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Abstract. It is well known that the uncertainty in the estimation of param-
eters produces the underestimation of the mean square error (MSE) both for
in-sample and out-of-sample estimation. In the state space framework, this
problem can affect confidence intervals for smoothed estimates and fore-
casts, which are generally built by state vector predictors that use estimated
model parameters. In order to correct this problem, this paper proposes and
compares parametric and nonparametric bootstrap methods based on proce-
dures usually employed to calculate the MSE in the context of forecasting and
smoothing in state space models. The comparisons are performed through an
extensive Monte Carlo study which illustrates, empirically, the bias reduc-
tion in the estimation of MSE for prediction and smoothed estimates using
the bootstrap approaches. The finite sample properties of the bootstrap proce-
dures are analyzed for Gaussian and non-Gaussian assumptions of the error
term. The procedures are also applied to real time series, leading to satisfac-
tory results.

1 Introduction

One of the main objectives of modeling time series is to forecast future values.
In classical inference, forecasting is usually performed using a plug-in approach,
that is, replacing the model parameters by their estimators. It is well known that
this procedure leads to the underestimation of the prediction mean square error
(PMSE), as it does not incorporate the uncertainty due to parameter estimation (see
Pfeffermann and Tiller (2005), Ansley and Kohn (1986) and Yamamoto (1976)),
resulting in prediction intervals with smaller widths.

In state space models, the underestimation of the PMSE can also influence in-
ference for the state vector predictor, specially for short series. If model parameters
are replaced by their estimators, the mean square error (MSE) and confidence in-
tervals for the smoothed estimates of the state vector may be affected. The problem
is worsened if the Gaussian distribution is assumed when there is no guarantee that
this is the actual distribution of the error terms.

One way to incorporate the uncertainty in the parameter estimation is through
asymptotic sampling of the maximum likelihood estimator (MLE) (Hamilton
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(1986), Quenneville and Singh (2000)). In this sense, for state space models,
Quenneville and Singh (2000) proposed a modification in the methods of Hamilton
(1986) and Ansley and Kohn (1986), which take into account the uncertainty of the
hyperparameter estimation in a simple way, by incorporating the uncertainty in the
estimation of the state vector MSE through the corrected hyperparameter estima-
tor. A similar approach was adopted by Shephard (1993), who wrote the local
level model as a normal mixed effects model in order to use the restricted max-
imum likelihood estimator (RMLE). Tsimikas and Ledolter (1994) presented an
alternative way to build the restricted likelihood function, also using mixed effects
models.

The bootstrap technique can also be employed to incorporate the uncertainty in
the estimation of ¥, the hyperparameter vector. Wall and Stoffer (2002) proposed
a method for the construction of the empirical distribution of the forecast error.
Rodriguez and Ruiz (2009) presented a simpler nonparametric bootstrap proce-
dure, compared to the proposal of Wall and Stoffer (2002), and the method is
justified by the results of a Monte Carlo simulation in finite samples. They em-
ploy a different approach using a quasi-likelihood estimator of ¥, which has some
interesting properties, such as consistency (Harvey (1990)). Rodriguez and Ruiz
(2012) presented procedures for the prediction of the state vector based on boot-
strap. Pfeffermann and Tiller (2005) proposed parametric and nonparametric boot-
strap methods for estimating the PMSE of the state vector.

The main objective of this paper is to propose and compare bootstrap methods
to reduce the bias in the estimation of the MSE for in-sample and out-of-sample
estimates, in state space models. The in-sample study is performed in smoothed es-
timates of the state vector, while the out-of-sample is accomplished in the PMSE
for future observations. To this purpose, nonparametric bootstrap procedures are
proposed by adapting some methods existing in the literature to evaluate the PMSE
for estimates of the state vector. This first one, called here HaB, is a modifica-
tion on the method of Hamilton (1986) and the second one, the AKB, is adapted
from Ansley and Kohn (1986). Forecast intervals using the nonparametric boot-
strap correction of the PMSE for future observations are also provided, along with
a new proposal of a parametric bootstrap interval, called here PBFI. These proce-
dures are compared, through Monte Carlo experiments, to the existing method of
Pfeffermann and Tiller (2005) and to the standard procedures.

The paper is organized as follows. Section 2 presents the structural models and
how to calculate forecasts and smoothed estimates of the state vector, as well as
the standard method to build confidence intervals. Section 3 presents nonparamet-
ric bootstrap procedures for forecasts and smoothed state vectors while Section 4
presents the parametric bootstrap interval proposed here. Section 5 provides some
simulation studies. Section 6 shows application to real data sets. Finally, Section 7
concludes the work.
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2 Forecasting and smoothing in structural models

A univariate time series {y;};cz can be decomposed as the sum of its unobservable
components, such as trend, seasonality and error. A procedure which has been
widely used to model y; is the state space model (SSM) (Harvey (1990), West and
Harrison (1997)), which can be written as

Ve =Z,0 + &, &~ N(0, hy), )
o, =Tia;—1 + Ry, 1, ~N(@0,Q,), (2)

where o is the state vector, z;, T; and R, are the system matrices, &; are uncor-
related errors with variance h;, 1, is a vector of serially uncorrelated errors with
covariance matrix given by Q, and », and ¢&; are independent. Covariates can be
added to both equations to include information such as structural breaks, outliers
or external variables.

For the Gaussian model, the one-step-ahead predictive distribution function is
given by (y:|Y;i—1) ~ N(31j1—1, F;), where Y;_1 = {y1,..., y;—1} and ¥;;— and
F; are obtained by the Kalman filter (KF) algorithm (Kalman (1960)). For more
details refer to Harvey (1990).

Let ¥ = (Y1, ¥2, ..., ¥)p) be the hyperparameter vector, which in this case is
composed of the variances of the error terms in (1) and (2). Thus, for a univariate
series of size n, the logarithm of the likelihood function is given by

L) =In[ | pOlYie 1)———1n<2n>——21n|Ft Zv, ", (3)

t=1

where v; = y; — Y|,—1 is the one-step-ahead forecast error. Since this is a nonlinear
function of the hyperparameters, estimation must be performed numerically. In this
work, for using the optimization algorithm BFGS, suitable transformations in the
hyperparameters are undertaken (details can be seen in Franco et al. (2008)).

2.1 Smoothing

The smoothed estimator of the state vector is the inference performed on any par-

ticular time ¢, using the whole sample information, Y, = {y1, ..., y,}. In linear
Gaussian models, the smoothed estimator of the state vector is denoted by
arn(¥) = E(o|Yn, ¥). “)

The smoothed estimate can be calculated running the KF and storing the con-
ditional means, a;(¢¥) = E(o;|Y;, ¥) and a;,—1(¥) = E(o|Y;—1, V), and vari-
ances, P;(¥) = Var(a;|Y;, ¥) and Pr;—1(¥) = Var(a,|Y;—1, ¥), of the state vec-
tor. The sequence of smoothed estimates a,|,(¥) is then calculated in reverse
order, for t =n,n — 1,n — 2,..., 1. The corresponding mean squared error is
given by

MSE(atln ('/’)) = Pt\n('ﬁ) = E[(Olt - at\n(‘ﬁ))(at - at|n(¢))/|Yn]- (5
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This work employs a moment smoothing algorithm, which is described in
Koopman, Shephard and Doornik (1999), using the KF output. More details about
smoothing algorithms can be found in de Jong (1989) and Harvey (1990).

2.2 Forecasting

The forecast of a future value y,4+«, kK > 0, based on all available data Y;,, can be
obtained through the k-step-ahead forecast of the state vector, a, 4|, (¥), which is
given by

k
an+k\n('/’) = E(@piklYn, ¥) = (l_[ Tn-i-i)an('/’), (6)
i=l1

where a,(¥) = E(otn|Yn, ¥).
By combining Eq. (1) in time n 4 k with Eq. (6), the k-step-ahead forecast for
{y:}, defined by ¥, 4kn (¥) = E(yn4x|Yn, ¥), can be calculated as

k
S’n+k|n('/f) = Z;H-k (1_[ Tn+i>an W) = z;l+kan+k|n V). (N

i=1

The corresponding mean square error is given by

MSE(Yn+&|Yn, ¥)

k k
= z;’H-k (1_[ Tn+i>Pn (w) (1—[ T;l+i>zn+k

i=1 i=1

k /k—i k—i ®)
+ Z;1+k Z(H Tn+k—j+1>Rn+i Qn—l—iR;z—l—i (H T;z+k—j+1>ln+k
j=1

i=1\j=1
+ hl’l“rka
where P, (¥) = Var(a,|Y,, ¥).

2.3 Confidence intervals for smoothed estimates of the state vector and
prediction intervals

Let 7 be a specific time (instant) taken for an in-sample or out-of-sample obser-
vation and let a;|,(¥) denote the optimal inference about «; conditional on the
whole sample. Thus, for T < n, a;,(¥) is the smoothed inference given in (4),
while for T > n, a;|,(¥) and y;|,(¥) are the forecasts for the state vector and for
the future observations given in (6) and (7), respectively.

When the true value of ¥ is known, the confidence interval of level 1 — k for
the smoothed state vector is given by

[ar\n('/’) + |ZK/2|\/ MSE(arln(w))], fort <n )
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while the prediction interval of level 1 — « is given by

[yrln (¥) £ |ZK/2|\/ MSE(yrln('/f))]’ for T > n, (10)

where y7,(¥) = z,a.,(¥) and z, 7 is the quantile « /2 of the standard normal
distribution.

The value of ¥, however, is frequently unknown. In this case, it should be re-
placed by its MLE, 1/}, and the obtained interval is called Standard (S) (Brockwell
and Davis (1996)).

S Procedure.

1. Calculate the MLE 1/} estimated from the original series.

2. Calculate Jr(, (%) and MSE (57, (¥)).

3. The confidence interval for &, and the forecast interval of level (1 — «) for
Yz|n are given, respectively, by (9) and (10).

The problem is that this interval does not incorporate the uncertainty related to
¥, which inevitably leads to underestimation of the prediction MSE in the classical
inference (Harvey (1990)). Another question that arises is related to the normality
assumption, which can be unrealistic in practice. For example, if the future obser-
vations assume an asymmetric distribution, the interval coverage rates in the tails
may be affected (see Rodriguez and Ruiz (2009)).

In the next sections, some alternatives to correct these problems are proposed,
using the bootstrap.

3 Nonparametric bootstrap for estimating the MSE

As stated in Section 2, the standard procedure to estimate the MSE replaces the
unknown parameter vector ¥ by its MLE, 1/AI In order to correct the bias intro-
duced in the MSE of the state vector estimates and the predictions by this practice,
some alternative approaches using the bootstrap are described in this section. As
the procedures are very similar in both forecasting and smoothing contexts, only
the notation for the forecast of a future value is used here to present the proposed
algorithms. The procedures are easily adapted to the smoothed inference by re-
placing y; by a; with T <n.

Consider the model given in (1)—(2). Initially the hyperparameters, which are
the unknown variances of the errors &, and 7,, must be estimated. Then the KF is
run to obtain the values of the estimated innovations, V;, and their variances, F . It
should be noted that these quantities are functions of the unknown parameters.

The standardized innovations, ¢, = (b, — v)/ E,t=1,2,...,n, where b =
Z’}-Zl Uj/n, are resampled to construct the bootstrap series (see
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Stoffer and Wall (1991)). Then samples can be taken with replacement, from é;, to
obtain the bootstrap innovations, ;.

The bootstrap series, y;", is built recursively using the bootstrap innovations, &},
and the quantities F; and K, obtained from the KF, where K; = T, 1 P;;—1z; Ft_1
and P;; 1 = Var(o;|Y;_1). Initially, the state vector estimate a, 1, = E(a;11]Y;)
and y; are written in function of the innovations,

a1 = Tra -1 + Koy,
Vi = Z;allt—l + vy,

Stoffer and Wall (1991) have proposed a procedure to build the bootstrap series
using the following recursion

St:AlSt_1+B[U[, t:1,2,...,l’l, (11)

where

Yt 7  Fi

The bootstrap series, y;', t = 1,2, ..., n, is obtained by solving Eq. (11), replac-
ing v, by ¢, K; by K, and F, by E,.

The procedures described in the next subsections are the proposals of this work
to obtain confidence intervals for the state vector and prediction intervals, using the
(non-)parametric bootstrap. They are based on the methods of Hamilton (1986) and
Ansley and Kohn (1986), which calculate the prediction MSE of the state vector
for the state space model with estimated parameters. For comparison purposes, the
procedure proposed by Pfeffermann and Tiller (2005) is also presented.

St:[aﬁm] A,=[Tf 8} o Br:[l@ﬁ]

3.1 Hamilton procedure with bootstrap resampling

Following the proposal of Hamilton (1986), which incorporates the uncertainty of
the parameter estimation in estimating the state vector, the effect of the estima-
tion of ¥ in the forecasts can be eliminated using Monte Carlo integration. The
predictive distribution of future observations is given by

p(yr,¢|Yn>=/p(yr,¢|Yn>d~/f

:fp<yf|Yn,w>p<w|Yn>dw

1 MmC }
= —Zp(yr|Yna '/’l)a
Mci:l

where ¥’ are samples from p(w/Af|Yn) =N (1}, 1 _1(1})), the asymptotic distribu-
tion of the MLE of ¥, where /(-) is the Fisher information matrix and MC is the
required number of Monte Carlo replications.
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The mean of the predictive distribution is given by:

%mzfﬂmmeﬂmdw

! % () 1
=— j’rln(vf ! )
MC =

Following the results in Hamilton (1986), with some modifications, the predic-
tion MSE can be calculated as

MSEH = E[(y; — ¥:0)?]

T|n
= MSE,py1v,) Fein ) + Epiy v [ Feln W) = Fein)’]-
Then,

_——Ha ~ 1 Mc — =, . i 1 mc - i _ 2

MSE, |, = 475 ;MSE(len('/f Ry ;(ynn(w ) = Few)®,  (13)
where i, is given in Eq. (12), §¢n (%) in (7) and MSE(5;» (¥")) in (8).

Pfeffermann and Tiller (2005) argue that sampling from N (1/A/, 1 *1({0)) may

result in several problems, such as parameters being close to their boundary values,
the distribution of 1/} can be asymmetric in small samples and the calculation of
the Fisher information matrix may become unstable for complex models. To avoid
this, a simple and efficient procedure is to use bootstrap resamples. Thus, the first
procedure proposed in this work is a variation of the Hamilton approach discussed
above, using sampling bootstrap, called HaB procedure.

Procedure 1 (HaB).

1. Generate B nonparametric bootstrap series, using ¥ estimated from the original
series.

~ x(b
2. Calculate w*( ) for each bootstrap series, b =1, ..., B.
~ (1 ~ %(B
3. Using l/l*( ), cee, w*( ), compute:
° y;‘ln based on Eq. (12), with the number of Monte Carlo replications now
equal to B;

——HaB
e the MSE

T|n

for y7,,, using Eq. (13).

4. The forecast interval of level (1 — «) for y;|, is given by,

T|n

—x ——HaB
(5% % 122l MSE,,, |,

where 7,7 is the (5)th quantile of the standard normal distribution.
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Assuming the state space form with Gaussian errors given in (1)—(2), Stoffer and
Wall (1991) ensure that p(l/f |Y,) = p(l/I|Y ) when B (the number of bootstrap
replicates) is sufficiently large. That is, the distribution of l/f is approximated by
the bootstrap distribution of the MLE and they are equivalent when the sample
size is sufficiently large. Therefore, the distribution of p({ﬁ |Y,) can be replaced by
the distribution of p({h*|Yn) in the above procedure. It should be noted that the

_——HaB
number of replications necessary to calculate MSE s equal to 2 x B, as it can
be perceived from (13), with MC = B.

3.2 Ansley and Kohn procedure

Ansley and Kohn (1986) proposed a procedure for incorporating the uncertainty
in the estimation of ¥ through a conditional mean square error for the esti-
mate of the state vector. According to Harvey (1990, page 151), the idea can be
used in the forecastlng context through the approx1mat10n of MSE(y;|Y,, ¥) by
MSE(y; Yy, l/f) and the expansion of y;, (1//) around y|,(¥) up to the second
term. The Prediction MSE estimator is given by

— — ~ 8~t n ! 1A 8~r n
MSE/;I: = MSE(f’tln('ﬁ)) 4 |:y8|7(¢):| A [1 l(w)][w} (14
v ly=y 0 ly=y

where 17[ is the MLE of ¢ and /™! (IIAI) is the Fisher information matrix evaluated
at 1/} 1 _l(fk) may be calculated using a numerical approximation, as in Franco
et al. (2008) and dos Santos and Franco (2010).

The procedure of Ansley and Kohn (1986) incorporates the uncertainty in the
estimation of hyperparameters in an elegant way, although the calculation of the
Fisher information matrix and the derivation of the function y|, (%) with respect
to ¥ can be a difficult task. To compute the Fisher information matrix, we pro-

pose in this work to use a bootstrap approximation 7, 1(1/}) = C/\ov(wﬁ*), which is
supported by the same argument of the asymptotic validity of Procedure 1. With
respect to the calculation of 8y fa'fl,(w , with ¢ = 1/}, it can be performed using nu-
merical derivatives.

Thus, using the empirical bootstrap distribution of the MLE of ¢, the follow-
ing Ansley and Kohn procedure with bootstrap sampling (AKB) is proposed. This
proposal is a variation of the Ansley and Kohn procedure, where the Fisher infor-
mation matrix is approximated by the covariance matrix of the empirical bootstrap
distribution for the MLE of .

Procedure 2 (AKB).

1. The first steps are Steps (1) and (2) in Procedure 1.

(1 B
2. With w . ) lﬁ*( ), compute:
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® Y7, using Eq. (12);
—— AKB . ,
e the MSE |, for y;“n, using Eq. (14).

3. The forecast interval of level (1 — k) for y.|, is given by,

(52 = 221y MSEL, |.

where z,/2 is the (%)th quantile of the standard normal distribution.

KB
To obtain MSErln it is necessary to calculate p numerical derivatives with
respect to the hyperparameter vector and the Fisher information matrix of p x p
dimension, which is similar to the 2 % B replications of the HaB procedure.

3.3 Pfeffermann and Tiller procedure

Pfeffermann and Tiller (2005) proposed a procedure that estimates the prediction
MSE by incorporating the uncertainty in the hyperparameter estimation. An ad-
vantage of this procedure is that its prediction MSE estimator is O(1/n?) under
certain conditions. Therefore, it is expected that the Pfeffermann and Tiller method
produces better estimates for the prediction MSE. The procedure, called here PT,
is described below.

Procedure 3 (PT).

1. The first steps are Steps (1) and (2) in Procedure 1.
2. Compute

MSEr|n - VIS\EbS (ytln(w)) + 21\//18\]5()71|n($)) - M—SEbS (irln('/’)),

where
_——b B b *() b
MSE " (5} (¥)) = Z i@ =y @
b:l
and
MSE™ (5o (¥)) = ZMSE @™ ”)).
b 1

~ x(b
It is important to observe that yt( )(V/) and y*(b)(glf*( )) are the bootstrap

|n T|n
~ ~x(b
estimates of the future observations with the estimates ¥ and l/f*( L of ¥, re-
I ~x(b) . . . . . . .
spectively. MSE (Y, (llf*( ))) is the natural estimator in Eq. (8) with the original

. . . » #(D)
series, but using the estimate ¥ .
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3. The forecast interval of level (1 — k) for y;, is given by,

[yrln + |ZK/2| MSET|n]

where y7,, is given in (12).

The PT procedure is computationally most costly compared to the HaB and
AKB, as it needs 3 * B replications in order to calculate the MSE, that is, B

— ~ %x(b ~ (b
replications for each of the following terms MSE(J., (¥ ( ))), y:fﬁ)(w*( )) and
*(b) ;5
V@),

4 Parametric bootstrap forecast interval

Unlike the nonparametric bootstrap, in which the residuals of the fitted model are
resampled with replacement, the parametric bootstrap uses only the parameter es-
timates from the original series. The procedure is performed as follows. The boot-
strap errors ¢; and n; are sampled from the Gaussian distribution with zero mean
and variance replaced by the estimates obtained from the original series.

Then the bootstrap series y; is constructed as:

* /% Ak
Vi =2,0 + &,
OC;k:Tt(x;k_l—*—Rtﬁ:F, t:l,2,...,n

In the above equations, ej can be initialized using the same values specified
when running the KF for the original series.

A new parametric bootstrap forecast interval, called here PBFI, which incorpo-
rates the uncertainty due to parameter estimation is presented in Procedure 4. Al-
though this method can be performed for observations not necessarily Gaussian,
the Gaussian distribution is assumed here for the future observations.

Procedure 4 (PBFI).

1. Generate B parametric bootstrap series, using {h estimated from the original
series.

~ %(b
2. Calculate q//*( ) for each bootstrap series, b=1, ..., B.

1
3. Using lﬁ*( ) w*( ) run the KF for the original series and obtain a, )(10)

and P,S“(:/r), for b = 1...,
4. Generate the k-steps-ahead bootstrap forecasts using the following equations:
(a) Forb=1,..., B, calculate

*(b) *(b) b /%(b) /*(b) *(b)
Otk = (1_[ Tn+i) *(D) + Z(H TVH‘k ]—H) n+i Mn+is

i=1\j=l1
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where n*(b) ~ F(0, Qf(b)) and aﬁ(b) is generated from the Normal distribu-

n+i
tion with mean a,gb) and covariance matrix P,(lb) + (af,b) —ap) X (a,gb) —a,).

(b) y:fflz = z:ﬁ)a:% + 825{2, where 8:;55]2 is generated from a generic contin-
uous distribution (G) with zero mean and variance fzf(b).
5. The bootstrap forecast interval of level (1 — «) for y, 4 is given by,
x(k/2),  x(1—k/2)
[ n+k > Yn+k ]’

where y:i(k) is the quantile of order «.

The G distribution is not necessarily Gaussian, despite being the most frequent
case. The term (a,(,b) —ay) X (a,gb) — a,)" was introduced in the covariance matrix
to incorporate the uncertainty in the estimation of ¥ when generating values of
the state vector. It can be viewed as an approximation to the second term of the
variance decomposition of the state vector, Var(a, |Y,) = Eyy, (Var(a,|Y,, ¥)) +
Varyy, (E(a,|Yy,, ¥)), which is the same argument given by Hamilton (1986) to
calculate the MSE in the Ha procedure of Eq. (13).

The asymptotic validity of Procedure 4 under Gaussian errors can be easily ob-
tained, although it is not difficult to prove the non-Gaussian case. If the distribution
of the observation equation is not Gaussian, the MLE of ¥ becomes the maximum
quasi-likelihood estimator of ¥, which is consistent and preserves good properties
(Harvey (1990)).

5 Simulation results

The bootstrap procedures described in Sections 3 and 4 are compared through
a Monte Carlo study and the results are presented separately for smoothing and
forecasting.

The experiments are performed for the simplest structural model, known as the
Local Level Model (LLM) (Harvey (1990)), defined as

vi=a,+&, &~N(0,0?2) (15)
oy =01+ 1y, ﬂt’vN(O,an).

Different values for the signal-to-noise ratio, g = a,% / %2» are used in the simu-

lations, with o> = 1. To check the robustness of the methods with respect to the
Gaussian assumption, a Gamma distribution for the error terms, recentered and
scaled so that the errors have zero mean and variance 1, was also assumed. All
models were fitted using the KF and the Gaussian likelihood function and the sim-
ulations were implemented in the Ox Software (Doornik (2009)).
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5.1 Smoothing

The MSE of the smoothed state vector is estimated using the nonparametric boot-
strap procedures proposed in Section 3. To this purpose, MC = 1000 time series
are generated for the LLM, with Gaussian and non-Gaussian distributions, for
three sample sizes n = 40, n = 100 and n» = 500 and with signal-to-noise ratio
g = 0.25. These values and distributions were chosen according to a simulation
study in Quenneville and Singh (2000). The number of bootstrap replications is
2000.

The estimators of the MSE compared here are: Standard (S), obtained by sub-
stituting the hyperparameters in Eq. (15) by their MLE to calculate the MSE of
as|n (¥); Hamilton with bootstrap resample (HaB) described in Procedure 1; Ans-
ley and Kohn with bootstrap resample (AKB), defined in Procedure 2; and Pfef-
fermann & Tiller estimator (PT) described in Procedure 3. For the first estimator,
a numerical approximation for the Fisher information matrix was used.

Following the Pfeffermann and Tiller (2005) and Quenneville and Singh (2000)
experiments, the procedures are compared using the relative bias (Rel-Bias) and
relative square root of the mean square error (Rel-SMSE), given respectively by,

1 " od
Rel-Bias = 00 Z t(]//)
n — MSE/(¥)
and
1 n ‘(2) 1/2
Rel-SMSE = E Z M’
MSE,; (¥)

- di - 2 ()
where d,(¥) = Y1 e, 4P () = TV pit. di = IMSE, (%) — MSE, (¥)]
and MSE; is the true PMSE of a;,(¥) calculated for each time t =1, ...,n by
simulating 5000 series for each length (n = 40, 100, 500) according to

=W @)D — o))
MSE, () = g} 000

Table 1 shows the Rel-Bias and Rel-SMSE for the PMSE of the smoothed esti-
mator in the LLM with Gaussian and non Gaussian errors. In the case of Gaussian
errors, it can be seen that the bootstrap procedures greatly reduce the underestima-
tion of the PMSE compared to the standard (S) method with respect to the bias,
especially for small sample sizes. However, in spite of possessing higher Rel-Bias,
the S estimator has a similar or inferior Rel-SMSE compared to the bootstrap es-
timators. This is not an unexpected result, once the bias correction can increase
the variance (see Pfeffermann and Tiller (2005)). With respect to the nonpara-
metric bootstraps proposed here, the AKB is superior to the HaB procedure. In
the non-Gaussian case, Gamma(16/9, 3/4) and Gamma(25/16, 4/5) distributions
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Table 1 Relative bias (%) and relative MSE square root (%) of the smoothed estimators for a local
level model with Gaussian (G) and Non-Gaussian (NG) errors and signal-to-noise ratio g = 0.25

n =40 n =100 n =500

Rel-Bias Rel-SMSE Rel-Bias Rel-SMSE Rel-Bias Rel-SMSE

G S —23.422 19.413 —8.677 10.315 —2.235 4.021
HaB —8.224 24.204 —-5.726 10.407 —2.158 3917

AKB —4.460 28.131 —4.003 11.224 —1.396 3.940

PTB 0.110 19.828 0.742 10.108 0.598 3.903

NG S —24.498 28.389 —10.294 15.093 —1.545 6.007
HaB —13.536 34.921 —10.102 16.990 —-1.592 6.269

AKB  —10.934 31.445 —4.906 15.621 —0.547 6.084

PT 2.567 31.125 1.147 15.012 0.519 5.987

for &; and n;, respectively, were assumed. The Rel-Bias and Rel-SMSE are larger
for non-Gaussian errors, although the behavior of the PMSE estimators under the
smoothing procedure is similar to the Gaussian case. Although the PT presents
a better performance with respect to the Rel-Bias, the nonparametric bootstrap
procedures proposed here (HaB and AKB) are simpler, require less Monte Carlo
replications and their computational time is about one third less than the PT pro-
cedure. This can bring a significant gain when the model complexity increases.
Comparing HaB and AKB, the last one is slightly faster than the former.

5.2 Forecasting

The performance of the bootstrap methods presented in Sections 3 and 4 are stud-
ied here in the out of sample forecasting context. The following procedures: Stan-
dard (S) shown in Eq. (10), Procedure 1 (HaB), Procedure 2 (AKB), Procedure 3
(PT) and the parametric bootstrap from Procedure 4 (PBFI) are compared through
the average width and coverage rates of the forecast intervals. For this study, se-
ries of size n = 50, 100 and 500 were generated with a burn-in equal to 100. The
values of the hyperparameters were chosen to equal the following signal-to-noise
ratio: ¢ = 0.1 and g = 1.0, according to the simulation study in Rodriguez and
Ruiz (2009). The forecasts were calculated k-steps-ahead for k = 1,5 and 15. The
number of Monte Carlo replications was MC = 1000, the number of bootstrap re-
samples was B = 2000 and the nominal level of the prediction intervals was fixed
at 95%. For the non-Gaussian case, a Gamma(1/9, 1/3) distribution for &; was
assumed.

Tables 2 and 3 contain the results for Gaussian errors with ¢ = 0.1 and g = 1.0,
respectively. It can be seen that the proposed methods are consistent, as for all fore-
cast lags, the coverage rates get close to the fixed 95% level assumed, as the sample
size increases. It can be also noted that, even for small samples, all methods present
very satisfactory results, with the AKB, PT and PBFI intervals showing cover-
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Table 2 95% prediction intervals for y, 1 with g = 0.1 and Gaussian errors

S PBFI HaB AKB PT
Width Width Width Width Width
Coverage Coverage Coverage Coverage Coverage

n k Tails Tails Tails Tails Tails
50 1 4.462 4.707 4.536 4.590 4.601
0.913 0.933 0.919 0.920 0.922

0.041/0.046 0.035/0.032 0.038/0.043 0.037/0.043 0.037/0.041
100 1 4.533 4.631 4.574 4.561 4.603
0.955 0.953 0.954 0.954 0.956

0.021/0.024 0.019/0.028 0.020/0.026 0.020/0.026 0.020/0.024
500 1 4.582 4.566 4.579 4.586 4.592
0.949 0.952 0.955 0.954 0.955

0.022/0.029 0.020/0.028 0.017/0.028 0.016/0.030 0.016/0.029
50 5 5.099 5.340 5.174 5.229 5.215
0.938 0.942 0.939 0.941 0.941

0.031/0.031 0.028/0.030 0.030/0.031 0.029/0.032 0.029/0.030
100 5 5.147 5.240 5.180 5.174 5.213
0.936 0.944 0.938 0.939 0.941

0.031/0.033 0.025/0.031 0.03/0.032 0.030/0.031 0.030/0.029
500 5 5.214 5.198 5.210 5.218 5.225
0.950 0.949 0.951 0.951 0.951

0.023/0.027 0.026/0.025 0.023/0.026 0.023/0.026 0.023/0.026
50 15 6.331 6.606 6.410 6.448 6.406
0.918 0.926 0.923 0.924 0919

0.044/0.033 0.045/0.029 0.047/0.030 0.044/0.032 0.049/0.032
100 15 6.409 6.504 6.429 6.440 6.472
0.926 0.930 0.928 0.929 0.930

0.037/0.037 0.037/0.033 0.038/0.034 0.037/0.034 0.037/0.033
500 15 6.485 6.464 6.479 6.489 6.498
0.946 0.938 0.944 0.946 0.947

0.028/0.026 0.033/0.029 0.029/0.027 0.028/0.026 0.028/0.025

age slightly better than the other procedures. Note that the bootstrap approaches
present width greater than the S method, particularly for small samples, once they
incorporate the uncertainty inherent in the estimation of . The parametric boot-
strap (PBFI) shows a better performance when k = 1, but its width is slightly larger
than the other methods. The coverage on the tails appears to be symmetric for all
methods, as expected. It can be also noted that the average width of the intervals
increases as ¢ increases.

Tables 4 and 5 contain the results for Gamma errors with ¢ = 0.1 and ¢ = 1.0,
respectively. Once again, it can be seen that the coverage rates get close to the
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Table 3 95% prediction intervals for y, i with g = 1.0 and Gaussian errors

S PBFI HaB AKB PT
Width Width Width Width Width
Coverage Coverage Coverage Coverage Coverage
n k Tails Tails Tails Tails Tails
50 1 6.212 6.398 6.282 6.292 6.381
0.924 0.933 0.927 0.929 0.932
0.041/0.035 0.036/0.031 0.038/0.035 0.036/0.035 0.038/0.030
100 1 6.287 6.330 6.292 6.326 6.366
0.952 0.952 0.952 0.955 0.956
0.022/0.026 0.023/0.025 0.022/0.026 0.021/0.024 0.021/0.023
500 1 6.326 6.315 6.326 6.333 6.334
0.949 0.946 0.949 0.949 0.949
0.020/0.031 0.020/0.034 0.020/0.031 0.020/0.031 0.020/0.031
50 5 9.772 10.015 9.861 9.829 9.845
0.925 0.933 0.927 0.927 0.929
0.036/0.039 0.032/0.035 0.035/0.038 0.032/0.041 0.033/0.038
100 5 9.915 9.996 9.956 9.940 9.928
0.945 0.938 0.944 0.944 0.944
0.024/0.031 0.026/0.036 0.024/0.032 0.024/0.032 0.024/0.032
500 5 10.035 10.008 10.046 10.040 10.033
0.949 0.943 0.948 0.948 0.950
0.026/0.025 0.031/0.026 0.026/0.026 0.025/0.027 0.025/0.025
50 15 15.504 15.836 15.521 15.504 15.517
0.911 0.913 0.910 0.911 0.913
0.048/0.041 0.047/0.040 0.048/0.042 0.047/0.042 0.047/0.040
100 15 15.793 15.943 15.830 15.808 15.788
0.928 0.927 0.925 0.925 0.925
0.034/0.038 0.036/0.037 0.035/0.040 0.036/0.039 0.037/0.038
500 15 15.881 15.842 15.886 15.884 15.882
0.955 0.952 0.955 0.955 0.955

0.021/0.024 0.021/0.027 0.021/0.024 0.021/0.024 0.021/0.024

fixed 95% level as the sample size increases, for all forecast lags. In this case, the
coverage rate of the S method is slightly smaller than the bootstrap methods when
the sample size is small (n = 50). It can be also seen that the bootstrap methods,
which incorporate the uncertainty in the estimation of ¥, have larger width, as
expected, especially for small sample sizes. Due to the asymmetry of the Gamma
distribution, the coverage rates in the tails are not symmetric, but the asymmetry
is more pronounced when g < 1.

As a general conclusion, it can be seen that, although the forecasting methods
proposed here were built in order to correct the PMSE, this correction does not
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Table 4 95% prediction intervals for y, i with ¢ = 0.1 and Gamma errors

S PBFI HaB AKB PT
Width Width Width Width Width
Coverage Coverage Coverage Coverage Coverage

n k Tails Tails Tails Tails Tails
50 1 4.131 4.386 4.183 4.748 4.265
0.921 0.929 0.925 0.929 0.927

0.017/0.062 0.011/0.060 0.014/0.061 0.011/0.060 0.013/0.060
100 1 4.345 4.502 4.382 4.433 4.413
0.962 0.968 0.963 0.963 0.962

0.010/0.028 0.006/0.026 0.009/0.028 0.009/0.028 0.010/0.028
500 1 4.531 4.531 4.600 4.536 4.543
0.956 0.956 0.956 0.956 0.956

0.006/0.038 0.008/0.036 0.006/0.038 0.006/0.038 0.021/0.025
50 5 4.893 5.170 4.993 5.488 4.993
0.934 0.941 0.934 0.945 0.937

0.024/0.042 0.023/0.036 0.024/0.042 0.018/0.037 0.025/0.038
100 5 5.020 5.168 5.047 5.166 5.078
0.960 0.959 0.959 0.959 0.960

0.004/0.036 0.004/0.037 0.004/0.037 0.004/0.037 0.004/0.036
500 5 5.156 5.151 5.154 5.160 5.165
0.952 0.952 0.952 0.952 0.952

0.009/0.039 0.009/0.039 0.009/0.039 0.009/0.039 0.009/0.039
50 15 6.139 6.435 6.220 6.580 6.191
0.917 0.924 0.923 0.927 0.923

0.044/0.039 0.040/0.036 0.041/0.036 0.037/0.036 0.042/0.035
100 15 6.383 6.562 6.404 6.523 6.434
0.942 0.940 0.943 0.946 0.945

0.021/0.037 0.022/0.038 0.020/0.037 0.017/0.037 0.018/0.037
500 15 6.462 6.468 6.457 6.466 6.475
0.957 0.960 0.957 0.958 0.959

0.019/0.024 0.016/0.024 0.019/0.024 0.018/0.024 0.018/0.023

seem to affect the coverage rates. Similar results were reached by Rodriguez and
Ruiz (2009), in a study with a nonparametric bootstrap proposal.

6 Application to real data sets

6.1 Electric energy consumption

To illustrate the smoothing procedures, this section presents a study on a time
series of electric energy consumption in the Northeast region of Brazil. These data
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Table 5 95% prediction intervals for y, 1 with g = 1.0 and Gamma errors

S PBFI HaB AKB PT
Width Width Width Width Width
Coverage Coverage Coverage Coverage Coverage
n k Tails Tails Tails Tails Tails
50 1 5.978 6.155 6.026 6.068 6.136
0.936 0.939 0.935 0.938 0.940
0.027/0.037 0.025/0.036 0.026/0.039 0.025/0.037 0.025/0.035
100 1 6.151 6.216 6.157 6.191 6.228
0.943 0.951 0.945 0.947 0.945
0.030/0.027 0.025/0.024 0.027/0.028 0.026/0.027 0.029/0.026
500 1 6.299 6.267 6.298 6.306 6.314
0.948 0.954 0.948 0.948 0.949
0.021/0.031 0.018/0.028 0.021/0.031 0.020/0.032 0.020/0.031
50 5 9.804 9.974 9.790 9.874 9.961
0.927 0.929 0.927 0.926 0.929
0.032/0.041 0.031/0.040 0.032/0.041 0.029/0.045 0.029/0.042
100 5 9.031 9.994 9.934 9.953 9.976
0.942 0.949 0.944 0.944 0.944
0.016/0.042 0.013/0.038 0.015/0.041 0.014/0.042 0.016/0.040
500 5 10.031 10.011 10.035 10.035 10.035
0.942 0.940 0.942 0.942 0.940
0.023/0.035 0.025/0.035 0.025/0.035 0.023/0.035 0.023/0.037
50 15 15.443 15.655 15.341 15.476 15.628
0.918 0.915 0914 0.919 0.920
0.043/0.039 0.043/0.042 0.043/0.043 0.042/0.039 0.042/0.038
100 15 15.816 15.981 15.817 15.831 15.846
0.925 0.923 0.927 0.926 0.927
0.033/0.042 0.036/0.041 0.031/0.042 0.031/0.043 0.032/0.041
500 15 15.926 15.917 15.934 15.929 15.924
0.941 0.943 0.942 0.941 0.943

0.027/0.032 0.025/0.032 0.027/0.031 0.026/0.033 0.026/0.031

were obtained from a large study concerning the quantity of energy necessary to
answer the maximum demand in the peak interval (from 6:00 pm to 9:00 pm).
The series are monthly observations of electric consumption from CHESF (Sao
Francisco Hydroelectric Company), in the period from May 1991 to December
1996 (n = 68). The data are shown in Figure 1 and the LLM was fitted to the
series.

Point and interval estimates for the hyperparameters are shown in Table 6. The
signal-to-noise ratio is less than 1 (0.56). A residual analysis was carried out and
no evidence of correlation across time in the error term was found. As the zero
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Figure 1 Electric energy consumption of CHESF. Values of the series were divided by 100. The
dotted and dashed lines represent, respectively, the smoothing point estimates and the confidence
intervals of level 95% for the level component using PT method.

Table 6 MLE and confidence intervals for the
hyperparameters of CHESF series

¥ MLE Conf. int. 95%
ai 0.14 [0.03; 0.31]
o7 0.25 [0.11; 0.40]

value is not included in the intervals, the LLM can be an adequate model for this
series.

Table 7 provides the percentage increase in the MSE compared to the standard
procedure. The PT method presents the highest increasing, while the AKB and
HaB procedures have a similar performance. Figure 1 provides smoothed estimates
(point and 95% confidence intervals) for the level component using the PT method,
which follows well the series behavior.

6.2 Income of a small Brazilian city

This application deals with the net income series from a small Brazilian city, whose
name is omitted here for confidentiality. It is important to forecast future values of
income series for planning and control of the annual budget and costs.

The income series, shown in Figure 2, consists of 72 monthly observations in
the period 2006/01 to 2011/12. The last six observations of the series were omitted
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Table7 Percentual increasing of MSE
compared to the Standard procedure for
the CHESF series

Methods Percent
PT 9.56
HaB 7.71
AKB 6.40
)
< ]
©
e
<
s
=
f ==
S
‘E P
s =2
©
2
8 3 4
e =
©
e |
©
e |
T T T T T T T
2006 2007 2008 2009 2010 2011 2012
Month

Figure 2 The full, dashed, dotted and full in bold lines indicate, respectively, the income series and
the forecast intervals S, HaB and PBFI. The vertical line separates the data and the future values.
The confidence level is 0.95.

to compare the forecast intervals to the future values. The data do not seem to
follow a Normal distribution, although they are not too asymmetric.

The series is non-stationary and has a seasonal component, thus a structural ba-
sic model (SBM) is fitted to the series (Harvey (1990)). For the SBM, the hyperpa-
rameter vector is given by ¥, = (082, 0,72, 0*52, 002)), where the components represent,
respectively, the variance of the error, level, slope and seasonality.

The residuals of the fitted model do not seem to follow a normal distribution,
but they are not autocorrelated. Table 8 presents the point and interval estimates
for the hyperparameters. The point estimates for the slope (052) and seasonal (002))
hyperparameters are very close to zero, implying that these components may have
a deterministic behavior. For this application, the forecast intervals S, HaB and
PBFI were calculated and they are shown in Figure 2. It can be seen that the real
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Table 8 MLE and bootstrap confidence intervals of nominal
level 95% for the hyperparameters of the SBM fitted to the in-

come series

¥ Estimate Bootstrap confidence interval
o2 0.001 (5.61 x 10712, 0.015)

o? 0.005 (2.75 x 1072, 0.001)

of 1.14 x 10710 (7.15 x 10716, 1.157 x 1079)
o2 2.66 x 1078 (5.15 x 10721, 0.0005)

future values are all of them inside the prediction intervals. Note that the HaB and
PBFI intervals present slightly larger widths compared to S, as it was shown in the
simulation studies.

7 Conclusion and final remarks

In this work, different bootstrap procedures to estimate the PMSE, which take into
account the uncertainty associated to the hyperparameters estimation, have been
proposed and compared for the SSM. These proposals are variations of the pro-
cedures developed in Hamilton (1986) and Ansley and Kohn (1986), along with a
new parametric bootstrap procedure (PBFI). The methods were empirically com-
pared to the standard procedure and to the proposal of Pfeffermann and Tiller
(2005), under Gaussian and non-Gaussian assumptions for the errors, in the fore-
casting and smoothing contexts. The results confirmed that the performance of the
bootstrap prediction intervals is slightly better than the Standard intervals with re-
spect to the coverage rate, in the case of Gaussian distribution. The PMSE for the
future observations was corrected using the bootstrap technique and had a larger
value than the S procedure, but this correction does not seem to drastically affect
the coverage rate of the intervals. The results also showed that the presence of non-
Gaussian errors with a very strong asymmetry directly interferes in the coverage
rate in the tails.

The major advantage of the bootstrap methods (HaB and AKB) addressed here
is their computational simplicity, that is, they require less replications compared
to the PT method and they are simple to code. With respect to the computational
time, the HaB and AKB spend approximately one third less time than the PT pro-
cedure.

Smoothing results were very satisfactory, especially for the simple AKB and
HaB procedures, taking into account the quality of the estimates.

Future research includes the development of forecasting methods that do not
employ the normality assumption for future values. This includes the use of asym-
metric distributions for correcting the coverage rate of the intervals. New possibil-
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ities for the G continuous distribution, other than the Gaussian, can also be studied
in the PBFI method.
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