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Abstract. We use the least squares type estimation to estimate the drift pa-
rameter θ > 0 of a non-ergodic fractional Ornstein–Uhlenbeck process of

the second kind defined as dXt = θXt dt + dY
(1)
t ,X0 = 0, t ≥ 0, where

Y
(1)
t = ∫ t

0 e−s dBas with at = He
t
H , and {Bt , t ≥ 0} is a fractional Brow-

nian motion of Hurst parameter H ∈ ( 1
2 ,1). We assume that the process

{Xt , t ≥ 0} is observed at discrete time instants t1 = �n, . . . , tn = n�n. We
construct two estimators θ̂n and θ̌n of θ which are strongly consistent and
we prove that these estimators are

√
n�n-consistent, in the sense that the

sequences
√

n�n(θ̂n − θ) and
√

n�n(θ̌n − θ) are tight.

1 Introduction

Parameter estimation for non-ergodic type diffusion processes has been developed
in several papers. For motivation and further references, we refer the reader to
Basawa and Scott (1983), Dietz and Kutoyants (2003), Jacod (2006), Shimizu
(2009).

Let B = {Bt, t ≥ 0} be a fractional Brownian motion (fBm) with Hurst parame-
ter H ∈ (0,1). In recent years, the study of various statistical estimation problems
related to the (so-called) fractional Ornstein–Uhlenbeck (fOU) of the first kind,
that is, to the solution X of

X0 = 0, dXt = θXt dt + dBt , t ≥ 0 (1.1)

has attracted interest. In the case of fOU (1.1), the parameter estimation for θ

has been extensively studied by using several approaches. For a comprehensive
review on maximum likelihood method, we refer to Kleptsyna and Le Breton
(2002), Bercu, Coutin and Savy (2011), Tanaka (2015). A least squares approach
has been proposed in the papers Hu and Nualart (2010), Belfadli, Es-Sebaiy and
Ouknine (2011), Es-Sebaiy and Ndiaye (2014), El Machkouri, Es-Sebaiy and Ouk-
nine (2016). For a more recent comprehensive discussion via method of moments,
we refer to El Onsy, Es-Sebaiy and Viens (2017), Es-Sebaiy and Viens (2016).
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In the present work, we consider the non-ergodic fractional Ornstein–Uhlenbeck
process of the second kind (FOUSK) {Xt, t ≥ 0} given by the following linear
stochastic differential equation

X0 = 0, dXt = θXt dt + dY
(1)
t , t ≥ 0, (1.2)

where Y
(1)
t := ∫ t

0 e−s dBas with at = He
t
H , and B is a fBm of Hurst index H ∈

(1
2 ,1), whereas θ > 0 is considered as an unknown parameter.

The drift parameter estimation for (1.2) based on continuous-time observations
has been studied in El Onsy, Es-Sebaiy and Tudor (2014) by using the least squares
estimator (LSE) defined by

θ̃t =
∫ t

0 Xs dXs∫ t
0 X2

s ds
, t ≥ 0 (1.3)

as estimator of θ , where the integral with respect to X is a Young integral. Let us
describe what is known about this problem: θ̃t is a strongly consistent estimator of
θ and it is asymptotically Cauchy. More precisely, as t → ∞

eθt (θ̃t − θ)
Law−→ 2θH 2(θ−1)HC(1),

with C(1) the standard Cauchy distribution.
From a practical point of view, in parametric inference, it is more realistic and

interesting to consider asymptotic estimation for FOUSK based on discrete ob-
servations. Then, we will assume that the process X given in (1.2) is observed
equidistantly in time with the step size �n: ti = i�n, i = 0, . . . , n, and Tn = n�n

denotes the length of the “observation window”. Let us consider the following
discrete version of θ̃t defined in (1.3),

θ̂n =
∑n

i=1 Xti−1(Xti − Xti−1)

�n

∑n
i=1 X2

ti−1

. (1.4)

Since we can rewrite θ̃t as follows,

θ̃t = X2
t

2
∫ t

0 X2
s ds

,

we can also consider this second discrete version of θ̃t ,

θ̌n = X2
Tn

2�n

∑n
i=1 X2

ti−1

. (1.5)

Our purpose is to study the asymptotic behavior and the rate consistency of the
estimators θ̂n and θ̌n based on the sampling data Xti , i = 0, . . . , n.

Recall that in the case of ergodic-type FOUSK, corresponding to θ < 0, the drift
estimation based on continuous and discrete observations of X has been studied
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for example, in Es-Sebaiy and Viens (2016), Azmoodeh and Morlanes (2013),
Azmoodeh and Viitasaari (2015).

The paper is organized as follows. In Section 2, we give some properties of
the FOUSK process. Section 3 is devoted to the study of the strong consistency
of the above estimators θ̂n and θ̌n. In Section 4, we study the rate consistency
of those estimators. Finally, in Section 5 we give simulation examples to show
the performance of these estimators and the standard error is also proposed as a
criterion of validation.

2 Preliminaries

Throughout this paper, we assume that B is a fractional Brownian motion with
Hurst parameter H ∈ (1

2 ,1), defined on a complete probability space (�,F,P ),
that is, B is a centered Gaussian process B = {Bt, t ≥ 0} with the covariance func-
tion

E(BtBs) = 1

2

(
t2H + s2H − |t − s|2H )

.

In this section, we recall some properties of the FOUSK process (see Kaarakka and
Salminen (2011), El Onsy, Es-Sebaiy and Tudor (2014)). These properties will be
needed in the next sections in order to analyze the behavior of the estimators θ̂n

and θ̌n of θ . Let us first note that the unique solution to (1.2) can be written as

Xt = eθt
∫ t

0
e−θs dY (1)

s , t ≥ 0. (2.1)

In order to make the analysis of this process easier, we will express the Wiener
integral with respect to the process Y (1) as a Wiener integral with respect to the
fractional Brownian motion B . Define the process

ζt =
∫ t

0
e−θs dY (1)

s , t ≥ 0. (2.2)

From El Onsy, Es-Sebaiy and Tudor (2014), we can write

ζt = H(θ+1)H
∫ at

a0

s−(θ+1)H dBs, t ≥ 0. (2.3)

Moreover, since H > 1
2 , we have

E
[
(ζt − ζs)

2] = H(2H − 1)H 2(θ+1)H
∫ at

as

∫ at

as

(uv)−(θ+1)H |u − v|2H−2 dudv,

(2.4)
0 ≤ s < t.

We will also need the following result, which is proved in El Onsy, Es-Sebaiy and
Tudor (2014).
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Lemma 2.1. Let ζ be the process defined in (2.2). Then

(i) For all ε ∈ (0,H), the process ζ admits a modification with (H − ε)-
Hölder continuous paths, still denoted ζ in the sequel.

(ii) As t → ∞
ζt → ζ∞ := H(θ+1)H

∫ ∞
a0

t−(θ+1)H dBt almost surely and in L2(�).

3 Strong consistency of the estimators

Let X be the FOUSK process given by (1.2), and let us introduce the following
sequences

Sn := �n

n∑
i=1

X2
ti−1

and

�n :=
n∑

i=1

eθti (ζti − ζti−1)Xti−1 .

So, we can write θ̂n and θ̌n as follows

θ̂n = eθ�n − 1

�n

+ �n

Sn

(3.1)

and

θ̌n = X2
tn

2Sn

. (3.2)

In order to study the strong consistency, let us state the following direct conse-
quence of the Borel–Cantelli Lemma (see Kloeden and Neuenkirch (2007)), which
allows us to turn convergence rates in the p-th mean into pathwise convergence
rates.

Lemma 3.1. Let γ > 0 and p0 ∈ N. Moreover let (Zn)n∈N be a sequence of ran-
dom variables. If for every p ≥ p0 there exists a constant cp > 0 such that for all
n ∈ N, (

E|Zn|p)1/p ≤ cp · n−γ ,

then for all ε > 0 there exists a random variable ηε such that

|Zn| ≤ ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p ≥ 1.
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From now on, the generic constant is always denoted by C(·) which depends
on certain parameters in the parentheses. The following lemma plays an important
role in this paper.

Lemma 3.2. Let {Rn,n ≥ 1} be a sequence of random variables defined by

Rn :=
n−1∑
i=1

(
ζ 2
ti

− ζ 2
ti−1

)
e−2θ(n−i+1)�n.

Then,

e−2θTnSn = �n

e2θ�n − 1

(
ζ 2
tn−1

− Rn

)
. (3.3)

Moreover, if we assume that �n → 0 and n�1+α
n → ∞ for some α > 0,

Rn −→ 0 almost surely. (3.4)

In particular,

e−2θTnSn −→
n→∞

ζ 2∞
2θ

almost surely. (3.5)

Proof. Since for every t ≥ 0,Xt = eθt ζt , we have

e−2θTnSn = �n

e2θ�n − 1

n∑
i=1

e−2θ(n−i)�n

(
e2θ�n − 1

e2θ�n

)
ζ 2
ti−1

= �n

e2θ�n − 1

n∑
i=1

e−2θ(n−i)�n

(
1 − 1

e2θ�n

)
ζ 2
ti−1

= �n

e2θ�n − 1

n∑
i=1

(
e−2θ(n−i)�n − e−2θ(n−i+1)�n

)
ζ 2
ti−1

= �n

e2θ�n − 1

[
ζ 2
tn−1

−
n∑

i=2

(
ζ 2
ti−1

− ζ 2
ti−2

)
e−2θ(n−i+1)�n

]

= �n

e2θ�n − 1

(
ζ 2
tn−1

− Rn

)
,

which proves (3.3).
To prove (3.4), let us first calculate E[(ζti −ζti−1)

2] for every i = 1, . . . , n. Using
(2.4) and making the change of variables x = u/ati−1 and y = v/ati−1 , we obtain

E
[
(ζti − ζti−1)

2]
= H(2H − 1)H 2(θ+1)H

∫ ati

ati−1

∫ ati

ati−1

(uv)−(θ+1)H |u − v|2H−2 dudv
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= H 2H+1(2H − 1)e−2θ(i−1)�n

(3.6)

×
∫ e

�n
H

1

∫ e
�n
H

1
(xy)−(θ+1)H |x − y|2H−2 dx dy

≤ H 2H+1(2H − 1)e−2θ(i−1)�n

∫ e
�n
H

1

∫ e
�n
H

1
|x − y|2H−2 dx dy

= H 2He−2θ(i−1)�n
(
e

�n
H − 1

)2H
.

On the other hand, by using the point (ii) of Lemma 2.1 and the fact that ζ is
Gaussian, we have for every p ≥ 1(

E
[∣∣ζ 2

ti
− ζ 2

ti−1

∣∣p])1/p ≤ C(p)
(
E

[
(ζti − ζti−1)

2])1/2
. (3.7)

Combining (3.7) and (3.6), we can deduce that

(
E

[|Rn|p])1/p ≤
n−1∑
i=1

e−2θ(n−i+1)�n
(
E

[∣∣ζ 2
ti

− ζ 2
ti−1

∣∣p])1/p

≤ C(p)HHe−θ(n+1)�n
(
e

�n
H − 1

)H n−1∑
i=1

e−θ(n−i)�n

≤ C(p)HHe−θn�n
(
e

�n
H − 1

)H n−1∑
i=1

e−θ(n−i+1)�n (3.8)

= C(p)HHe−θn�n
(
e

�n
H − 1

)H
e−2θ�n

1 − e−θ(n−1)�n

1 − e−θ�n

≤ C(p, θ,H)�H−1
n e−θn�n.

The last equality comes from �n → 0, n�n → ∞ and the fact that, as x → 0,

ex − 1

x
−→ 1.

Now, let γ > 0 be a constant verifying 1−H
γ

< α < γ , then there exists ε0 > 0 such
that

α = ε0 + 1 − H

γ − ε0
.

This allows us to write

(n�n)
γ �1−H

n = nε0
(
n�1+α

n

)γ−ε0 . (3.9)

Thus, by combining (3.8), (3.9) and Lemma 3.1, the convergence (3.4) is proved.
Finally, the convergence (3.5) is a direct consequence of (3.3), (3.4) and the

point (ii) of Lemma 2.1. �
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Thus we arrive at our main result of this section.

Theorem 3.1. Suppose that �n → 0 and n�1+α
n → ∞ for some α > 0. Then, as

n → ∞,

θ̂n → θ almost surely, (3.10)

and also

θ̌n → θ almost surely. (3.11)

Proof. We first prove (3.10). From (3.1), we can write

θ̂n = eθ�n − 1

�n

+ e−2θTn�n

e−2θTnSn

.

Then, by (3.5) and the fact that (eθ�n − 1)/�n −→ θ , it suffices to show that
e−2θTn�n converges to 0 almost surely. We have

(
E

[|�n|2])1/2 ≤
n∑

i=1

eθti
(
E

[
(ζti − ζti−1)

2X2
ti−1

])1/2

≤
n∑

i=1

eθ(ti+ti−1)
(
E

[
(ζti − ζti−1)

4])1/4(
E

[
ζ 4
ti−1

])1/4
.

Thanks to (3.6) and the point (ii) of Lemma 2.1, we obtain

(
E

[|�n|2])1/2 ≤ C(θ,H)
(
e

�n
H − 1

)H n∑
i=1

eθi�n

= C(θ,H)eθ�n
(
e

�n
H − 1

)H (
eθn�n − 1

eθ�n − 1

)
.

Furthermore, since �n → 0 and n�n → ∞, we get(
E

[∣∣e−2θTn�n

∣∣2])1/2 ≤ C(θ,H)�H−1
n e−θTn. (3.12)

Using similar arguments as in the proof of the convergence (3.4), we deduce that

e−2θTn�n −→ 0 almost surely,

which proves (3.10).
Since

θ̌n = ζ 2
tn

2e−2θTnSn

,

the convergence (3.11) is a direct consequence of (3.5) and (ii) of Lemma 2.1. �
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4 Rate consistency of the estimators

In this section, we will establish that the sequences of random variables√
n�n(θ̂n − θ) and

√
n�n(θ̌n − θ) are tight.

Definition 4.1. Let {Zn} be a sequence of random variables defined on (�,F,P ).
We say {Zn} is tight (or bounded in probability), if for every ε > 0, there exists
Mε > 0 such that,

P
(|Zn| > Mε

)
< ε for all n.

Theorem 4.1. Suppose that �n → 0 and n�1+α
n → ∞ for some α > 0. Then, for

any q ≥ 0,

�q
neθTn(θ̂n − θ) is not tight. (4.1)

In addition, if we assume that n�3
n → 0 as n → ∞, the estimator θ̂n is

√
Tn-

consistent in the sense that the sequence√
Tn(θ̂n − θ) is tight. (4.2)

Proof. We first start with the case q ≥ 1
2 . By (3.1), we have

�q
neθTn(θ̂n − θ) = �q+1

n eθTn

(
eθ�n − 1 − θ�n

�2
n

)
+ �

q
ne−θTn�n

e−2θTnSn

. (4.3)

We have eθ�n−1−θ�n

�2
n

→ θ2/2. Moreover,

�q+1
n eθTn = (n�n)

q+1
α �q+1

n

eθTn

T
q+1
α

n

= (
n�1+α

n

) q+1
α

eθTn

T
q+1
α

n

−→ ∞
because Tn → ∞ and n�1+α

n → ∞.
Thus,

�q+1
n eθTn

(
eθ�n − 1 − θ�n

�2
n

)
−→ ∞. (4.4)

On the other hand, it follows from (3.12) that(
E

[∣∣�q
ne−θTn�n

∣∣2])1/2 ≤ C(θ,H)�q+H−1
n −→ 0 (4.5)

since H > 1
2 .
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Consequently, by combining (4.3), (4.4), (4.5) and (3.5), we conclude that for
every q ≥ 1

2 , �
q
neθTn(θ̂n − θ) is not tight.

The case 0 ≤ q < 1
2 is a direct consequence of

�q
neθTn(θ̂n − θ) = �

q− 1
2

n

(
�

1
2
n eθTn(θ̂n − θ)

)
,

�
q− 1

2
n −→ ∞ and the previous case. Thus the proof (4.1) is finished.
Let us now prove (4.2). From (3.1), we can write√

Tn(θ̂n − θ) =
√

n�3
n

(
eθ�n − 1 − θ�n

�2
n

)
+

√
Tne

−2θTn�n

e−2θTnSn

. (4.6)

Since n�3
n → 0 and eθ�n−1−θ�n

�2
n

→ θ2/2, we have

√
n�3

n

(
eθ�n − 1 − θ�n

�2
n

)
→ 0. (4.7)

Furthermore, (3.12) leads to(
E

[∣∣√Tne
−2θTn�n

∣∣2])1/2 ≤ C(θ,H)�H−1
n

√
Tne

−θTn

= C(θ,H)
T

1
2 + 1−H

α
n e−θTn

(n�1+α
n )

1−H
α

(4.8)

−→ 0

by using Tn → ∞ and n�1+α
n → ∞.

Consequently, by (4.6), (4.7), (4.8) and (3.5) we deduce (4.2). �

Theorem 4.2. Suppose that �n → 0 and n�1+α
n → ∞ for some α > 0. Then, for

any q ≥ 0,

�q
ne

θTn(θ̌n − θ) is not tight. (4.9)

In addition, we assume that n�3
n → 0 as n → ∞. Then the estimator θ̌n is

√
Tn −

consistent in the sense that the sequence√
Tn(θ̌n − θ) is tight. (4.10)

Proof. Fix q ≥ 1/2. We have

�q
neθTn(θ̌n − θ)

= �q
neθTn

(
e2θTnζ 2

tn

2Sn

− θ

)

= �
q
neθTn

2e−2θTnSn

[(
ζ 2
tn

− ζ 2
tn−1

) +
(

1 − 2θ�n

e2θ�n − 1

)
ζ 2
tn−1

(4.11)
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− 2θ

(
e−2θTnSn − �n

e2θ�n − 1
ζ 2
tn−1

)]

= �
q
neθTn

2e−2θTnSn

[(
ζ 2
tn

− ζ 2
tn−1

) +
(

1 − 2θ�n

e2θ�n − 1

)
ζ 2
tn−1

+
(

2θ�n

e2θ�n − 1

)
Rn

]
.

Using (3.6),

(
E

[(
�q

neθTn
(
ζ 2
tn

− ζ 2
tn−1

))2])1/2 ≤ C(θ,H)�q+H
n

(
e

�n
H − 1

�n

)H

−→ 0. (4.12)

We also have,

�q
neθTn

(
1 − 2θ�n

e2θ�n − 1

)

= �q+1
n eθTn

(
e2θ�n − 1 − 2θ�n

�2
n

�n

e2θ�n − 1

)
(4.13)

−→ ∞.

Moreover, (
E

[(
�q

neθTnRn

)2])1/2 ≤ C(θ,H)�q+H−1
n

(4.14)
−→ 0.

Combining (4.11), (4.12), (4.13), (4.14) and (3.5), we conclude that for every q ≥
1
2 , �

q
neθTn(θ̌n − θ) is not tight.

It is obvious that (4.9) is satisfied for 0 ≤ q < 1
2 by using a similar argument as

in the proof of (4.1). Thus, the proof of (4.9) is finished.
We prove now (4.10). Thanks to (4.11), we can write√
Tn(θ̌n − θ)

=
√

Tn

2e−2θTnSn

[(
ζ 2
tn

− ζ 2
tn−1

) +
(

1 − 2θ�n

e2θ�n − 1

)
ζ 2
tn−1

+
(

2θ�n

e2θ�n − 1

)
Rn

]
.

This implies that (4.10) is satisfied as a result of the convergence (3.5),

(
E

[(√
Tn

(
ζ 2
tn

− ζ 2
tn−1

))2])1/2 ≤ C(θ,H)�H
n

√
Tne

−θTn

(
e

�n
H − 1

�n

)H

−→ 0,√
Tn

(
1 − 2θ�n

e2θ�n − 1

)
=

√
n�3

n

(
e2θ�n − 1 − 2θ�n

�2
n

�n

e2θ�n − 1

)
−→ 0,
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and (
E

[
(
√

TnRn)
2])1/2 ≤ C(θ,H)�H−1

n

√
Tne

−θTn

= C(θ,H)
T

1
2 + 1−H

α
n e−θTn

(n�1+α
n )

1−H
α

−→ 0. �

Remark 4.1. Let θ̃t be the LSE, defined in (1.3), based on continuous-time obser-
vations of (1.2). The authors of El Onsy, Es-Sebaiy and Tudor (2014) proved that
eθt (θ̃t − θ) is asymptotically Cauchy. But, for the discrete versions θ̂n and θ̌n of
θ̃t , Theorems 4.1 and 4.2 which have been proved above, state that the sequences
�

q
neθTn(θ̂n − θ) and �

q
neθTn(θ̌n − θ) are not tight. Moreover,

√
Tn(θ̂n − θ) and√

Tn(θ̌n − θ) are tight and converge in probability to 0, which means that the rate
are actually ‘larger’ than

√
Tn.

5 Numerical illustrations

Let us start with the following simulated path of the fractional Ornstein Uhlenbeck
with second kind process dXt = θXt dt +dY

(1)
t with X0 = 0, θ = 0.78,H = 0.70.

• First, we generate the fractional Brownian motion using the wavelet method
Abry and Sellan (1996).

• Then, we simulate Y (1) by the discretization of the stochastic integral∫ t
0 e−s dBas .

• After that we simulate the process X using the Euler–Maruyama method for
different values of H and θ (see Figure 1).

Figure 1 FOUSK.
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Table 1 The means and standard deviations of estimators

H = 0.55 H = 0.60 H = 0.65 H = 0.70

θ̂ θ̌ θ̂ θ̌ θ̂ θ̌ θ̂ θ̌

Panel A. Low parameter value θ = 0.7880
Mean 0.4140 0.7642 0.5989 0.7621 0.7170 0.7847 0.7424 0.7801
Median 0.7540 0.8153 0.7909 0.8287 0.8065 0.8254 0.8127 0.8219
Std. dev. 0.8525 0.2888 0.5440 0.2797 0.3754 0.2448 0.3250 0.2941

Panel B. Medium parameter value θ = 1.6811
Mean 1.5286 1.6374 1.5774 1.6310 1.6155 1.6403 1.6142 1.6304
Median 1.6768 1.6837 1.6745 1.6811 1.6816 1.6836 1.6799 1.6820
Std. dev. 0.6684 0.2429 0.4206 0.2409 0.3474 0.2576 0.3122 0.2619

Panel C. High parameter value θ = 3.6977
Mean 3.6964 3.6982 3.6884 3.6927 3.6967 3.6983 3.6973 3.6987
Median 3.6977 3.6990 3.6976 3.6990 3.6977 3.6990 3.6977 3.6991
Std. dev. 0.0186 0.0160 0.1847 0.1275 0.0115 0.0109 0.0062 0.0062

Now, we present numerical examples for different values of H and θ to inves-
tigate the efficiency of our estimators θ̂ and θ̌ . For a fixed length h = 0.0002, we
simulate 500 sample paths on the interval [0,2] using a regular partition of 10,000
intervals. Finally, we implement these generated data sets to obtain the estimators
by (1.4) and (1.5). The simulated of these estimators θ̂ and θ̌ are given in Ta-
ble 1 (true value is the parameter value used in the Monte Carlo simulation; Mean,
Median and Std.dev. are the sample statistics computed with the 500 estimated
parameter values).

As shown in Table 1, we can see that the standard deviations of θ̂ and θ̌ are
small. These results also demonstrate that the mean and the median values of all
considered parameters are close to the true values, which indicates a pretty good
finite sample behavior of our method. As consequence, this simulation study con-
firms the theoretical results.
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