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Improved bounds for the mixing time of the
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Abstract

We prove an upper bound of 1.5321n log n for the mixing time of the random-to-random
insertion shuffle, improving on the best known upper bound of 2n logn. Our proof is
based on the analysis of a non-Markovian coupling.
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1 Introduction

How many shuffles does it take to mix up a deck of cards? Mathematicians have
long been attracted to card shuffling problems. This is partly because of their natural
beauty, and partly because they provide a testing ground for the more general problem
of finding the mixing time of a Markov chain, which has applications to computer science,
statistical physics and optimization.

Let X; be a Markov chain on a finite state space V that converges to the uniform
distribution. For probability measures ; and v on V, define the total variation distance
llw—v|| =33 ,ev ln(z) — v(z)], and define the e-mixing time

Thix(e) =min{t : ||Pr(X; =) —U|| <ecforallz € V},

where U denotes the uniform distribution on V.

The random-to-random insertion shuffle has the following transition rule. At each
step choose a card uniformly at random, remove it from the deck and then re-insert
in to a random position. It has long been conjectured that the mixing time for the
random-to-random insertion shuffle on n cards exhibits cutoff at a time on the order of
nlogn. That is, there is a constant ¢ such that for any € € (0, 1), the e-mixing time is
asymptotic to cnlogn. It has further been conjectured (see [4]) that the constant ¢ = %.

Uyemura-Reyes [9] proved a lower bound of %nlog n. This was improved by Subag
[7] to the conjectured value of %n log n. However, a matching upper bound has not been
found. Diaconis and Saloff-Coste [5] used comparison techniques to prove a O(nlogn)
upper bound. The constant was improved by Uyemura-Reyes [9] and then by Saloff-Coste

and Zuniga [8], who proved upper bounds of 4nlogn and 2n logn, respectively. The main
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contribution of this paper is to improve the constant in the upper bound to 1.5321. We
achieve this via a non-Markovian coupling that reduces the problem of bounding the
mixing time to finding the second largest eigenvalue of a certain Markov chain on 10
states. We also use the technique of path coupling (see [1]).

2 Main result

For sequences a, and b,, we write a, ~ b, if lim, ;oo 3> = 1 and a,, S b, if
n

~

limsup,,_,, = < 1. Let P be the transition matrix of the random-to-random insertion

shuffle. Define
d(t) = mgXHPt(y, O =Ull .

When the number of cards is n, we write d,(¢) for the value of d(t), and ﬂgﬁi(e) for the

e-mixing time of the random-to-random insertion shuffle. Our main result is the following
upper bound on 7" (¢).

Theorem 2.1. For any ¢ € (0,1) we have T\")(¢) < 1.5321nlog n.

We think of a permutation 7 in S,, as representing the order of a deck of n cards, with
7(i) = position of card i. Say « and z’ are adjacent, and write z ~ 2/, if 2’ = (i, j)z for a
transposition (7, j). We prove Theorem 2.1 using a path coupling argument (see [1]) and
the following lemma.

Lemma 2.2. Ifn is sufficiently large and = and =’ are adjacent permutations in S,,, then
there exist positive constants ¢ and « such that

c

||[P(x, ) — P'(z', || < e for allt > 1.5321nlogn .

The proof of Lemma 2.2, which uses a non-Markovian coupling, is deferred to Section
3.

Proof of Theorem 2.1. Suppose that t > 1.5321nlog n. By convexity of the /'-norm, and
sinced = 5 ..o P'(z, -), it follows that for any state y we have

1P (y, -) = U|| < max ||P*(y, ) — P(z, )| - (2.1)

Since any permutation in S;, can be written as a product of at most n — 1 transpositions,
by the triangle inequality the quantity on the righthand side of (2.1) is at most

(n — 1) max ||P'(x, -) — P'(z', )|| . (2.2)

T

By (2.1), (2.2), and Lemma 2.2, if n is sufficiently large, there exist positive constants c
and « such that

B . c(n—1)
d(t) = max||P'(y, ) —U|l < = 2=,

which tends to zero as n — oc. O

3 Proof of Lemma 2.2

Recall that we think of a permutation 7 in S,, as representing the order of a deck
of n cards, with w(i) = position of card . Let M,; : S, — S, be the operation on
permutations that removes the card of label ¢ from the deck and re-inserts it

{ to the right of the card of label j if i # j;

to the leftmost position ifi = 3.

ECP 22 (2017), paper 22. http://www.imstat.org/ecp/
Page 2/7


http://dx.doi.org/10.1214/17-ECP3955
http://www.imstat.org/ecp/

Random-to-random shuffle

We call such operations shuffles. If (M,..., M) is sequence of shuffles, we write
Z‘MlMQ s Mk for Mk o Mk—l s Ml(ﬂf)

The transition rule for the random-to-random insertion shuffle can now be stated as
follows. If the current state is z, choose a shuffle M uniformly at random (that is, choose
a and b uniformly at random and let M = M, ;) and move to zM.

We call the numbers in {1,...,n} cards. If a shuffle M removes card c from the deck
and then re-inserts it, we call M a c-move.

If P = (M, M,,...)is a sequence of shuffles, we write (Pz); for the permutation
xM; --- M,;. Note that if P is a sequence of independent uniform random shuffles, then
{(Pz); : t > 0} is the random-to-random insertion shuffle started at x.

3.1 The Non-Markovian coupling

Fix a permutation = and i,j € {1,2,...,n}. The aim of this subsection is to define a
coupling of the random-to-random insertion shuffle starting from « and (i, j)z, respec-
tively. Suppose that we couple the processes so that the same labels are chosen for each
shuffle. Note that if there is an i-move (respectively, j-move) followed at some point by a
jJ-move (respectively, i-move), then the processes will couple at the time of the j-move
(respectively, i-move) provided that any cards placed to the right of card j (respectively,
1) at any intermediate time (and any cards placed to the right of those cards, and so on)
were subsequently removed. We keep track of these “problematic” cards using a process
we call the queue.

For positive integers k we will call a sequence (M, ..., My) of shuffles a k-path. For
a k-path P, define the P-queue (or, simply the queue) as the following Markov chain
{Q: :t=0,...,k} on subsets of cards. Initially, we have Q, = . If the queue at time ¢ is
Q:, and the shuffle at time t 4 1 is M, ;, the next queue Q¢4 is

{i} if o = j;

{5} if a = i;

Q:U{a} ifaé¢ {i,j}andbe Q;— {a}.
Q¢ —{a} otherwise.

We call a shuffle an i-or-j move if it is an i-move or a j-move. Note that at any time after
the first i-or-j move the queue contains exactly one card from {i, j}. Let P = (M, ..., M})
be a k-path. For ¢t < k, we say that ¢ is a good time of P if

1. M, is an i-or-j move;
2. there is a time ¢’ € {t +1,...,k} such that

(a) My is the next i-or-j move after M;
(b) the queue is a singleton at time ¢ — 1 (i.e., either {i} or {j});
(c) the card moved at time ¢’ is different from the card moved at time t.

Define

T_ max{t < k : t is a good time of P}, if there is a good time of P,
T oo, otherwise.

and call 7" the last good time of P. Let 0; ;P be the k-path obtained from P by reversing
the roles of ¢ and j in each shuffle before time T (that is, by replacing shuffle M, ,
with M (4) »), where 7 is a transposition of i and j). Note that ¢; ;P has i-or-j moves
at the same times as P. Furthermore, since the queue is reset at the times of i-or-j
moves, the 0; ;P-queue will have the same values as the P-queue at all times ¢t > T'. It
follows that the last good time of §; ;P is the same as the last good time of P, and hence
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6;;(6; ;(P)) = P. Since 0, ; is its own inverse, it is a bijection and hence if P is a uniform
random k-path, then so is 0, ;P.

Let 2’ = (i,j)z. Let Py be a uniform random k-path, and let T} be the last good time
of Pi. Note that T}, < k or T}, = co. For t with 0 < ¢t < k, define

xt = (Prx)s xy = ((6; ;Pr)z’)e

It is clear that x; and x} have distributions P!(x,-) and P!(2’, ), respectively, for all ¢ < k.

Lemma 3.1. If 2, # x}, then Tj, = oo.

Proof. Assume that T}, < k. Note that at any time ¢ < T}, the permutation (Pyz); can be
obtained from ((6; ;Px)z’); by interchanging the cards i and j. Suppose that the next
i-or-j move after time T}, occurs at time 7}. Without loss of generality, there is an i-move
at time Tj and a j-move at time 7}. We claim that for times ¢ with T}, < t < T}, the
permutation z} can be obtained from z; by moving only the cards in @;, as shown in the
diagram below. (In the diagram, the mth X in the top row represents the same card as
the mth X in the bottom row, and () represents all the cards in ;.)

: X X X X X X @ X X X
: X X X Q@ X X X X X X

To see this, note that it holds at time T}, when the queue is the singleton {j} (since at
this time the i’s are placed in the same place), and the transition rule for the queue
process ensures that if it holds at time ¢ then it also holds at time ¢ + 1. The claim thus
follows by induction. This means that at time 7}, — 1 the permutations differ only in the
location of card j. That is, they are of the form:

oo X X X X X X j X X X

o X X X j X X X X X X

Thus at time T,;, when card j is removed and then re-inserted into the deck, the two
permutations become identical, and they remain identical until time k. O

3.2 Tail estimate of the coupling time
Recall that T}, is the last good time of a uniform random k-path.

Lemma 3.2. Suppose that k > 1.5321nlogn. Then there exist positive constants ¢ and «
such that P(T}, = oo) < %5 for sufficiently large n.

Proof. Consider a process Y; € {0,1,...} U oo that is defined as follows. The process
starts in state co and remains there until the first i-or-j move. From this point on, the
value of Y; is the size of the queue, until the first time that either

1. card ¢ is moved when the queue is {i}, or
2. card j is moved when the queue is {j}.

At this point Y; moves to state 0, which is an absorbing state. Note that 7}, = oo exactly
when Y, > 0.
Forl=1,2,..., define

ifl =1,
() =< 33t ifl =2,

EN0ZHD i > 3;
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and define

i ifl =1,
p)=4 =zt =2

Un=l=1) ] > 3.

n2
It is easy to check that Y; is a Markov chain with the following transition rule. If the
current state is 0, the next state is 0. If the current state is co the next state is

1 with probability 2;

. a1 _2
oo with probability *—=.
If the current state is [ € {1,2,...}, the next state is

I —1 with probability ¢(1);
141 with probability p(i);

1 with probability 2, if I > 3;

l with the remaining probability.

Let Y; be the Markov chain on {0,1,...,8} Uoo obtained from Y; by replacing transitions
to state 9 with transitions to co. That is, if K and K denote the transition matrices of Y;
and Y;, respectively, then

) K(l,m) ifme{0,1,...,8};

K(l,m) =
K(8,9) ifl=8andm= .

The possible transitions of Y; and Y, are indicated by the graph in Figure 1. We claim
that if we start with Y; = Y, = oo then the distribution of ; stochastically dominates the
distribution of Y; for all t. To see this, note that Y; changes state with probability less
than % at each step, and when it changes state, it either makes a +1 move or it transitions
to 1. Since for m € {1,2,...} U oo, the transition probability K (m, 1) is decreasing in m,
it follows that Y; is a monotone chain. (That is, K(«, -) is stochastically increasing in
xz; see [3].) The claim follows since }N/t is obtained from Y; by replacing moves to 9 with
moves to the (larger) state of co.

Let K,, be the value of the matrix K when the number of cards is n, and Kn the
matrix obtained by deleting the first row and the first column of K,. If we write A4, — A
for a sequence of matrices A,, and a fixed matrix A, it means that A,, converges to A
component-wise as n — oo.

Define C), := n(K,, — I), where I is the identity matrix. A straightforward calculation
shows that C,, — C where

-2 1 0 0 0 0 0 0 0
3 =5 2 0 0 0 0 0 0
2 2 -7 3 0 0 0 0 0
2 0 3 -9 4 0 0 0 0
C= 2 0 0 4 —11 5 0 0 0
2 0 0 0 5 —13 6 0 0
2 0 0 0 0 6 —15 7 0
2 0 0 0 0 0 7 =17 8

2 0 0 0 0 0 0 0 -2| .
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Figure 1: Graph indicating the possible transitions of Y; and Y;. The dotted edge indicates
a possible transition of Y; and the dashed edge indicates a transition of Y;. (Self loops
are not included.)

and that the eigenvalues of C are real and distinct (and hence C is diagonalizable), and
negative. Denote the largest eigenvalue of C' by —)\, where A = 0.652703.... (We can
improve the eigenvalue marginally by considering a Markov chain with more than 10
states. For example with 35 states we get an eigenvalue of —0.6527363. ... However, we
can’t improve on this by more than 10~7 even if we use up to 100 states. Therefore, for
simplicity we shall stick to our 10-state chain as a reasonable approximation to Y;.)

Since C'T is diagonalizable, there exists an invertible 9 x 9 matrix @ such that
Q~'CTQ = D, where D is a diagonal matrix whose diagonal entries are the eigenvalues
of C. Let D,, = Q~1C Q, and note that D,, — D. For matrices A, let || A|| denote matrix
norm induced by the [' norm on vectors. By continuity of the matrix exponential function
and matrix norm, we have lim,, . |[eP"| = |[e?| = e~*. Since A > 0.6527, it follows that
lePn|| < e=0-6527 for sufficiently large n. Since k/n > 1.5321log n, submultiplicativity of
operator norms implies that for sufficiently large n we have

e;DnH < 67().6527><1.552110gn <
= = plta

for some o > 0. (3.1)

Since for any nonnegative integer j we have (C,] )7 = QDJQ~!, it follows that

FOD = QenkPn L, (3.2)

Let X be a Poisson random variable with mean k that is independent of everything else.
Then

oo

( Ko & y
enCr = D) SN kKT = N P(X = j)KF . (3.3)
7 -
7=0

=0

Let 2o = (0,0,...,0,1) € RY. It follows from definition of ¥; and (3.3) that

k
g P(X =) xOKJ = H:coenc"
1

P(Vx >0) =S P(X H ki
X J;O Zo 1
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By (3.2) and (3.1), there exists some ¢ > 0 independent of n such that

k kEoT
[ HenCn

L. _ C, k C
= Qe Q7 < gl < 5o

Since Y; is stochastically dominated by Y;, we have

IP(YX>O)§IP(}7X>O)§W.

Also, we have

P(Yx >0) = iIP(X — H)P(Y; > 0)

k
> P(Ye>0)) P(X =)
=0

1

where the last line follows from the fact that the median of X (defined as the least
integer m such that P(X <m) > %) equals E[X] = k (see [2]). Therefore, we have

P(Ty, =o0) =PV, > 0) <2P(Yx > 0) < for sufficiently large n. O

C
n1+oc
Proof of Lemma 2.2. Recall that for any two probability measures ;. and v on a probabil-
ity space (2, we have

| — v|| = min{P(X #Y): (X,Y) is a coupling of x and v} .

The main lemma then follows immediately from Lemma 3.1 and Lemma 3.2. O
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