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A weak version of bivariate lack of memory property

Nikolai Kolev and Jayme Pinto
University of São Paulo

Abstract. We suggest a modification of the classical Marshall–Olkin’s bi-
variate exponential distribution considering a possibility of a singularity con-
tribution along arbitrary line through the origin. It serves as a base of a new
weaker version of the bivariate lack of memory property, which might be both
“aging” and “non-aging” depending on the additional inclination parameter.
The corresponding copula is obtained and we establish its disagreement with
Lancaster’s phenomena. Characterizations and properties of the novel bivari-
ate memory-less notion are obtained and its applications are discussed. We
characterize associated weak multivariate version. The weak bivariate lack of
memory property implies restrictions on the marginal distributions. Starting
from pre-specified marginals we propose a procedure to build bivariate distri-
butions possessing a weak bivariate lack of memory property and illustrate it
by examples. We complement the methodology with closure properties of the
new class. We finish with a discussion and suggest several related problems
for future research.

1 Introduction and preliminaries

The classical bivariate lack of memory property (BLMP) has at least half century
history since the paper of Marshall and Olkin (1967). Many textbooks use as a base
and give a special attention to the BLMP and related bivariate exponential distribu-
tion exhibiting singularity along the main diagonal in R2+ = [0,∞) × [0,∞), see
Barlow and Proschan (1981), Singpurwalla (2006), Balakrishnan and Lai (2009),
Gupta, Zeung and Hu (2010), Cherubini, Durante and Mulinacci (2015), McNeil,
Frey and Embrechts (2015) among others. More than 2000 articles complement
and extend Marshall–Olkin’s bivariate exponential distribution, justifying advan-
tages in analysis of various data sets from engineering, medicine, insurance, fi-
nance, biology, etc. Let us mention two very recent contributions only: Lin, Lai and
Govindaraju (2016) and Brigo, Mai and Scherer (2016). The reader would find in
Lin, Lai and Govindaraju (2016) interesting and new investigations regarding the
correlation coefficient and dependence structure of bivariate Marshall–Olkin’s ex-
ponential distribution. On the other side, Brigo, Mai and Scherer (2016) offer a
new characterization of Marshall–Olkin multivariate law (e.g., all sub-vectors of
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associated survival indicators are continuous-time Markov chains) with a direct
impact to overcome practical limitations for the modeling of high-dimensional
default times. In this article, we suggest one more modification of the BLMP, al-
lowing singularity along the arbitrary line through the origin (0,0).

To proceed, let us begin with the classical bivariate Marshall–Olkin (MO) shock
model specified by the stochastic representation

(X1,X2) = (
min(T1, T3),min(T2, T3)

)
, (1.1)

where non-negative continuous random variables T1 and T2 identify the occurrence
of independent “individual shocks” affecting two devices and T3 is their “common
shock”. The random vector (X1,X2) presents the joint distribution of both life-
times.

Specifically, let (X1,X2) be a continuous non-negative random vector de-
fined by its joint survival function SX1,X2(x1, x2) = P(X1 > x1,X2 > x2) for
all x1, x2 ≥ 0. If the shocks are governed by independent homogeneous Pois-
son processes, then Ti’s in (1.1) are exponentially distributed with parameters
γi > 0, i = 1,2,3, and we obtain the MO bivariate exponential distribution given
by

SX1,X2(x1, x2) = exp
{−γ1x1 − γ2x2 − γ3 max(x1, x2)

}
, x1, x2 ≥ 0, (1.2)

see Marshall and Olkin (1967). Due to the “common shock” distinguished by T3 in
(1.1), this distribution owns a singular component along the line {x1 = x2} in R2+,
with a weight P(X1 = X2) = γ3

γ1+γ2+γ3
> 0, as shows the scatterplot displayed

on Figure 1(a). Hence, the MO bivariate exponential distribution is not absolutely
continuous, that is, it does not have a probability density with respect to the two-
dimensional Lebesgue measure.

To give a probability formalization of model (1.1), consider a system composed
by two items, to be denoted by 1 and 2. We associate with each item j, j = 1,2, a
Bernoulli random variable Zj , indicating whether the item is operational (Zj = 1)
or failed (Zj = 0). The bivariate Bernoulli random vector (Z1,Z2) represents the
state of the system. It is specified in terms of MO construction (1.1). The vector
(X1,X2) exhibits the latent state of the system, since the MO model (1.2) is de-
fined in terms of vector (T1, T2, T3) of latent variables that identify independent
exponential shock times. Each shock takes down a given subset of items ({1}, {2}
or {both 1 and 2}) and occurs at an exponential time with constant rates γ1, γ2 and
γ3, respectively.

The distribution (1.2) is the only solution with exponential marginals of func-
tional equation

SX1,X2(x1 + t, x2 + t) = SX1,X2(x1, x2)SX1,X2(t, t) for all x1, x2, t ≥ 0, (1.3)

characterizing the BLMP. Relation (1.3) tells us that, independent of t , the BLMP
preserves the joint distribution of both (X1,X2) and its residual lifetime vector
Xt = [(X1 − t,X2 − t) | X1 > t,X2 > t] and their marginal distributions, therefore.
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Figure 1 Plots with singularity along the lines x1 = x2 and x1 = 0.5x2. (a) MO bivariate expo-
nential distribution (1.2): ω = 1, γ1 = γ2 = γ3 = 1; (b) modified MO biv. exp. distribution (1.4):
ω = 0.5, λ1 = λ2 = λ3 = 1.

The MO bivariate exponential distribution (1.2) has exponential marginals with
parameters γ1 +γ3 and γ2 +γ3 and hence, constant marginal failure (hazard) rates.
This restricts its usefulness for practical needs. As a response, other solutions of
(1.3) with non-exponential marginals have been introduced. Let us mention Block
and Basu (1974), Proschan and Sullo (1974), Friday and Patil (1977). An important
contribution to the bivariate lack of memory notion is offered by Kulkarni (2006)
who suggested a class of bivariate distributions possessing BLMP specified by
(1.3), having increasing or/and decreasing marginal failure rates, but they should
satisfy a set of restrictions. Many other authors are cited by Balakrishnan and Lai
(2009) in their Chapter 10.

The stochastic relation (1.1) is widely used in literature. For example, Li and
Pellerey (2011) launched the Generalized MO model considering non-exponential
independent random variables Ti in (1.1), i = 1,2,3. The corresponding joint dis-
tributions do not possess BLMP, that is, are “aging”. As a further step, Pinto and
Kolev (2015) introduced the Extended MO model assuming dependence between
variables T1 and T2, but keeping T3 independent of them. The motivation is that the
individual shocks might be dependent if the items share a common environment.
In this case however, BLMP may be fulfilled or not depending on parameters of
joint distribution of (T1, T2) and distribution of T3.

For a specific data set, it may happen that a cluster of the scatter plot points
is concentrated on an arbitrary continuous curve in R2+, or along arbitrary line
through the origin (0,0), in particular, as shown on Figure 1(b). One would be
unsuccessful to model adequately such bivariate data with distributions generated
by stochastic representation (1.1).

A possible alternative to (1.2) is the modified MO bivariate exponential distri-
bution defined as follows

SX1,X2(x1, x2) = exp
{−λ1x1 − λ2x2 − λ3 max(x1,ωx2)

}
, x1, x2 ≥ 0, (1.4)
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where ω > 0. At least one of parameters λi, i = 1,2,3, should be positive, oth-
erwise one would have a degenerate distribution. The marginals in (1.4) are ex-
ponentially distributed with parameters λ1 + λ3 and λ2 + ωλ3. One can recog-
nize that there exists a positive mass concentrated along the line Lω : {x1 = ωx2}
through the origin (0,0) in R2+. It can be verified that the singularity contribu-
tion is P(X1 = ωX2) = ωλ3

ωλ1+λ2+ωλ3
> 0. Obviously, X1 and X2 are independent

if λ3 = 0.
Statistical inference related to the modified MO bivariate exponential distri-

bution (1.4) is presented by Okyere (2007) who provided maximum likelihood
estimation of parameters when ω is known, along with several asymptotic results.

One can check that (1.4) is a solution of the functional equation

SX1,X2(x1 + ωt, x2 + t) = SX1,X2(x1, x2)SX1,X2(ωt, t), (1.5)

for all x1, x2, t ≥ 0 and ω > 0.
The BLMP functional equation (1.3) can be obtained from (1.5) when ω = 1. In

other words, the functional equation (1.5) exhibits a weak version of BLMP. Thus,
we are ready to introduce the following definition.

Definition 1.1. A bivariate non-negative continuous distribution whose joint sur-
vival function satisfies the functional equation (1.5) possesses the weak bivariate
lack of memory property, or shortly W-BLMP.

Our aim in this article is to investigate the W-BLMP defined by functional equa-
tion (1.5). In Section 2, we discuss structural properties of modified MO bivariate
exponential distribution (1.4) and compare it with the classical one (1.2). We ob-
tain the corresponding modified MO survival copula and discuss its features. In
Section 3, we characterize the W-BLMP and present its multivariate version. In
Section 4, we recognize that only certain marginal distributions are allowed for
bivariate continuous distributions satisfying (1.5). The corresponding restrictions
in terms of marginal densities and failure rates are derived. We suggest a proce-
dure to construct bivariate distributions belonging to the W-BLMP class starting
from given (pre-specified) marginal distributions. We support the methodology by
typical examples and complement it by closure properties of the W-BLMP class.
We finish with a discussion and pose several possible problems for further investi-
gation.

2 Modified Marshall–Olkin bivariate exponential distribution

In fact, the modified MO bivariate exponential distribution (1.4) has been intro-
duced by Esary and Marshall (1974) in their Example 2.3 by the following expres-
sion

SX1,X2(x1, x2) = exp
{−ξ1x1 − ξ2x2 − max(ξ3x1, ξ4x2)

}
, x1, x2 ≥ 0,
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where ξ1 + ξ3 > 0, ξ2 + ξ4 > 0 and ξi ≥ 0, i = 1,2,3,4. This distribution has been
used as a base and motivation to define a novel class of bivariate distributions
exhibiting exponential scaled minima. One can recognize the associated relation
in the second proof of Theorem 1. If substitute λi = ξi, i = 1,2,3 and ω = ξ4

ξ3
in

last relation one will get (1.4).
Let us note that the modified MO bivariate exponential distribution (1.4) is pos-

itive quadrant dependent since SX1,X2(x1, x2) ≥ SX1(x1)SX2(x2) for all x1, x2 ≥ 0.
We will discuss in the next properties of the modified MO bivariate exponential

distribution (1.4) and then we compare it with MO’s distribution (1.2). We obtain
the survival copula corresponding to (1.4) as well and outline the disagreement
with Lancaster’s phenomena.

2.1 Basic properties

The modified MO bivariate exponential distribution (1.4) can be generated by the
following two stochastic representations:

1. Let (Y1, Y2) follow the MO bivariate exponential distribution (1.2) obtained by
stochastic relation (1.1). The distribution (1.4) results if substitute X1 = Y1 and
X2 = Y2

ω
with ω > 0 in (1.1). In this case, λ1 = γ1, λ2 = ωγ2 and λ3 = γ3.

2. The joint survival function in (1.4) is a consequence of stochastic representation

(X1,X2) =
[
min(T1, T3),min

(
T2,

T3

ω

)]
, (2.1)

where ω > 0 and the random variables Ti are independent and exponentially
distributed with parameters λi > 0, respectively, i = 1,2,3.

Really, for all x1, x2 ≥ 0 and ω > 0 we have

P(X1 > x1,X2 > x2) = P

(
min(T1, T3) > x1,min

(
T2,

T3

ω

)
> x2

)

= P
(
T1 > x1, T2 > x2, T3 > max(x1,ωx2)

)
.

Taking into account that Ti are independent and exponentially distributed with
parameters λi, i = 1,2,3, we obtain the joint survival function given by (1.4).

Remark 2.1 (Reliability interpretation of (2.1)). Denote by Xi the lifetime of
a component i, i = 1,2. If 0 < ω < 1, relation (2.1) tells us that a common “fatal
shock” destroys immediately the first component and has a delayed effect on the
second one. For example, assume that only one of two identical devices operating
in the same factory is equipped with a electricity generator protecting against pos-
sible blackout. The stochastic relation (2.1) indicates that the lifetime represented
by X2 will be greater than the lifetime X1 of unprotected device if a common “fatal
shock” (governed by a homogeneous Poisson process) occurs.
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Therefore, an important characteristic of distribution (1.4) resulting from (2.1),
is that it permits a “late” failure of one component when a “fatal shock” strikes
both components (as against to the MO models generated by (1.1) where both
components fail simultaneously if occurs a common “fatal shock” distinguished
by the random variable T3).

On the other side, the physical meaning of equation (1.5) is the following: the
conditional probability that both components survive an “additional” time (x1, x2)

after surviving (ωt, t) time units is supposed to be equal to unconditional proba-
bility of surviving to time (x1, x2), i.e.,

P(X1 > x1 + ωt,X2 > x2 + t | X1 > ωt,X2 > t) = P(X1 > x1,X2 > x2).

In terms of joint survival function the last relation can be equivalently written
by functional equation (1.5). It says that the (X1,X2) and corresponding ω-type
residual lifetime vector, to denote it by

Xω,t = [
(X1 − ωt,X2 − t) | X1 > ωt,X2 > t

]
,

should have the same joint distribution, independent of t > 0 for all x1, x2 ≥ 0
and ω > 0. The identical memory-less property is valid for marginal distributions
of (X1,X2) and Xω,t . Obviously, if ω = 1, then Xω,t transforms into the residual
lifetime vector Xt associated to the BLMP.

A basic issue in the bivariate data analysis is to study the monotonicity (e.g.,
increasing/decreasing performance) of the survival function of residual lifetime
vector Xt corresponding to the vector (X1,X2). In fact, the main interest is to

establish when the ratio Q1(x1, x2, t) = SX1,X2 (x1+t,x2+t)

SX1,X2 (x1,x2)
is non-decreasing (non-

increasing) in x1, x2 ≥ 0 for all t ≥ 0, see Barlow and Proschan (1981).
Therefore, an important problem would be to investigate the monotonicity of the

ω-type residual lifetime vector Xω,t corresponding to the vector (X1,X2) as well.

In this case, the analysis is related to function Q2(x1, x2, t) = SX1,X2 (x1+ωt,x2+t)

SX1,X2 (x1,x2)
,

where ω > 0.
Under the above notations, we establish relationships between bivariate expo-

nential distributions (1.4) and (1.2) in the next two lemmas.

Lemma 2.1. Let (X1,X2) follow the modified MO bivariate exponential distribu-
tion (1.4) for some ω ∈ (0,1). Then

Q1(x1, x2, t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SX1,X2(t, t) = SX3(a1t), if x1 ≥ ωx2, t ≥ 0,

SX3

(
h(x1, x2, t)

)
, if x1 < ωx2, t >

ωx2 − x1

1 − ω
,

SX3(a2t), if x1 < ωx2,0 ≤ t ≤ ωx2 − x1

1 − ω
,

(2.2)
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where SX3 is the survival function of unit exponential random variable X3, a1 =
λ1 + λ2 + λ3, a2 = λ1 + λ2 + ωλ3 and h(x1, x2, t) = a1t − λ3(ωx2 − x1) ≥ 0.

Proof. First, note that the ratio Q1(x1, x2, t) = SX1,X2 (x1+t,x2+t)

SX1,X2 (x1,x2)
represents the

conditional probability

P1(t | x1, x2) = P(X1 > x1 + t,X2 > x2 + t | X1 > x1,X2 > x2).

Let x1 ≥ ωx2. Apply (1.4) with ω ∈ (0,1) to get the first expression for
Q1(x1, x2, t) in (2.2).

Now assume that x1 < ωx2 and use again (1.4) to obtain

SX1,X2(x1 + t, x2 + t) = exp
{−λ1(x1 + t)−λ2(x2 + t)−λ3 max

[
x1 + t,ω(x2 + t)

]}
.

If t > ωx2−x1
1−ω

, then max[x1 + t,ω(x2 + t)] = x1 + t and we arrive to the second
expression in (2.2). In this case we have exp{−h(x1, x2, t)} ≤ 1, which ensures
that conditional probability P1(t | x1, x2) ≤ 1.

When t < ωx2−x1
1−ω

we have max[x1 + t,ω(x2 + t)] = ω(x2 + t) and we obtain
the third relation in (2.2). �

A graphical illustration of the ratio
SX1,X2 (x1+t,x2+t)

SX1,X2 (x1,x2)
for fixed t and parameter

values λ1 = 1, λ2 = 1, λ3 = 1,ω = 0.5 in (2.2) is given on Figure 2.
In Figure 3, we display the “level curves” of Q1(x1, x2, t) from Figure 2 by

additionally fixing x2 = 0.76 in (2.2). Observe that W-BLMP is represented by
BLMP when x1 ≥ ωx2.

Figure 2 Graph of Q1(x1, x2, t) = SX1,X2 (x1+t,x2+t)

SX1,X2 (x1,x2)
for a fixed t letting λ1 = 1.0, λ2 = 1.0,

λ3 = 1.0 and ω = 0.5 in (2.2).



880 N. Kolev and J. Pinto

Figure 3 Level curves of Q1(x1, x2, t) = SX1,X2 (x1+t,x2+t)

SX1,X2 (x1,x2)
for fixed t , when x2 = 0.76, λ1 = 1.0,

λ2 = 1.0, λ3 = 1.0 and ω = 0.5 in (2.2).

Remark 2.2 (Graphical interpretation of (2.2)). The expressions in Lemma 2.1
can be interpreted as follows.

1. The bivariate distribution (1.4) possesses BLMP below the line {x2 = x1
ω

}, i.e.
the BLMP and W-BLMP worlds are equivalent given that x1 ≥ ωx2 and ω ∈
(0,1).

2. If x1 < ωx2 and t > ωx2−x1
1−ω

, then the conditional probability P1(t | x1, x2) ex-

hibits an “aging” behavior in the set {(x1, x2) ∈ R2+ : x1
ω

< x2 < x1+(1−ω)t
ω

}. In
this case, we can write

SX1,X2(x1 + t, x2 + t) = SX1,X2(x1, x2)SX3

(
h(x1, x2, t)

)
,

where X3 is exponentially distributed with parameter 1 evaluated at

h(x1, x2, t) = (λ1 + λ2 + λ3)t − λ3(ωx2 − x1) ≥ 0.

In this case W-BLMP is “aging”.
3. If x1 < ωx2 and t ≤ ωx2−x1

1−ω
, then P1(t | x1, x2) is independent of x1 and x2

in the set {(x1, x2) ∈ R2+ : x1+(1−ω)t
ω

≤ x2 ≤ exp(−a2t)}, that is, W-BLMP ex-
hibits “non-aging” performance as well, but with a lower intensity than the
usual one, since a2 < a1.
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The function Q2(x1, x2, t) = SX1,X2 (x1+ωt,x2+t)

SX1,X2 (x1,x2)
is analyzed in the following

claim. Note that Q2(x1, x2, t) is equal to the conditional probability

P2(t | x1, x2) = P(X1 > x1 + ωt,X2 > x2 + t | X1 > x1,X2 > x2).

Lemma 2.2. Let (X1,X2) follow the MO bivariate exponential distribution (1.2).
If ω ∈ (0,1) we have

Q2(x1, x2, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SX1,X2(ωt, t) = SX3(b1t), if x1 ≤ x2, t ≥ 0,

SX3

(
g(x1, x2, t)

)
, if x1 > x2, t >

x1 − x2

1 − ω
,

SX3(b2t), if x1 > x2,0 ≤ t ≤ x1 − x2

1 − ω
,

where SX3 is the survival function of unit exponential random variable X3, b1 =
γ1ω + γ2 + γ3, b2 = γ1ω + γ2 + γ3ω and g(x1, x2, t) = b1t − γ3(x1 − x2) ≥ 0.

Proof. Follows step by step the proof of Lemma 2.1. �

A graphical interpretation of the expressions in Lemma 2.2 is given on Figure 4
for fixed values of the parameters and arguments x2 and t in (1.2).

Figure 4 Level curves of Q2(x1, x2, t) = SX1,X2 (x1+ωt,x2+t)

SX1,X2 (x1,x2)
for fixed arguments x2 = 2.0 and t ,

letting γ1 = 1, γ2 = 1, γ3 = 1 and ω = 0.5 in (1.2).
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One can observe that the BLMP coincides with the W-BLMP in the set
{x2 ≥ x1} and does not depend on x1 and x2 when x1 ≥ x2 − (1 − ω)t , i.e. being a
“non-aging” and again with lower intensity than expected because b1 > b2. But in
the set {x1 < x2 < x1 + (1 − ω)t} the W-BLMP exhibits an “aging” performance.

The expressions in Lemmas 2.1 and 2.2 are valid if ω ∈ (0,1). One can obtain
alternative formulas for Q1(x1, x2, t) and Q2(x1, x2, t) when ω > 1.

2.2 Modified Marshall–Olkin survival copula

Denote by CMO(u, v;σ1, σ2) the survival copula corresponding to MO bivariate
exponential distribution (1.2). It is given by

CMO(u, v;σ1, σ2) = uv min
{
u−σ1, v−σ2

}
, u, v ∈ (0,1),

where

σ1 = λ3

λ1 + λ3
and σ2 = λ3

λ2 + λ3
, with λi = γi, i = 1,2,3,

see Joe (2015), p. 183.
Now we will obtain the modified MO survival copula corresponding to

(1.4). Let SX1,X2(x1, x2) be given by (1.4). The univariate survival functions
are SX1(x1) = exp{−(λ1 + λ3)x1} and SX2(x2) = exp{−(λ2 + ωλ3)x2}. Since
max(x1,ωx2) = x1 + ωx2 − min(x1,ωx2) we have

SX1,X2(x1, x2) = exp
{−(λ1 + λ3)x1 − (λ2 + ωλ3)x2 + min(x1,ωx2)

}
= SX1(x1)SX2(x2) exp

{
λ3 min(x1,ωx2)

}
= SX1(x1)SX2(x2)min

[
exp{λ3x1}, exp{ωλ3x2}].

Let u = SX1(x1), that is, x1 = S−1
X1

(u) and therefore exp{λ3x1} = u
− λ3

λ1+λ3 . By

analogy, putting v = SX2(x2) we obtain exp{ωλ3x2} = v
− ωλ3

λ2+ωλ3 . Thus, the modi-
fied MO survival copula, to denote it by CMMO(u, v;σ1, φ2(ω)), is given by

CMMO
(
u, v;σ1, φ2(ω)

) = SX1,X2

(
S−1

X1
(u), S−1

X2
(v)

) = uv min
{
u−σ1, v−φ2(ω)},

where u, v ∈ (0,1) and φ2(ω) = ωλ3
λ2+ωλ3

. This expression can be rewritten as

CMMO
(
u, v;σ1, φ2(ω)

) = uσ1vφ2(ω) min
{
u1−σ1, v1−φ2(ω)}. (2.3)

On Figure 5 are displayed scatter plots of modified MO survival copula (2.3)
with λ1 = 1.0, λ2 = 0.3 and λ3 = 1.0 for four different values of ω. When ω = 1
we recover the MO survival copula CMO, see Figure 5(b). One can observe the
influence of ω on the shape of the corresponding singularity line.

Several particular cases and properties of the modified MO survival copula (2.3)
are listed below.
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Figure 5 Scatterplots of modified MO copula for λ1 = 1.0, λ2 = 0.3 and λ3 = 1.0 when
(a) ω = 1.5; (b) ω = 1.0; (c) ω = 0.5 and (d) ω = 0.2.

• The MO survival copula CMO(u, v;σ1, σ2) results if substitute ω = 1 in (2.3).
• If put λ2 = ωλ∗

2 in (2.3) one will get the MO survival copula with a second
parameter σ ∗

2 = λ3
λ∗

2+λ3
, for example, CMO(u, v;σ1, σ

∗
2 ).

• When ω = 1 and λ1 = λ2 or λ2 = ωλ1 one obtains the symmetric Cuadras–Auge
copula, see Joe (2015), p. 183.

• The lower and upper tail dependence coefficients λL = limt→0+ C(t,t)
t

and

λU = limt→1− C(t,t)
1−t

of the modified MO copula are given by λL = 0 and
λU = min{σ1, φ2(ω)}. Thus, CMMO(u, v;σ1, φ2(ω)) can be used to model the
extremal dependence as well.

Remark 2.3 (Power representations of the modified MO copula). First remind
that if C(u, v) is a copula, then its power copula CP (u, v) is defined as

CP (u, v) = uη1vη2C
(
u1−η1v1−η2

)
for some additional parameters η1, η2 ∈ [0,1]. The following two relations are
valid.

• From representation (2.3) one can recognize that the modified MO copula is, in
fact, a power copula corresponding to the upper Frechet bound copula min(u, v),
see Example 1 in Liebscher (2008).
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• The MO survival copula CMO(u, v;σ1, σ2) and its modified MO survival copula
CMMO(u, v;σ1, φ2(ω)) are related by equation

CMMO
(
u, v;σ1, φ2(ω)

) = v1−ηCMO
(
u, vη;σ1, σ2

)
,

where the parameter η = ω(λ2+λ3)
λ2+ωλ3

belongs to the interval [0,1], if and only if
ω ∈ [0,1].
Therefore, the family of modified MO copulas can be used to model a comple-

mentary amount of bivariate asymmetry induced by CMO(u, v;σ1, σ2), see sup-
porting comments in Joe (2015), p. 184. This additional asymmetry does not im-
ply, in general, an increase of extremal dependence governed by the MO survival
copula exhibiting upper tail dependence coefficient λU = min{σ1, σ2}. Depending
on parameter values it may happen that φ2(ω) < σ2. As a confirmation, compare
the scatterplot (b) on Figure 5 (corresponding to MO survival copula) with others.

The four parameters λ1, λ2, λ3 and ω of modified MO model (1.4) are reduced
to three parameters (e.g., σ1 and φ2(ω)) of the associated survival copula specified
by (2.3). For corresponding Spearman’s rho ρC = 12

∫ 1
0

∫ 1
0 CMMO(u, v) dudv −3,

we obtain

ρC = 3σ1φ2(ω)

2σ1 − σ1φ2(ω) + 2φ2(ω)
.

The last expression in terms of λ1, λ2, λ3 and ω can be rewritten as

ρC = 3ωλ3

2(ωλ1 + λ2) + 3ωλ3
= ωλ3

2
3(ωλ1 + λ2) + ωλ3

.

If SX1,X2(x1, x2) is specified by (1.4), the Pearson correlation coefficient ρW-BLMP
is given by

ρW-BLMP = P(X1 = ωX2) = ωλ3

ωλ1 + λ2 + ωλ3
,

that is, ρW-BLMP < ρC . Hence, we proved the following statement.

Lemma 2.3. The Pearson’s correlation coefficient of the modified MO bivariate
exponential distribution (1.4) is less than the Spearman’s rho of the associated
modified MO copula (2.3), regardless of parameters.

Since a nonlinear transformation of bivariate continuous distribution results
in associated copula, Lemma 2.3 implies that distribution (1.4) contradicts the
Lancaster’s phenomena stating that any nonlinear transformation of variables de-
creases the correlation in absolute value, see Lancaster (1957).

Note that ρW-BLMP increases as λ3 increases while keeping ωλ1 + λ2 fixed.
Similarly, ρC decreases when ωλ1 + λ2 increases while keeping λ3 fixed. When
ω = 1 one will get the conclusions obtained by Lin, Lai and Govindaraju (2016) for
MO distribution (1.2), where complementary properties of dependence structure
are obtained.
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3 Characterizations

Here we will characterize the W-BLMP offering two alternative proofs. A multi-
variate version of W-BLMP will be presented as well.

3.1 Characterization of the weak bivariate lack of memory property

To proceed, denote by SX(x) = P(X > x) the survival function of continuous
random variable X. Let us recall that the exponential distribution with a parameter
δ > 0 is defined by SX(x) = exp{−δx}, x ≥ 0. It is characterized by a functional
equation

SX(x + t) = SX(x)SX(t) for all x ≥ 0 independent of t > 0,

postulating the classical univariate memory-less property. An immediate bivariate
extension of the former relation is the functional equation

SX1,X2(x1 + t1, x2 + t2) = SX1,X2(x1, x2)SX1,X2(t1, t2) (3.1)

in the set M = {x1, x2, t1, t2 ≥ 0}, representing the stronger version of bivariate
lack of memory property. As a consequence of Theorem 1 in Aczél (1966), see
pp. 215–216, its general solution is given by

SX1,X2(x1, x2) = exp{−δ1x1 − δ2x2} for some δ1, δ2 > 0. (3.2)

Marshall and Olkin (1967) did an alternative proof of the same statement and
conclude in their Lemma 2.1 that the solution (3.2) of (3.1) leads to independent
exponential marginal distributions with parameters δ1 and δ2.

Remark 3.1 (Two wrong counterexamples). The BLMP specified by (1.3) is a
particular case of (3.1) when t1 = t2 = t and the solution (3.2) is the independent
solution of (1.3) when γ3 = 0 in (1.2). Below we present our “counterexamples”.

1. One can verify that the modified MO bivariate exponential distribution (1.4) be-
ing a solution of (1.5) is also solution of functional equation (3.1) in the special
case when t1 = ωt and t2 = t . Hence, in addition to the independent solution
(3.2) of (3.1) we got non-independent exponential random variables with pa-
rameters λ1 + λ3 and λ2 + ωλ3 whose joint distribution (1.4) satisfies (3.1) as
well. So, the first lucky impression is that we got a counterexample. Formally,
this is true (as in BLMP case, that is, the joint survival function given by (1.2)
is a solution of (3.1) when t1 = t2 = t). However, the reason of this wrong im-
pression and “counterexample” is that the domain {x1, x2, t ≥ 0 and ω > 0} of
functional equation (1.5) belongs to the domain M of (3.1). Therefore, not all
solutions of (1.5) are solutions of (3.1). But, the independent solution (3.2) of
functional equation (3.1) may serve as a particular solution of (1.5) and we will
use this fact in the proof of Theorem 3.1. A nice related discussion can be found
in Marshall and Olkin (1991).
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2. Interestingly, the MO bivariate exponential distribution (1.2) is the only solu-
tion with exponential marginals of functional equation (3.1) for all nonnegative
x1, x2, t1, t2, but belonging to the set

{x1 ≤ x2, t1 ≤ t2} ∪ {x1 ≥ x2, t1 ≥ t2},
being a subset of M, see Marshall and Shaked (1979).

We will obtain a general solution of functional equation (1.5) in the next state-
ment, or equivalently, we will characterize the W-BLMP.

Theorem 3.1.

(i) The non-negative continuous random vector (X1,X2) possesses the W-BLMP
defined by (1.5) if and only if its joint survival function is given by

SX1,X2(x1, x2) =
⎧⎪⎨
⎪⎩

exp{−θx2}SX1(x1 − ωx2), if x1 ≥ ωx2,

exp
{
−θx1

ω

}
SX2

(
x2 − x1

ω

)
, if x1 ≤ ωx2,

(3.3)

for all x1, x2 ≥ 0, ω > 0 and some θ > 0, where SXi
(xi) is the marginal sur-

vival function of Xi, i = 1,2.
(ii) The only solution of (1.5) with exponential marginals is the modified MO bi-

variate exponential distribution (1.4).

Proof. Let (X1,X2) possess W-BLMP, or equivalently, let (1.5) be true.
Set x2 = 0 in (1.5) to get SX1,X2(x1 + ωt, t) = SX1(x1)SX1,X2(ωt, t). Substitute

x1 = x1 + ωt and x2 = t to conclude that

SX1,X2(x1, x2) = SX1(x1 − ωx2)SX1,X2(ωx2, x2), if x1 − ωx2 ≥ 0. (3.4)

As we noted in Remark 2.2, since the domain {x1, x2, t ≥ 0 and ω > 0} of (1.5)
belongs to the domain M = {x1, x2, t1, t2 ≥ 0} of functional equation (3.1), it fol-
lows that the solution (3.2) of (3.1) may serve as a particular solution of (1.5), that
is, it holds

SX1,X2(ωx2, x2) = exp
{−(α1ω + α2)x2

}
for some α1, α2 > 0.

Therefore, from (3.4) we obtain

SX1,X2(x1, x2) = exp
{−(α1ω + α2)x2

}
SX1(x1 − ωx2) if x1 − ωx2 ≥ 0,

which is the first relation in (3.3) letting θ = α1ω + α2.
By analogy, put x1 = 0 in (1.5) to conclude that

SX1,X2

(
x1,

x1

ω

)
= exp

{
−(β1ω + β2)x1

ω

}

and to obtain the second expression in (3.3) with θ = β1ω + β2 for some β1 > 0
and β1 > 0 satisfying (3.2).



Weak bivariate lack of memory property 887

In order to ensure the same joint survival function SX1,X2(x1, x2) along the line
Lω : {x1 = ωx2} one should require equality β1ω + β2 = α1ω + α2 for all possible
values of parameters involved. Therefore, (3.3) is valid.

Conversely, it is direct to check that (3.3) satisfies the functional equation (1.5)
and the part (i) of the statement is established.

To prove (ii), suppose that SX1,X2(x1, x2) is a survival function solving func-
tional equation (1.5). Then Theorem 3.1(i) implies its representation by (3.3). As-
sume that marginals of (X1,X2) are exponentially distributed. This means that
SX1(x1) = exp{−α1x1} and SX2(x2) = exp{−β2x2} for all x1, x2 ≥ 0 and some
α1, β2 > 0. Replace these expressions in (3.3) to obtain

SX1,X2(x1, x2) =
⎧⎪⎨
⎪⎩

exp
{−α1x1 − (θ − ωα1)x2

}
, if x1 ≥ ωx2,

exp
{
−(θ − β2)x1

ω
− β2x2

}
, if x1 ≤ ωx2.

(3.5)

In (3.5) substitute

ωλ1 = θ − β2, λ2 = θ − ωα1 and ωλ3 = ωα1 + β2 − θ. (3.6)

Note that SX1,X2(x1, x2) given by (3.5) is a survival function being non increasing
in its arguments. Therefore, inequalities θ − β2 ≥ 0 and θ − ωα1 ≥ 0 have to be
satisfied, i.e., λ1, λ2 ≥ 0 for ω > 0 and hence, ωα1 + β2 ≤ 2θ .

We will show that the parameter λ3 is non-negative as well. Following the bril-
liant method used by Gupta, Zeung and Hu (2010) in the proof of their Theo-
rem 6.2, pp. 123–124, let FX1,X2(x1, x2) be the joint distribution of (X1,X2). Then
the function

F(x1) = FX1,X2(ωx1, x1) = 1 − SX1(ωx1) − SX2(x1) + SX1,X2(ωx1, x1)

defines a proper continuous univariate distribution function with a density

f (x1) = d

dx1
F(x1) = ωα1 exp{−ωα1x1} + β2 exp{−β2x1} − θ exp{−θx1} ≥ 0.

Therefore, limx1→0+ f (x1) = ωα1 + β2 − θ ≥ 0, i.e. ωα1 + β2 ≥ θ .
Thus, the parameter space {α1, β2, θ,ω > 0} of SX1,X2(x1, x2) specified by (3.5)

is restricted by the inequalities θ ≤ ωα1 + β2 ≤ 2θ .
Finally, solving the system (3.6) we obtain

α1 = λ1 + λ3, β2 = λ2 + ωλ3 and θ = λ1 + λ2 + ωλ3

and restore (1.4) via (3.5). Note that at least one of parameters λi, i = 1,2,3,
should be positive, otherwise one would have a degenerate distribution. To fin-
ish the proof, it is easy to verify that (1.4) satisfies (1.5) indeed (as we did just
before Remark 2.1). �

Second proof of Theorem 3.1(i). Instead of using a particular solution (3.2) of
functional equation (1.5) in the proof of Theorem 3.1, one can proceed as follows.
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Let (1.5) be true and set x2 = 0 to get relation (3.4) when x1 ≥ ωx2. Put
x1 = ωt and x2 = t in (3.4) to obtain the functional equation SX1,X2(2ωt,2t) =
[SX1,X2(ωt, t)]2 for all t ≥ 0 and ω > 0. Iterating the procedure one will arrive to
equation

SX1,X2(kωt, kt) = [
SX1,X2(ωt, t)

]k
,

which is valid for all t ≥ 0 and k = 1,2, . . . . Let �(t) = SX1,X2(kωt, kt) and the
last equality becomes

�(t) =
[
�

(
t

k

)]k

for all t > 0 and k = 1,2, . . . .

This relation is a consequence of the functional equation �(x + t) = �(x)�(t) for
x, t ≥ 0, characterizing the exponential distribution. Therefore, �(t) = exp{−θt}
for some θ > 0, see Section 5.3 in Galambos and Kotz (1978). Thus, we got the
first expression in (3.3).

Using similar arguments one will obtain the second equation in (3.3)
if x1 ≤ ωx2. �

Remark 3.2 (Independent case). In the proof of Theorem 3.1, we used the condi-
tion β1ω + β2 = α1ω + α2 to ensure the same expression for SX1,X2(x1, x2) along
the line Lω : {x1 = ωx2}. If it happens that α1 = β1 and α2 = β2, then the solution
of the system (3.6) will indicate that λ3 = 0, that is, X1 and X2 are independent and
exponentially distributed. Only in this case the general solution (3.2) of functional
equation (3.1) is independent solution of (1.5) as well, see an alternative proof of
Corollary 4.2.

3.2 Multivariate weak lack of memory property

Let us comment briefly the multivariate case. Denote by Sn(x) the survival func-
tion of nonnegative random vector X = (X1, . . . ,Xn), where x = (x1, . . . , xn) ∈
Rn+, n ≥ 2.

The multivariate analog of functional equation (1.3) can be written as

Sn

(
(ν + 1)x

) = Sn(νx)Sn(x) for all ν > 0,x ∈ Rn+.

It turns out that former equation can be equivalently represented by[
Sn

(
tx
m

)]m

= Sn(tx) for all t > 0,x ∈ Rn+ and m = 1,2, . . . ,

see Theorem 3.1.b in Marshall and Olkin (1991). Therefore, the vector X has a dis-
tribution with exponential scaled minima, that is, mini∈I {νiXi} has an exponential
distribution for all νi > 0, i = 1, . . . , n and all non-empty sets I ∈ {1,2, . . . , n}.
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We will finish this section with a definition and characterization of a multivariate
weak lack of memory property corresponding to functional equation (1.5). It is
specified by relations

Sn(x1 + xiω, x2 + xi, . . . , xn + xi) = Sn(x1, x2, . . . , xn)Sn(xiω, xi, . . . , xi) (3.7)

for i = 1,2, . . . , n.

Definition 3.1. A random vector X is said to have a weak multivariate lack of
memory property (to be abbreviated W-MLMP) if equation (3.7) holds.

Let Rn(x) = − lnSn(x) and denote 1ω = (1,1, . . . ,ω−1, . . . ,1), for exam-
ple, all elements of the vector 1ω are equal to 1, instead of ith which is ω−1,
i = 1,2, . . . , n. The following characterization of W-MLMP is true.

Theorem 3.2. The vector X have W-MLMP if and only if there exist numbers
θ > 0 and ω > 0 such that the following statements are equivalent for all x > 0
and t > 0 with x − 1ωt ≥ 0:

(i) Sn(x) = exp(− θt
ω

)Sn(x − 1ωt);
(ii) Rn(x) = θt

ω
+ Rn(x − 1ωt);

(iii) Rn(x + x1ω) = Rn(x) + Rn(x1ω).

Proof. Suppose X have W-MLMP, i.e., equation (3.7) holds. Thus,

Sn(x) = Sn

(
x1 − t + t, . . . , xi−1 − t + t, xi − t

ω
+ t

ω
, xi+1 − t + t, . . . , xn − t + t

)
.

Applying (3.7) we get Sn(x) = Sn(x − 1ωt)Sn(1ωt).
Taking xi = t for all i = 1, . . . , n in (3.7) and substituting G(ω, t) =

Sn(ωt, t, . . . , t) we obtain G(ω + 1, t) = G(ω, t)G(1, t) which can be reduced to
multiplicative Cauchy functional equation with a solution G(ω, t) = exp{−cωt}
for arbitrary constant c > 0, see Aczél (1966), p. 35. Thus, S(1ωt) = exp(− θ

ω
t)

and hence the relation (i) in the Theorem 3.2 is fulfilled.
The other equivalent implications are result of standard transformations (loga-

rithmic and exponential), or can be checked trivially. �

Let us note that when ω = 1 one will obtain the corresponding characterization
of the multivariate lack of memory property established by Kulkarni (2006), see
her Theorem 1.

4 Marginal restrictions

Theorem 3.1 characterizes bivariate continuous distributions in R2+ possessing the
W-BLMP with joint survival function SX1,X2(x1, x2) specified by relation (3.3).
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It happens that the set of possible marginal distributions of bivariate continuous
distributions possessing W-BLMP is restricted. In other words, the corresponding

joint survival function is valid, for example,
∂2SX1,X2 (x1,x2)

∂x1 ∂x2
≥ 0, only for certain

marginal distributions of X1 and X2. Kulkarni (2006) did a similar conclusion
about marginals of bivariate distributions possessing BLMP.

Here we will obtain the associated constraints in terms of marginal densities
and hazard rates. As a result, we will get the admissible values of the parameter θ

in the joint survival function given by (3.3). Thus, one would be able to generate
a wealth of bivariate distributions possessing W-BLMP having given marginals.
We illustrate the methodology by several examples and establish related closure
properties.

4.1 Marginal density restrictions

One can deduce that SX1,X2(x1, x2) specified by (3.3) admits the Lebesgue decom-
position

SX1,X2(x1, x2) = (1 − α)Sac
X1,X2

(x1, x2) + αSsi
X1,X2

(x1, x2)I{x1=ωx2}, (4.1)

where α = P(X1 = ωX2) ≥ 0, I{E} is the indicator function of the set E,
Ssi

X1,X2
(x1, x2)I{x1=ωx2} is a singular component with support along the line Lω =

{x1 = ωx2} and Sac
X1,X2

(x1, x2) is an absolutely continuous survival function.
Hence, the joint continuous density fX1,X2(x1, x2) corresponding to (4.1) can be
written as

fX1,X2(x1, x2) = (1 − α)f ac
X1,X2

(x1, x2) + αf si
X1,X2

(x1, x2)I{x1=ωx2}.

Clearly, if α = P(X1 = ωX2) = 0, then the joint distribution of the random vector
(X1,X2) in (3.3) will be absolutely continuous.

The next theorem shows a list of associated constraints in terms of marginal
densities.

Theorem 4.1. Let Xi be a non-negative random variable with absolutely contin-
uous density fXi

(xi) on all finite intervals, i = 1,2. Then SX1,X2(x1, x2) specified
by (3.3) is a proper bivariate survival function if only if

θ ≤ ωfX1(0) + fX2(0) ≤ 2θ (4.2)

and the following two inequalities are fulfilled

θ + ω
d

dx1
ln

[
fX1(x1 − ωx2)

] ≥ 0, for x1 ≥ ωx2, (4.3a)

θ + d

dx2
ln

[
fX2

(
x2 − x1

ω

)]
≥ 0, for x1 ≤ ωx2. (4.3b)
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Proof. Since the survival function SX1,X2(x1, x2) may have a singular component
along the line Lω = {x1 = ωx2}, then SX1,X2(x1, x2) given by (3.3) will be proper if
and only if both the absolutely continuous part Sac

X1,X2
(x1, x2) and the singular part

Ssi
X1,X2

(x1, x2)I{x1=ωx2} are survival functions and satisfy (4.1) with a singularity
weight α = P(X1 = ωX2).

Starting from (3.3), after some algebra one will find that the function
(1 − α)f ac

X1,X2
(x1, x2) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ exp(−θx2)fX1(x1 − ωx2) + ω exp(−θx2)
d

dx1
fX1(x1 − ωx2),

if x1 ≥ ωx2,
θ

ω
exp

(
−θx1

ω

)
fX2

(
x2 − x1

ω

)
+ 1

ω
exp

(
−θx1

ω

)
d

dx2
fX2

(
x2 − x1

ω

)
,

if x1 ≤ ωx2.

(4.4)

By assumption, densities fXi
(xi) are absolutely continuous on all finite in-

tervals, i = 1,2. This implies that the derivative d
dxi

fXi
(xi) is integrable on

(−∞,∞), see Block and Basu (1974) for related discussion. So, we can compute

P(X1 > ωX2) =
∫ ∞

0

∫ x1
ω

0
(1 − α)f ac

X1,X2
(x1, x2) dx2 dx1 = 1 − ωfX1(0)

θ

and

P(X1 < ωX2) =
∫ ∞

0

∫ ωx2

0
(1 − α)f ac

X1,X2
(x1, x2) dx1 dx2 = 1 − fX2(0)

θ
.

But α = P(X1 = ωX2) = 1 − P(X1 > ωX2) − P(X1 < ωX2) and we conclude
that

α = −1 + 1

θ

[
ωfX1(0) + fX2(0)

] ∈ [0,1],
which implies inequalities (4.2).

Now, since
∂2SX1,X2 (x1,x2)

∂x1∂x2
should be non-negative, from (4.4) we obtain

exp(−θx2)

[
θfX1(x1 − ωx2) + ω

d

dx1
fX1(x1 − ωx2)

]
≥ 0, if x1 ≥ ωx2

and

ω−1 exp
(
−θx1

ω

)[
θfX2

(
x2 − x1

ω

)
+ d

dx2
fX2

(
x2 − x1

ω

)]
≥ 0, if x1 ≤ ωx2.

Taking into account that fX1(x1 − ωx2) ≥ 0 for x1 ≥ ωx2 and fX2(x2 − x1
ω

) ≥ 0
when x1 ≤ ωx2, we arrive to inequalities (4.3a) and (4.3b). �
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Remark 4.1 (Exponential case). In the proof of Theorem 3.1(ii), we established
that θ ≤ ωα1 + β2 ≤ 2θ , where α1 and β2 are parameters of exponentially dis-
tributed random variables X1 and X2, correspondingly. The last inequalities are
particular case of restrictions (4.2) since fX1(0) = α1 and fX2(0) = β2. In this
case, (4.3a) and (4.3b) are satisfied as well.

Following the corresponding procedure used in the proof of Theorem 5.1 in
Marshall and Olkin (1967), we get the following lemma.

Lemma 4.1. The singular component of SX1,X2(x1, x2) specified by (3.3) is given
by

Ssi
X1,X2

(x1, x2)I{x1=ωx2} = exp
{−θ max(x1,ωx2)

}
.

If set ω = 1 in expression given by Lemma 4.1, one will get the singular com-
ponent in BLMP case, see equation (5.6) in Marshall and Olkin (1967).

Notice that if inequalities (4.3a) and (4.3b) are fulfilled for some θ = θ0 > 0,
then they are also satisfied for all θ > θ0. Denote by

τ = {
the greatest lower bound of θ -values satisfying (4.3a) and (4.3b)

}
.

Thus τ is a function of marginal parameters and ω. The range of possible values
of θ is given in Lemma 4.2.

Lemma 4.2. Suppose that θ ≤ ωfX1(0) + fX2(0). If

θ ∈ [
max

{
τ,max

(
ωfX1(0), fX2(0)

)}
,ωfX1(0) + fX2(0)

]
(4.5)

then Theorem 4.1 is verified. Moreover, the joint distribution of (X1,X2) given by
(3.3) is absolutely continuous if and only if θ = ωfX1(0) + fX2(0).

Proof. We know from the proof of Theorem 4.1 that

P(X1 > ωX2) = 1 − ωfX1(0)

θ
≥ 0 and hence ωfX1(0) ≤ θ.

By analogy, from the expression for P(X1 < ωX2) we obtain fX2(0) ≤ θ . Thus,
θ ≥ max{ωfX1(0), fX2(0)}.

Depending on the parameters of marginal densities, it may happen that τ >

ωfX1(0)+fX2(0) in some special cases, which would contradict inequalities (4.2).
Such high τ -values would be outside of the parameter space of W-BLMP. The
lower bound in (4.5) can be obtained by checking the restrictions on θ imposed by
inequalities (4.3a) and (4.3b) in order to get the associated value of τ .

When α = P(X1 = ωX2) = 0, then ωfX1(0)+ fX2(0)− θ = 0. Since α ∈ [0,1]
and ωfX1(0) + fX2(0) is increasing function on ω we always have θ ≤ ωfX1(0) +
fX2(0), which is the upper bound for θ in (4.5).

Finally, observe that the joint density function is absolutely continuous if and
only if α = 0, i.e. when θ = ωfX1(0) + fX2(0). This completes the proof. �
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Denote by � = (θ,ω,�) the parameter vector of W-BLMP class of distribu-
tions, where � is the vector of parameters of marginal distributions. The parame-
ter space of W-BLMP is well defined when θ belongs to the closed interval given
in (4.5). It is crucial for construction of proper bivariate continuous distributions
possessing W-BLMP from pre-specified marginal densities as we will see in the
next example.

Example 4.1. Let c1, c2, c3 > 0 and the densities fX1(x1) and fX2(x2) be given
by

fX1(x1) =
(
c1 − c3

c2 + x2
1

)
exp

{
−c1x1 + c3√

c2
tan−1

(
x1√
c2

)}
, x1 ≥ 0,

and

fX2(x2) = ω

(
c1− c3

c2 + ω2x2
2

)
exp

{
−c1ωx2+ c3√

c2
tan−1

(
ω√
c2

x2

)}
, x2 ≥ 0,

with ω > 0. In both cases the condition c1 ≥ c3
c2

ensures that fXi
(0) ≥ 0, i = 1,2.

On Figure 6 we show the form of density fX2(x2) for fixed c1, c2, c3 and four
different values (0.78, 1.0, 1.2 and 1.44) of the parameter ω. One can detect the
impact of the parameter ω on the skewness and leptokurtosis of the density of X2.

Figure 6 Marginal density fX2(x2) in Example 4.1 with c1 = 1, c2 = 3 and c3 = 1 for
(a) ω = 0.78, (b) ω = 1.0, (c) ω = 1.2 and (d) ω = 1.44.
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Consider a joint density fX1,X2(x1, x2) represented by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
c3ω[2(x1 − ωx2) − c3]
[c2 + (x1 − ωx2)2]2 + c3(2c1ω − θ)

c2 + (x1 − ωx2)2 − c1(c1ω − θ)

}

× exp
{
−

[
c1x1 + (θ − c1ω)x2 − c3√

c2
tan−1

(
x1 − ωx2√

c2

)]}
, if x1 ≥ ωx2,{

c3ω[2(ωx2 − x1) − c3]
[c2 + (ωx2 − x1)2]2 + c3(2c1ω − θ)

c2 + (ωx2 − x1)2 − c1(c1ω − θ)

}

× exp
{
−

[
c1ωx2 +

(
θ

ω
− c1

)
x1 − c3√

c2
tan−1

(
ωx2 − x1√

c2

)]}
, if x1 ≤ ωx2.

One can verify that fX1,X2(x1, x2) has marginals fX1(x1) and fX2(x2) indeed.
The parameter space in this case is � = (θ,ω,�) with � = (c1, c2, c3).

Applying (4.4) we obtain that (1 − α)f ac
X1,X2

(x1, x2) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ

{
c3ω[2(x1 − ωx2) − c3]
[c2 + (x1 − ωx2)2]2 + c3(2c1ω − 1)

c2 + (x1 − ωx2)2 − c1(c1ω − 1)

}

× exp
{
−

[
c1x1 + (θ − c1ω)x2 − c3√

c2
tan−1

(
x1 − ωx2√

c2

)]}
, if x1 ≥ ωx2,

θ

{
c3ω[2(ωx2 − x1) − c3]
[c2 + (ωx2 − x1)2]2 + c3(2c1ω − 1)

c2 + (ωx2 − x1)2 − c1(c1ω − 1)

}

× exp
{
−

[
c1ωx2 +

(
θ

ω
− c1

)
x1 − c3√

c2
tan−1

(
ωx2 − x1√

c2

)]}
, if x1 ≤ ωx2.

After some algebra we obtain α = P(X1 = ωX2) = 2ω
θ

(c1 − c3
c2

) − 1.
If x1 = ωx2 = x ≥ 0, for the singular component of SX1,X2(x1, x2) from

Lemma 4.1 we obtain

Ssi
X1,X2

(
x,

x

ω

)
= exp

{
−θx

ω

}
and therefore αf si

X1,X2

(
x,

x

ω

)
= θx

ω
exp

{
−θx

ω

}
.

Figure 7 displays the shape of the density fX1,X2(x1, x2) for the same fixed
values of parameters, for example, c1 = 1, c2 = 3, c3 = 1 and ω used in the graphs
of Figure 6.

The corresponding lines of singularity Lω are colored in red. Note that the
parameter ω introduces a certain asymmetry on the form of bivariate density
especially in the upper tails. When ω = 1, we have fX1(x1) = fX2(x2) for all
x1, x2 ≥ 0. This particular case, see Figure 7(b), has been considered by Kulkarni
(2006).

Restrictions (4.3a) and (4.3b) imply that if x1 ≥ ωx2, then

θ + 2ωc3(x1 − ωx2)

{c1[c2 + (x1 − ωx2)2] − c3}[c2 + (x1 − ωx2)2] − ω

[
c1 − c3

c2 + (x1 − ωx2)2

]
≥ 0

and if x1 ≤ ωx2 we get

θ + 2ωc3(ωx2 − x1)

{c1[c2 + (ωx2 − x1)2] − c3}[c2 + (ωx2 − x1)2] −ω

[
c1 − c3

c2 + (ωx2 − x1)2

]
≥ 0.
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Figure 7 Bivariate density fX1,X2(x1, x2) with c1 = 1, c2 = 3, c3 = 1 and θ = 1 for (a) ω = 0.78,
(b) ω = 1.0, (c) ω = 1.2 and (d) ω = 1.44.

These functions are increasing in x1 and x2, with a minimum at the point (0,0).
Hence, from definition of τ we have τ = ω(c1 − c3

c2
) and using (4.5) for the possible

values of θ we obtain the interval [ω(c1 − c3
c2

),2ω(c1 − c3
c2

)]. When c1 = 1, c2 = 3

and c3 = 1, we obtain θ ∈ [2ω
3 , 4ω

3 ]. The graphs on Figure 7 are plotted when θ = 1.
We selected this value since it belongs to the interval [2ω

3 , 4ω
3 ] for all chosen values

(0.78, 1.0, 1.2 and 1.44) of the parameter ω, i.e., all bivariate distributions have a
singular part.

If it happens that θ = 2ω(c1 − c3
c2

), the corresponding bivariate distribution will
be absolutely continuous according to Lemma 4.1. When c1 = 1, c2 = 3, c3 = 1,
we obtain θ = 4ω

3 and Figure 8 shows the shape of absolutely continuous densities
corresponding to cases (a)–(d) displayed on Figure 7.

4.2 Marginal failure rate restrictions

Denote by rXi
(xi) the marginal failure rate of a continuous random variable Xi ,

that is, rXi
(xi) = fXi

(xi)

SXi
(xi)

, xi ≥ 0 for i = 1,2. The last equality indicates that the
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Figure 8 Absolutely continuous fX1,X2 (x1, x2) for c1 = 1, c2 = 3, c3 = 1. (a) ω = 0.78 and
θ = 1.04; (b) ω = 1.0 and θ = 1.3334; (c) ω = 1.2 and θ = 1.6 and (d) ω = 1.44 with θ = 1.92.

relations from Section 4.1 treating marginal densities can be rewritten in terms of
marginal failure rates.

First, note that the condition∫ ∞
0

rXi
(x) dx = ∞, i = 1,2 (4.6)

is necessary for rXi
(x) to be a failure rate, see Barlow and Proschan (1981).

On the other hand, the conditional failure rates ri(x1, x2) introduced in Johnson
and Kotz (1975) by ri(x1, x2) = ∂

∂xi
[− lnSX1,X2(x1, x2)] should be non-negative,

i = 1,2. Remind that the hazard vector (r1(x1, x2), r2(x1, x2)) uniquely deter-
mines the joint distribution of (X1,X2) in terms of line integral, see Marshall
(1975).

Using (3.3) and conditions ri(x1, x2) ≥ 0, i = 1,2, we obtain following inequal-
ities

0 ≤ rX1(x1) ≤ θ

ω
and 0 ≤ rX2(x2) ≤ θ for all x1, x2 ≥ 0. (4.7)
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Limitations (4.6) and (4.7) indicate that the marginal failure rates rX1(x1) and
rX2(x2) of W-BLMP should

• have unbounded support;
• be restricted from above by the horizontal lines l1 : x1 = θ

ω
and l2 : x2 = θ ,

correspondingly.

Additional constraints on marginal failure rates are given in the following state-
ment, being a consequence of Theorem 4.1.

Corollary 4.1. Let Xi be a non-negative random variable with differentiable fail-
ure rates rXi

(xi) on all finite intervals, i = 1,2. Then SX1,X2(x1, x2) specified by
(3.3) is a proper bivariate survival function if only if

θ ≤ ωrX1(0) + rX2(0) ≤ 2θ (4.8)

and

θ − ωrX1(x1 − ωx2) + ω
d

dx1
ln

[
rX1(x1 − ωx2)

] ≥ 0, for x1 ≥ ωx2, (4.9a)

θ − rX2

(
x2 − x1

ω

)
+ d

dx2
ln

[
rX2

(
x2 − x1

ω

)]
≥ 0, for x1 ≤ ωx2. (4.9b)

Proof. Really, limitations (4.8) follow from (4.2), since rXi
(0) = fXi

(0)

for i = 1,2.
The condition (4.9a) can be obtained from (4.3a), by using the relation

d

dx1

[
lnfX1(x1−ωx2)

] = d

dx1

[
ln rX1(x1−ωx2)

]−rX1(x1−ωx2) for x1 ≥ ωx2.

Similarly, (4.9b) is a consequence of (4.3b) when x1 ≤ ωx2. �

In terms of failure rates, the interval (4.5) of admissible values of θ transforms
into

θ ∈ [
max

{
τ,max

(
ωrX1(0), rX2(0)

)}
,ωrX1(0) + rX2(0)

]
, (4.10)

where τ is the greatest lower bound of θ -values satisfying (4.9a) and (4.9b).
Notice that if the marginal failure rates are increasing functions, then τ =

max(ωrX1(0), rX2(0)) and therefore relation (4.10) can be written as

θ ∈ [
max

(
ωrX1(0), rX2(0)

)
,ωrX1(0) + rX2(0)

]
. (4.11)

We link above conditions in Theorem 4.2 which enable to generate bivariate dis-
tributions possessing W-BLMP from given (pre-specified) marginal failure rates.
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Theorem 4.2. Let the marginal failure rates rXi
(xi) be differentiable functions. If

relations (4.6) to (4.10) hold, then the function SX1,X2(x1, x2) given by (3.3) is a
proper joint survival function having W-BLMP with marginals

SXi
(x) = exp

(
−

∫ x

0
rXi

(t) dt

)
, x ≥ 0, i = 1,2. (4.12)

Theorem 4.2 is a counterpart of a similar statement treating BLMP case given
by Kulkarni (2006), see her Theorem 3. The converse of Theorem 4.2 also holds
for non-degenerate distributions and the statement is given below.

Proposition 4.1. If SX1,X2(x1, x2) is non-degenerate bivariate survival function
given by equation (3.3) and has differentiable marginal failure rates then it must
satisfy conditions (4.6) to (4.10).

Proof. Follows step by step the proof of Proposition 1 in Kulkarni (2006). �

4.2.1 Examples. Here we generate bivariate distributions possessing W-BLMP
from their given (pre-specified) marginal failure rates rX1(x1) and rX2(x2) that are
increasing or/and decreasing functions. After checking restrictions (4.6) to (4.10),
we use (4.12) to get the marginal survival functions SXi

(xi), i = 1,2, and then
apply (3.3) to obtain the corresponding valid joint survival function SX1,X2(x1, x2).

Example 4.2 (Example 4.1 continued, with increasing marginal failure rates).
If we adopt the marginal densities fX1(x1) and fX2(x2) from Example 4.1, we will
obtain the corresponding marginal failure rates given by rX1(x1) = c1 − c3

c2+x2
1

for

x1 ≥ 0 and rX2(x2) = ω(c1 − c3
c2+ω2x2

2
) for x2 ≥ 0 where c2, c3,ω > 0 and c1 ≥ c3

c2
.

In this case, rX1(x1) and rX2(x2) are increasing functions of their arguments and
we will obtain the interval of admissible values of θ from (4.11). Since rX1(0) =
c1 − c3

c2
and rX2(0) = ω(c1 − c3

c2
) we have

θ ∈
[
ω

(
c1 − c3

c2

)
,2ω

(
c1 − c3

c2

)]
.

Naturally, we got the same interval for possible values of the parameter θ as earlier.
Using (3.3) we find the corresponding valid joint survival function

S(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−

[
c1x1 + (θ − c1ω)x2 − c3√

c2
tan−1

(
x1 − ωx2√

c2

)]}
,

if x1 ≥ ωx2,

exp
{
−

[
c1ωx2 +

(
θ

ω
− c1

)
x1 − c3√

c2
tan−1

(
ω√
c2

(
x2 − x1

ω

))]}
,

if x1 ≤ ωx2.
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Example 4.3 (increasing marginal failure rates). For x1, x2 ≥ 0, c1,ω > 0
and 0 ≤ c2 ≤ 1, define rX1(x1) = exp(c1x1)

c2+exp(c1x1)
and rX2(x2) = ω exp(c1x2)

c2+exp(ωc1x2)
. The

marginal failure rates rX1(x1) and rX2(x2) are increasing functions with rX1(0) =
ω

1+c2
and rX2(0) = 2ω

1+c2
. Thus, from (4.11) we conclude that θ ∈ [ ω

1+c2
, 2ω

1+c2
]. Ap-

plying (3.3), we obtain the proper joint survival function

S(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−

[
θx2 + 1

c1
ln

c2 + exp(c1x1 − c1ωx2)

c2 + 1

]}
, if x1 ≥ ωx2,

exp
{
−

[
θx1

ω
+ 1

c1
ln

c2 + exp(c1ωx2 − c1x1)

c2 + 1

]}
, if x1 ≤ ωx2,

and it is absolutely continuous if θ = 2ω
1+c2

, according to Lemma 4.1.

Let us note that the admissible values of the marginal distribution parameters
may be further limited as a consequence of inequalities (4.9a) and (4.9b), as illus-
trated in the next example.

Example 4.4 (Increasing and decreasing marginal failure rates). Let rX1(x1) =
1

1+x1
and rX2(x2) = ω(2ωc2x2 + c3) for x1, x2 ≥ 0 with parameters c2, c3,ω > 0.

One can verify that rX1(x1) is a decreasing and rX2(x2) is an increasing func-
tion, with rX1(0) = 1 and rX2(0) = ωc3. So, the upper bound for θ from (4.10) is
ω(c3 + 1).

Inequalities (4.9a) and (4.9b) imply that θ ≥ 2ω and θ ≥ ω(c2
3−2c2)

c3
. Therefore,

τ = ω(c2
3−2c2)

c3
when

(c2
3−2c2)

c3
≤ 2 and we obtain the following additional restric-

tions of parameters: 2c2 ≥ c3(c3 − 2) and c3 ≥ 2. Thus, the admissible values of θ

belong to the interval [max(
ω(c2

3−2c2)

c3
,ωc3),ω(1 + c3)].

With the help of (3.3) we arrive to the following valid survival function

S(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + x1 − ωx2
exp{−θx2},

if x1 ≥ ωx2,

exp
{
−

[(
θ

ω
− c3

)
x1 + c2

(
x2

1 + ω2x2
2
) + ωx2(c3 − 2c2x1)

]}
,

if x1 ≤ ωx2.

Finally, if θ = ω(c3 + 1) the joint distribution is absolutely continuous.
On Figure 9 we show the shape of the joint density when it has a singular com-

ponent and in absolutely continuous case (the singularity line x1 = 1.2x2 is given
in red), see graphs (a) and (b), correspondingly.

4.2.2 Distributions with independent marginals. Let the marginals X1 and X2
of continuous joint distribution (X1,X2) be independent. In terms of conditional
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Figure 9 Density fX1,X2(x1, x2) in Example 4.4 for c2 = 4.0 and c3 = 5.0. (a) ω = 1.2 and
θ = 5.0 (with singular part); (b) ω = 1.2 and θ = 6.0 (absolutely continuous).

failure rates, the independence between X1 and X2 implies that

ri(x1, x2) = ∂

∂xi

[− lnSX1,X2(x1, x2)
] = rXi

(xi), i = 1,2,

i.e., r1(x1, x2)+r2(x1, x2) = rX1(x1)+rX2(x2). Assume further that (X1,X2) pos-
sesses W-BLMP, for example, SX1,X2(x1, x2) is given by (3.3) and we obtain

rX1(x1) + rX2(x2) =
⎧⎪⎨
⎪⎩

θ + (1 − ω)rX1(x1 − ωx2), if x1 ≥ ωx2,
θ

ω
+

(
1 − 1

ω

)
rX2

(
x2 − x1

ω

)
, if x1 ≤ ωx2.

Let x1 ≥ ωx2. Then equation

rX1(x1) + rX2(x2) = θ + (1 − ω)rX1(x1 − ωx2) (4.13)

is valid for all x1, x2 ≥ 0 and ω > 0. Substitute x2 = 0 in (4.13) to conclude that
ωrX1(x1) = θ − rX2(0) for all x1 ≥ 0. Thus, the failure rate rX1(x1) is a positive

constant
θ−rX2 (0)

ω
for all x1 ≥ 0 and therefore X1 is exponentially distributed with

a parameter
θ−rX2 (0)

ω
.

Now set x1 = x2 = 0 in (4.13) to get θ = ωrX1(0) + rX2(0), which is the upper
bound in (4.11), meaning that the corresponding joint distribution is absolutely
continuous according to Lemma 4.1.

By analogy, if x1 ≤ ωx2 we obtain that X2 is exponentially distributed with a
parameter θ − ωrX1(0). Similarly, the corresponding joint distribution should be
absolutely continuous. Hence, we proved the following.

Corollary 4.2. If a joint distribution (X1,X2) with independent marginals pos-
sesses W-BLMP, then it is absolutely continuous. Moreover, the marginals X1 and
X2 are exponentially distributed.
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The proof of Corollary 4.2 indicates that if X1 has an exponential distribution
with a parameter λ1 > 0, then X2 is exponentially distributed with a parameter
λ2 = θ −ωλ1 > 0. Thus, the corresponding joint absolutely continuous distribution
with independent marginals is given by

SX1,X2(x1, x2) = exp
{−λ1x1 − (θ − ωλ1)x2

}
. (4.14)

4.2.3 Closure properties. Let W(x1, x2;�) be the collection of proper bivariate
distributions possessing W-BLMP and their marginals satisfying Theorem 4.2. De-
note by � = (θ,ω,�) the corresponding (generic) parameter vector, with � being
the vector of all parameters of marginal distributions. Note that � will be different
under update of parameters θ,ω or �. We will present in the next statement several
closure properties of the class W(x1, x2;�).

Theorem 4.3. Denote by S,S1 and S2 survival functions belonging to the class
W(x1, x2;�). The following closure properties are fulfilled:

(CP1) If S1, S2 ∈W(x1, x2;�), then their product S1S2 ∈ W(x1, x2;�).
(CP2) If S ∈ W(x1, x2;�), then [S]c ∈ W(x1, x2;�) for some c ≥ 1.
(CP3) If S1, S2 ∈ W(x1, x2;�), then [S1]c1[S2]c2 ∈ W(x1, x2;�) for some

c1, c2 ≥ 1.
(CP4) If SY1,Y2(x1, x2) belongs to W(x1, x2;�) and β > 0, then SX1,X2(x1, x2) =

SY1,Y2(βx1, βx2) also belongs to W(x1, x2;�).
(CP5) If S1, S2 have the same parameter vector � and belong to W(x1, x2;�),

then S1+S2
2 ∈W(x1, x2;�).

Proof. The properties (CP1) to (CP5) follow after applying relation (3.3) for the
corresponding case. �

Remark 4.2 (Applications of closure properties). The closure properties listed
in Theorem 4.3 enable us to construct plenty of bivariate distributions belonging
to W(x1, x2;�) by using as a base a known distribution defined by (3.3), being an
output of Theorem 4.2. Moreover, relations (CP1), (CP3) and (CP5) can be easily
extended to any finite number of survival functions belonging to W(x1, x2;�).

Note that if the vector (Y1, Y2) is independent of the vector (Z1,Z2) and their
survival functions belong to W(x1, x2;�) class, the implication (CP1) means that
the survival function of the vector

(X1,X2) = [
min(Y1,Z1),min(Y2,Z2)

]
also belongs to W(x1, x2;�). This fact has applications in series systems.

We finish with a complementary closure property given in the following claim.
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Lemma 4.3. If ST1,T2(x1, x2) belongs to W(x1, x2;�) and T3 is independent of
(T1, T2) with a survival function

ST3

(
max(x1,ωx2)

) =
{

exp{−λωx2}, if x1 ≥ ωx2,

exp{−λx1}, if x1 ≤ ωx2,
(4.15)

for all x1, x2 ≥ 0 and λ > 0, then stochastic relation (2.1) generates a joint distri-
bution belonging to the class W(x1, x2;�).

Proof. Let ST1,T2(x1, x2) be specified by (3.3), for example, our base class is
W(x1, x2;�) with � = (θ,ω,�). Using stochastic representation (2.1) we obtain

SX1,X2(x1, x2) = ST1,T2(x1, x2)ST3

(
max(x1,ωx2)

)
and applying (4.15) we get

SX1,X2(x1, x2) =
⎧⎪⎨
⎪⎩

exp
{−(θ + λω)x2

}
SX1(x1 − ωx2), if x1 ≥ ωx2,

exp
{
−(θ + λω)x1

ω

}
SX2

(
x2 − x1

ω

)
, if x1 ≤ ωx2.

(4.16)

Therefore, we remain in the class W(x1, x2;�), but now � = (θ1,ω,�) with
θ1 = θ + λω. �

Observe that distribution (4.15) exhibits a cusp along the line Lω = {x1 = ωx2},
as shown on Figure 10, representing the corresponding “level curve” for fixed x2 =
x0 = 1.8, when ω = 0.5 and λ = 1.0.

Recall that Pinto and Kolev (2015) introduced an Extended MO model with sin-
gularity along the line {x1 = x2} in R2+. The important consequence of Lemma 4.3
is that it gives us an idea how to define a modified Extended MO model, but with
a possible singularity along the line Lω : {x1 = ωx2}.

5 Discussion and possible further investigations

The message of this work is to introduce a weak version of the classical BLMP
property, that we named W-BLMP, via functional equation (1.5) generated by the
stochastic representation (2.1). The additional parameter ω is the inclination of
arbitrary line in R2+ passing through the origin. The examples illustrating our ap-
proach indicate that the asymmetry parameter ω plays a role of a skew parameter
and implies a delayed effect of the common shock affecting one of the items of
a system. As an interpretation, the W-BLMP preserves the distribution of random
vector (X1,X2) considering its dynamic in direction of the line Lω : {x2 = ωx1},
instead of keeping it unchanged along the main diagonal, as postulated by BLMP.

The W-BLMP is characterized by the special form of joint survival function
SX1,X2(x1, x2) given by (3.3) which is a solution of functional equation (1.5). This



Weak bivariate lack of memory property 903

Figure 10 Shape of ST3(min(x1,ωx2)) for ω = 0.5, λ = 1.0 and x0 = 1.8.

fact is a contribution to the theory of functional equations. The proof of Theo-
rem 3.1 is different from existing approaches treating the BLMP case. We use the
fact that the independent solution (3.2) of functional equation (3.1) may serve as
a particular solution of (1.5). Finally, we suggest an algorithm for building dis-
tributions possessing W-BLMP starting from pre-specified marginal distributions
that must satisfy a list of restrictions and enrich it by closure properties of the new
BLMP notion.

We will list below several related research problems.

• One would be successful to use our methodology when the support of the singu-
lar component lies along a monotonic curve different than the line through the
origin. The choice of the model should be influenced on the data at hand.

• Of course, depending on the situation, one might consider a dual version of
the W-BLMP replacing the min by max operation in stochastic representation
(2.1). Now, the interest will be related to model our data by the joint distribution
function of (X1,X2) instead of joint survival one (when we have right censoring,
for instance).

• Practical needs indicate that it makes sense to define models with restricted do-
main, but not “for all x1, x2 ≥ 0” as one usually assumes as a standard. For
example, one can still use as a base the functional equation (1.5), but when its
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arguments belong to a fixed figure, indicated by corresponding scatterplot, a
square say. In such a case we will deal with a weaker version of the W-BLMP.

• The “delayed” effect might be identified in the form of a fixed time interval,
say “d”, instead of the multiplicative factor ω assumed in this paper. Of course,
one could start with a fixed value of “d” and, in a second step, to plug-in “d”
as a parameter of the joint distribution, as we did with the parameter ω. Such
kind of delayed effect would be graphically represented as a shift (upwards or
downwards) of the usual support of the singular component, keeping the 45
degree inclination.

• We see promising application of Sibuya’s dependence function, being the ratio
of joint distribution and the product of marginal distributions, see more details
in Pinto and Kolev (2016). The idea is to investigate under which conditions
the Sibuya’s dependence function is invariant along the line Lω, that is, when
the Sibuya’s dependence function of (X1,X2) and its ω-type residual lifetime
vector Xw,t are the same for all t > 0.

• In Lemma 4.3, we got a modification of extended Marshall–Olkin distribution
given by (4.16) which is based on stochastic representation (2.1). The depen-
dence structure between two items of a system is explained not only by the
common shock identified by the random variable T3, but also by the joint dis-
tribution of the individual shocks represented by T1 and T2. With this additional
source of dependence extended Marshall–Olkin’s distributions allow modeling
both positive and negative quadrant dependence between its components. More-
over, the model may be non-exchangeable even if the marginals have the same
distribution, consult Pinto and Kolev (2015) for details.

The classical MO model (1.2) is probably one of the mostly used in Reliabil-
ity, Survival analysis and Life Insurance. Hence, any extension of that model has
its theoretical and practical importance. We expect that the modified MO mod-
els introduced in this article may serve as an alternative to existing ones, with a
significant effect on analysis of specific data sets.
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