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CHEBYSHEV POLYNOMIALS, MOMENT MATCHING, AND
OPTIMAL ESTIMATION OF THE UNSEEN

BY YIHONG WU AND PENGKUN YANG

Yale University and University of Illinois at Urbana-Champaign

We consider the problem of estimating the support size of a discrete dis-
tribution whose minimum nonzero mass is at least 1

k
. Under the independent

sampling model, we show that the sample complexity, that is, the minimal
sample size to achieve an additive error of εk with probability at least 0.1
is within universal constant factors of k

log k
log2 1

ε , which improves the state-

of-the-art result of k
ε2 log k

in [In Advances in Neural Information Processing

Systems (2013) 2157–2165]. Similar characterization of the minimax risk is
also obtained. Our procedure is a linear estimator based on the Chebyshev
polynomial and its approximation-theoretic properties, which can be evalu-
ated in O(n+ log2 k) time and attains the sample complexity within constant
factors. The superiority of the proposed estimator in terms of accuracy, com-
putational efficiency and scalability is demonstrated in a variety of synthetic
and real datasets.

1. Introduction.

1.1. Model. Estimating the support size of a distribution from data is a classi-
cal problem in statistics with widespread applications. For example, a major task
for ecologists is to estimate the number of species [11] from field experiments;
linguists are interested in estimating the vocabulary size of Shakespeare based on
his complete works [10, 26, 34]; in population genetics it is of great interest to es-
timate the number of different alleles in a population [18]. Estimating the support
size is equivalent to estimating the number of unseen symbols, which is particu-
larly challenging when the sample size is relatively small compared to the total
population size, since a significant portion of the population are never observed in
the data.

We adopt the following statistical model [3, 30]. Let P be a discrete distribution
over some countable alphabet. Without loss of generality, we assume the alphabet
is N and denote P = (p1,p2, . . . ). Given n i.i.d. samples X � (X1, . . . ,Xn) drawn
from P , the goal is to estimate the support size

(1) S = S(P ) �
∑
i

1{pi>0}.
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To estimate the distribution or its functionals, a sufficient statistic is the histogram
of the samples, denoted by N = (N1,N2, . . . ) and

(2) Ni =
n∑

j=1

1{Xj=i}.

Therefore, N has a multinomial distribution with parameter n and P . For estimat-
ing the support size (or other permutation-invariant functional of the distribution),
the fingerprints form a sufficient statistic which is a further summary of the his-
togram N , which are defined as

(3) �j = ∑
i

1{Ni=j },

that is, the number of symbols that appear exactly j times.
It is clear that unless we impose further assumptions on the distribution P , it

is impossible to estimate S(P ) within a given accuracy, for otherwise there can
be arbitrarily many masses in the support of P that, with high probability, are
never sampled and the worst-case risk for estimating S(P ) is obviously infinite. To
prevent the triviality, a conventional assumption [30] is to impose a lower bound
on the nonzero probabilities. Therefore, we restrict our attention to the parameter
space Dk , which consists of all probability distributions on N whose minimum
nonzero mass is at least 1

k
; consequently, S(P ) ≤ k for any P ∈ Dk . The decision-

theoretic fundamental limit of this problem is given by the minimax risk:

(4) R∗(k, n) � inf
Ŝ

sup
P∈Dk

E(Ŝ − S)2,

where the loss function is the mean squared error (MSE) and Ŝ is an integer-valued

estimator measurable with respect to the samples X1, . . . ,Xn
i.i.d.∼ P .

1.2. Main results. Our first main result is the following characterization of the
minimax risk.

THEOREM 1. For all k,n ≥ 2,

(5) R∗(k, n) = k2 exp
(
−�

(√
n log k

k
∨ n

k
∨ 1

))
.

Furthermore, if k
log k

� n � k log k, as k → ∞,

(6)

k2 exp
(
−(√

2e + o(1)
)√n log k

k

)
≤ R∗(k, n)

≤ k2 exp
(
−(

1.579 + o(1)
)√n logk

k

)
.
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To interpret the rate of convergence in (5), we consider three cases:

Simple regime n � k log k: we have R∗(k, n) = k2 exp(−�(n
k
)) which can be

achieved by the simple plug-in estimator

(7) Ŝseen �
∑
i

1{Ni>0},

that is, the number of observed symbols or the support size of the empirical dis-
tribution. Furthermore, if n

k logk
exceeds a sufficiently large constant, all sym-

bols are present in the data and Ŝseen is in fact exact with high probability,
namely, P[Ŝseen �= S] ≤ E(Ŝseen − S)2 → 0. This can be understood as the clas-
sical coupon collector’s problem (cf., e.g., [27]).

Nontrivial regime k
log k

� n � k log k: In this case, the samples are relatively
scarce and the naive plug-in estimator grossly underestimate the true sup-
port size as many symbols are simply not observed. Nevertheless, accu-
rate estimation is still possible and the optimal risk is given by R∗(k, n) =
k2 exp(−�(

√
n log k

k
)). This can be achieved by a linear estimator based on the

Chebyshev polynomial and its approximation-theoretic properties. Although
more sophisticated than the plug-in estimator, this procedure can be evaluated
in O(n + log2 k) time.

Impossible regime n � k
log k

: any estimator suffers an error proportional to k in
the worst case.

Next we discuss the sample complexity of estimating the support size, which is
defined as follows:

(8) n∗(k, ε) � min
{
n ≥ 0 : ∃Ŝ, s.t. P

[∣∣Ŝ − S(P )
∣∣ ≥ εk

] ≤ 0.1,∀P ∈ Dk

}
,

where Ŝ is an integer-valued estimator measurable with respect to the samples

X1, . . . ,Xn
i.i.d.∼ P . Clearly, since Ŝ − S is an integer, the only interesting case is

ε ≥ 1
k

, with ε = 1
k

corresponding to the exact estimation of the support size since

|Ŝ − S| < 1 is equivalent to Ŝ = S. Furthermore, since S(P ) takes values in [k],
n∗(k, 1

2) = 0 by definition. The next result characterizes the sample complexity
within universal constant factors that are within a factor of six asymptotically.

THEOREM 2. Fix a constant c0 < 1
2 . For all 1

k
≤ ε ≤ c0,

(9) n∗(k, ε) � k

log k
log2 1

ε
.

Furthermore, if ε → 0 and ε = k−o(1), as k → ∞,

(10)
1 + o(1)

2e2

k

log k
log2 1

ε
≤ n∗(k, ε) ≤ 1 + o(1)

2.494

k

logk
log2 1

ε
.
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Compared to Theorem 1, the only difference is that here we are dealing with
the zero-one loss 1{|S−Ŝ|≥εk} instead of the quadratic loss (S − Ŝ)2. In the proof,
we shall obtain upper bound for the quadratic risk and lower bound for the zero-
one loss, thereby proving both Theorems 1 and 2 simultaneously. Furthermore, the
choice of 0.1 as the probability of error in the definition of the sample complexity
is entirely arbitrary; replacing it by 1 − δ for any constant δ ∈ (0,1) only affect
n∗(k, ε) up to constant factors.1

1.3. Previous work. There is a vast amount of literature devoted to the support
size estimation problem. In parametric settings, the data generating distribution is
assumed to belong to certain parametric family such as uniform or Zipf [8, 22,
26] and traditional estimators, such as maximum likelihood estimator and min-
imum variance unbiased estimator, are frequently used [10, 17, 18, 22, 25, 32];
see the extensive surveys [2, 12]. When difficult to postulate or justify a suitable
parametric assumption, various nonparametric approaches are adopted such as the
Good–Turing estimator [14, 31] and variants due to Chao and Lee [5, 6], Jackknife
estimator [3], empirical Bayes approach (e.g., Good–Toulmin estimator [15]) and
one-sided estimator [24]. Despite their practical popularity, little is known about
the performance guarantee of these estimators, let alone their optimality. Next we
discuss provable results assuming the independent sampling model in Section 1.1.

For the naive plug-in estimator (7), it is easy to show (see Proposition 2) that to
estimate S(P ) within ±εk the minimal required number of samples is �(k log 1

ε
),

which scales logarithmically in 1
ε

but linearly in k, the same scaling for estimat-
ing the distribution P itself. Recently, Valiant and Valiant [39] showed that the
sample complexity is in fact sublinear in k; however, the performance guarantee
of the proposed estimators are still far from being optimal. Specifically, an esti-
mator based on a linear program (LP) that is a modification of [10], Program 2,
is proposed and shown to achieve n∗(k, ε) � k

ε2+δ log k
for any arbitrary δ > 0 [39],

Corollary 11, which has subsequently been improved to k
ε2 log k

in [41], Theorem 2,

Fact 9. The lower bound n∗(k, ε) � k
log k

in [38], Corollary 9, is optimal in k but
provides no dependence on ε. These results show that the optimal scaling in terms
of k is k

logk
but the dependence on the accuracy ε is 1

ε2 , which is even worse than
the plug-in estimator. From Theorem 2, we see that the dependence on ε can be
improved from polynomial to polylogarithmic log2 1

ε
, which turns out to be op-

timal. Furthermore, this can be attained by a linear estimator which is far more
scalable than linear programming on massive datasets (see the experiment on New

1Specifically, upgrading the confidence to 1 − δ can be achieved by oversampling by merely a

factor of log 1
δ : Let T = log 1

δ . With nT samples, divide them into T batches, apply the n-sample
estimator to each batch and aggregate by taking the median. Then Hoeffding’s inequality implies the
desired confidence.
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York Times datasets of one billion words in Section 4). Finally, we mention that
a general framework of designing and analyzing linear estimators is given in [40]
based on linear programming (as opposed to the approximation-theoretic approach
in the current paper).

To close this subsection, we mention two closely related problems whose recent
resolution relies on results in the current paper:

• Species extrapolation: Given n independent samples drawn from an unknown
distribution, the goal is to predict the number of hitherto unseen symbols that
would be observed if m additional samples were collected from the same dis-
tribution. Originally formulated in [11] and further studied in [5, 10, 15], this
problem reduces to support size estimation if m = ∞; in contrast, for finite m,
this problem remains nontrivial even if no lower bound on the minimum nonzero
probability is imposed on the underlying distribution, since very rare species
will typically not appear in the new samples. The recent result [28] showed that
the furthest range for accurate extrapolation is m = o(n logn) and obtained the
minimax estimation error as a function of m,n for all distributions, where the
lower bound is obtained via a reduction to support size estimation studied in this
paper.

• Distinct elements: In this problem, the goal is to estimate the number of distinct
colors based on repeated draws from in an urn consisting of k colored balls. For
sampling with replacement, this can be viewed as a restricted case of the model
in the present paper, where the distribution P = (pi) has the special form of
pi = ki

k
, with ki ∈ Z+ corresponding to the number of balls of the ith color and∑

i ki = k. The sample complexity under multiplicative error, that is, estimating
S(P ) within a factor of α (≥ 2) has been shown to be �( k

α2 ) in [7]. For additive
error, that is, estimating S(P ) within ±εk, a lower bound has been established

in [30], which for constant ε, scales as k
1−O(

√
log logk

logk
)
. This, in turn, implies a

lower bound for n∗(k, ε), which is slightly suboptimal compared to the tight

bound k
log k

= k
1− log logk

logk . The sample complexity of the distinct elements prob-

lem has been recently shown in [42] to be �( k
log k

log 1
ε
) if the desired accuracy

satisfies ε > k−0.5+δ . Compared with that of support size estimation in Theo-
rem 2, we see that the discrete structure of the distribution strictly reduces the
sample complexity of the problem.

1.4. Organization. The paper is organized as follows: in Section 2, we outline
the proof for the lower bound part of Theorems 1 and 2 and the construction of
the least favorable priors. In Section 3, we construct an estimator based on Cheby-
shev polynomials which achieves the minimax risk and the sample complexity
within constant factors. In Section 4, we apply our estimators to both synthetic
and real data and compare the performance with existing methodologies. Proofs
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of the lower and upper bounds are given in Section 5, respectively. Due to space
constraints, proofs of technical lemmas are provided in [44], Appendix B in the
Supplementary Material.

1.5. Notation. For k ∈ N, let [k] � {1, . . . , k}. The n-fold product of a dis-
tribution P is denoted by P ⊗n. Let Poi(λ) denote the Poisson distribution with
mean λ whose probability mass function is denoted by poi(λ, j) � λj e−λ

j ! , j ≥ 0.
Given a positive random variable U , denote the Poisson mixture with respect to
the distribution of U by E[Poi(U)], whose probability mass function is given
by 1

j !E[Uje−U ], j ≥ 0. Let Bern(p) = pδ1 + (1 − p)δ0 denote the Bernoulli
distribution. The total variation and the Kullback–Leibler divergence between
probability measures P and Q are denoted by TV(P,Q) � 1

2

∫ |dP − dQ| and
D(P‖Q) �

∫
dP log dP

dQ
, respectively. We use standard big-O notation, for exam-

ple, for any positive sequences {an} and {bn}, an = O(bn) or an � bn if an ≤ Cbn

for some absolute constant C > 0, an = o(bn) or an � bn or if liman/bn = 0. In
order to extract non-asymptotic statements from asymptotic ones, we pay extra at-
tention to o(1) terms. Specifically, we write oδ(1) as δ → 0 to indicate convergence
that is uniform in all other parameters.

2. Minimax lower bound. The lower bound argument follows the idea in [4,
21, 43] and relies on the generalized Le Cam’s method involving two compos-
ite hypotheses, also known as the method of fuzzy hypotheses [36]. Specifically,
suppose the following (composite) hypothesis testing problem:

H0 : S(P ) ≤ s,P ∈ Dk versus H1 : S(P ) ≥ s + δ,P ∈Dk

cannot be tested with vanishing probability of error on the basis of n samples, then
the sample complexity of estimating S(P ) within δ with high probability must
exceed n. In particular, the impossibility to test the above composite hypotheses is
shown by constructing two priors (i.e., two random probability vectors) so that the
induced distribution of the samples are close in total variation. Next we elaborate
the main ingredients of Le Cam’s method: (a) construction of the two priors; (b)
separation between functional values; (c) bound on the total variation.

Let λ > 1. Given unit-mean random variables U and U ′ that take values in
{0} ∪ [1, λ], define the following random vectors:

(11) P = 1

k
(U1, . . . ,Uk), P′ = 1

k

(
U ′

1, . . . ,U
′
k

)
,

where Ui and U ′
i are i.i.d. copies of U and U ′, respectively. Although P and P′ need

not be probability distributions, as long as the standard deviations of U and U ′ are
not too big, the law of large numbers ensures that with high probability P and P′
lie in a small neighborhood near the probability simplex, which we refer as the set
of approximate probability distributions. Furthermore, the minimum nonzeros in
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P and P′ are at least 1
k

. It can be shown that the minimax risk over approximate
probability distributions is close to that over the original parameter space Dk of
probability distributions. This allows us to use P and P′ as priors and apply Le
Cam’s method. Note that both S(P) and S(P′) are binomially distributed, which
with high probability, differ by the difference in their mean values:

E
[
S(P)

] −E
[
S
(
P′)] = k

(
P[U > 0] − P

[
U ′ > 0

]) = k
(
P

[
U ′ = 0

] − P[U = 0]).
If we can establish the impossibility of testing whether data are generated from P
or P′, the resulting lower bound is proportional to k(P[U ′ = 0] − P[U = 0]).

To simplify the argument, we apply the Poissonization technique where the sam-
ple size is a Poi(n) random variable instead of a fixed number n. This provably does
not change the statistical nature of the problem due to the concentration of Poi(n)

around its mean n. Under Poisson sampling, the histograms (2) still constitute a

sufficient statistic, which are distributed as Ni
ind∼ Poi(npi), as opposed to multi-

nomial distribution in the fixed-sample-size model. Therefore, through the i.i.d.

construction in (11), Ni
i.i.d.∼ E[Poi(n

k
U)] or E[Poi(n

k
U ′)]. Then Le Cam’s lemma

is applicable if TV(E[Poi(n
k
U)]⊗k,E[Poi(n

k
U ′)]⊗k) is strictly bounded away from

one, for which it suffices to show

(12) TV
(
E

[
Poi(nU/k)

]
,E

[
Poi

(
nU ′/k

)]) ≤ c

k
,

for some constant c < 1.
The above construction provides a recipe for the lower bound. To optimize

the ingredients, it boils down to the following optimization problem (over one-
dimensional probability distributions): Construct two priors U,U ′ with unit mean
that maximize the difference P[U ′ = 0] − P[U = 0] subject to the total variation
distance constraint (12), which in turn, can be guaranteed by moment matching,
that is, ensuring U and U ′ have identical first L moments for some large L, and
the L∞-norms U,U ′ are not too large. To summarize, our lower bound entails
solving the following optimization problem:

(13)

supP
[
U ′ = 0

] − P[U = 0]
s.t. E[U ] = E

[
U ′] = 1

E
[
Uj ] = E

[
U ′j ]

, j = 1, . . . ,L

U,U ′ ∈ {0} ∪ [1, λ].
The final lower bound is obtained from (13) by choosing L � logk and λ � k log k

n
.

In order to evaluate the infinite-dimensional linear programming problem (13),
we consider its dual program. It is well known that the problem of best polynomial
and moment matching are dual to each other; however, unlike the standard moment
matching problem which imposes the equality of moments, the extra constraint in
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(13) is that the values of the first moment must equal to one. Therefore, its dual
is no longer the best polynomial approximation problem. Nevertheless, for the
specific problem (13) which deals with the indicator function x �→ 1{x=0}, via a
change of variable we show in the Appendix that (13) coincides exactly with the
best uniform approximation error of the function x �→ 1

x
over the interval [1, λ] by

degree-(L − 1) polynomials:

inf
p∈PL−1

sup
x∈[1,λ]

∣∣∣∣ 1

x
− p(x)

∣∣∣∣,
where PL−1 denotes the set of polynomials of degree at most L − 1. This best
polynomial approximation problem has been well studied, cf. [9, 35]; in particular,
the exact formula for the best polynomial that approximates x �→ 1

x
and the optimal

approximation error have been obtained in [35], Section 2.11.1.
Applying the procedure described above, we obtain the following sample com-

plexity lower bound.

PROPOSITION 1. Let δ � log 1
ε

logk
and τ �

√
log k/k1/4

1−2ε
. As k → ∞, δ → 0 and

τ → 0,

(14) n∗(k, ε) ≥ (
1 − oδ(1) − ok(1) − oτ (1)

) k

2e2 log k
log2 1

2ε
.

Consequently, if 1
kc ≤ ε ≤ 1

2 − c′ √logk

k1/4 for some constants c, c′, then n∗(k, ε) �
k

log k
log2 1

2ε
.

The lower bounds announced in Theorems 1 and 2 follow from Proposition 1
combined with a simple two-point argument; see Section 5.2.

3. Optimal estimator via Chebyshev polynomials. In this section, we prove
the upper bound part of Theorem 1 and describe the rate-optimal support size
estimator. Following the same idea as in the lower bound part, we shall apply the
Poissonization technique to simplify the analysis where the sample size is Poi(n)

instead of a fixed number n, and hence the sufficient statistics N = (N1, . . . ,Nk)
ind∼

Poi(npi). Analogous to (4), the minimax risk under the Poisson sampling is defined
by

(15) R̃∗(k, n)� inf
Ŝ

sup
P∈Dk

E(Ŝ − S)2.

Due to the concentration of Poi(n) near its mean n, the minimax risk with fixed
sample size is close to that under the Poisson sampling, as shown in the following
lemma, which allows us to focus on the model using Poissonized sample size.
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LEMMA 1. For any β < 1,

R∗(k, n) ≤ R̃∗(k, (1 − β)n)

1 − exp(−nβ2/2)
.

In the next proposition, we first analyze the risk of the plug-in estimator Ŝseen,
which yields the optimal upper bound of Theorem 1 in the regime of n � k log k.
This is consistent with the coupon collection intuition explained in Section 1.2.

PROPOSITION 2. For all n, k ≥ 1,

(16) sup
P∈Dk

E
(
S(P ) − Ŝseen(N)

)2 ≤ k2e−2n/k + ke−n/k,

where N = (N1,N2, . . . ) and Ni
ind∼ Poi(npi).

Conversely, for P that is uniform over [k], for any fixed δ ∈ (0,1), if n ≤ (1 −
δ)k log 1

ε
, then as k → ∞,

(17) P
[∣∣S(P ) − Ŝseen(N)

∣∣ ≤ εk
] ≤ e−
(kδ).

In order to remedy the inaccuracy of the plug-in estimate Ŝseen in the regime of
n � k log k, our proposed estimator adds a linear correction term:

(18) Ŝ = Ŝseen + ∑
j≥1

uj�j ,

where the coefficients uj ’s are to be specified. Equivalently, the estimator can be
expressed in terms of the histogram as

(19) Ŝ = ∑
i

g(Ni),

where g : Z+ → R is defined as g(j) = uj + 1 for j ≥ 1 and g(0) = 0. Then the
bias of Ŝ is

(20)

E[Ŝ − S] = ∑
i:pi>0

E
[
g(Ni) − 1

]

= ∑
i:pi>0

e−npi

(∑
j≥1

uj

(npi)
j

j ! − 1
)

�
∑

i:pi>0

e−npiP (pi),

where P(0) = −1 by design. Therefore, the bias of Ŝ is at most
S maxx∈[pmin,1] |e−nxP (x)|, and the variance can be upper bounded by 2S‖g‖2∞
using the Efron–Stein inequality [33]. Next we choose the coefficients in order to
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balance the bias and variance. The construction is done using Chebyshev polyno-
mials, which we first introduce.

Recall that the usual Chebyshev polynomial of degree L is

(21) TL(x) = cos(L arccosx) = (
zL + z−L)

/2,

where z is the solution of the quadratic equation z + z−1 = 2x. Note that TL is
bounded in magnitude by one over the interval [−1,1]. The shifted and scaled
Chebyshev polynomial over the interval [l, r] is given by

(22) PL(x) = −TL(2x−r−l
r−l

)

TL(−r−l
r−l

)
�

L∑
m=1

amxm − 1,

where the coefficients a1, . . . , aL can be obtained from those of the Chebyshev
polynomial [35], 2.9.12, and the binomial expansion, or more directly,

(23) aj = P
(j)
L (0)

j ! = −
(

2

r − l

)j 1

j !
T

(j)
L (− r+l

r−l
)

TL(− r+l
r−l

)
.

We now let

(24) L� �c0 log k�, r � c1 logk

n
, l � 1

k
,

where c0 < c1 are constants to be specified, and choose the coefficients of the
estimator as

(25) uj =
⎧⎨
⎩

aj j !
nj

j = 1, . . . ,L,

0 otherwise,

The estimator Ŝ is defined according to (18).
We proceed to explain the reasoning behind the choice (25) and the role of the

Chebyshev polynomial. The main intuition is that since c0 < c1, then with high
probability, whenever Ni ≤ L = �c0 log k� the corresponding mass must satisfy
pi ≤ c1 logk

n
. That is, if pi > 0 and Ni ≤ L then pi ∈ [l, r] with high probability,

and hence PL(pi) is bounded by the sup-norm of PL over the interval [l, r], which
controls the bias in view of (20). In view of the extremal property of Chebyshev
polynomials [35], Example 2.13.14, (22) is the unique degree-L polynomial that
passes through the point (0,−1) and deviates the least from zero over the interval
[l, r]. This explains the coefficients (19) which are chosen to minimize the bias.
The degree of the polynomial is only logarithmic so that the variance is small.

The next proposition gives an upper bound of the quadratic risk of our estimator
(19).

PROPOSITION 3. Assume the Poissonized sampling model where the his-

tograms are distributed as N = (N1,N2, . . . )
ind∼ Poi(npi). Let c0 = 0.558 and
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c1 = 0.5. As δ � n
k log k

→ 0 and k → ∞, the bias and variance of Ŝ are upper
bounded by

∣∣E(Ŝ − S)
∣∣ ≤ 2S

(
1 + ok(1)

)
exp

(
−(

1 + oδ(1)
)√

κ
n logk

k

)
,

var[Ŝ] ≤ O
(
Skc),

for some absolute constant c < 1, and consequently,

(26) sup
P∈Dk

E
(
Ŝ(N) − S(P )

)2 ≤ 4k2(
1 + ok(1)

)
exp

(
−(

2 + oδ(1)
)√

κ
n logk

k

)
,

where κ = 2.494.

The minimax upper bounds in Theorems 1 and 2 follow from combining Propo-
sitions 2 and 3; see Section 5.2.

Note that the optimal estimator (19) relies on the choice of parameters in (24),
which in turn, depends on the knowledge of 1/k, the lower bound on the mini-
mum nonzero probability pmin. While k is readily obtainable in certain applica-
tions where the samples are uniformly drawn from a database or corpus of known
size (see [1, 10] as well as the empirical results in Section 4), it is desirable to
construct estimators that are agnostic to pmin and retains the same optimality guar-
antee. To this end, we provide the following alternative choice of parameters. Let
S̃ be the linear estimator defined using the same coefficients in (25), with the ap-
proximation interval [l, r] and the degree L in (24) replaced by

(27) l = c1

c2
0

log2(1/ε)

n logn
, r = c1 logn

n
, L = �c0 logn�.

Here, ε is the desired accuracy and the constants c0, c1 are the same as in Propo-
sition 3. Following the same analysis as in the proof of Proposition 3, the above
choice of parameters leads to the following upper bound of the quadratic risk.

PROPOSITION 4. Let c0, c1, c be the same constants as Proposition 3. There
exist constants C,C ′ such that if ε > n−C , then

E(S̃ − S)2 ≤ C′(S2ε2(1−√
α) + Snc),

where α = max(1 − c2
0

c1

n logn

k log2(1/ε)
,0).

Therefore, whenever the sample size satisfies n ≥ ( c1
c2

0
+ ok(1)) k

log k
log2 1

ε
and

n ≤ (ε2k)
1
c , the upper bound is at most O((εk)2), recovering the optimal risk

bound in Proposition 3. The new result here is that even when n is not that large
the risk degrades gracefully.

We finish this section with a few remarks.
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FIG. 1. Coefficients of estimator g(j) in (19) with c0 = 0.45, c1 = 0.5, k = 106 and n = 2 × 105.

REMARK 1. Combined with standard concentration inequalities, the mean-
square error bound in Proposition 3 can be easily converted to a high-probability
bound. In the regime of n � k log k, for any distribution P ∈ Dk , the bias of our
estimate Ŝ is at most the uniform approximation error [see (43)]

∣∣E[Ŝ] − S
∣∣ ≤ S exp

(
−�

(√
n logk

k

))
.

The standard deviation is significantly smaller than the bias. Indeed, the coeffi-
cients of the linear estimator (19) are uniformly bounded by ‖g‖2∞ ≤ kc for some
absolute constant c < 1 (see [44], (70) in the Supplementary Material, as well as
Figure 1 for numerical results). Therefore, by Hoeffding’s inequality, we have the
following concentration bound:

P
[∣∣Ŝ −E[Ŝ]∣∣ ≥ tk

] ≤ 2 exp
(
− t2k

2‖g‖2∞

)
= exp

(−t2k
(1)).
REMARK 2. The estimator (19) belongs to the family of linear estimators:

(28) Ŝ = ∑
i

f (Ni) = ∑
j≥1

f (j)�j ,

which is a linear combination of fingerprints �j ’s defined in (3).
Other notable examples of linear estimators include:

• Plug-in estimator (7): Ŝseen = �1 + �2 + · · · .
• Good–Toulmin estimator [15]: for some t > 0,

(29) ŜGT = Ŝseen + t�1 − t2�2 + t3�3 − t4�4 + · · ·
• Efron–Thisted estimator [10]: for some t > 0 and J ∈ N,

(30) ŜET = Ŝseen +
J∑

j=1

(−1)j+1tj bj�j ,

where bj = P[Binomial(J,1/(t + 1)) ≥ j ].
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By definition, our estimator (19) can be written as

(31) Ŝ =
L∑

j=1

g(j)�j + ∑
j>L

�j .

By (22), PL is also a polynomial of degree L, which is oscillating and results
in coefficients with alternating signs (see Figure 1). Interestingly, this behavior,
although counterintuitive, coincides with many classical estimators, such as (29)
and (30). The occurrence of negative coefficients can be explained as follows. Note
that the rationale of linear estimator is to form a linear prediction the number of
unseen �0 using the observed fingerprints �1,�2, . . .; this is possible because the
fingerprints are correlated. Indeed, since the sum of all fingerprints coincides with
the support size, that is,

∑
j≥0 �j = S, for each j ≥ 1, the random variable �j

is negatively correlated with �0, and hence some of the coefficients in the linear
estimator are negative.

REMARK 3 (Time complexity). The evaluation of the estimator (28) consists
of three parts:

1. Construction of the estimator: O(L2) = O(log2 k), which amounts to comput-
ing the coefficients g(j) per (23).

2. Computing the histograms Ni and fingerprints �j : O(n).
3. Evaluating the linear combination: O(n ∧ k), since the number of non-zero

terms in the second summation of (28) is at most n ∧ k.

Therefore, the total time complexity is O(n + log2 k).

REMARK 4. The technique of polynomial approximation has been previously
used for estimating nonsmooth functions (Lq -norms) in Gaussian models [4, 19,
21] and more recently for estimating information quantities (entropy and power
sums) on large discrete alphabets [20, 43]. The design principle is to approximate
the nonsmooth function on a given interval using algebraic or trigonometric poly-
nomials for which unbiased estimators exist; the degree is chosen to balance the
bias (approximation error) and the variance (stochastic error). Note that in gen-
eral uniform approximation by polynomials is only possible on a compact inter-
val. Therefore, in many situations, the construction of the estimator is a two-stage
procedure involving sample splitting: First, use half of the sample to test whether
the corresponding parameter lies in the given interval; Second, use the remaining
samples to construct an unbiased estimator for the approximating polynomial if
the parameter belongs to the interval or apply plug-in estimators otherwise (see,
e.g., [20, 43] and [4], Section 5).

While the benefit of sample splitting is to make the analysis tractable by capi-
talizing on the independence of the two subsamples, it also sacrifices the statistical
accuracy since half of the samples are wasted. In the present paper, to estimate the
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support size, we forgo the sample splitting approach and directly design a linear
estimator. Instead of using a polynomial as a proxy for the original function and
then constructing its unbiased estimator, the best polynomial approximation of the
indicator function arises as a natural step in controlling the bias [see (20)].

4. Experiments. We evaluate the performance of our estimator on both syn-
thetic and real datasets in comparison with popular existing procedures.2 In the
experiments, we choose the constants c0 = 0.45, c1 = 0.5 in (24), instead of
c0 = 0.558 which is optimized to yield the best rate of convergence in Propo-
sition 3 under the i.i.d. sample model. The reason for such a choice is that in the
real-data experiments the samples are not necessarily generated independently and
dependency leads to a higher variance. By choosing a smaller c0, the Chebyshev
polynomials have a slightly smaller degree, which results in smaller variance and
more robustness to model mismatch. Each experiment is averaged over 50 inde-
pendent trials and the standard deviations are shown as error bars.

Synthetic data. We consider data independently sampled from the following
distributions: (a) the uniform distribution with pi = 1

k
, (b) Zipf distributions with

pi ∝ i−α and α being either 1 or 0.5, and (c) an even mixture of geometric distri-
bution and Zipf distribution where for the first half of the alphabet pi ∝ 1/i and for
the second half pi+k/2 ∝ (1 − 2

k
)i−1, 1 ≤ i ≤ k

2 . The alphabet size k varies in each
distribution so that the minimum non-zero mass is roughly 10−6. Accordingly, a
degree-6 Chebyshev polynomial is applied. Therefore, according to (31), we apply
the polynomial estimator g to symbols appearing at most six times and the plug-in
estimator otherwise. In Figure 2 we compare our results with the Good–Turing
estimator [14], the Chao 1 estimator [5, 16], the two estimators proposed by Chao
and Lee [6] and the linear programming approach proposed by Valiant and Valiant
[41]. Here, the Good–Turing estimator refers to first estimate the total probabil-
ity of seen symbols (sample coverage) by Ĉ = 1 − �1

n
then estimate the support

size by ŜGood-Turing = Ŝseen/Ĉ; the Chao 1 estimator refers to the bias-corrected
form ŜChao 1 = Ŝseen + �1(�1−1)

2(�2+1)
. The plug-in estimator simply counts the number

of distinct elements observed, which is always outperformed by the Good–Turing
estimator in our experiments, and hence omitted in the comparison.

Good–Turing’s estimate on sample coverage performs remarkably well in the
special case of uniform distributions. This has been noticed and analyzed in [6, 8].
Chao–Lee’s estimators are based on Good–Turing’s estimate with further correc-
tion terms for nonuniform distributions. However, with limited number of samples,
if no symbol appears more than once, the sample coverage estimate Ĉ is zero, and
consequently the Good–Turing estimator and Chao–Lee estimators are not even

2The implementation of our estimator is available at https://github.com/Albuso0/support.

https://github.com/Albuso0/support
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FIG. 2. Performance comparison under four data-generating distributions.

well defined. For Zipf and mixture distributions, the output of Chao–Lee’s estima-
tors is highly unstable, and thus is omitted from the plots; the convergence rates
of the Good–Turing estimator and Chao 1 estimator are much slower than our es-
timator and the LP estimator, partly because they only use the information of how
many symbols occurred exactly once and twice, namely the first two fingerprints
�1 and �2, as opposed to the full spectrum of fingerprints {�j }j≥1, and they suf-
fer provably large bias under nonuniform distributions as simple as mixtures of
two uniform distributions (see [44], Appendix C, in the Supplementary Material);
the linear programming approach has similar convergence rate to ours but suffers
large variance when samples are scarce.

Real data. Next we evaluate our estimator by a real data experiment based on
the text of Hamlet, which contains about 32,000 words in total consisting of about
4800 distinct words. Here and below, the definition of “distinct word” is any distin-
guishable arrangement of letters that are delimited by spaces, insensitive to cases,
with punctuation removed. We randomly sample the text with replacement and
generate the fingerprints for estimation. The minimum nonzero mass is naturally
the reciprocal of the total number of words, 1

32,000 . In this experiment, we use the
degree-4 Chebyshev polynomial. We also compare our estimator with the one in
[41]. The results are plotted in Figure 3, which shows that the estimator in [41] has
similar convergence rate to ours; however, the variance is again much larger and
the computational cost of linear programming is significantly higher than linear
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FIG. 3. Comparison of various estimates of the total number of distinct words in Hamlet.

estimators, which amounts to computing linear combinations with pre-determined
coefficients.

Next we conduct a larger-scale experiment using the New York Times Corpus
from the years 1987–2007.3 This corpus has a total of 25,020,626 paragraphs con-
sisting of 996,640,544 words with 2,047,985 distinct words. We randomly sample
1%–50% out of the all paragraphs with replacements and feed the fingerprint to our
estimator. The minimum nonzero mass is also the reciprocal of the total number
of words, 1/109, and thus the degree-9 Chebyshev polynomial is applied. Using
only 20% samples our estimator achieves a relative error of about 10%, which is
a systematic error due to the model mismatch: the sampling here is paragraph by
paragraph rather than word by word, which induces dependence across samples as
opposed to the i.i.d. sampling model for which the estimator is designed; in com-
parison, the LP estimator4 suffers a larger bias from this model mismatch. Further-
more, the proposed linear estimator is significantly faster than linear programming
based methods: given the sampled data, the curve in Figure 4 corresponding to
the LP estimator takes over 5 hours to compute; in contrast, the proposed linear
estimator takes only 2 seconds on the same computer, which clearly demonstrate
its computational advantage even if one takes into account the fact that our imple-
mentation is based on C++ while the LP estimator is in MATLAB.

Finally, we perform the classical experiment of “how many words did Shake-
speare know.” We feed the fingerprint of the entire Shakespearean canon (see [10],
Table 1), which contains 31,534 word types, to our estimator. We choose the min-
imum nonzero mass to be the reciprocal of the total number of English words,
which, according to known estimates, is between 600,000 [29] to 1,000,000 [13],

3Dataset available at https://catalog.ldc.upenn.edu/LDC2008T19.
4In this large-scale experiment, the original MATLAB code of the linear programming estimator

given in [41] is extremely slow; the result in Figure 4 is obtained using an optimized version provided
by the author [37].

https://catalog.ldc.upenn.edu/LDC2008T19
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FIG. 4. Performance comparison using New York Times Corpus.

and obtain an estimate of 63,148 to 73,460 for Shakespeare’s vocabulary size, as
compared to 66,534 obtained by Efron–Thisted [10]. Using the alternative choice
of parameters that are agnostic to k in Proposition 4, by setting the desired accu-
racy to be 0.05 and 0.1, we obtain an estimate of 62,355 to 72,454.

5. Proofs.

5.1. Proofs of Propositions 1–4.

PROOF OF PROPOSITION 1. For 0 < ν < 1, define the set of approximate
probability vectors by

Dk(ν) �
{
P = (p1,p2, . . . ) :

∣∣∣∣∑
i

pi − 1
∣∣∣∣ ≤ ν,pi ∈ {0} ∪

[
1 + ν

k
,1

]}
,

which reduces to the original probability distribution space Dk if ν = 0. General-
izing the sample complexity n∗(k, ε) in (8) to the Poisson sampling model over
Dk(ν), we define
(32)

ñ∗(k, ε, ν)� min
{
n ≥ 0 : ∃Ŝ, s.t. P

[∣∣Ŝ − S(P )
∣∣ ≥ εk

] ≤ 0.2,∀P ∈ Dk(ν)
}
,

where Ŝ is an integer-valued estimator measurable with respect to N = (N1,N2,

. . .)
ind∼ Poi(npi). The sample complexity of the fixed-sample-size and Poissonized

model is related by the following lemma.

LEMMA 2. For any ν ∈ (0,1) and any ε ∈ (0, 1
2),

(33) n∗(k, ε) ≥ (1 − ν)ñ∗(k, ε, ν)

(
1 − O

(
1√

(1 − ν)ñ∗(k, ε, ν)

))
.



874 Y. WU AND P. YANG

To establish a lower bound of ñ∗(k, ε, ν), we apply generalized Le Cam’s
method involving two composite hypothesis. Given two random variables U,U ′ ∈
[0, k] with unit mean, we can construct two random vectors by P = 1

k
(U1, . . . ,Uk)

and P′ = 1
k
(U ′

1, . . . ,U
′
k) with i.i.d. entries. Then E[S(P)] − E[S(P′)] = k(P[U >

0] − P[U ′ > 0]). Furthermore, both S(P) and S(P′) are binomially distributed,
which are tightly concentrated at the respective means. We can reduce the problem
to the separation on mean values, as shown in the next lemma.

LEMMA 3. Let U,U ′ ∈ {0}∪[1+ν,λ] be random variables such that E[U ] =
E[U ′] = 1, E[Uj ] = E[U ′j ] for j ∈ [L], and |P[U > 0] − P[U ′ > 0]| = d , where
ν ∈ (0,1),L ∈ N, d ∈ (0,1) and λ > 1 + ν. Then, for any α < 1/2,

(34)
2λ

kν2 + 2

kα2d2 + k

(
enλ

2kL

)L

≤ 0.6 ⇒ ñ∗
(
k,

(1 − 2α)d

2
, ν

)
≥ n.

The proof of Lemma 3 relies on bounds on the total variation distance between
two Poisson mixtures with matching moments, as given by the following lemma,
which improves upon [43], Lemma 3, in terms of constants. This improvement
is crucial for the purpose of obtaining good constants for the sample complexity
bounds in (10).

LEMMA 4. Let V and V ′ be random variables taking values on [0,]. If
E[V j ] = E[V ′j ], j = 1, . . . ,L, then

(35) TV
(
E

[
Poi(V )

]
,E

[
Poi

(
V ′)]) ≤ (/2)L+1

(L + 1)!
(
2 + 2/2−L + 2/(2 log 2)−L)

.

In particular, TV(E[Poi(V )],E[Poi(V ′)]) ≤ ( e
2L

)L. Moreover, if L > e
2, then

TV
(
E

[
Poi(V )

]
,E

[
Poi

(
V ′)]) ≤ 2(/2)L+1

(L + 1)!
(
1 + o(1)

)
,  → ∞.

Now applying Lemma 7 in the Appendix, we obtain two random variables
U,U ′ ∈ {0} ∪ [1 + ν,λ] such that E[U ] = E[U ′] = 1, E[Uj ] = E[U ′j ], j =
1, . . . ,L and

P[U > 0] − P
[
U ′ > 0

] = 2EL−1

(
1

x
, [1 + ν,λ]

)

= (1 +
√

1+ν
λ

)2

1 + ν

(
1 − 2

√
1+ν
λ

1 +
√

1+ν
λ

)L

� d,

where the value of EL−1(
1
x
, [1 + ν,λ]) follows from [35], 2.11.1. To apply

Lemma 3 and obtain a lower bound of ñ∗(k, ε, ν), we need to pick the parame-
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ters depending on the given k and ε to fulfill:

(1 − 2α)d

2
≥ ε,(36)

2λ

kν2 + 2

kα2d2 + k

(
enλ

2kL

)L

≤ 0.6.(37)

Let

L = �c0 logk�, λ =
(

γ log k

log(1/2ε)

)2
, n = C

k

log k
log2 1

2ε
,

α = 1

k1/3 , ν =
√√

λ/k(1 − 2ε),

for some c0, γ,C � 1 to be specified, and by assumption L,λ → ∞, α
1−2ε

= ok(1),
ν

1−2ε
= oτ (1)+ok(1), 1/λ = oδ(1). Since d ≥ 1

1+ν
(1−2

√
1+ν
λ

)L, a sufficient con-
dition for (36) is that

(38)
(

1 − 2

√
1 + ν

λ

)L

≥ 2ε
1 + ν

1 − 2α
⇔ γ

c0
> 2 + oτ (1) + oδ(1) + ok(1).

Now we consider (37). By the choice of ν and α, we have

ν � √
λ/k, α � 1/

√
kd,

since 1 − 2ε �
√

logk

k1/4 , d ≥ 2ε
1−2α

and ε = k−o(1). Then the first two terms in (37)

vanish. The last term in (37) vanishes as long as the constant C <
2c0
eγ 2 e−1/c0 . By

the fact that

sup
{

2c0

eγ 2 e−1/c0 : 0 < 2c0 < γ

}
= 1

2e2 ,

the optimal C satisfying (38) is 1+oδ(1)+oτ (1)+ok(1)

2e2 . Therefore, combining (36)–
(37) and applying (34), we obtain a lower bound of ñ∗ that

ñ∗(k, ε, ν) ≥ 1 + oδ(1) + oτ (1) + ok(1)

2e2

k

logk
log2 1

2ε
.

Since 1 − 2ε �
√

log k

k1/4 , we have ñ∗(k, ε, ν) � √
k. Applying Lemma 2, we con-

clude the desired lower bound of n∗(k, ε). �

PROOF OF PROPOSITION 2. First, we consider the bias:∣∣E(Ŝseen − S)
∣∣ = ∑

i:pi≥ 1
k

(
1 − P(Ni ≥ 1)

) = ∑
i:pi≥ 1

k

exp(−npi) ≤ S exp(−n/k).
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The variance satisfies

var[Ŝseen] = ∑
i:pi≥ 1

k

var1{Ni>0} ≤ ∑
i:pi≥ 1

k

exp(−npi) ≤ S exp(−n/k).

The conclusion follows.
For the negative result, under the Poissonized model and with the samples

drawn from the uniform distribution, the plug-in estimator Ŝseen is distributed as
Binomial(k,1 − e−n/k). If n ≤ (1 − δ)k log 1

ε
< k log 1

ε
, then 1 − e−n/k < 1 − ε.

By the Chernoff bound,

P
[∣∣Ŝseen − S(P )

∣∣ ≤ εk
] = P

[
Binomial

(
k,1 − e−n/k) ≥ (1 − ε)k

]
≤ e−kd(1−ε‖1−e−n/k) = e−kd(ε‖e−n/k),

where d(p‖q)� p log p
q

+(1−p) log 1−p
1−q

is the binary divergence function. Since

e−n/k ≥ ε1−δ > ε,

d
(
ε‖e−n/k) ≥ d

(
ε‖ε1−δ) ≥ d

(
k−1‖k−1+δ) � k−1+δ,

where the middle inequality follows from the fact that ε �→ d(ε‖ε1−δ) is increasing
near zero. Therefore, P[|Ŝseen − S(P )| ≤ εk] ≤ exp(−
(kδ)). �

PROOF OF PROPOSITION 3. First, we consider the bias. By (20), the bias of
Ŝ is

(39)
∣∣E[Ŝ − S]∣∣ ≤ ∑

i:pi>0

∣∣e−npiPL(pi)
∣∣ ≤ S max

x∈[ 1
k
,1]

∣∣e−nxPL(x)
∣∣,

where PL is the Chebyshev polynomial in (22). Recall that L = �c0 log k�, l = 1
k

,

r = c1 log k
n

. Then

max
x∈[l,r]

∣∣PL(x)
∣∣ = 1

|TL(− r+l
r−l

)| ,(40)

max
x∈(r,1]

∣∣e−nxPL(x)
∣∣ = maxx∈(r,1] e−nx |TL(2x−r−l

r−l
)|

|TL(− r+l
r−l

)| .(41)

We need the following lemma to upper bound (41).

LEMMA 5. If α � L/β = 
(1), then

max
x≥1

e−βxTL(x) = 1

2

(
α + √

α2 + 1

e
√

1+1/α2

(
1 + oL(1)

))L

, L → ∞.
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Applying Lemma 5 to (41) with L = �c0 log k�, β = nr(1−δ)
2 = c1 logk(1−δ)

2 , we
obtain that

(42)

max
x≥r

∣∣∣∣e−nxTL

(
2x − r − l

r − l

)∣∣∣∣
≤ 1

2

( 2ρ +
√

(2ρ)2 + 1

e
√

1+1/(2ρ)2+1/(2ρ)

(
1 + ok(1) + oδ(1)

))L

,

where ρ � c0/c1. Combining (40) to (42), maxx∈[l,1] |e−nxPL(x)| ≤ 1+ok(1)+oδ(1)

|TL(− 1+δ
1−δ

)|

as long as we pick the constant ρ such that 2ρ+
√

(2ρ)2+1

e
√

1+1/(2ρ)2+1/(2ρ)
< 1 ⇔ arcsinh(2ρ) <

1+
√

1+4ρ2

2ρ
, or equivalently, ρ < ρ∗ ≈ 1.1. Then, by (39), the bias of Ŝ is at most

∣∣E[Ŝ − S]∣∣ ≤ S
1 + ok(1) + oδ(1)

|TL(−1+δ
1−δ

)|

≤ 2S
(
1 + ok(1) + oδ(1)

)(
1 − 2

√
δ

1 + √
δ

)L

= 2S
(
1 + ok(1)

)
exp

(
−(

1 + oδ(1)
)√

4c0ρ
n logk

k

)
.

(43)

Now we turn to the variance of Ŝ:

var[Ŝ] = ∑
i:pi>0

var[uNi
1{Ni≤L}]

≤ ∑
i:pi>0

E
[
u2

Ni
1{Ni≤L}

]

≤ ‖u‖2∞
∑

i:pi>0

P[Ni ≤ L],

(44)

where �j �
∑

i 1{Ni=j} is the fingerprint of samples. The following lemma shows
that |uj | is at most exponential in the degree of the polynomial.

LEMMA 6. Let aj be defined as (22) and uj be defined as (25). Then

(45) ‖u‖∞ ≤ e
√

L

2
exp

(
τ

(
L

nr

)
L

)
,

where τ(x) � arcsinh(2x) −
√

1+4x2−1
2x

.

From (44) and (45), the variance of Ŝ is at most

(46) var[Ŝ] ≤ S
e2L

4
k2c0τ(ρ).
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Then, from (43) and (46), we obtain that

sup
P∈Dk

E(Ŝ − S)2 ≤ 4k2(
1 + ok(1)

)
exp

(
−2

(
1 + oδ(1)

)√ 2ρ

τ(ρ)

n logk

k

)

+ e2c0 log k

4
k1+2c0τ(ρ).

Note that the first term is 4k2−oδ(1). Therefore, as long as we pick constant c0 such
that 2c0τ(ρ) < 1 the second term is lower order than the first term, and thus

sup
P∈Dk

E(Ŝ − S)2 ≤ 4k2(
1 + ok(1)

)
exp

(
−2

(
1 + oδ(1)

)√ 2ρ

τ(ρ)

n logk

k

)
.

The conclusion follows from the fact that supρ<ρ∗ 2ρ/τ(ρ) ≈ 2.494, which corre-
sponds to choosing c0 ≈ 0.558 and c1 = 0.5. �

PROOF OF PROPOSITION 4. Let δ = l/r , which is less than some abso-
lute constant C/c0 when ε > n−C . The upper bound of the mean squared error
is essentially the same as the proof of Proposition 3. The bias of S̃ is at most
S maxx∈[pmin,1] e−nx |PL(x)| given in (39). For pi ∈ [l, r], the bias is upper bounded
by the uniform approximation error

max
x∈[l,r]

∣∣PL(x)
∣∣ ≤ 1

|TL(−1+δ
1−δ

)| ≤ 2
(

1 − 2
√

δ

1 + √
δ

)L

≤ 2ε.

For pi > r , following (41)–(42), we have e−npi |PL(pi)| = o(ε) as long as c0/c1 <

ρ∗ ≈ 1.1. For pi ∈ [pmin, l], since the shifted Chebyshev polynomial PL is mono-
tone on (−∞, l), we have

∣∣PL(x)
∣∣ ≤ |TL(

2pmin−r−l
r−l

)|
|TL(−r−l

r−l
)| = |TL(1 + 2αδ

1−δ
)|

|TL(1 + 2δ
1−δ

)|
= exp

(−(
1 − oδ(1)

)
2(1 − √

α)L
√

δ
) ≤ ε1−√

α,

where α = l−pmin
l

∈ (0,1) denotes the relative deviation of l from pmin, and we
used the following equation of the Chebyshev polynomial evaluated at 1 + x for
x > 0:

TL(1 + x) = 1

2

((
1 + x −

√
x2 + 2x

)L + (
1 + x +

√
x2 + 2x

)L)

= 1

2
exp

((
1 + ox(1)

)
L

√
2x

)
.

To conclude, the bias of S̃ is at most

max
x∈[pmin,1] e

−nx
∣∣PL(x)

∣∣ ≤ Sε1−√
(1−pmin/l)∨0.
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By similar analysis to (44) and (45), the variance is at most O(Snc) for some
constant c < 1. �

5.2. Proofs of Theorems 1 and 2.

PROOF OF THEOREM 1. By the Markov inequality,

n∗(k, ε) > n ⇒ R∗(k, n) > 0.1k2ε2.

Therefore, our lower bound is

R∗(k, n) ≥ sup
{
0.1k2ε2 : n∗(k, ε) > n

} = 0.1k2ε2∗,

where ε∗ � {ε : n∗(k, ε) > n}. By the lower bound of n∗(k, ε) in (14), we obtain
that

ε∗ ≥ exp
(
−(√

2e + oδ(1) + oδ′(1) + ok(1)
)√n logk

k

)
,

as δ � n
k log k

→ 0, δ′ � k
n log k

→ 0, and k → ∞. Then we conclude the lower
bound part of (6), which implies the lower bound part of (5) when n� k log k.

For the lower bound part of (5) when n � k log k, we apply Le Cam’s two-point
method [23] by considering two possible distributions, namely P = Bern(0) and
Q = Bern(1

k
). Then

R∗(k, n) ≥ 1

4

(
S(P ) − S(Q)

)2 exp
(−nD(P ‖Q)

)

= k2

4
exp

(
n log

(
1 − 1

k

)
− 2 log k

)
.

Since n� k log k, we have n log(1 − 1
k
) − 2 logk �−n

k
.

Combining Lemma 1 and Proposition 3 yields the upper bound part of (6),
which also implies the upper bound of (5) when n � k logk. The upper bound
part of (5) when n� k log k follows from Proposition 2. �

PROOF OF THEOREM 2. The lower bound part of (10) follows from Proposi-
tion 1. Consequently, we obtain the lower bound part of (9) for 1

kc ≤ ε ≤ c0 for the
fixed constant c0 < 1/2, where c is some small constant.

The lower bound part of (9) for 1
k

≤ ε ≤ 1
kc simply follows from the fact that

ε �→ n∗(k, ε) is decreasing:

n∗(k, ε) ≥ n∗(
k,1/kc) � k log k � k

logk
log2 1

ε
.

By the Markov inequality,

(47) R∗(k, n) ≤ 0.1k2ε2 ⇒ n∗(k, ε) ≤ n.
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Therefore, our upper bound is

n∗(k, ε) ≤ inf
{
n : R∗(k, n) ≤ 0.1k2ε2}

.

By the upper bound of R∗(k, n) in (26), we obtain that

n∗(k, ε) ≤ 1 + oδ′(1) + oε(1) + ok(1)

κ

k

log k
log2 1

ε

as δ′ � log(1/ε)
logk

� 0, ε → 0, and k → ∞. Consequently, we obtain the upper bound

part of (9) when 1
kc ≤ ε ≤ c0 for the fixed constant c0 < 1/2, where c is some small

constant.
The upper bound part of Theorem 2 when 1

k
≤ ε ≤ 1

kc follows from the mono-
tonicity of ε �→ n∗(k, ε) that

n∗(k, ε) ≤ n∗(k,1/k) ≤ 3k logk � k

log k
log2 1

ε
,

where the middle inequality follows from Proposition 2 and (47). �

APPENDIX: DUAL PROGRAM OF (13)

Define the following infinite-dimensional linear program:

(48)

E∗
1 � supP

[
U ′ = 0

] − P[U = 0]
s.t. E[U ] = E

[
U ′] = 1

E
[
Uj ] = E

[
U ′j ]

, j = 1, . . . ,L + 1,

U,U ′ ∈ {0} ∪ I,

where I = [a, b] with b > a ≥ 1 and the variables are probability measures on I

(distributions of the random variables U,U ′). Then (13) is a special case of (48)
with I = [1, λ].

LEMMA 7. E∗
1 = infp∈PL

supx∈I | 1
x

− p(x)|.
PROOF. We first show that (13) coincides with the following optimization

problem:

(49)

E∗
2 � supE

[
1

X

]
−E

[
1

X′
]

s.t. E
[
Xj ] = E

[
X′j ]

, j = 1, . . . ,L,

X,X′ ∈ I.

Given any feasible solution U,U ′ to (13), construct X,X′ with the following dis-
tributions:

(50)
PX(dx) = xPU(dx),

PX′(dx) = xPU ′(dx),
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It is straightforward to verify that X,X′ are feasible for (49) and

E∗
2 ≥ E

[
1

X

]
−E

[
1

X′
]

= P
[
U ′ = 0

] − P[U = 0].
Therefore, E∗

2 ≥ E∗
1 .

On the other hand, given any feasible X,X′ for (49), construct U,U ′ with the
distributions:

(51)

PU(du) =
(

1 −E

[
1

X

])
δ0(du) + 1

u
PX(du),

PU ′(du) =
(

1 −E

[
1

X′
])

δ0(du) + 1

u
PX′(du),

which are well defined since X,X′ ≥ 1, and hence E[ 1
X

] ≤ 1,E[ 1
X′ ] ≤ 1. Then

U,U ′ are feasible for (13), and hence

E∗
1 ≥ P

[
U ′ = 0

] − P[U = 0] = E

[
1

X

]
−E

[
1

X′
]
.

Therefore, E∗
1 ≥ E∗

2 . Finally, the dual of (49) is precisely the best polynomial ap-
proximation problem (see, e.g., [43], Appendix E), and hence

E∗
1 = E∗

2 = inf
p∈PL

sup
x∈I

∣∣∣∣ 1

x
− p(x)

∣∣∣∣. �
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SUPPLEMENTARY MATERIAL

Supplementary material for “Chebyshev polynomials, moment matching
and optimal estimation of the unseen” (DOI: 10.1214/17-AOS1665SUPP; .pdf).
Due to space constraints, the technical proofs have been given in the supplementary
documents [44].
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