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Abstract. In any sports competition, strong interest is devoted to the knowl-
edge on the team that will be champion. The result of a match, the chance
of a team either qualifying for a specific tournament, or relegating, the best
attack and defense are all topics of interest. This paper presents a Bayesian
methodology for modeling the number of goals scored by a team based on
Zero-Modified Poisson distribution. An important advantage of this distri-
bution is the flexibility in modeling count data without previous knowledge
of the sampling characteristic with respect to the frequency of zeros (inflated,
standard, deflation). These characteristics are present in the data sets referring
to the number of goals scored by different teams. Inference procedures and
computational simulation studies are also discussed. The proposed method-
ology was applied to the 2012–13 La Liga and the results were compared
with those of the Poisson model using the De Finetti measure an percentage
of correct predictions.

1 Introduction

In football and any sports competition, strong interest is devoted to the knowledge
on the team (in a collective sport) or player (in an individual sport) that will be
the champion. The result of a match, the chance of a team either qualifying for a
specific tournament or relegating, the best attack and the best defense are all topics
of interest.

Various studies have focused on football prediction. For example, regarding the
World Cup Tournament (WCT), Dyte and Clarke (2000) presented a log-linear
Poisson regression model which took the FIFA ratings as covariates. They pro-
vided some results on the predictive power of the model and simulation results to
estimate the probabilities of a team winning the 1998 WCT. Using a counting pro-
cesses approach, Volf (2009) modeled the development of a match score as two in-
teracting time-dependent random point processes. The interactions between teams
were analyzed via a semi-parametric multiplicative regression model of intensity.
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The author applied his model to the analysis of the performance of the eight teams
that played in the quarter-finals of the 2006 WCT. Suzuki et al. (2009) proposed
a Bayesian methodology to predict the match results using ’experts’ opinions and
the FIFA ratings as prior information. The method was used to calculate the win,
draw and loss probabilities for each match and estimate the classification proba-
bilities in a group stage and the winning tournament chances for each team at the
2006 WCT.

Keller (1994) fitted the Poisson distribution to the number of goals scored by
England, Ireland, Scotland and Wales in the British International Championship
from 1883 to 1980. Lee (1997) considered a Poisson regression to model the num-
ber of goals of a football team, whose average reflected the strength of the team,
the quality of the opposition and the home advantage (if it is the home team). The
independence between the goals scored by the two teams was assumed and the
methodology was used for the 1995–96 English Premier League.

In a different approach, Brillinger (2008) directly modeled the win, draw and
loss probabilities by applying a trinomial regression model to the Brazilian 2006
Series A championship. The total points, probability of a team winning the cham-
pionship and probability of ending the season in the top four places were estimated
by simulations for each team.

Karlis and Ntzoufras (2009) applied Skellam’s distribution to model the differ-
ence in the number of goals of each match. The authors argue this approach relies
neither on independence nor on the marginal Poisson distribution assumptions for
the number of goals scored by the teams. A Bayesian analysis to predict of match
outcomes for the English Premiere League (2006–07 season) was performed with
a log-linear link function and non-informative prior distributions for the model
parameters.

Several studies have been conducted on the Poisson distribution for modeling
the number of goals scored. However, a sample formed by the number of goals of
a team in different games usually show a variance larger or smaller than the mean,
because the observed frequency of zeros differs from the expected frequency when
the Poisson distribution is considered. To overcome this problem, a modification
in the Poisson distribution must be considered for an adequate modeling of the
frequency of zero.

In this study, we assume the number of goals scored by a team follows the
Zero Modified Poisson (ZMP) model presented in Dietz and Böhning (2000).
Under a Bayesian approach, we present an inferential procedure and a computa-
tional simulation study is discussed (see Conceição, Andrade and Louzada, 2013
and Conceição, Andrade and Louzada, 2014). The methodology was used for the
2012–13 La Liga and the De Finetti measure (De Finetti, 1972). The prediction of
the results of a given round is done sequentially, characterizing a 1-step ahead pre-
diction. The new data is then incoporated and the parameters are again estimated
with the new series and the percentage of correct forecasts were used to quantify
the predictive quality of the model.
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The paper is organized as follows: Section 3 presents the probabilistic model;
Section 4 describes the ZMP Regression Model, the Bayesian inference, the com-
putational simulation procedure and two measures used to quantify our modeling
predictive quality; Section 5 provides the results of a simulation study conducted
to estimate some probabilities of interest, such as single match (fixed period of
time), champion, classification for the 2013–14 UEFA Champions League group
phase and relegation (sequential period); finally, Section 6 discusses the results and
suggests some future work.

2 Real dataset: 2012–13 La Liga season

The Spanish first-division football, known as La Liga season or Liga BBVA, is
one of the most popular professional sport leagues worldwide. It is played by 20
teams and the competition format follows the double round-robin format, in which
a team plays every other team twice, once at home and once away, in a total of
380 matches. Teams are awarded three points per win, one point per draw and
no points per loss and are ranked per total points. The highest-ranked team at
the end of the competition is crowned champion. The three lowest ranked teams
are relegated to the Second Division. If points are equal between two or more
teams, the teams are ranked according to the rules established by the Royal Spanish
Football Federation.

In this section, we illustrate the methodology using the total number of goals
scored by each team in the 2012–13 La Liga season.

Table 1 shows the number of matches associated with the number of goals
scored by each team. For instance, Zaragoza did not score in 18 out of 38 matches
while Barcelona scored at least one goal in 100% of their games. After analyzing
the data involving the total number of goals scored by each team, we observed that
some teams did not score goals in various matches and others scored at least one
goal in every game. This fact can indicate that it may not be possible to consider
a family of distribution, such as the Poisson distribution, to describe the behavior
of the number of goals scored by different teams (see Table 1), and besides, two
conflicting situations may occur when we consider the data sets corresponding to
the number of goals scored by each team in different matches. For some teams,
the data sets have a large frequency of zeros, that is, zero inflated data sets, and
for others teams the data sets have under recorded zeros, that is, zero deflated data
sets. Thus, in order to consider a distribution that fits the data adequately, the above
situations often require previous knowledge of the occurrence of zero inflation or
deflation in the sample.

The results presented in Table 1 show for some teams a clear discrepancy be-
tween the observed frequency and the expected frequency of zero for some teams
when the data is modelled using the Poisson distribution and the maximum likeli-
hood procedure to estimate the model parameter. The observed frequency of zero
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Table 1 Descriptive analysis of the dataset containing the number of goals scored by a team in the
Spanish league 2012–13

Teams Number of goals Mean Variance Zero expected
(Poisson Dist.)

0 1 2 3 4 5 6

Athletic Bilbao 9 17 9 3 0 0 0 1.158 0.785 11.938
Atletico Madrid 8 14 6 4 4 1 1 1.711 2.373 6.869
Barcelona 0 4 13 7 7 6 1 3.026 1.864 1.843
Betis 9 15 6 4 2 2 0 1.500 1.932 8.479
Celta 11 18 8 1 0 0 0 0.974 0.621 14.352
Deportivo La Coruña 11 16 4 5 2 0 0 1.237 1.375 11.031
Espanyol 16 8 8 5 1 0 0 1.132 1.415 12.256
Getafe 10 16 9 3 0 0 0 1.132 0.820 12.256
Granada 13 15 8 2 0 0 0 0.974 0.783 14.352
Levante 13 15 6 3 1 0 0 1.053 1.078 13.263
Malaga 10 14 6 5 3 0 0 1.395 1.543 9.420
Mallorca 10 15 12 0 1 0 0 1.132 0.820 12.256
Osasuna 17 13 5 2 1 0 0 0.868 1.036 15.945
Rayo Vallecano 12 8 12 6 0 0 0 1.316 1.195 10.194
Real Madrid 4 4 12 5 6 6 1 2.711 2.698 2.527
Real Sociedad 7 9 11 6 4 1 0 1.842 1.812 6.022
Sevilla 9 14 6 5 3 1 0 1.526 1.824 8.259
Valencia 8 8 12 6 3 1 0 1.763 1.753 6.517
Valladolid 7 19 9 2 0 0 1 1.289 1.238 10.466
Zaragoza 18 9 7 3 0 1 0 0.974 1.432 14.352

is higher than expected frequency for Espanyol and Zaragoza indicating a possi-
ble zero inflation while we see the opposite situation, indicating a possible zero
deflation for Celta and Valladolid.

Following this context, in this paper we assume the number of goals scored by
a team follows the Zero-Modified Poisson (ZMP) model as an alternative to the
Poisson model commonly used. The zero-modification consists of including of an
additional parameter in the usual Poisson distribution, with the principal role to
modify the probability of zero, increasing or decreasing the chance of occurrence
of zero. Thus, the ZMP model is flexible enough to be adjusted in both situations
(zero-inflation or zero-deflation), without requiring any previous knowledge of the
type of modification of the zero frequency present in the dataset. Additionally, the
ZMP model has the Poisson model as a particular case. Therefore, the ZMP model
is adequate to represent datasets that present any of the situations shown in Table 1.

3 Zero-modified Poisson distribution

Let Y be a random variable defined in a set of non-negative integers, A0 =
{0,1,2, . . .}, and let PZMP(Y = y) denote the probability that random variable Y
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takes a value y. The random variable Y is said to have a ZMP distribution with
parameters μ and p if

PZMP(Y = y) = (1 − p)I (y) + pPP (Y = y), y ∈ A0, (3.1)

where PP (Y = y) is the probability function of a Poisson random variable with
mean parameter μ and I (y) is an indicator function, that is, I (y) = 1 if y = 0 and
I (y) = 0 otherwise. Parameter p is subject to the condition (called p-condition)

0 ≤ p ≤ 1

1 − PP (Y = 0)
. (3.2)

Note that the distribution given in equation (3.1) is not the mixture distribu-
tion typically adjusted to zero-inflated data, since parameter p can assume values
higher than one to also accommodate the zero-deflation. However, for all values
of p between 0 and boundary 1/(1 − PP (Y = 0)), equation (3.1) corresponds to
a probability function (for more details, see Dietz and Böhning, 2000, Conceição,
Andrade and Louzada, 2013, Conceição, Andrade and Louzada, 2014). The mean
and variance of Y are, respectively, μZMP = pμ and σ 2

ZMP = p{μ + (1 − p)μ2}.
Different values of p lead to a different ZMP distribution, as seen in the evalu-

ation of the proportion of additional or missing zeros given by

PZMP(Y = 0) − PP (Y = 0) = (1 − p) + pPP (Y = 0) − PP (Y = 0)

= (1 − p)
(
1 − PP (Y = 0)

)
.

(3.3)

According to (3.3), parameter p controls the frequency of zeros. When p = 0
in (3.3), PZMP(Y = 0) = 1. Therefore, (3.1) is the degenerate distribution with all
mass at zero. For all 0 < p < 1 in (3.3), we have (1 − p)(1 − PP (Y = 0)) > 0.
Therefore, PZMP(Y = 0) > PP (Y = 0) and (3.1) is the Zero-Inflated Poisson
(ZIP) distribution which has a proportion of additional zeros. When p = 1 in
(3.3), PZMP(Y = 0) − PP (Y = 0) = 0. Therefore, PZMP(Y = 0) = PP (Y = 0)

and (3.1) is the usual Poisson distribution. For all 1 < p < 1/(1 − PP (Y = 0))

in (3.3), we have (1 − p)(1 − PP (Y = 0)) < 0. Therefore, PZMP(Y = 0) <

PP (Y = 0) and (3.1) is the Zero-Deflated Poisson (ZDP) distribution. Finally,
p = 1/(1 − PP (Y = 0)) in (3.3) implies PZMP(Y = 0) = 0. Therefore, (3.1) is the
Zero-Truncated Poisson (ZTP) distribution given by

PZTP(Y = y) = PP (Y = y)

1 − PP (Y = 0)

(
1 − I (y)

)
.

The ZMP distribution described by equation (3.1) can be written as

PZMP(Y = y) = (
1 − p

(
1 − PP (Y = 0)

))
I (y) + p

(
1 − PP (Y = 0)

)
PZTP(Y = y),

where PZTP(Y = y) is the ZTP distribution.
Another parametrization of the ZMP distribution can be obtained by considering

ω = p(1 − PP (Y = 0)),

PZMP(Y = y) = (1 − ω)I (y) + ωPZTP(Y = y). (3.4)



Zero modified Poisson model to predict match outcomes 751

Its advantage is ω and μ are orthogonal, which enables the estimation of ω inde-
pendently of μ. However, the parametrization given in (3) enables inferences about
parameter p used to identify the type of zero modification (inflated or deflated).

4 The ZMP model

The ZMP distribution can be used to model goals scored by teams by specify-
ing the number of goals scored by team k as the response variable. Thus, we can
specify

Yk ∼ ZMP(μk,pk),

for k = 1,2, . . . ,K , where K is the number of different teams competing with each
other. Concerning the model parameter μk , we adopted the following structure:

log(μk) = β0 + β1IH (k) + βAk
+ βDk

, (4.1)

where β0 is a constant parameter, β1 is the home effect parameter, IH (k) is an
indicator function that means IH (k) = 1 if team k plays at home and IH (k) =
0 otherwise, βAk

is the attacking parameter of team k and βDk
is the defensive

parameter of the team competing with team k (for more details about equation
(4.1), see Lee, 1997 and Saraiva et al., 2016). Note that, in this formulation, a team
with a good defense will have a negative defense effect because this will decrease
the expected number of goals of the opposing team. On the other hand, a team with
a positive defense effect increases the expected number of goals of the opponent.

Alternatively, if we specify

Yk ∼ ZMP(μk,ωk),

as written in (3.4), we have that:

ωk = pk

(
1 − PP (Y = 0;μk)

)
. (4.2)

We propose using the constraints that the sum of parameters βAk
and the sum

of parameters βDk
are zero for making the model identifiable:

K∑
k=1

βAk
= 0 and

K∑
k=1

βDk
= 0.

In the ZMP model, the parameters of interest for each team k are represented by
vector β

ᵀ
k = (β0 β1 βAk

βDk
) and pk (or ωk). For inference, we adopted a fully

Bayesian approach, which has the advantage of incorporating prior information.
The likelihood, prior and posterior densities for the parameters in the model are
presented below.
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4.1 Inference

Let y
ᵀ
k = (yk1 yk2 · · · ykn) be an observation vector of the independent random

variables Yki
which has ZMP distribution with parameters μki

and pk (or ωk),
i = 1, . . . , n, where n is the number of games and yki

corresponds to the num-
ber of goals scored by team k in game i. Let μk = (μk1 μk2 . . . μkn) and pk

(or ωk) be parameters, where μki
and pk (or ωk) are related to observation yki

.
Consider the parametric vector β

ᵀ
k = (β0 β1 βAk

βDk
). For simplifications, we

defined matrix Xk of dimensions n × 4 whose rows are composed of vectors
xki

= (1 IH (ki) 1 1), so that xki
βk = β0 + β1IH (ki) + βAk

+ βDk
.

Consider the ZMP model parameterized in ωk according to (3.4). The likelihood
associated with the observation vector yk of team k is given by

Lk(μk,ωk;yk) =
n∏

i=1

{
(1 − ωk)

I (yki
)

(
ωkPP (Yki

= yki
)

1 − PP (Yki
= 0)

)1−I (yki
)}

. (4.3)

Substituting in (4.3) the equation of μki
given by

μki
= eβ0+β1IH (ki)+βAk

+βDk = exki
βk ,

the likelihood associated with the observation vector yk of team k can be written
as

Lk(βk;yk) =
n∏

i=1

{
(1 − ωk)

I (yki
)

(
ωk · e−e

xki
βk

eyki
xki

βk

(1 − e−e
xki

βk
)yki

!

)1−I (yki
)}

.

The log-likelihood associated with the observation vector yk of team k is given
by

�k(βk,ωk;yk) =
n∑

i=1

{(
1 − I (yki

)
)[

log
(

e−e
xki

βk
eyki

xki
βk

(1 − e−e
xki

βk
)yki

!

)
+ log(ωk)

]

+ I (yki
) log(1 − ωk)

}

=
n∑

i=1

{(
1 − I (yki

)
)

log
(

e−e
xki

βk
eyki

xki
βk

(1 − e−e
xki

βk
)yki

!

)}

+
n∑

i=1

{(
1 − I (yki

)
)

log(ωk) + I (yki
) log(1 − ωk)

}

= �+
k (βk;yk) + �0

k(ωk;yk). (4.4)

From (4.4), �+
k (βk;yk) depends only on the positive values of yk . Denoting

by y
+ᵀ
k = (y+

k1
y+
k2

· · · y+
kn+ ) the vector with the n+ positive observations from
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yk and X+
k the matrix of dimensions n+ × 4 whose rows are composed of vec-

tors x+
kj

= (1 IH (kj ) 1 1), j = 1, . . . , n+, the log-likelihood for βk based on the

supposition that y+
k comes from a ZTP distribution is given by

�k

(
βk;y+

k

) =
n+∑
j=1

{ PP (Y+
kj

= y+
kj

)

1 − PP (Y+
kj

= 0)

}

=
n+∑
j=1

{
log

(
e−e

x+
kj

βk

e
y+
kj

x+
kj

βk

(1 − e−e
x+
kj

βk

)y+
kj

!

)}

=
n+∑
j=1

{
y+
kj

x+
kj

βk − e
x+

kj
βk − log

(
1 − e−e

x+
kj

βk ) − log
(
y+
kj

!)},

for all values of y+
kj

> 0.

Since �k(βk;y+
k ) = �+

k (βk;yk), the log-likelihood �k(βk;yk) of the ZMP
model is equivalent to the log-likelihood �k(βk;y+

k ) of the ZTP model added of
term �0

k(βk;yk) and given by

�0
k(β2k;yk) =

n∑
i=1

{(
1 − I (yki

)
)

log(ωk) + I (yki
) log(1 − ωk)

}

= n+ log(ωk) + (
n − n+)

log(1 − ωk).

Since there are K teams that act independently, the complete log-likelihood is
given by

�(β,ω;D) =
K∑

k=1

�k(βk,ω;yk),

where βᵀ = (β0 β1 βA1 · · · βAK
βD1 · · · βDK

) and D = {y1, . . . ,yK} are, re-
spectively, the parametric vector and the dataset formed by observation vectors of
all teams.

We shall consider for β a multivariate Gaussian prior density with mean vector
zero and diagonal precision matrix 10−3I . Here, I is an indent (2K + 2)× (2K +
2) matrix, therefore β ∼ N(0,103I ). For each parameter ωk , k = 1, . . . ,K , we
consider a Uniform prior density, U(0,1).

Although we have considered a vague priori densities for the parameters of the
model referring to the home, attack and defense factors, more informative priori
densities can be elicited considering the specialists’ opinion. For example, as it
was made by the authors Suzuki et al. (2009), who considered a power priori for
the parameters of the model, adjusted to data of the 2006 Football World Cup.
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The Bayesian approach for the ZMP model can be constructed by writing the
joint posterior density for the vector of parameter β and ω as

P(β,ω|D) ∝ exp
{
�(β,ω;D)

}
P(β,ω).

From the Bayesian point of view, inferences about the parameters can be based
on their marginal posterior densities, which can be obtained by integrating the
joint posterior density. In our case, however, analytical solutions for the integrals
cannot be obtained. In order to overcome this problem, we use the Metropolis-
Hastings algorithm (Chib and Greenberg, 1995), which is an iterative procedure
of a broad class of MCMC methods. To implement the algorithm, we consider the
full conditional distributions of parameters β0, β1, βAk

, βDk
and ωk , for all k =

1, . . . ,K . All computational implementations were performed using OpenBUGS
and R systems in the R2WinBUGS package. The convergence of the chains was
monitored according to the methods recommended by Cowless and Carlin (1996)
(package CODA, Plummer et al., 2006). In all cases, the convergence was verified
by the Gelman-Rubin diagnosis (Gelman and Rubin, 1992), being very close to 1
(1.01). Estimates are given by the average of the generated MCMC sample. Given
the estimates, we use these values to calculate the probability of a win, draw and
defeat of each team in the next round.

4.2 Deriving the probabilities

For a given match played by teams Y1 and Y2, after the estimation of parameters
of the ZMP model, we calculate the probabilities of win (PW ), draw (PD) and loss
(PL) of team Y1 using the following equations:

PW = PZMP(Y1 > Y2) =
∞∑
i=1

i−1∑
j=0

PZMP(Y1 = i)PZMP(Y2 = j), (4.5)

PD = PZMP(Y1 = Y2) =
∞∑
i=0

PZMP(Y1 = i)PZMP(Y2 = i), (4.6)

and

PL = PZMP(Y1 < Y2) =
∞∑

j=1

j−1∑
i=0

PZMP(Y1 = i)PZMP(Y2 = j). (4.7)

4.3 Algorithm for the simulation

Suppose a tournament is composed of N rounds. For each round r , r =
N/2, . . . ,N , we obtain the final team classification, that is, number of points,
victories, draws, defeats, goals scored, goals conceded and goal differences. The
final classification is forecasted in a simulation based on the ZMP model involving
the following steps:
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(a) Fix n as the number of championships to be simulated and r as the number of
rounds played. Do c = 1 (the counter);

(b) If c < n, use the (r − 1) ∗ 10 observed matches to estimate the parameters of
the ZMP model;

(c) For each M = [N − (r − 1)] ∗ 10 matches to be played, simulate the num-
ber of goals scored using the ZMP distribution with the estimated parameters
obtained in step (b). Do c = c + 1 and return to step (b).

To assemble the final league tables, for each M match predicted, check if there
was a victory of team Y1 (Y1 > Y2), draw (Y1 = Y2) or victory of team Y2 (Y1 <

Y2). Give 3 points to the winning team and 1 point to both teams in case of a draw.
Update the current league table with the simulated results for each n simulated
championship. From the final league tables, we can calculate, for example, the
chance of a particular team being champion or relegated as follows:

P [Team to be champion]
= #(team ended in the first position in the final league table)/n,

P [Team to be relegation]
= #(team ended in the last three positions in the final league table)/n,

where # refers to the number of times obtained in the simulation.

4.4 Quality of the predictions

As pointed out in Section 1, the De Finetti measure (De Finetti, 1972) was used
to quantify our modeling predictive quality. Consider the set of all possible fore-
casts given by the simplex set S = {(PW ,PD,PL) ∈ [0,1]3 : PW + PD + PL = 1},
where PW , PD and PL denote the win probability, the draw probability and the
loss probability, respectively.

Observe that vertices (1,0,0), (0,1,0) and (0,0,1) of S represent the win, draw
and loss outcomes, respectively. Therefore, a way to measure the goodness of
a prediction is to calculate the De Finetti distance (De Finetti, 1972), which is
the square of the Euclidean distance between the point corresponding to the out-
come and the one corresponding to the prediction. For example, if a prediction is
(0.1,0.6,0.3) and the outcome is a draw (0,1,0), then the De Finetti distance is
(0.1 − 0)2 + (0.6 − 1)2 + (0.3 − 0)2 = 0.26. We can also associate the average of
its De Finetti distances, known as the De Finetti measure, to a set of predictions.
Therefore, among some prediction methods, the one with the least De Finetti mea-
sure shall be considered the best. Furthermore, the De Finetti value 2/3 can be
considered a reference for comparisons, because an equiprobable predictor which
assigns an equal probability for all outcomes (PW = PD = PL = 1/3) has 2/3 as
its De Finetti measure.
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Before each of the 19 remaining rounds, that is, 20th to 38th rounds, we calcu-
lated the win, draw and loss probabilities (see Section 4.2) for all matches and the
De Finetti measure (De Finetti, 1972) associated with these predictions.

Another standard way of measuring the goodness of a prediction method is to
calculate the percentage of correct forecasts. A forecast (PW ,PD,PL) shall be
considered correct if the outcome of the highest probability coincides with the
observed outcome.

5 Data analysis

This section provides the results of the application of the methodology to the 2012–
13 La Liga season. The champion of the 2012–13 La Liga was Barcelona, which
obtained most overall wins (32 victories), the second best defense (40 goals con-
ceded) and highest number of goals scored (115 goals).

We focused on the single match predictions, as well as the predictions for the
whole Tournament. We used the outcomes of the first 190 matches (19 rounds
played) of the 2012–13 La Liga season as our data set to predict the following 190
matches (from the 20th to 38th rounds).

5.1 Single match prediction

This section provides the forecasts for all the matches of the 28th round, shown in
Table 2. We compared the results obtained by ZMP and Poisson models. A forecast
(PW ,PD,PL) shall be considered correct if the outcome of the highest probability
coincides with the observed outcomes. For the 28th round, the ZMP model scored
7 results whereas the Poisson model scored only 4 results. The De Finetti measures
obtained were 0.436 and 0.615, respectively.

For all the forecasts for 19 rounds (190 matches predicted), 97 and 83 correct
predictions were obtained by the ZMP and Poisson models, respectively, and the
associated De Finetti measures were 0.585 and 0.670.

5.2 Predictions for the whole tournament—competition simulation

This section addresses the other probabilities of a team being champion, classified
for the 2013–14 UEFA Champions League group phase and relegated.

We considered 1000 tournament replications. A tournament replica was ob-
tained by the simulation procedure briefly described above. We calculated the
percentage of wins in tournament replicas for each team, the percentage of tour-
nament replica to be qualified for the 2013–14 UEFA Champions League Group
stage (ranked among the four best teams) and relegated to the Second Division,
known as 2013–14 Liga Adelante (ranked among the three worst teams).
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Table 2 Forecasts for single matches of the 28th round

Home Team Observed
Score

Away Team ZMP Model Poisson Model

W D L De Finetti Correct W D L De Finetti Correct

Deportivo La Coruña 31 Celta Vigo 0.321 0.343 0.336 0.691 No 0.497 0.253 0.25 0.38 Yes
Real Sociedad 41 Valladolid 0.484 0.256 0.260 0.399 Yes 0.37 0.238 0.392 0.607 No
Getafe 10 Athletic Bilbao 0.515 0.256 0.228 0.353 Yes 0.457 0.265 0.278 0.443 Yes
Real Madrid 52 Mallorca 0.739 0.128 0.133 0.102 Yes 0.247 0.262 0.491 0.877 No
Valencia 30 Betis 0.482 0.206 0.313 0.409 Yes 0.396 0.207 0.397 0.565 No
Málaga 2 Espanyol 0.519 0.261 0.220 0.945 No 0.595 0.198 0.207 1 No
Sevilla 40 Zaragoza 0.507 0.273 0.220 0.367 Yes 0.609 0.191 0.2 0.229 Yes
Osasuna 2 Atlético Madrid 0.203 0.294 0.502 0.376 Yes 0.436 0.212 0.352 0.656 No
Granada 11 Levante 0.322 0.318 0.360 0.699 No 0.411 0.216 0.373 0.923 No
Barcelona 31 Rayo Vallecano 0.902 0.061 0.037 0.015 Yes 0.452 0.244 0.304 0.452 Yes
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Figure 1 Box-plot of the number of points obtained by each team before the 20th round.

5.2.1 Overall results. In the 1000 tournament replications, some interesting in-
formation can be obtained, such as how many times a team has been champion,
how many times a team has ended in the first three positions, the variability in the
number of points, goals scored, goals taken, number of victories, losses, draws,
etc.

Figures 1 and 2 show, respectively, the box-plots of the predicted numbers of
points before the 20th and 35th rounds for each team at the end of the tourna-
ment. Figure 1 shows that Barcelona is the favorite to win the tournament and
Real Madrid and Atlético Madrid are favorites to be qualified for the 2013–14
UEFA Champions League. A vacancy remains to be played by Real Sociedad,
Valencia, Málaga and Betis. In this prediction, Zaragoza was not accredited as a
strong candidate for relegation.

According to Figure 2, with only four rounds remaining for the end of the cham-
pionship, the first three positions were practically defined and a contest was held
for the fourth position and the worst teams fought against relegation. In this round,
for example, Zaragoza was in the 17th position, tied with Osasuna (16th) and the
difference until then with Mallorca, the team ranked in the last position, was only
four points. One draw and three defeats in the last four rounds led to the relagation
of Zaragoza, which ended in the last position.

Table 3 shows the probabilities of each of the 20 teams reaching each of the 20
positions at the end of the championship. These probabilities were estimated by
considering the observed data before the 20th round.

5.2.2 Some specific results. Prior to each of the 19 remaining rounds (20th to
38th rounds), a simulation of 1000 whole tournaments was performed so that the
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Figure 2 Box-plot of the number of points obtained by each team before the 35th round.

mean of probabilities could be obtained. The tables below show the probabilities
of tournament wins (Table 4), the probabilities of a team reaching the top four
places (Table 5) and the probabilities of a team being relegated (Table 6), for the
19 remaining rounds (20th to 38th rounds) for each team with the highest proba-
bilities.

According to Table 4, for all rounds, Barcelona, the champion, is the team which
most frequently ended in the first position in our simulation.

To qualify for the 2013–14 UEFA Champions League Group stage, the teams
must be ranked among the four best teams. The probabilities of the six best teams
reaching the top four positions are shown in Table 5, where we can observe an
intensive dispute between Real Sociedad and Valencia for the fourth position can
be observed. Before the last round, Valencia had scored 2 more points than Real
Sociedad and both played away in the last round. Taking advantage of the defeat of
Valencia to Sevilla by 3–4, Real Sociedad was classified by beating the Deportivo
La Coruña by 1–0.

Another probability of interest refers to the relegation of the teams. In a round-
robin tournament, the teams extensively dispute to be the champion and qualify
for any tournament, but also not to be relegated. The teams are relegated if they
are ranked in the three worst positions. The probabilities of the six teams being
ranked in the three last positions are shown in Table 6. Four teams in the last round
competed to avoid relegation: Celta and the relegated teams Mallorca, Deportivo
La Coruña and Zaragoza.
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Table 3 Mean, standard deviation of final league ranks and probability of the 20 positions (in %) in the 20th round

Team Summary Probability of each position

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Barcelona 1.002 0.045 0.998 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Real Madrid 2.816 0.573 0.000 0.258 0.682 0.047 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atlético Madrid 2.276 0.490 0.002 0.734 0.253 0.009 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Real Sociedad 8.619 2.861 0.000 0.000 0.002 0.057 0.078 0.115 0.126 0.145 0.125 0.107 0.087 0.061 0.049 0.018 0.011 0.006 0.008 0.003 0.001 0.001
Valencia 7.359 2.560 0.000 0.001 0.007 0.122 0.157 0.139 0.136 0.127 0.109 0.070 0.064 0.033 0.024 0.006 0.000 0.002 0.002 0.001 0.000 0.000
Málaga 5.627 1.922 0.000 0.002 0.026 0.340 0.213 0.152 0.110 0.066 0.044 0.023 0.015 0.004 0.001 0.002 0.002 0.000 0.000 0.000 0.000 0.000
Betis 6.240 2.199 0.000 0.002 0.019 0.225 0.216 0.173 0.114 0.089 0.062 0.044 0.032 0.014 0.008 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Rayo Vallecano 8.405 2.734 0.000 0.000 0.006 0.063 0.096 0.112 0.126 0.133 0.115 0.104 0.106 0.064 0.046 0.016 0.004 0.008 0.000 0.001 0.000 0.000
Sevilla 12.836 3.072 0.000 0.000 0.000 0.005 0.002 0.011 0.030 0.040 0.052 0.076 0.108 0.140 0.117 0.127 0.091 0.072 0.055 0.049 0.019 0.006
Getafe 10.088 2.873 0.000 0.000 0.000 0.020 0.030 0.058 0.087 0.111 0.122 0.135 0.124 0.104 0.090 0.059 0.030 0.015 0.008 0.004 0.001 0.002
Levante 8.674 2.856 0.000 0.000 0.004 0.059 0.081 0.105 0.133 0.099 0.142 0.130 0.075 0.073 0.047 0.029 0.007 0.008 0.006 0.001 0.001 0.000
Athletic Bilbao 14.684 2.846 0.000 0.000 0.000 0.001 0.000 0.004 0.005 0.013 0.016 0.041 0.058 0.072 0.115 0.139 0.129 0.130 0.101 0.088 0.056 0.032
Espanyol 16.184 2.661 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.008 0.010 0.007 0.021 0.045 0.064 0.098 0.111 0.136 0.140 0.134 0.138 0.086
Valladolid 8.434 2.655 0.000 0.001 0.001 0.049 0.107 0.118 0.104 0.136 0.137 0.122 0.102 0.063 0.031 0.011 0.007 0.007 0.003 0.001 0.000 0.000
Granada 17.168 2.402 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.008 0.016 0.029 0.034 0.057 0.071 0.120 0.128 0.173 0.197 0.164
Osasuna 18.601 1.847 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.006 0.007 0.025 0.037 0.055 0.079 0.121 0.217 0.448
Celta Vigo 14.512 2.764 0.000 0.000 0.000 0.000 0.000 0.005 0.006 0.010 0.019 0.033 0.065 0.089 0.124 0.131 0.162 0.098 0.116 0.064 0.052 0.026
Mallorca 16.545 2.536 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.002 0.014 0.029 0.028 0.052 0.066 0.122 0.132 0.149 0.149 0.136 0.119
Deportivo La Coruña 16.486 2.580 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.005 0.010 0.017 0.043 0.062 0.086 0.098 0.118 0.140 0.162 0.152 0.103
Zaragoza 13.444 2.975 0.000 0.000 0.000 0.002 0.003 0.006 0.022 0.020 0.036 0.074 0.080 0.132 0.129 0.129 0.117 0.093 0.065 0.049 0.030 0.013
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Table 4 Simulation results for the five teams of highest percentages of tournament wins

Round Barcelona Real Madrid Atlético Madrid Real Sociedad Valencia

20 0.998 0.000 0.002 0.000 0.000
21 0.996 0.000 0.004 0.000 0.000
22 1.000 0.000 0.000 0.000 0.000
23 0.998 0.001 0.001 0.000 0.000
24 1.000 0.000 0.000 0.000 0.000
25 0.999 0.000 0.001 0.000 0.000
26 1.000 0.000 0.000 0.000 0.000
27 1.000 0.000 0.000 0.000 0.000
28 0.999 0.001 0.000 0.000 0.000
29 1.000 0.000 0.000 0.000 0.000
30 1.000 0.000 0.000 0.000 0.000
31 1.000 0.000 0.000 0.000 0.000
32 1.000 0.000 0.000 0.000 0.000
33 1.000 0.000 0.000 0.000 0.000
34 1.000 0.000 0.000 0.000 0.000
35 1.000 0.000 0.000 0.000 0.000
36 1.000 0.000 0.000 0.000 0.000
37 1.000 0.000 0.000 0.000 0.000
38 1.000 0.000 0.000 0.000 0.000

Table 5 Simulation results for the six teams likely to reach the top four positions

Round Barcelona Real Madrid Atlético Madrid Real Sociedad Valencia Málaga Betis

20 1.000 0.987 0.998 0.059 0.130 0.368 0.246
21 1.000 0.994 0.999 0.170 0.057 0.386 0.197
22 1.000 1.000 0.992 0.157 0.101 0.497 0.088
23 1.000 0.990 0.999 0.261 0.098 0.450 0.066
24 1.000 0.991 0.989 0.276 0.140 0.507 0.026
25 1.000 0.995 0.993 0.160 0.197 0.601 0.006
26 1.000 0.998 0.997 0.387 0.222 0.299 0.038
27 1.000 0.999 0.997 0.311 0.242 0.281 0.061
28 1.000 1.000 1.000 0.459 0.110 0.264 0.082
29 1.000 1.000 0.999 0.642 0.148 0.077 0.035
30 1.000 1.000 1.000 0.574 0.172 0.184 0.012
31 1.000 1.000 1.000 0.704 0.187 0.058 0.022
32 1.000 1.000 1.000 0.819 0.122 0.044 0.008
33 1.000 1.000 1.000 0.710 0.275 0.007 0.006
34 1.000 1.000 1.000 0.867 0.113 0.018 0.002
35 1.000 1.000 1.000 0.738 0.258 0.004 0.000
36 1.000 1.000 1.000 0.498 0.500 0.001 0.001
37 1.000 1.000 1.000 0.542 0.458 0.000 0.000
38 1.000 1.000 1.000 0.325 0.675 0.000 0.000
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Table 6 Simulation results of the six teams more likely to be ranked in the three last positions

Round Zaragoza Deportivo La Coruña Mallorca Celta de Vigo Osasuna Granada

20 0.092 0.417 0.404 0.142 0.786 0.534
21 0.172 0.589 0.548 0.137 0.646 0.398
22 0.187 0.654 0.567 0.096 0.650 0.500
23 0.171 0.799 0.711 0.248 0.526 0.332
24 0.190 0.869 0.739 0.388 0.497 0.146
25 0.296 0.877 0.812 0.431 0.323 0.102
26 0.302 0.929 0.898 0.277 0.154 0.181
27 0.381 0.941 0.768 0.377 0.190 0.211
28 0.444 0.933 0.580 0.428 0.264 0.267
29 0.492 0.864 0.506 0.557 0.309 0.207
30 0.516 0.755 0.731 0.490 0.117 0.368
31 0.508 0.524 0.685 0.642 0.165 0.460
32 0.557 0.266 0.517 0.773 0.218 0.647
33 0.714 0.353 0.542 0.616 0.166 0.598
34 0.562 0.421 0.806 0.501 0.236 0.463
35 0.334 0.483 0.910 0.592 0.469 0.208
36 0.339 0.699 0.986 0.776 0.107 0.093
37 0.597 0.347 0.951 0.920 0.183 0.002
38 0.895 0.557 0.925 0.623 0.000 0.000

Figure 3 Dot plot of the offensive effects versus minus defensive effects for all teams.

Figure 3 shows the dot plot of the offensive effects versus minus defensive ef-
fects for all teams. The teams of strong attack and strong defense ended in the first
positions and those of weak defense suffered in the tournament.
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6 Final remarks

This paper proposed a Bayesian methodology based on the ZMP model that shows
good predictive quality, easy implementation and low computational effort for pre-
dicting match outcomes. The ZMP model proved very efficient in the predictions
in comparison to the widely used Poisson model.

We have reported some probabilities of interest, such as simple match, cham-
pion, classification for the 2013–14 UEFA Champions League group phase and
relegation. However, other results can be obtained: chance of each team ending a
championship in the last position, qualification for the 2013–14 UEFA European
League, team of best attack (scoring of goals), team of best defense (taking of few
goals), team with most victories, best home team, best away team, etc.

Although our modeling was applied to the 2012–13 La Liga Season, in princi-
ple, it is flexible and can be easily adapted to other different tournaments.

Intuitively, if several matches are played under the same conditions, other fac-
tors, such as home field advantage, crisis, umpire and atmospheric condition may
cause dependence among the datasets. The dependence over time (38 matches), as
well as changes that may be suffered by each team throughout the championship
are considerations that can make the model more realistic. Approaches considering
longitudinal data and random effects can be considered. Although such situations
were not considered here, it should be further investigated in the context of our
modeling. Particularly, we can also assume a bivariate distribution for (X,Y ) to
check the presence of dependence.
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