triangle inequality the quantity on the righthand side of (2.1) is at most

(n− 1) max
x≈ x′

||P t(x, ·)− P t(x′, ·)|| . (2.2)

By (2.1), (2.2), and Lemma 2.2, if n is sufficiently large, there exist positive constants c
and α such that

d(t) = max
y
||P t(y, ·)− U|| ≤ c(n− 1)

n1+α
,

which tends to zero as n→∞.

3 Proof of Lemma 2.2

Recall that we think of a permutation π in Sn as representing the order of a deck
of n cards, with π(i) = position of card i. Let Mi,j : Sn → Sn be the operation on
permutations that removes the card of label i from the deck and re-inserts it{

to the right of the card of label j if i 6= j;
to the leftmost position if i = j.
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We call such operations shuffles. If 〈M1, . . . ,Mk〉 is sequence of shuffles, we write
xM1M2 · · ·Mk for Mk ◦Mk−1 · · ·M1(x).

The transition rule for the random-to-random insertion shuffle can now be stated as
follows. If the current state is x, choose a shuffle M uniformly at random (that is, choose
a and b uniformly at random and let M = Ma,b) and move to xM .

We call the numbers in {1, . . . , n} cards. If a shuffle M removes card c from the deck
and then re-inserts it, we call M a c-move.

If P = 〈M1,M2, . . . 〉 is a sequence of shuffles, we write (Px)t for the permutation
xM1 · · ·Mt. Note that if P is a sequence of independent uniform random shuffles, then
{(Px)t : t ≥ 0} is the random-to-random insertion shuffle started at x.

3.1 The Non-Markovian coupling

Fix a permutation x and i, j ∈ {1, 2, . . . , n}. The aim of this subsection is to define a
coupling of the random-to-random insertion shuffle starting from x and (i, j)x, respec-
tively. Suppose that we couple the processes so that the same labels are chosen for each
shuffle. Note that if there is an i-move (respectively, j-move) followed at some point by a
j-move (respectively, i-move), then the processes will couple at the time of the j-move
(respectively, i-move) provided that any cards placed to the right of card j (respectively,
i) at any intermediate time (and any cards placed to the right of those cards, and so on)
were subsequently removed. We keep track of these “problematic” cards using a process
we call the queue.

For positive integers k we will call a sequence 〈M1, . . . ,Mk〉 of shuffles a k-path. For
a k-path P, define the P-queue (or, simply the queue) as the following Markov chain
{Qt : t = 0, . . . , k} on subsets of cards. Initially, we have Q0 = ∅. If the queue at time t is
Qt, and the shuffle at time t+ 1 is Ma,b, the next queue Qt+1 is

{i} if a = j;
{j} if a = i;
Qt ∪ {a} if a /∈ {i, j} and b ∈ Qt − {a}.
Qt − {a} otherwise.

We call a shuffle an i-or-j move if it is an i-move or a j-move. Note that at any time after
the first i-or-j move the queue contains exactly one card from {i, j}. Let P = 〈M1, . . . ,Mk〉
be a k-path. For t < k, we say that t is a good time of P if

1. Mt is an i-or-j move;

2. there is a time t′ ∈ {t+ 1, . . . , k} such that

(a) Mt′ is the next i-or-j move after Mt;
(b) the queue is a singleton at time t′ − 1 (i.e., either {i} or {j});
(c) the card moved at time t′ is different from the card moved at time t.

Define

T =

{
max{t < k : t is a good time of P}, if there is a good time of P,
∞, otherwise.

and call T the last good time of P. Let θi,jP be the k-path obtained from P by reversing
the roles of i and j in each shuffle before time T (that is, by replacing shuffle Ma,b

with Mπ(a),π(b), where π is a transposition of i and j). Note that θi,jP has i-or-j moves
at the same times as P. Furthermore, since the queue is reset at the times of i-or-j
moves, the θi,jP-queue will have the same values as the P-queue at all times t ≥ T . It
follows that the last good time of θi,jP is the same as the last good time of P, and hence
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θi,j(θi,j(P)) = P. Since θi,j is its own inverse, it is a bijection and hence if P is a uniform
random k-path, then so is θi,jP.

Let x′ = (i, j)x. Let Pk be a uniform random k-path, and let Tk be the last good time
of Pk. Note that Tk < k or Tk =∞. For t with 0 ≤ t ≤ k, define

xt = (Pkx)t x′t = ((θi,jPk)x′)t .

It is clear that xt and x′t have distributions P t(x, ·) and P t(x′, ·), respectively, for all t ≤ k.

Lemma 3.1. If xk 6= x′k then Tk =∞.

Proof. Assume that Tk < k. Note that at any time t < Tk, the permutation (Pkx)t can be
obtained from ((θi,jPk)x′)t by interchanging the cards i and j. Suppose that the next
i-or-j move after time Tk occurs at time T ′k. Without loss of generality, there is an i-move
at time Tk and a j-move at time T ′k. We claim that for times t with Tk ≤ t < T ′k, the
permutation x′t can be obtained from xt by moving only the cards in Qt, as shown in the
diagram below. (In the diagram, the mth X in the top row represents the same card as
the mth X in the bottom row, and Q represents all the cards in Qt.)

xt : X X X X X X Q X X X

x′t : X X X Q X X X X X X

To see this, note that it holds at time Tk, when the queue is the singleton {j} (since at
this time the i’s are placed in the same place), and the transition rule for the queue
process ensures that if it holds at time t then it also holds at time t+ 1. The claim thus
follows by induction. This means that at time T ′k − 1 the permutations differ only in the
location of card j. That is, they are of the form:

xT ′
k−1 : X X X X X X j X X X

x′T ′
k−1

: X X X j X X X X X X

Thus at time T ′k, when card j is removed and then re-inserted into the deck, the two
permutations become identical, and they remain identical until time k.

3.2 Tail estimate of the coupling time

Recall that Tk is the last good time of a uniform random k-path.

Lemma 3.2. Suppose that k > 1.5321n log n. Then there exist positive constants c and α
such that P(Tk =∞) ≤ c

n1+α for sufficiently large n.

Proof. Consider a process Yt ∈ {0, 1, . . . } ∪ ∞ that is defined as follows. The process
starts in state∞ and remains there until the first i-or-j move. From this point on, the
value of Yt is the size of the queue, until the first time that either

1. card i is moved when the queue is {i}, or

2. card j is moved when the queue is {j}.

At this point Yt moves to state 0, which is an absorbing state. Note that Tk =∞ exactly
when Yk > 0.

For l = 1, 2, . . . , define

q(l) =



1
n if l = 1,

3n−1
n2 if l = 2,

(l−1)(n−l+1)
n2 if l ≥ 3;
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and define

p(l) =



n−2
n2 if l = 1,

2n−6
n2 if l = 2,

l(n−l−1)
n2 if l ≥ 3.

It is easy to check that Yt is a Markov chain with the following transition rule. If the
current state is 0, the next state is 0. If the current state is∞ the next state is

1 with probability 2
n ;

∞ with probability n−2
n .

If the current state is l ∈ {1, 2, . . . }, the next state is

l − 1 with probability q(l);

l + 1 with probability p(l);

1 with probability 2
n , if l ≥ 3;

l with the remaining probability.

Let Ỹt be the Markov chain on {0, 1, . . . , 8} ∪∞ obtained from Yt by replacing transitions
to state 9 with transitions to∞. That is, if K and K̃ denote the transition matrices of Yt
and Ỹt, respectively, then

K̃(l,m) =


K(l,m) if m ∈ {0, 1, . . . , 8};

K(8, 9) if l = 8 and m =∞.

The possible transitions of Yt and Ỹt are indicated by the graph in Figure 1. We claim
that if we start with Ỹ0 = Y0 =∞ then the distribution of Ỹt stochastically dominates the
distribution of Yt for all t. To see this, note that Yt changes state with probability less
than 1

2 at each step, and when it changes state, it either makes a ±1 move or it transitions
to 1. Since for m ∈ {1, 2, . . .} ∪∞, the transition probability K(m, 1) is decreasing in m,
it follows that Yt is a monotone chain. (That is, K(x, ·) is stochastically increasing in
x; see [3].) The claim follows since Ỹt is obtained from Yt by replacing moves to 9 with
moves to the (larger) state of∞.

Let K̃n be the value of the matrix K̃ when the number of cards is n, and K̂n the
matrix obtained by deleting the first row and the first column of K̃n. If we write An → A

for a sequence of matrices An and a fixed matrix A, it means that An converges to A
component-wise as n→∞.

Define Cn := n(K̂n − I), where I is the identity matrix. A straightforward calculation
shows that Cn → C where

C =



−2 1 0 0 0 0 0 0 0

3 −5 2 0 0 0 0 0 0

2 2 −7 3 0 0 0 0 0

2 0 3 −9 4 0 0 0 0

2 0 0 4 −11 5 0 0 0

2 0 0 0 5 −13 6 0 0

2 0 0 0 0 6 −15 7 0

2 0 0 0 0 0 7 −17 8

2 0 0 0 0 0 0 0 −2


9×9
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0 1 2 3 4 5 6 7 8 9

∞

. . .

Figure 1: Graph indicating the possible transitions of Yt and Ỹt. The dotted edge indicates
a possible transition of Yt and the dashed edge indicates a transition of Ỹt. (Self loops
are not included.)

and that the eigenvalues of C are real and distinct (and hence C is diagonalizable), and
negative. Denote the largest eigenvalue of C by −λ, where λ = 0.652703 . . . . (We can
improve the eigenvalue marginally by considering a Markov chain with more than 10

states. For example with 35 states we get an eigenvalue of −0.6527363 . . . . However, we
can’t improve on this by more than 10−7 even if we use up to 100 states. Therefore, for
simplicity we shall stick to our 10-state chain as a reasonable approximation to Yt.)

Since C> is diagonalizable, there exists an invertible 9 × 9 matrix Q such that
Q−1C>Q = D, where D is a diagonal matrix whose diagonal entries are the eigenvalues
of C. Let Dn = Q−1C>n Q, and note that Dn → D. For matrices A, let ‖A‖ denote matrix
norm induced by the l1 norm on vectors. By continuity of the matrix exponential function
and matrix norm, we have limn→∞ ‖eDn‖ = ‖eD‖ = e−λ. Since λ > 0.6527, it follows that
‖eDn‖ ≤ e−0.6527 for sufficiently large n. Since k/n > 1.5321 log n, submultiplicativity of
operator norms implies that for sufficiently large n we have

‖e knDn‖ ≤ e−0.6527×1.5321 logn ≤ 1

n1+α
for some α > 0. (3.1)

Since for any nonnegative integer j we have (C>n )j = QDj
nQ
−1, it follows that

e
1
nkC

>
n = Qe

1
nkDnQ−1. (3.2)

Let X be a Poisson random variable with mean k that is independent of everything else.
Then

e
k
nCn = ek(K̂n−I) =

∞∑
j=0

e−k
kj

j!
K̂j
n =

∞∑
j=0

P(X = j)K̂j
n . (3.3)

Let x0 = (0, 0, . . . , 0, 1) ∈ R9. It follows from definition of Ỹt and (3.3) that

P(ỸX > 0) =

∞∑
j=0

P(X = j)
∥∥∥x0K̂j

n

∥∥∥
1

=

∥∥∥∥∥∥
∞∑
j=0

P(X = j)x0K̂
j
n

∥∥∥∥∥∥
1

=
∥∥∥x0e knCn∥∥∥

1
.
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By (3.2) and (3.1), there exists some c > 0 independent of n such that

‖x0e
k
nCn‖1 ≤

∥∥∥e knC>
n

∥∥∥ = ‖Qe knDnQ−1‖ ≤ c

2
‖e knDn‖ ≤ c

2n1+α
.

Since Yt is stochastically dominated by Ỹt, we have

P(YX > 0) ≤ P(ỸX > 0) ≤ c

2n1+α
.

Also, we have

P(YX > 0) =

∞∑
j=0

P(X = j)P(Yj > 0)

≥ P(Yk > 0)

k∑
j=0

P(X = j)

≥ 1

2
P(Yk > 0),

where the last line follows from the fact that the median of X (defined as the least
integer m such that P(X ≤ m) ≥ 1

2 ) equals E[X] = k (see [2]). Therefore, we have

P(Tk =∞) = P(Yk > 0) ≤ 2P(YX > 0) ≤ c

n1+α
for sufficiently large n.

Proof of Lemma 2.2. Recall that for any two probability measures µ and ν on a probabil-
ity space Ω, we have

‖µ− ν‖ = min{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν} .

The main lemma then follows immediately from Lemma 3.1 and Lemma 3.2.
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