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WEAK SUBMODULARITY1

BY ETHAN R. ELENBERG∗, RAJIV KHANNA∗, ALEXANDROS G. DIMAKIS∗
AND SAHAND NEGAHBAN†

University of Texas at Austin∗ and Yale University†

We connect high-dimensional subset selection and submodular maxi-
mization. Our results extend the work of Das and Kempe [In ICML (2011)
1057–1064] from the setting of linear regression to arbitrary objective func-
tions. For greedy feature selection, this connection allows us to obtain strong
multiplicative performance bounds on several methods without statistical
modeling assumptions. We also derive recovery guarantees of this form un-
der standard assumptions. Our work shows that greedy algorithms perform
within a constant factor from the best possible subset-selection solution for a
broad class of general objective functions. Our methods allow a direct control
over the number of obtained features as opposed to regularization parameters
that only implicitly control sparsity. Our proof technique uses the concept of
weak submodularity initially defined by Das and Kempe. We draw a connec-
tion between convex analysis and submodular set function theory which may
be of independent interest for other statistical learning applications that have
combinatorial structure.

1. Introduction. Sparse modeling is central in modern data analysis and
high-dimensional statistics since it provides interpretability and robustness. Given
a large set of p features, we wish to build a model using only a small subset of k

features: the central combinatorial question is how to choose the optimal feature
subset. Specifically, we are interested in optimizing over sparse parameter vectors
β and consider problems of the form:

(1) β̄
k ∈ arg maxβ:‖β‖0≤k l(β),

for some function l(·). This is a very general framework: the function l(·) can be
a linear regression R2 objective, a generalized linear model (GLM) likelihood, a
graphical model learning objective, or an arbitrary M-estimator [40]. This subset
selection problem is NP-hard [37] even for the sparse linear regression objective,
and a vast body of literature has analyzed different approximation algorithms under
various assumptions.
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The Restricted Isometry Property (RIP) and the (closely related) Restricted
Eigenvalue property are conditions on l(β) that allow convex relaxations and
greedy algorithms to solve the subset selection problem within provable approx-
imation guarantees. In parallel work, several authors have demonstrated that the
subset selection problem can be connected to submodular optimization [2, 20, 48,
49] and that greedy algorithms are widely used for iteratively building good feature
sets.

The mathematical connection between submodularity and RIP was made ex-
plicit by Das and Kempe [13] for linear regression. Specifically, they showed that
when l(β) is the R2 objective, it satisfies a weak form of submodularity when
the linear measurements satisfy RIP. Note that for a given set of features S, the
function l(βS) with support restricted to S can be thought of as a set function and
this is key in this framework. Using this novel concept of weak submodularity,
they established strong multiplicative bounds on the performance of greedy algo-
rithms for subset selection and dictionary selection. Work by Bach [2] in the linear
regression setting discusses the notion of suppressors; however, that condition is
stronger than the weak submodularity assumption. Krause and Cevher [28] draw
similar connections between submodularity and sparse regression, but they require
a much stronger coherence-based assumption.

In this paper, we extend this machinery beyond linear regression, to any func-
tion l(β). To achieve this, we need the proper generalization of the Restricted
Eigenvalue and RIP conditions for arbitrary functions. This was obtained by Ne-
gahban et al. [40] and is called Restricted Strong Convexity. The title of this paper
should now be clear: we show that any objective function that satisfies restricted
strong convexity (and a natural smoothness assumption) of [40] must be weakly
submodular.

We establish multiplicative approximation bounds on the performance of greedy
algorithms, including (generalized) Orthogonal Matching Pursuit and Forward
Stepwise Regression, for general likelihood functions using our connection. To
the best of our knowledge, this is the first analysis of connecting a form of sub-
modularity to the objective function’s strong concavity and smoothness. Our ap-
proach provides sharp approximation bounds in any setting where these funda-
mental structural properties are well understood, for example, generalized linear
models.

Contrary to prior work, we require no assumptions on the sparsity of the under-
lying problem. Rather, we obtain a deterministic result establishing multiplicative
approximation guarantees from the best-case sparse solution. Our results improve
over previous work by providing bounds on a solution that is guaranteed to match
the desired sparsity. Convex methods such as �1 regularized objectives require
strong assumptions on the model, such as the irrepresentability conditions on the
feature vectors, in order to provide exact sparsity guarantees on the recovered so-
lution.
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Our main result is that for any function l(·) that satisfies M-restricted smooth-
ness (RSM) and m-restricted strong convexity (RSC), the set function f (S) =
−l(βS) is weakly submodular with parameter γ ≥ m/M . The parameters M ,
m, and γ are defined formally in Section 2. We use this result to analyze three
greedy algorithms, each progressively better but more computationally intensive:
the Oblivious (or Marginal Regression) algorithm computes for each feature the in-
crease in objective and keeps the k individually best features. Orthogonal Matching
Pursuit (OMP) greedily adds one feature at a time by picking the feature with the
largest inner product with the function gradient. The gradient is the correct gen-
eralization of the residual error used in linear regression OMP. Finally, the most
sophisticated algorithm is Forward Stepwise Regression: it adds one feature at a
time by re-fitting the model repeatedly and keeping the feature that best improves
the objective function at each step. We obtain the following performance bounds:

• The Oblivious algorithm produces a (γ /k)-approximation to the best k-subset
after k steps.

• Orthogonal Matching Pursuit produces a (1−e−m/M )-approximation to the best
k-subset after k steps.

• Forward Stepwise Regression produces a (1 − e−γ )-approximation to the best
k-subset after k steps.

We also show that if Forward Stepwise Regression is used to select more than k

features, we can approximate the best k-sparse feature performance within an ar-
bitrary accuracy. Finally, under additional assumptions, we derive statistical guar-
antees for convergence of the greedily selected parameter to the optimal sparse so-
lution. Note that our results yield stronger performance guarantees even for cases
that have been previously studied under the same assumptions. For example, for
linear regression we obtain a better exponent in the approximation factor of OMP
compared to previous state-of-the-art [13] (see Remark 8).

One implication of our work is that weak submodularity seems to be a sharper
technical tool than RSC, as any function satisfying the latter also satisfies the for-
mer. Das and Kempe [13] noted that it is easy to find problems which satisfy weak
submodularity but not RSC, emphasizing the limitations of spectral techniques ver-
sus submodularity. We show this holds beyond linear regression, for any likelihood
function.

Our connection between restricted strong convexity and weak submodularity
has many benefits. First, the weak submodularity framework can now be used to
develop theory for additional problems where spectral conditions would be overly
restrictive or unwarranted. In our ongoing work, for example, we show that RSC
assumptions play an important role in characterizing distributed greedy maximiza-
tion [27] and rank constrained matrix optimization [26]. Additionally, [16] studies
the role of RSC in streaming feature selection, as well as interpretability of black-
box neural network models. Second, this framework allows statisticians to draw
from classical results and recent advances in the field of (weak) submodular set
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function theory to provide general guarantees on the performance of greedy algo-
rithms [6, 11].

Related work. There have been a wide range of techniques developed for solv-
ing problems with sparsity constraints. These include using the Lasso, greedy se-
lection methods (such as Forward Stagewise/Stepwise Regressions [35], OMP, and
CoSaMP [38]), forward–backward methods [24, 31], Pareto optimization [43], ex-
ponentially weighted aggregation [45], and truncated gradient methods [23]. Un-
der the restricted strong convexity and smoothness assumptions that will be out-
lined in the next section, forward–backward methods can in fact recover the correct
support of the optimal set of parameters under an assumption on the smallest value
of the optimal variable as it relates to the gradient. In contrast, the results derived
in our setting for sparse GLMs allow one to provide recovery guarantees at various
sparsity levels regardless of the optimal solution, with only information on the de-
sired sparsity level and the RSC and RSM parameters. This is again in contrast to
the other work that also needs information on the smallest nonzero value in the op-
timal set of coefficients, as well as an upper bound on the gradient of the objective
at this optimal set.

Focusing explicitly on OMP, most previous results require the strong RIP as-
sumption, whereas we only require the weaker RSC and RSM assumptions. In our
setting of arbitrary model conditions, OMP requires RIP as highlighted in Corol-
lary 2.1 of Zhang [53]. However, we do note that under certain stochastic assump-
tions, for instance independent noise, the results established in those works can
provide sharper guarantees with respect to the number of samples required by a
factor on the order of log[(k logp)/n] (see Section 4). Nevertheless, we empha-
size that our results apply under arbitrary assumptions on the noise and use only
RSC and RSM assumptions.

In [13], Das and Kempe’s framework optimizes the goodness of fit parameter R2

in linear regression. We derive similar results without relying on the closed-form
solution to least squares. Greedy algorithms are prevalent in compressed sensing
literature [38] and statistical learning theory [5]. Greedy methods for sparsity con-
strained regression were analyzed in [23, 24, 31, 34, 46, 51] under assumptions
similar to ours but without connections to submodularity. Convergence guaran-
tees for �1 regularized regression were given for exponential families in [25], and
for general nonlinear functions in [50]. However, the latter requires additional as-
sumptions such as knowledge of the nonlinearity and bounds on the loss function’s
derivatives, which can again be derived under appropriate stochasticity and model
assumptions.

Classical results on submodular optimization [12, 41] typically do not scale to
large-scale applications. Therefore, several recent algorithms improve efficiency
at the expense of slightly weaker guarantees [4, 16, 27, 36, 42]. Submodularity
has been used recently in the context of active learning [20, 49]. In this setup, the
task is to select predictive data points instead of features. Recently, [1] and [21]
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obtained constant factor guarantees for greedy algorithms using techniques from
submodularity even though the problems considered were not strictly submodu-
lar. In [6], the authors show tight bounds for maximizing cardinality constrained,
weakly submodular set functions that also have bounded curvature. For maximiz-
ing weakly submodular functions subject to more general matroid constraints, [11]
recently proved that a randomized greedy forward stepwise algorithm has a con-
stant factor approximation guarantee.

There are deep connections between convexity and submodularity [2]. For
example, the convex closure of a submodular function can be tractably com-
puted as its Lovász extension [33]. This connection is fundamental to provid-
ing polynomial-time minimization algorithms for submodular set functions [17,
19]. Similarly, another continuous extension of set functions, called the multi-
linear extension, is vital for algorithmic development of constant factor approx-
imation guarantees for submodular maximization [10]. A more detailed study of
convexity/concavity-like properties of submodular functions was presented in [22].
More recent works exploit similar connections to provide constant factor approxi-
mation guarantees for a class of nonconvex functions [7, 15, 18].

2. Preliminaries. First, we collect some notation that will be used throughout
the remainder of this paper. Sets are represented by sans script fonts, for example,
A, B. Vectors are represented using lower case bold letters for example, x, y and
matrices are represented using upper case bold letters, for example, X, Y. The ith
column of X is denoted Xi . Nonbold face letters are used for scalars, for example,
j , M , r and function names, for example, f (·). The transpose of a vector or a
matrix is represented by �, for example, X�. For any vector v, define ‖v‖2,k =√∑k

i=1 v2
(i), where v(i) represent the order statistics of v in decreasing order. Define

[p] := {1,2, . . . , p}. For simplicity, we assume a set function defined on a ground
set of size p has domain 2[p]. For singleton sets, we write f (j) := f ({j}).

Recall that a set function f (·) : 2[p] → R is called submodular if and only if
for all A,B ⊆ [p], f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B). Intuitively, submodular
functions have a diminishing returns property. This becomes clear when A and B
are disjoint: the sets have less value taken together than they have individually. We
also state an equivalent definition.

DEFINITION 1 (Proposition 2.3 in [2]). f (·) is submodular if for all A ⊆ [p]
and j, k ∈ [p]\A,

f
(
A ∪ {k}) − f (A) ≥ f

(
A ∪ {j, k}) − f

(
A ∪ {j}).

The function is called normalized if f (∅) = 0 and monotone if and only if
f (A) ≤ f (B) for all A ⊆ B. A seminal result by Nemhauser et al. [41] shows that
greedy maximization of a monotone, submodular function (Algorithm 2 in Sec-
tion 2.2) returns a set with value within a factor of (1 − 1/e) from the optimum set
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of the same size. This has been the starting point for several algorithmic advances
for large-scale combinatorial optimization, including stochastic, distributed, and
streaming algorithms [4, 16, 27, 36].

Next, we define the submodularity ratio of a monotone set function.

DEFINITION 2 (Submodularity ratio [13], weak submodularity). Let S,L ⊂
[p] be two disjoint sets, and f (·) : 2[p] → R. The submodularity ratio of L with
respect to S is given by

γL,S :=
∑

j∈S[f (L ∪ {j}) − f (L)]
f (L ∪ S) − f (L)

.(2)

The submodularity ratio of a set U with respect to an integer k is given by

γU,k := min
L,S:L∩S=∅,
L⊆U,|S|≤k

γL,S.(3)

Let γ > 0. We call a function γ -weakly submodular at a set U and an integer k if
γU,k ≥ γ .

It is straightforward to show that f (·) is submodular if and only if γL,S ≥ 1 for
all sets L and S. In our application, 0 < γL,S ≤ 1 which provides a notion of weak
submodularity in the sense that even though the function is not submodular, it still
provides provable bounds of performance of greedy selections.

Next, we define the restricted versions of strong concavity and smoothness, con-
sistent with [32, 40].

DEFINITION 3 (Restricted strong concavity, restricted smoothness). A func-
tion l : Rp → R is said to be restricted strong concave with parameter m� and re-
stricted smooth with parameter M� on a domain � ⊂R

p ×R
p if for all (x,y) ∈ �,

−m�

2
‖y − x‖2

2 ≥ l(y) − l(x) − 〈∇l(x),y − x
〉 ≥ −M�

2
‖y − x‖2

2.

REMARK 1. If a function l(·) has restricted strong concavity parameter m,
then its negative −l(·) has restricted strong convexity parameter m. In the sequel,
we will use these properties interchangeably for maximum likelihood estimation
where l(·) is the log-likelihood function and −l(·) is the data fit loss.

If �′ ⊆ �, then M�′ ≤ M� and m�′ ≥ m�. With slight abuse of notation, unless
stated otherwise let (mk,Mk) denote the RSC and RSM parameters on the domain
�k of all pairs of k-sparse vectors that differ in at most k entries, that is, �k :=
{(x,y) : ‖x‖0 ≤ k,‖y‖0 ≤ k,‖x − y‖0 ≤ k}. If j ≤ k, then Mj ≤ Mk and mj ≥
mk . In addition, denote �̃k := {(x,y) : ‖x‖0 ≤ k,‖y‖0 ≤ k,‖x − y‖0 ≤ 1} with
corresponding smoothness parameter M̃k , which is clearly greater than or equal to
M̃1 = M1.
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2.1. Sparsity constrained generalized linear regression. Due to its combina-
torial nature, there has been a tremendous amount of effort in developing compu-
tationally tractable and fundamentally sound methods to solve the subset selection
problem approximately. In this section, we provide background on various prob-
lems that arise in subset selection. Our focus here will be on sparse regression
problems. We will assume that we obtain n observations of the form (xi , yi). For
now, we make no assumptions regarding how the data is generated, but wish to
model the interaction between xi ∈ R

p and yi ∈ R as

yi = g
(〈

xi ,β
∗〉) + noise,

for some known link function g and a sparse vector β∗. Each feature observation
is a row in the n × p design matrix X. The above is called a generalized linear
model, or GLM, and arises as the maximum likelihood estimate of data drawn
from a canonical exponential family, that is, normal, Bernoulli, Dirichlet, negative
binomial, etc. [9]. Another interpretation is in minimizing the average Bregman
divergence between the response yi and the mean parameter 〈xi , β〉. There has
been a large body of literature studying this method’s statistical properties. These
include establishing sparsistency, parameter consistency, and prediction error [25,
40, 47]. We refer the reader to the standard literature for more details on GLMs
and exponential families [9, 14].

2.2. Support selection algorithms. We study general M-estimators of the form
(1) for some function l(·). Note that l(·) will implicitly depend on our specific data
set, but we hide that for ease of notation. One common choice of l(·) is the log-
likelihood of a parametric distribution. Das and Kempe [13] consider the specific
case of maximizing the R2 objective [13]. Through a simple transformation, that
is equivalent to maximizing the log-likelihood of the parametric distribution that
arises from the model yi = 〈xi ,β

∗〉 + w where w ∼ N(0, σ 2). If we let β̂
s

be the
s-sparse solution derived, and again let β̄

k
be the best k-sparse parameter, then we

wish to bound

l
(
β̂

s) ≥ (1 − ε)l
(
β̄

k)
,

without any assumptions on the underlying sparsity or a true parameter.
For a concave function l(·) : Rp → R, we can define an equivalent set function

f̄ (·) : 2[p] → R so that f̄ (S) = maxsupp(x)⊆S l(x). The problem of support selec-
tion for a given integer k is then max|S|≤k f̄ (S). Recall that a vector is k-sparse if it
is 0 on all but k indices. We provide approximation guarantees on the normalized
set function defined as f (S) = f̄ (S) − f̄ (∅). The support selection problem is
thus equivalent to finding the k-sparse vector β that maximizes l(β):

max
S:|S|≤k

f (S) ⇔ max
β:βSc=0|S|≤k

l(β) − l(0).(4)
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Algorithm 1 Oblivious support selection

1: Input: sparsity parameter k, set function f (·) : 2[p] →R

2: for i = 1 . . . p do
3: v[i] ← f ({i})
4: end for
5: Sk ← indices corresponding to the top k values of v
6: return Sk , f (Sk).

Let β(A) denote the β maximizing f (A), and let β
(A)
B denote β(A) restricted to the

coordinates specified by B. We present three support selection strategies for the set
function f (·) that are simple to implement and are widely used.

Oblivious algorithm. One natural strategy is to select the top k features ranked
by their individual improvement over a null model, using a goodness of fit metric
such as R2 or p-value. This is referred to as the Oblivious algorithm, shown as Al-
gorithm 1. In the context of linear regression, this is simply Marginal Regression.
While it is computationally inexpensive and parallelizes easily, the Oblivious al-
gorithm does not account for dependencies or redundancies in the span of features.

Forward stepwise algorithm. A less extreme greedy approach would check
for incremental gain at each step using nested models. This is referred to as the
Forward Stepwise algorithm, presented as Algorithm 2. Given a set of features S
is already selected, choose the feature with largest marginal gain, that is, select {j}
such that S ∪ {j} has the most improvement over S. All regression coefficients are
updated each time a new feature is added. In the case of submodular set functions,
this returns a solution that is provably within a constant factor of the optimum [41].

Generalized OMP. Another approach is to choose features which correlate
well with the orthogonal complement of what has already been selected. Using
(4) and an appropriately chosen model, we can define the gradient evaluated at
the current parameter β to be a residual term. In Orthogonal Matching Pursuit,

Algorithm 2 Forward stepwise selection

1: Input: sparsity parameter k, set function f (·) : 2[p] →R

2: SG
0 ←∅

3: for i = 1 . . . k do
4: s ← arg maxj∈[p]\Si−1 f (SG

i−1 ∪ {j}) − f (SG
i−1)

5: SG
i ← SG

i−1 ∪ {s}
6: end for
7: return SG

k , f (SG
k ).
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Algorithm 3 Orthogonal matching pursuit
1: Input: sparsity parameter k, objective function l(·) :Rp →R

2: SP
0 ←∅

3: r ← ∇l(0)

4: for i = 1 . . . k do
5: s ← arg maxj |〈ej , r〉|
6: SP

i ← SP
i−1 ∪ {s}

7: β(SP
i ) ← arg maxβ:supp(β)⊆SP

i
l(β)

8: r ← ∇l(β(SP
i ))

9: end for
10: return SP

k , l(β(SP
k )).

features are selected to maximize the inner product with this residual, as shown
in line 5 of Algorithm 3. Here, ej represents a unit vector with a 1 in coordinate
j and zeros in the other p − 1 coordinates. OMP requires much less computa-
tion than forward stepwise selection, since the feature comparison is done via an
n-dimensional inner product rather than a regression score. A detailed discussion
can be found in [8].

3. Approximation guarantees. In this section, we derive theoretical lower
bounds on the submodularity ratio based on strong concavity and strong smooth-
ness of a function l(·). We show that if the concavity parameter is bounded away
from 0 and the smoothness parameter is finite, then the submodularity ratio is
also bounded away from 0, which allows approximation guarantees for Algo-
rithms 1–3. While our proof techniques differ substantially, the outline of this
section follows that of [13] which obtained approximation guarantees for sup-
port selections for linear regression. While our results are applicable to general
functions, in Appendix B we discuss a direct application of maximum likelihood
estimation for sparse generalized linear models.

We assume a differentiable function l : Rp → R. Recall that we can define the
equivalent, normalized, monotone set function f : 2[p] →R for a selected support
as f (S) = maxsupp(β)⊆S l(β) − l(0). We will use set functions wherever possible
to simplify the notation.

We now present our main result as Theorem 1, a bound on a function’s submod-
ularity ratio γU,k in terms of its strong concavity and smoothness parameters (see
Definitions 2–3). Proofs of lemmas and theorems omitted from this section can be
found in Section 5.

THEOREM 1 (RSC/RSM implies weak submodularity). Define f (S) as in (4),
with a function l(·) that is (m|U|+k,M|U|+k)-(strongly concave, smooth) on �|U|+k
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and M̃|U|+1 smooth on �̃|U|+1. Then the submodularity ratio γU,k is lower bounded
by

γU,k ≥ m|U|+k

M̃|U|+1
≥ m|U|+k

M|U|+k

.(5)

REMARK 2. In the case of linear least-squares regression, m and M become
sparse eigenvalues of the covariance matrix, that is, m|U|+k = λmin(|U| + k) ≥ 0
and M̃|U|+1 = λmax(1) = 1. Thus Theorem 1 becomes γU,k ≥ λmin(|U| + k), that
is, “RIP implies weak submodularity,” consistent with Lemma 2.4 of [13].

REMARK 3. Since m/M ≤ 1, this method cannot prove that the function is
submodular (even on a restricted set of features). However, the guarantees in this
section only require weak submodularity.

REMARK 4. Theorem 1 has the following geometric interpretation: the sub-
modularity ratio of f (S) is bounded in terms of the maximum curvature of l(·)
over the domain �̃|U|+1 and the minimum curvature of l(·) over the (larger) domain
�|U|+k . The upper-curvature bound effectively controls the maximum amount that
each individual function coordinate can influence the function value. The lower-
curvature bound provides a lower-bound on the improvement of adding all fea-
tures at once. Hence, loosely speaking the submodular ratio bound will be the
ratio of both of these quantities. This intuition is used more formally in the proof
(Section 5), where for a k-sparse set S and j ∈ S, l(β(U)) is perturbed by scaled
projections of ∇l(β(U)) onto β

(U∪S)
j and eS, respectively.

Theorem 1 allows us to generalize several results of [13], starting with the fol-
lowing lemma.

LEMMA 1. Let 1 ≤ k ≤ n:

f
([k]) ≥ max

{
1

k
,

m1

4Mk

(
3 + m1

M1

)} k∑
j=1

f (j)

≥ max
{

1

k
,

mk

4Mk

(
3 + mk

Mk

)} k∑
j=1

f (j).

Now we present our first performance guarantee for feature selection.

THEOREM 2 (Oblivious algorithm guarantee). Define f (S) as in (4), with a
function l(·) that is Mk-smooth and mk-strongly concave on �k . Let f OBL be the
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value at the set selected by the Oblivious algorithm, and let f OPT be the optimal
value over all sets of size k. Then

f OBL ≥ max
{

mk

kM1
,

mkm1

4MkM1

(
3 + m1

M1

)}
f OPT

≥ max
{

mk

kMk

,
3m2

k

4M2
k

,
m3

k

M3
k

}
f OPT.

REMARK 5. When the function is modular, that is, m� = M� for all �, then
f OBL = f OPT and the bound in Theorem 2 holds with equality.

Next, we prove a stronger, constant factor approximation guarantee for the
greedy, Forward Stepwise algorithm.

THEOREM 3 (Forward stepwise algorithm guarantee). Define f (S) as in (4),
with a function that is M-smooth and m-strongly concave on �2k . Let SG

k be the
set selected by the FS algorithm and S∗ be the optimal set of size k corresponding
to values f FS and f OPT. Then

f FS ≥ (
1 − e

−γ
SG
k

,k
)
f OPT ≥ (

1 − e−m/M )
f OPT.(6)

REMARK 6. This constant factor bound can be improved by running the For-
ward Stepwise algorithm for r > k steps. The proof of Theorem 3 generalizes
to compare performance of r greedy iterations to the optimal k-subset of features.
This generalized bound does not necessarily approach 1 as r → ∞, however, since
γSG

r ,k is a decreasing function of r .

COROLLARY 1. Let f FS+ denote the solution obtained after r iterations of
the Forward Stepwise algorithm, and let f OPT be the objective at the optimal k-
subset of features. Let γ = γSG

r ,k be the submodularity ratio associated with the

output of f FS+ and k. Then

f FS+ ≥ (
1 − e−γ (r/k))f OPT.

In particular, setting r = ck corresponds to a (1 − e−cγ )-approximation, and set-
ting r = k logn corresponds to a (1 − n−γ )-approximation.

Corollary 1 is useful when γ can be bounded on larger support sets. We next
present approximation guarantees when γ can only be bounded on smaller support
sets.

THEOREM 4. Define f (S) as in (4), with a function l(·) that is m′-strongly
concave on �k and M ′-smooth on �̃k . Let SG

k be the set of features selected by
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the Forward Stepwise algorithm and Sk be the optimal feature set on k variables
corresponding to values f G and f OPT. Then

f FS ≥ 	
(
2−M ′/m′)(

1 − e−m′/M ′)
f OPT.

REMARK 7. We note that our bounds are loose for certain special cases like
modular functions and linear regression. These require making use of additional
tools and specific properties of the function and data at hand (see [13]).

Orthogonal Matching Pursuit is more computationally efficient than forward
stepwise regression, since step i only fits one regression instead of p − i. Thus
we have a weaker guarantee than Theorem 3. Similar to Corollary 1, this result
generalizes to running OMP for r > k iterations.

THEOREM 5 (OMP algorithm guarantee). Define f (S) as in (4), with a log-
likelihood function that is (M,m)-(smooth, strongly concave) on �2k . Let f OMP

be the value at the set of features selected by the OMP algorithm and f OPT be the
optimal value over all sets of size k. Then

f OMP ≥ (
1 − e−m/M)

f OPT.

COROLLARY 2. Let f P+ denote the solution obtained after r iterations of the
OMP algorithm, and let f OPT be the objective at the optimal k-subset of features.
Let α = (m/M) be the ratio associated with the output of f P+ and k. Then

f P+ ≥ (
1 − e−α(r/k))f OPT.

In particular, setting r = ck corresponds to a (1 − e−cα)-approximation, and set-
ting r = k logn corresponds to a (1 − n−α)-approximation.

REMARK 8. Theorem 5 and Corollary 2 improve on the approximation guar-
antee of [13] by a factor of γ in the exponent. Previous work obtained the ap-
proximation factor 1 − e−γ λmin(2k), whereas the proof of Theorem 5 establishes
1 − e−λmin(2k). Therefore, we obtain a better exponent for linear regression and
also generalize to any likelihood function. Theorem 3 also gives intuition on when
the performance of OMP will differ from that of Forward Selection, that is, when
the inequality (6) is loose.

4. Statistical recovery guarantees. Understanding optimization guarantees
are useful, but do not clearly translate to bounds on parameter recovery. Below
we present a general theorem that allows us to derive parameter bounds. When
combined with Section 3, it produces recovery guarantees for greedy algorithms
as special cases.
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THEOREM 6 (Parameter recovery guarantees). Suppose that after r iterations
to approximate a function evaluated at a set S∗

s of cardinality s, we have the guar-
antee that

f (Sr ) ≥ Cs,rf
(
S∗

s

)
.

Recall that f (Sr ) = maxsupp(β)⊂Sr
l(β) − l(0). Let β̂

r
be the solution to the opti-

mization problem and consider any arbitrary s-sparse vector βs with support on
S∗

s . Then, under ms+r RSC on �s+r we have that∥∥β̂r − βs
∥∥2

2 ≤ 4

m2
s+r

∥∥∇l
(
βs)∥∥2

2,(s+r) + 4

ms+r

(1 − Cs,r )
[
l
(
βs) − l(0)

]
.

For the remainder of this section, we consider several cases of Theorem 6 and
compare to results from previous work.

4.1. Forward selection with linear regression model. First, we will consider
a special case of Algorithm 2 for linear regression where the rows of the design
matrices are N(0,�) for a covariance matrix of the form � = I + 11T . Further,
we assume the model

y = Xβ∗ + w,

where ‖β∗‖2 ≤ 1 and is s-sparse, the rows of X ∈ R
n×p are N(0,�), and wi ∼

N(0, σ 2) are i.i.d. We also take l(β) = 1
n
‖Xβ − y‖2

2.

COROLLARY 3. Given the above setup, if (s + r)σ 2 logp = o(n) and r =
�(s logn), then the parameter error goes to zero with high probability as n → ∞.

4.2. Orthogonal matching pursuit with linear regression model. Next, we
consider the results of Zhang, which provides parameter recovery bounds in the
case of OMP (Algorithm 3). The simplest comparison is to contrast our results
with Corollary 2.2 of [53]. Consider the linear regression model above with an
original s-sparse vector, r iterations of the algorithm, and a spiked identity covari-
ance model, � = (1 − a)I + a11T .

PROPOSITION 1. While Theorem 6 holds for any a, Zhang [53] requires that
a does not exceed 1

s+1 .

PROOF. Zhang requires the RIP condition to hold, namely Ms ≤ 2ms+r .
We know that the difference between means of 2λmin(s + r) and λmax(s) is
� = 1 − a − as. Since �/2 ≤ μ/2 in both cases and χ2 variables concentrate
within constant factors of their means, we have Ms ≤ 3

2(1 − a) + as
2 ≤ 2ms+r .

However, � > 0 ⇔ s ≤ 1
a

− 1. Rearranging, we have a ≤ 1
s+1 . Thus, as has been
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noted in prior work, the RIP condition will not hold for the spiked model in settings
where a is much larger that 1

s+1 . �

Nevertheless, we can still proceed and assume that the RIP condition is not
required. In that case, the bound established in [53] shows∥∥β̂r − β∗∥∥2

2 ≤ 24Ms+r

∥∥Xβ∗ − y
∥∥2

2/m2
s+r .

When Ms+r and ms+r are of the same order, then this result is better than ours by
log factors. However, when we consider a case like the spiked covariance model,
then our results are better by a factor of s in terms of statistical accuracy, but worse
by a factor of logn with respect to sample complexity.

4.3. Orthogonal matching pursuit with logistic regression model. Finally,
consider our bounds for OMP (Algorithm 3) in the case of logistic regression.
Applying our approximation guarantees in Theorem 5 matches the bound given by
Theorem 2 of [34] up to constant factors. However, their guarantee for parameter
recovery requires a condition that is only known to be satisfied under incoherence
assumptions. Our Theorem 6 holds more generally. Their conditions on exact re-
covery are incomparable with our statistical error bounds.

5. Theorem proofs.

5.1. Proof of Theorem 1.

PROOF. We proceed by upper bounding the denominator and lower bounding
the numerator of (2). Let k = |L| + k. First, we apply Definition 3 with x = β(L)

and y = β(L∪S),
mk

2

∥∥β(L∪S) − β(L)
∥∥2

2 ≤ l
(
β(L)) − l

(
β(L∪S)) + 〈∇l

(
β(L)),β(L∪S) − β(L)〉.(7)

Rearranging and noting that l(·) is monotone for increasing supports,

0 ≤ l
(
β(L∪S)) − l

(
β(L)) ≤ 〈∇l

(
β(L)),β(L∪S) − β(L)〉 − mk

2

∥∥β(L∪S) − β(L)
∥∥2

2

≤ max
v:v(L∪S)c=0

〈∇l
(
β(L)),v − β(L)〉 − mk

2

∥∥v − β(L)
∥∥2

2.

Setting v = β(L) + 1
mk

∇l(β(L))S, we have

0 ≤ l
(
β(L∪S)) − l

(
β(L)) ≤ 1

2mk

∥∥∇l
(
β(L))

S

∥∥2
2.(8)

Next, consider a single coordinate j ∈ S. The function at β(L∪{j}) is larger than
the function at any other β on the same support. In particular l(β(L∪{j})) ≥ l(yj ),
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where yj := β(L) + αjβ
(L∪S)
j for some scalar αi . Noting that (x = β(L),y = yj ) ∈

�̃|L|+1 and applying Definition 3,

l
(
β(L∪{j})) − l

(
β(L)) ≥ l

(
β(L) + αjβ

(L∪S)
j

) − l
(
β(L))

≥ 〈∇l
(
β(L)), αjβ

(L∪S)
j

〉 − M̃|L|+1

2

∣∣αjβ
(L∪S)
j

∣∣2.
Summing over all j ∈ S and setting

αj = 〈∇l(β(L)),β
(L∪S)
j 〉

M̃|L|+1|β(L∪S)
j |2 ,

we have

l
(
β(L∪{j})) − l

(
β(L)) ≥ (〈∇l(β(L)),β

(L∪S)
j 〉)2

2M̃|L|+1|β(L∪S)
j |2

⇒ ∑
j∈S

l
(
β(L∪{j})) − l

(
β(L)) ≥ 1

2M̃|L|+1

∑
j∈S

(∇l
(
β(L))

j

)2

= 1

2M̃|L|+1

∥∥∇l
(
β(L))

S

∥∥2
2.

Substituting the above line and (8) into (2), the result follows from taking the
minimum over all sets L, S. �

5.2. Proof of Lemma 1.

PROOF. Let S = [k]. Since f (·) is monotone, f (j) ≤ f (S) for j ∈ S. Sum-
ming over all j ∈ S and dividing by k yields the first part of the inequality. The
rest of the proof requires combining several applications of Definition 3 to the un-
derlying likelihood function l for carefully chosen x, y. Define a k-sparse β by
βj = αjβ

(j)
j , j ∈ S for some positive scalar aj and 0 elsewhere. First, we apply

Definition 3 with x = 0 and y = β . This implies

l(β) ≥ 〈∇l(0),β
〉 − Mk

2

∑
j∈S

∣∣αjβ
(j)
j

∣∣2.(9)

Next, applying the same definition k times with x = 0 and y = β(j) and summing
over j ∈ S, 〈∇l(0), αjβ

(j)〉 ≥ αj

(
l
(
β(j)) + m1

2

∣∣β(j)
j

∣∣2)
⇒ 〈∇l(0),β

〉 ≥ ∑
j∈S

αj l
(
β(j)) + αj

m1

2

∣∣β(j)
j

∣∣2.(10)
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Combining (9) with (10), and setting

αj = m1

2Mk

+ l(β(j))

Mk|β(j)
j |2

,

we have

l(β) ≥ ∑
j∈S

m1

2Mk

l
(
β(j)) + m2

1

8Mk

∣∣β(j)
∣∣2 + (l(β(j)))2

2Mk|β(j)
j |2

.(11)

Now applying Definition 3 with x = β(j) and y = 0,

M1

2

∣∣β(j)
j

∣∣2 ≥ l
(
β(j)) ≥ m1

2

∣∣β(j)
j

∣∣2.(12)

Combining (11) and (12), we have

l(β) ≥ ∑
j∈S

m1

2Mk

l
(
β(j)) + m2

1

4MkM1
l
(
β(j)) + m1

4Mk

l
(
β(j))

= ∑
j∈S

(
3m1

4Mk

+ m2
1

4MkM1

)
l
(
β(j)).

Since l(β(S)) optimizes l over all vectors with support in S,

f (S) = l
(
β(S)) ≥ l(β) ≥ m1

4Mk

(
3 + m1

M1

) ∑
j∈S

l
(
β(j))

= m1

4Mk

(
3 + m1

M1

) k∑
j=1

f (j).
�

5.3. Proof of Theorem 2.

PROOF. Let S be the set of size k selected by the Oblivious algorithm and S∗
be the optimal set of size k corresponding to values f OBL and f OPT. By defini-
tion,

∑
j∈S f (j) ≥ ∑

j∈S∗ f (j). Letting C = max{1
k
, 3m

4M
+ m2

4M2 )} and combining
Lemma 1 with Theorem 1,

f OBL = f (S) ≥ C
∑
j∈S

f (j)

≥ C
∑
j∈S∗

f (j) ≥ Cγ∅,kf
(
S∗) ≥ C

(
mk

M1

)
f

(
S∗)

= C

(
mk

M1

)
f OPT. �
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5.4. Proof of Theorem 3.

PROOF. Let l(·) be the log-likelihood function and let SG
i be the set selected

by the Forward Stepwise algorithm at iteration i. Define A(i) as the incremental
greedy gain f (SG

i )−f (SG
i−1) with A(0) = 0. Denote the remainder set at iteration

i as SR
i = S∗\SG

i , and define B(i) = f (S∗) − f (SG
i ), the incremental gain from

adding the optimal set. Lemma 2 relates these two quantities.

LEMMA 2. At iteration i, the incremental gain from selecting the next greedy
item is related to the incremental gain from adding the rest of the optimal set S∗
by the following:

A(i + 1) ≥
γSG

i ,k

k
B(i).

PROOF. Let S = SG
i be the set selected by the greedy algorithm at iteration i,

S∗ be the optimal feature set on k variables, and SR be the remainder set S∗\S. SR

is a subset of the candidate variables available to the greedy algorithm at iteration
i + 1. Using Definition 2 and the fact that k ≥ |SR|,

kA(i + 1) ≥ ∣∣SR
∣∣A(i + 1) ≥ ∣∣SR

∣∣ max
j∈SR

f (S ∪ j) − f (S)

≥ ∑
j∈SR

[
f (S ∪ j) − f (S)

]
≥ γS,|SR |

(
f

(
S ∪ SR) − f (S)

) ≥ γS,kB(i),

where the last inequality follows from the fact that S ∪ SR ⊇ S∗. �

Given Theorem 1 and Lemma 2, the rest of the proof follows the standard ap-
proximation bound for maximizing a normalized, monotone submodular function
(refer to [41] or the survey [29]). Next, observe that A(i + 1) = B(i) − B(i + 1).
Combining this with Lemma 2 and letting C = γSG

k ,k/k, we have the following
inequality:

B(i + 1) ≤ (1 − C)B(i),

which implies

B(i) ≤ (1 − C)iB(0),

for all iterations 1 ≤ i ≤ k. Setting i = k and substituting B(k) = f OPT − f FS and
B(0) = f OPT,

f OPT − f FS ≤ (1 − C)kf OPT

⇒ f FS ≥ f OPT[
1 − (1 − C)k

] ≥ f OPT(
1 − e

−γ
SG
k

,k
)
.

The claim follows from applying Theorem 1. �
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5.5. Proof of Theorem 4.

PROOF. First, we prove the following lemma which bounds the ratio of the
objective between optimal sets Sk and Sk−1 in terms of their smoothness and con-
vexity parameters.

LEMMA 3. Let Sk be the optimal subset of size k, and let m be the restricted
strong concavity parameter on �k . Let k′ satisfy M ′/m < k′ < k, where M ′ is the
restricted smoothness parameter of l(·) on �̃k . Then for large enough k,

l
(
β(Sk′ )) ≥ l

(
β(Sk)

)
	

((
k′

k

)M ′/m)
⇒ l

(
β(Sk/2)

) ≥ l
(
β(Sk)

)
	

(
2−M ′/m)

.

PROOF. Let j be the index that minimizes |β(Sk)
j |2. By M ′-smoothness on �̃k

and the fact that the min is smaller than the average,

l
(
β(Sk−1)

) ≥ l
(
β

(Sk)
Sk\{j}

)
≥ l

(
β(Sk)

) + 〈∇l
(
β(Sk)

)
,β

(Sk)
Sk\{j} − β(Sk)

〉 − M ′

2

∥∥β(Sk)
Sk\{j} − β(Sk)

∥∥2

2

= l
(
β(Sk)

) − M ′

2

∣∣β(Sk)
j

∣∣2.
This implies

l(β(Sk−1))

l(β(Sk))
≥ 1 − M ′‖β(Sk)‖2

2

2kl(β(Sk))
.

Assuming that l(β(∅)) = 0 and using m-strong concavity on �k ,

l
(
β(∅)) − l

(
β(Sk)

) ≤ −m

2

∥∥β(Sk) − β(∅)
∥∥2

2

⇒ −‖β(Sk)‖2
2

l(β(Sk))
≥ − 2

m

⇒ l(β(Sk−1))

l(β(Sk))
≥ 1 − M ′

km
.

Then applying iteratively for M ′/m constant, k large, and M ′/m < k′ < k, as in
[13] we have

l
(
β(Sk′ )) ≥ l

(
β(Sk)

) k∏
j=k′+1

1 − M ′

jm
= l

(
β(Sk)

)
	

((
k′

k

)M ′/m)
. �
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Observe that the assumptions of Lemma 3 are satisfied. Combining with Theo-
rem 3,

l
(
β(SG

k )) ≥ l
(
β

(SG
k/2)

) ≥ l
(
β(Sk/2)

)(
1 − e

−γ
SG
k/2,k/2)

≥ l
(
β(Sk)

)
	

(
2−M ′/m)(

1 − e
−γ

SG
k/2,k/2)

⇒ l
(
β(SG

k )) ≥ l
(
β(Sk)

)
	

(
2−M ′/m′)(

1 − e−m′/M ′)
. �

5.6. Proof of Theorem 5.

PROOF. The key idea at each step i is to lower bound the incremental gain
from the index chosen by OMP. This is similar to the proof of Theorem 3, as well
as [26] in which a matrix completion objective is considered. Let S = SP

i be the set
chosen by OMP up to iteration i. Given S, let v be the index that would be selected
by running one additional step of OMP. Define D(i + 1) = f (SP

i+1) − f (S) =
l(β(S∪{v})) − l(β(S)), and define B̃(i) = f (S∗) − f (S).

LEMMA 4. At iteration i, the incremental gain from selecting the next item
via OMP is related to the incremental gain from adding the rest of the optimal set
S∗ by the following:

D(i + 1) ≥ mi+k

kM̃i+1
B̃(i).

PROOF. We begin similar to the proof of Theorem 1. Let M = M̃i+1, m =
mi+k , and ev be the unit vector with one at coordinate v. By Definition 3 with
x = β(S) and y = β(S) + αev for any scalar α,

D(i + 1) ≥ l(y) − l(x) ≥ 〈∇l
(
β(S)), αev

〉 − M

2
α2

= α
∥∥∇l

(
β(S))∥∥∞ − M

2
α2,

since OMP chooses the coordinate which maximizes the gradient. Substituting

α = ‖∇l(β(S))‖∞
M

,

we have

D(i + 1) ≥ 1

2M

∥∥∇l
(
β(S))∥∥2

∞.

Let SR = S∗\S. Since |SR| ≤ k,

D(i + 1) ≥ 1

2kM

∑
j∈SR

〈∇l
(
β(S)), ej

〉2 = 1

2kM

∥∥∇l
(
β(S))

SR

∥∥2
2.
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Substituting (8) into the above and noting that S ∪ SR ⊇ S∗, we have

D(i + 1) ≥ m

kM

(
l
(
β(S∪SR)) − l

(
β(S))) ≥ m

kM
B̃(i). �

Given Lemma 4, the rest of the proof follows that of Theorem 3. �

5.7. Proof of Theorem 6.

PROOF. Let C = Cs,r and � = β̂
r − βs , which is at most an (s + r)-sparse

vector. Recall that by the definition of restricted strong concavity on �s+r we have

(13) l
(
β̂

r) − l
(
βs) − 〈∇l

(
βs),�〉 ≤ −ms+r

2
‖�‖2

2.

Furthermore, simple calculations show that

(14) l
(
β̂

r) − l
(
βs) ≥ (1 − C)

[
l(0) − l

(
βs)].

Subtracting 〈∇l(βs),�〉 from both sides of (14), we have

l
(
β̂

r) − l
(
βs) − 〈∇l

(
βs),�〉 ≥ −〈∇l

(
βs),�〉 + (1 − C)

[
l(0) − l

(
βs)].

Applying (13) yields

−ms+r

2
‖�‖2

2 ≥ −〈∇l
(
βs),�〉 + (1 − C)

[
l(0) − l

(
βs)].

Next, note that

−〈∇l
(
βs),�〉 ≥ −∥∥∇l

(
βs)∥∥

2,s+r‖�‖2.

Thus,

−ms+r

2
‖�‖2

2 ≥ −∥∥∇l
(
βs)∥∥

2,k‖�‖2 + (1 − C)
[
l(0) − l

(
βs)].

Recalling that for any positive numbers 2ab ≤ ca2 + b2/c and flipping the above
inequality,

ms+r

2
‖�‖2

2 ≤ ‖∇l(βs)‖2
2,s+r

ms+r

+ ms+r‖�‖2
2

4
+ (1 − C)

[
l
(
βs) − l(0)

]
.

Rearranging terms we have the final result. �

5.8. Proof of Corollary 3.

PROOF. Using a result of [40], we have that

∥∥∇l
(
βs)∥∥2

2,s+r ≤ (s + r)
∥∥∇l

(
βs)∥∥2

∞ ≤ (s + r)σ 2 logp

n
,

with probability at least 1 − 1/p.
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The minimum eigenvalue of the matrix � is 1, while the maximum s-sparse
eigenvalue behaves like 1 + s. Hence, an RIP type condition will not hold. How-
ever, in our setting, we simply require a bound on M1. It can be shown using
tail bounds for χ2-random variables that with high probability M1 ≤ 4. Letting
ρ(�)2 = maxi �ii , and using a result by Raskutti et al. [44], we have that for all
v ∈ R

p ,

‖Xv‖2√
n

≥ 1

4

∥∥�1/2v
∥∥

2 − 9ρ(�)

√
logp

n
‖v‖1

≥
((

1 − 1

c

)
λmin(�)

16
+ (1 − c)81ρ(�)2 logp

n
(s + r)

)
‖v‖2

2

⇒ ms+r ≥ min
v:‖v‖2=1,
‖v‖0≤s+r

‖Xv‖2
2

n
≥ 1

32
− 162(s + r) logp

n
,

with high probability. Therefore, γ ≥ 1
128 − 81(s+r) logp

2n
and with probability at

least 1 − p−�(1) − e−�(n),

∥∥β̂r − β∗∥∥2
2 ≤ 4

m2
s+r

(s + r)σ 2 logp

n
+ 8(s + 1)

ms+r

(1 − Cs,r),

where we have used the fact that l(β∗) − l(0) ≤ λmax(�̂s) ≤ 2(s + 1) with high
probability. Note that using arguments from [32, 39] we can apply the above results
to the setting of generalized linear models.

Now let (s + r)σ 2 logp = o(n) and r = �(s logn). Combined with Corollary 1,
this implies that ‖β̂r − β∗‖2

2 = n−�(1) with probability 1 − p−�(1) − e−�(n). �

6. Experiments. Next, we evaluate the performance of our greedy algorithms
with feature selection experiments on simulated and real-world datasets. A bias
term β0 is added to the regression by augmenting the design matrix with a column
of ones.

The data. A synthetic experiment was conducted as follows: first each row of
a 600 × 200 design matrix X is generated independently according to a first order
AR process (α = 0.3 and noise variance σ 2 = 5). This ensures that the features
are heavily correlated with each other. Bernoulli ±1 (i.e., Rademacher) random
variables are placed on 50 random indices to form the true support β̄

k
, and scaled

such that ‖β‖2
2 = 5. Then responses y are computed via a logistic model. We also

conduct an experiment on a subset of the RCV1 Binary text classification dataset
[30]. 10,000 training and test samples are used in 47,236 dimensions. Since there
is no ground truth, a logistic regression is fit using a subset of at most 700 features.
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Algorithms and metrics. The Oblivious, Forward Stepwise (FS), and OMP al-
gorithms were implemented using a logistic log-likelihood function given X and y
(see Appendix B). We implemented 3 additional algorithms. Lasso fits a logistic re-
gression model with �1 regularization. Lasso-Pipeline recovers the sparse support
using Lasso and then fits regression coefficients on this support with a separate,
unregularized model. The regularization parameter was swept to achieve outputs
with varying sparsity levels. Forward Backward (FoBa) [52] first runs FS at each
step and then drops any features if doing so would decrease the objective by less
than half the latest marginal gain.

Our main metric for each algorithm is the normalized objective function l(β̂
s
)−

l(0) for the output sparsity s ∈ {1, . . . ,70}. We also compare the sets supp(β̂
s
) and

supp(β̄
k
) using area under ROC and percent of true support recovered. Finally, we

measure generalization accuracy by drawing additional observations (xi , yi) from
the same distribution as the training data.

Results. Figure 1 shows the results of our synthetic experiment averaged over
20 runs. For all metrics, Oblivious performs worse than OMP which is slightly
worse than FS and FoBa. This matches intuition and the series of bounds in Sec-
tion 3. We also see that the Lasso-Pipeline performs noticeably worse than all al-
gorithms except Oblivious and Lasso. This suggests that greedy feature selection
degrades more gracefully than Lasso in the case of correlated features.

Figure 2 shows similar results for the high-dimensional RCV1 Binary dataset.
Due to their large running time complexity, FS and FoBa were omitted. While
all algorithms have roughly the same generalization accuracy using 300 features,
OMP has the largest log-likelihood.

7. Conclusions. We have extended the results of [13] and shown that func-
tions satisfying RSC also satisfy a relaxed form of submodularity that can be used
to analyze the performance of greedy algorithms compared to the best sparse solu-
tion. Experimental results confirm that greedy feature selection outperforms reg-
ularized approaches in a nonlinear regression model. Directions for future work
include similar analysis for other greedy algorithms that incorporate group spar-
sity [40] or thresholding, and applications beyond sparse regression. Bounds on
dictionary selection (analogous to those in [13]) also apply to general likelihood
functions satisfying RSC and RSM.

APPENDIX A: MOTIVATING EXAMPLE (LINEAR REGRESSION)

To show the impact of submodularity, we construct a linear regression example.
Even in p = 3 dimensions, the greedy forward selection algorithm’s output can be
arbitrarily off from the optimal R2. Consider the following variables:

y = [
1 0 0

]T
,
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FIG. 1. Synthetic dataset—α = 0.3, n = 600 training and test samples, p = 200 dimensions with
true support on 50 features, averaged over 20 runs. (a) The greedy algorithms perform better than
Lasso and Oblivious algorithms, but beyond 50 steps they overfit to noise in the training data. While
Lasso outperforms Oblivious in support recovery (b), its regression suffers from regularization bias.
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FIG. 2. RCV1 binary dataset—n = 10,000, p = 47,236. OMP outperforms Lasso-Pipeline.

x1 = [
0 1 0

]T
,

x2 =
[
z

√
1 − z2 0

]T
,

x3 =
[
2z 0

√
1 − 4z2

]T
.

All variables have unit norm and we wish to choose the 2-subset of {x1,x2,x3}
that best estimates y. Since R2

1 = 0, R2
2 = z2, and R2

3 = 4z2, x3 will be selected
first (SG

1 = {3}) if z > 0. x2 will be chosen next (SG
2 = {3,2}), and solving for R2

for this pair,

R2
3,2 = (

yT X3,2
)(

XT
3,2X3,2

)−1(
XT

3,2y
)

= 1

1 − 4z4

[
2z z

] [
1 −2z2

−2z2 1

][
2z

z

]
= 5z2 − 8z4

1 − 4z4 ,

which goes to zero as z → 0+. However, y = −
√

1−z2

z
x1 + 1

z
x2 which makes

R2
1,2 = 1 for the optimal set {x1,x2} (S2 = {1,2}).

APPENDIX B: GREEDY SELECTION FOR GLMS

In this section, we state guarantees for feature selection in sparse generalized
linear regression using the framework developed in Section 3. For introducing
sparsity, a relevant regularizer (such as �1) is often used. An alternative to reg-
ularization is to apply Algorithms 1–3 to the log-likelihood function. To use guar-
antees presented in Section 3, we derive sample complexity conditions on the de-
sign matrix X that are sufficient to bound the submodularity ratio γU,k with high
probability.
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Recall that Theorems 2–4 require strong convexity and bounded smoothness on
a sparse support. While in general GLMs are not strongly convex, nor do they have
bounded smoothness, it can be shown that on the restricted set of sparse supports
under some mild restrictions on the design matrix, they possess both these traits.
Moreover, note that some regularizers such as �2 that are widely applied for GLMs
automatically imply strong convexity. We present the analysis for both regularized
and unregularized regression.

For continuity, we reintroduce some notation here. We represent the data as
(xi , yi), where ∀i, xi ∈ R

p are features, and yi ∈ R represents the response. The
log conditional can be written in its canonical form as [14]:

(15) logp(y|x;β) = h−1(τ )yβ�x − Z(β,x) + g(y, τ ),

where Z(·) is the log partition function, and β , τ are the parameters (τ is
also called the dispersion parameter). For n observations, we can write the log-
likelihood as

(16) lGLM(β) :=
n∑

i=1

logp(yi |xi;β).

The parameters of this distribution can then be learned by maximizing the log-
likelihood. Recall that equivalently we can minimize its negative. Also, typically a
regularization term is added for stability and identifiability. The loss function g to
minimize for learning can be written as

(17) g(β) := −lGLM(β) + η‖β‖2
2.

Similar to the (4), we can define a normalized set function fGLM1(·) associated
with g(·) as

max|S|≤k
fGLM1(S) ⇔ min

β:βSc=0|S|≤k

g(β).

Note that increasing the support set of β does not decrease the log-likelihood, so
our set function fGLM1(·) is indeed monotone. Further, note that for normalizing
the set function, we can use fGLM1(∅) = g(0).

The Hessian of g at any point β can be written as

(18) H(β) := ∂2g(β)

∂β∂β� = X�DX + ηI,

where D is a diagonal matrix with Dii = h−1(τ )Z′′(β,xi). Next, we state assump-
tions required for the sample complexity bounds. We assume that Dii is upper
bounded by s at any value of the domain of β . This implies that ηI � H(β) �
sX�X + ηI for all β .

Let T ⊂ [p] so that |T| ≤ r . For any vector v, define vT be the vector formed by
replacing all indices in [p]\T of v by 0. Let PT be the operator that achieves this,
that is, PTv = vT.
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ASSUMPTION 1. We make the following assumptions for Proposition 2. Let
the rows of X be generated i.i.d. from some underlying distribution, so that
E[xx�] = C. For all T ⊂ [p], |T| ≤ r :

1. ‖xT‖2 ≤ R, and
2. None of the matrices P�

T CPT are the zero matrix.

Further, define θT := λmax(P�
T CPT), let θ̄ = maxT⊂[p],|T|≤r θT, θ̃ =

minT⊂[p],|T|≤r θT.

PROPOSITION 2 (From [3]). With Assumption 1, for δ ∈ (0,1) and n >
R(log r+r(1+log p

k
−log δ)

θ̃(1+ε) log(1+ε)−ε
, λmax(P�

T X�XPT) ≤ (1 + ε)θ̄) with probability (1 − δ).

COROLLARY 4 (Regularized GLM sample complexity). Under Assumption 1,

for δ ∈ (0,1) and n >
R(log r+r(1+log p

k
−log δ)

θ̃(1+ε) log(1+ε)−ε
, with probability (1 − δ), the submod-

ularity ratio of fGLM1, γU,r ≥ η/(η + s(1 + ε)θ̄).

PROOF. Note that fGLM1 is η-strongly convex. Further, from (18), and Propo-
sition 2, it is (η + s(1 + ε)θ̄)-smooth with probability (1 − δ). The result now
follows from Theorem 1. �

REMARK 9. The above discussion can also be motivated by the restricted sta-
bility property of the Hessian of the loss function. Define:

Ar (β) := max
{
v�H(β)v|∣∣supp(β) ∪ supp(v)

∣∣ ≤ r,‖v‖2 = 1
}
,

Br (β) := min
{
v�H(β)v|∣∣supp(β) ∪ supp(v)

∣∣ ≤ r,‖v‖2 = 1
}
.

The Hessian is said to be μr -SRH (Stable Restricted Hessian) [3] if, μr ≥ Ar
Br

. It is
straightforward to see that γU,r ≥ 1/μr .

B.1. Restricted strong convexity of GLMs. Under stronger assumptions on
the design matrix, X, it is possible to have γ > 0 even when η = 0 (i.e., the loss
is unregularized) in Corollary 4. In the following discussion, we assume η = 0
to avoid clutter, but the discussion can be readily extended to the case when η >

0. Similar to the case study of regular GLMs, we consider the GLM loss as the
negative log-likelihood, defined as

(19) h(β) = −lGLM(β),

and provide sample complexity bounds for weak submodularity to hold for the
associated set function:

max|S|≤k
fGLM2(S) ⇔ min

β:βSc=0|S|≤k

h(β).
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Restricted strong convexity for GLMs was studied by Negahban et al. [40] with
the restricted sets being the neighborhood of the true optimum of a convex loss
function. This allows GLMs to satisfy RSC on sparse models with support on
the true optimum. Loh and Wainwright [32] extended the RSC conditions to hold
uniformly for all k-sparse models for GLMs. We present the requisite results here.

Recall that Dh(x,y) := h(x) − h(y) − 〈∇(y),x − y〉. For brevity, we drop the
subscript, and use D(x,y). Also recall that h(·) is m-strongly convex on a set S if
∀x,y ∈ S, D(x,y) ≥ m

2 ‖x − y‖2
2, and that h(·) is M-smooth on the same domain if

D(x,y) ≤ M
2 ‖x − y‖2

2. Let Bm(r) represent an m-norm ball of radius r .

ASSUMPTION 2. The design matrix X consists of samples drawn i.i.d. from a
sub-Gaussian distribution with parameter σ 2

x , and covariance matrix �.

THEOREM 7 (From [32]). If Assumption 2 is true, there exists a constant αq

depending on the GLM family, and on σ 2
x , �, q such that for all vectors y ∈ B2(3)∩

B1(q) for a constant q s.t. q

√
logp

n
� 1, so that with probability 1 − c1 exp(−c2n),

D(x,y) ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αq

2
‖�‖2

2 − c2σx

2αq

logp

n
‖�‖2

1 if ‖�‖2 ≤ 3,

3αq

2
‖�‖2 − 3cσx

√
logp

n
‖�‖1 otherwise,

where � = x − y. Similarly, D(x,y) can be upper bounded. Recall that s is such
that maxi Dii ≤ s for D as used in (18). Then, with probability 1 − c1 exp(−c2n),

D(x,y) ≤ sλmax(�)

(
3

2
‖�‖2

2 + logp

n
‖�‖2

1

)
.

Theorem 7 can be applied to r-sparse sets to get the sample complexity for
strong convexity. We further assume that supp(x) ⊂ supp(y) or supp(y) ⊂ supp(x)

which is not restrictive for our analysis in Section 3. This implies if x, y are r-
sparse, | supp(�)| ≤ r .

COROLLARY 5 (Sample complexity sub-Gaussian design). Under Assump-

tion 2, for n > c2σx
α2

q
(r + |U|) logp, the submodularity ratio for fGLM2(·), γU,r ≥

m′/M ′, where m′ = (αq − c2σx
αq

(r+|U|) logp
n

) > 0, and M ′ = λmax(�)(3
2 +

(r+|U|) logp
n

).

PROOF. Since ‖�‖1 ≤ √
(r + |U|)‖�‖2, from Theorem 7, D(x,y) ≥ 1

2(αq −
c2σx
αq

(r+|U|) logp
n

)‖�‖2
2. The sample complexity bound follows by ensuring the RHS

is > 0. This gives h(·) to be m-strongly convex with m ≥ (αq − c2σx
αq

(r+|U|) logp
n

).
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Similarly, a corresponding version of restricted smoothness by using the upper
bound of D(x,y) in Theorem 7 and using ‖�‖1 ≤ √

r + |U|‖�‖2. The expression
for the submodularity ratio then follows from Theorem 1. �
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