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Recommender systems have been widely adopted by electronic com-
merce and entertainment industries for individualized prediction and recom-
mendation, which benefit consumers and improve business intelligence. In
this article, we propose an innovative method, namely the recommendation
engine of multilayers (REM), for tensor recommender systems. The proposed
method utilizes the structure of a tensor response to integrate information
from multiple modes, and creates an additional layer of nested latent factors
to accommodate between-subjects dependency. One major advantage is that
the proposed method is able to address the “cold-start” issue in the absence of
information from new customers, new products or new contexts. Specifically,
it provides more effective recommendations through sub-group information.
To achieve scalable computation, we develop a new algorithm for the pro-
posed method, which incorporates a maximum block improvement strategy
into the cyclic blockwise-coordinate-descent algorithm. In theory, we inves-
tigate algorithmic properties for convergence from an arbitrary initial point
and local convergence, along with the asymptotic consistency of estimated
parameters. Finally, the proposed method is applied in simulations and IRI
marketing data with 116 million observations of product sales. Numerical
studies demonstrate that the proposed method outperforms existing competi-
tors in the literature.

1. Introduction. Recommender systems have become very important in daily
life due to high demand from the entertainment industry and business marketing
which produce large amounts of data. In addition, applications of recommender
systems have been greatly facilitated by the advancement of statistical and ma-
chine learning techniques. These applications include personalized marketing for
internet users, merchandise recommendation for retail stores and even individual-
ized gene therapies. Each application involves collecting a wide variety of infor-
mation, and successful exploitation of such rich information leads to more accurate
recommendations. However, this also imposes unprecedented challenges to tradi-
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tional methods due to the large size and complex structure of data. Therefore, more
general and integrative recommender systems are urgently needed.

The tensor, also called multidimensional array, is well recognized as a pow-
erful tool to represent complex and unstructured data [49]. It is applied in many
areas such as signal processing, neuroimaging and psychometrics (e.g., [25, 26,
29]). In recommender systems, the tensor shows its flexibility to accommodate
contextual information, and is also regarded as one of the most effective tools
for developing context-aware recommender systems (CARS; [1, 2]). In addition
to user and item information from traditional recommender systems, tensor-based
recommender systems also take the effect of contextual variables into account,
such as time, location, users’ companions, stores’ promotion strategies, other rele-
vant variables or any combinations thereof. Hence, CARS are capable of utilizing
more information and provide more accurate recommendations [7, 41, 43].

Nevertheless, applying the tensor effectively to CARS remains a challeng-
ing problem. In matrix recommender systems, the singular value decomposition
(SVD) method provides the best low-rank approximation, and is known to be ar-
guably the most effective single procedure [16, 30]. In contrast, the SVD for tensor
has more than one definition, and neither of the tensor decompositions inherits all
of the desirable properties of a matrix SVD. This imposes a great challenge to
generalize matrix decomposition to the tensor framework [48].

One common approach to utilize the tensor structure is to apply latent factor
models, where each user, item or context is assigned an individual latent factor to
represent their characteristics quantitatively. Existing methods include, but are not
limited to, the factor model with temporal dynamics [21] and the Bayesian prob-
abilistic tensor factorization method [47], both of which treat time as a contextual
variable. Furthermore, the factorization machine [31, 36, 37] models interactions
of all possible pairs of variables, while the multiverse recommendation method ap-
plies Tucker decomposition [19]. Other existing methods for CARS include con-
textual pre- or post-filtering [28, 34].

However, several key issues have not been solved completely. The first is the
“cold-start” problem, where available information is not sufficient to provide valid
predictions for new users, items or contexts (in the rest of this paper, we use “sub-
ject” to denote a user, an item or a context in general). For instance, in latent factor
modeling, a latent factor is not estimable if a subject is not available in the training
set. The subject’s utilities can only be predicted through the average information
from other subjects, which may lead to low prediction accuracy. Several solutions
have been proposed for the traditional matrix recommendation techniques, for ex-
ample, imputing pseudo ratings [18], supplementing artificial users and items [35],
incorporating content-boosted information [17, 30] or utilizing group information
for new subjects [6]. Nevertheless, the “cold-start” problem under CARS is quite
challenging and has not been well investigated. One reason is that in addition to
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new users and new items, information on new contexts could be insufficiently col-
lected as well. For example, viewers may have different movie-watching experi-
ences with new friends or at a new theater [12], and stores’ sales volumes may
vary under a new promotion strategy.

Another critical issue involves solving the higher-order tensors (beyond the
third-order) problem. Higher-order tensors are very useful, because we might be
interested in integrating more than one contextual variable to fully utilize their
subject-specific information. For example, when recommending a new destination
to travelers, one has to consider several factors, for example, the timing and the
cost of the trip, and the crowdedness of the destination, in addition to travelers’
travel interests. While some existing methods provide a general methodology on
high-order tensors (e.g., [19]), the implementation of higher-order tensors could be
challenging. One obstacle is the high computational cost. Another obstacle is that
higher-order tensors could result in higher missing rates due to fewer observations
at each combination of contextual variables; and this could lead to nonconvergence
in computing for some existing methods. One possible solution is to choose only
one special contextual variable in the tensor, and treat the rest of the contextual
variables as linear covariates (e.g., [21, 47]). However, this may lead to loss of
information on subject-specific or group-wise interaction.

In this paper, we propose a novel tensor factorization method, namely the rec-
ommendation engine of multilayers (REM). Specifically, we assume a tensor struc-
ture where each mode corresponds to user, item or a contextual variable, and each
element of the tensor represents a utility, such as a rating or sales volume. The nov-
elty of our method is that we add another layer which categorizes users, items and
contexts into the same subgroups if they share similar characteristics. We quantify
subgroup effects as random effects [23, 45] through nested-factors modeling, in
addition to latent factors in the tensor factorization. Theoretically, we demonstrate
the algorithmic properties of the proposed method, which converges to a station-
ary point from an arbitrary initial point, and local convergence to a local minimum
with a linear convergence rate. The estimated parameter achieves asymptotic con-
sistency under the L2-loss function and other more general circumstances.

The proposed tensor factorization method has two significant advantages. First,
it solves the “cold-start” problem effectively. For a new subject, even if its latent
factors are not available, the nested factors from the corresponding subgroups can
provide a group-specific estimate, which is more accurate than the average of the
available observations. This finding is also supported by simulation studies where
the proposed method is more effective than competing tensor factorization meth-
ods when the proportion of new subjects is high.

Second, the proposed method is able to accommodate high-order tensors. The
difficulty of applying high-order tensors is solved by the proposed nested factors
which utilize group-wise information, and hence are more robust to a higher miss-
ing rate. In addition, we propose a new algorithm that incorporates the maximum
block improvement [9] into the cyclic blockwise-coordinate-descent algorithm.
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This avoids the direct operation of large-scale tensors, and makes the estimation of
high-order tensors feasible. Furthermore, a parallel computing strategy is imple-
mented to calculate latent factors and nested factors for each subject and subgroup,
respectively, which provides scalable and efficient computation.

The rest of this paper is organized as follows. Section 2 provides the back-
ground of the tensor factorization and the framework for the context-aware recom-
mender systems. Section 3 introduces the proposed method and algorithm. The-
oretical properties are derived in Section 4. Section 5 presents simulation studies
to validate the performance of the proposed method. In Section 6, we apply the
proposed method to IRI marketing data. Section 7 concludes with a discussion.

2. Preparations.

2.1. Notation and tensor background. In this subsection, we provide the back-
ground of the tensor, and introduce the notation for the proposed method.

We define a dth order tensor Y ∈ R
n1×···×nd as a d-dimensional array, where

each order is also called a mode. In the rest of this article, bold capital letters
denote tensors, capital letters denote matrices, bold small letters denote vectors
and small letters denote scalars.

In contrast to the singular value decomposition for a matrix, the rank and the
bases of a tensor cannot be obtained simultaneously. Two different decompositions
are commonly adopted. One is the high-order singular value decomposition, which
decomposes a tensor into a dth order core tensor associated with d orthonormal
matrices. This decomposition provides a basis at each mode. However, the core
tensor is usually nondiagonal, and the tensor rank is not estimable through high-
order singular value decomposition. An alternative choice of decomposition is the
Canonical Polyadic Decomposition (CPD), where a tensor is represented as a sum
of r rank-1 tensors. That is,

(2.1) Y ≈
r∑

j=1

p1·j ◦ p2·j ◦ · · · ◦ pd·j ,

where ◦ represents the vector outer product, and pk·j , j = 1, . . . , r , are nk-dimen-
sional vectors corresponding to the kth mode. Here, r is called the rank of Y if the
number of terms r is minimal. Equivalently, for each element of Y, we have

(2.2) yi1i2···id ≈
r∑

j=1

p1
i1j

p2
i2j

· · ·pd
idj .

In the context of recommender systems, the tensor decomposition technique is
geared toward the interpretation of intrinsic data variation. Therefore, we employ
the CPD because the rank of a tensor corresponding to the number of latent factors
is more important than the orthonormality. For other properties of a tensor, see [20]
for an extensive review.
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2.2. Context-aware recommender systems. In this subsection, we briefly re-
view the tensor application to recommender systems, namely context-aware rec-
ommender systems (CARS). See also [2] for a comprehensive review of CARS.

Consider a dth order tensor (d ≥ 3) with the first two modes corresponding to
user and item and the other (d − 2) modes corresponding to contextual variables.
Let nk (k = 1, . . . , d) be the number of subjects for the kth mode, that is, n1 is the
number of users, n2 is the number of items and n3, . . . , nd are the number of con-
texts for the (d − 2) contextual variables, respectively. For the CPD representation
in (2.1), let P k = (pk·1, . . . ,pk·r )nk×r , where each row of P 1 or P 2 represents the
r-dimensional latent factors for each user or item, and rows of P 3, . . . ,P d are the
latent factors for the contextual variables, respectively. In the rest of this article,
we use pk

ik
to represent the ik th row of P k , in contrast to pk·j being the j th column

of P k . Each element of Y is defined as a utility, for example, a rating, a purchase
or a sales volume, and is estimated via (2.2) in CPD. Here, the orthonormality for
the latent factors is not required, and each utility yi1i2···id comprises user-, item-
and context-specific information. In addition, the CPD requires estimation of only∑d

k=1 nkr parameters, which essentially performs a tensor dimension reduction
procedure.

In many applications, we may have a nonnegative tensor Y. Methods for non-
negative CPD are proposed to address this issue (e.g., [3, 10, 32, 46]), as such
decompositions make results meaningful and interpretable. In recommender sys-
tem problems, however, the direct interpretation of latent factors is less critical, as
the relative scale or ranking is important for recommendation. Most importantly,
improving prediction accuracy is the ultimate goal of a good recommender system
for users. Therefore, nonnegativity is not required here. Technically, we can always
standardize Y prior to analysis. In addition, nonnegative CPDs usually entail non-
negative latent factors, which might restrict the parameter space to the nonnegative
orthant. In the proposed framework, an unbounded parameter space allows more
flexibility for extensive search, which may lead to a more satisfactory convergence
result.

The most common loss function is the L2-loss, which is computationally effi-
cient. Theoretical properties of other loss functions are also considered (e.g., [42,
51]). Let � = {(i1, i2, . . . , id) : yi1i2···id is observed} be a set of indices correspond-
ing to observed utilities, and |�| represent the sample size. Since the number of
available observations for each subject might be smaller than the number of latent
factors r , we adopt a penalty function using regularization. For example, when the
L2-penalty is applied, we have

L
(
P 1, . . . ,P d |Y) = ∑

(i1,...,id )∈�

(yi1···id − ŷi1···id )2 + λ

d∑
k=1

∥∥P k
∥∥2
F ,

where ŷi1···id = ∑r
j=1 p1

i1j
· · ·pd

idj is the estimated utility provided by (2.2), and
‖ · ‖F represents the Frobenius norm. Other regularization methods include, but
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are not limited to, the trend filtering penalty when d = 3 [47], and the L0- and
L1-penalty for sparse low-rank pursuit when d = 2 [51].

Algorithms for implementing the CPD include the cyclic coordinate descent al-
gorithm, and the stochastic gradient descent method. Alternatively, [9] propose a
maximum block improvement algorithm that only updates the block with the max-
imum improvement in each iteration instead of updating each block cyclically.
This strategy guarantees convergence to a stationary point, and ensures a fast con-
vergence rate in many circumstances.

3. A multilayer method.

3.1. General methodology. In this section, we develop the methodology for
the proposed REM method. Specifically, we adopt the idea of nested factors from
the design of experiments to capture between-subject dependency under the CPD
framework (2.1).

We assume that subjects can be categorized into subgroups, where subjects
within the same subgroup share similar characteristics and are dependent on each
other. For subgrouping, we can incorporate prior information such as users’ demo-
graphic information, item categories and functionality, and contextual similarity.
If this kind of information is not available, one can utilize the missing pattern of
the tensor data, or the number of records from each user and on each item [38].
As shown in [16], implicit information from the number of records may reflect
subjects’ behavior that is not available elsewhere, and can help improve recom-
mendation accuracy. In more general situations, clustering methods such as the
k-means can be applied to determine the subgroups. See [44] and [15] on robust
approaches to select the number of subgroups.

Suppose the subgroup labels are given, then we formulate each utility as fol-
lows:

(3.1) ŷi1i2···id =
r∑

j=1

(
p1

i1j
+ q1

i1j

)(
p2

i2j
+ q2

i2j

) · · · (pd
idj + qd

idj

)
,

where pk
ikj

is the j th latent factor for the ik th subject from the kth mode, and qk
ikj

is the corresponding nested factor, j = 1, . . . , r , ik = 1, . . . , nk and k = 1, . . . , d .
We define the nk × r-dimensional matrix Qk similar to P k as in Section 2.2. No-
tice that we have qk

ik
= qk

i′k
if subjects ik and i′k are from the same subgroup. We

assume that the number of subgroups for the kth mode is mk , which corresponds
to mk unique values for qk

ikj
. We use qk

(uk)
occasionally to denote the nested factor

associated with the subgroup uk , uk = 1, . . . ,mk .
Let P = ((P 1)′, . . . , (P d)′)′ and Q = ((Q1)′, . . . , (Qd)′)′ represent all param-

eters of interest. We define L(P,Q|Y) = L(P 1, . . . ,P d,Q1, . . . ,Qd |Y) as the
overall criterion function:

(3.2) L(P,Q|Y) = ∑
(i1,...,id )∈�

(yi1···id − ŷi1···id )2 + λ
(‖P‖2

F + ‖Q‖2
F

)
,
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where ŷi1···id is represented by (3.1) and λ is the penalization coefficient. Here,
we adopt the most commonly used L2-loss and L2-penalty for efficient compu-
tation, although other types of loss and penalty functions are also applicable. For
example, one may consider the hinge loss or the ψ-loss [40] for classification, and
the absolute loss or Huber loss to achieve robust estimation. Meanwhile, if prior
knowledge of the latent and nested factors is available, for example, regarding
sparsity or smoothness, then appropriate regularization methods can be applied.

3.2. Parameter training. In the following, we discuss how the model parame-
ters are estimated. Mainly, we are interested in finding a solution (P̂ , Q̂) aiming at
minimizing L(P,Q|Y). Let �k

ik
= {(i1, . . . , ik, . . . , id) : yi1···ik ···id is observed} be

the set of indices where the kth mode index equals ik and the corresponding utili-
ties are observed; namely |�k

ik
| denotes the number of observations for subject ik .

Let Ik
(uk)

be the set of subjects in the subgroup uk , uk = 1, . . . ,mk . We assume that

|Ik
(uk)

| ≥ 2 for each uk .
For each mode of the tensor, the partial derivatives of L(·|Y) have explicit forms

with respect to the latent factors or the nested factors, which makes it feasible to
apply the blockwise coordinate descent approach. That is,

(3.3) p̂k
ik

= arg min
pk

ik

∑
�k

ik

(yi1···id − ŷi1···id )2 + λ
∥∥pk

ik

∥∥2
2,

for ik = 1, . . . , nk , and

(3.4) q̂k
(uk)

= arg min
qk

(uk)

∑
ik∈Ik

uk

∑
�k

ik

(yi1···id − ŷi1···id )2 + λ
∥∥qk

(uk)

∥∥2
2,

for uk = 1, . . . ,mk , and k = 1, . . . , d .
The estimation procedure of p̂k

ik
in (3.3) is a ridge regression, and does not re-

quire knowing p̂k
i′k

for i′k 	= ik . Thus, parallel computation is applicable to calculate

p̂k
1, . . . , p̂k

nk
efficiently. This strategy is also applicable to obtaining the q̂k

(uk)
’s in

(3.4). Therefore, the minimization of L(P,Q|Y) can be done cyclically through
estimating P and Q.

Notice that � = ⋃nk

ik=1 �k
ik

, and it is possible that �k
ik

is empty for certain ik’s,
that is, there is no observation on subject ik , as in the case of the “cold-start”
problem. Under this circumstance, the latent factor of ik is not estimable, and is
assigned as pk

ik
= 0. The predicted values calculated by existing methods may de-

generate to the grand mean or subjects’ main effects. In contrast, the proposed
method utilizes the nested factor qk

(uk)
, which borrows information from members

of the same subgroup. Thus, even for a new subject, the predicted values calculated
by (3.1) retain information from other modes, and hence achieve better prediction
accuracy.
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3.3. Algorithm. In contrast to matrix factorization, a tensor decomposition
usually entails high computational cost, and hence many algorithms feasible for
a matrix may not be scalable for tensor decomposition. For example, it is nearly
impossible to embed the back-fitting algorithm into the maximum block improve-
ment (MBI) for tensor data. First, the number of parameters and sample size for
a tensor decomposition could be much greater than its matrix counterpart, which
makes the computation of the MBI more intensive. Second, since the number of
blocks increases significantly, the MBI algorithm may never update certain blocks
due to small improvements along these directions, which leads to the estimated
values corresponding to these blocks remaining the same as the initial values. To
solve these problems, we propose a two-step algorithm, which estimates the latent-
factors matrix P̂ and the nested-factors matrix Q̂ iteratively. Within the estimation
of each matrix, we apply the MBI algorithm to find the optimal block direction
with the largest improvement of estimations.

Specifically, we propose the following algorithm aiming at minimizing (3.2).
Let (Ps,Qs) denote the estimated (P,Q) at the sth iteration, then the improvement
of estimations for updating the kth mode is defined as

(3.5) I k
s = 1 − L(P 1

s−1, . . . ,P
k−1
s−1 ,P k∗,P k+1

s−1 , . . . ,P d
s−1,Qs−1|Y)

L(Ps−1,Qs−1|Y)
,

and

(3.6) J k
s = 1 − L(Ps−1,Q

1
s−1, . . . ,Q

k−1
s−1,Qk∗,Qk+1

s−1, . . . ,Qd
s−1|Y)

L(Ps−1,Qs−1|Y)
,

where P k∗ and Qk∗ are the attempted updates for the kth mode, k = 1, . . . , d .
One advantage of the proposed algorithm is that it requires small memory stor-

age. Note that at each iteration, only one subject’s information is required to es-
timate p̂k

ik
and one sub-group’s information is required to estimate q̂k

(uk)
. Further-

more, the computational complexity of the proposed algorithm is no greater than
2dnitercridge, where niter is the number of iterations and cridge is the complexity of
the ridge regression. In addition, since the MBI algorithm does not update blocks
cyclically, it is able to discover and utilize “shortcuts” in optimization, which may
significantly reduce the number of iterations.

3.4. Implementation. In this subsection, we address several implementation
issues. In general, we split the data into a 50% training set, a 25% validation set
and a 25% testing set, randomly. The tuning parameter λ is selected to minimize
the root mean square error (RMSE) on the validation set, where the RMSE on a

set � is defined as
√

1
|�|

∑
�(yi1···id − ŷi1···id )2. To improve prediction, we could

specify λ differently for each row of P and Q. In our numerical study, we use λ

uniformly for the latent factors in P , but use λk
(uk)

= λ/|Ik
(uk)

| for each subgroup
uk to penalize each parameter equally. Furthermore, we need to choose the number
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of latent factors r . In general, r is no smaller than the theoretical rank of the tensor
in order to represent subjects’ characteristics sufficiently well. However, a large r

may lead to intensive computation and possible nonconvergence of algorithms.
Moreover, it is important to determine which contextual variables should be in-

tegrated in the tensor. In Section 5.2, we demonstrate that if the true tensor is of
high-order, then assuming a low-order tensor structure may lead to a loss of infor-
mation. That is, it is important to include key contextual variables in the tensor. On
the other hand, applying a high-order tensor to formulate a low-order problem is
unnecessary and may entail extra computational cost. In practice, we assume that
the order of a tensor can be judged from prior knowledge. We acknowledge that
determining the order of a tensor remains an open problem.

4. Theoretical properties. This section develops theoretical properties for
the proposed method. Our contributions are mainly on two aspects. One is on the
convergence properties of the proposed algorithm, which converges to a stationary
point from an arbitrary initial point, and local convergence to a local minimum (or
a global minimum, if one exists) with linear convergence rate. The other contri-
bution is on the statistical properties. We prove the asymptotic consistency of the
estimated parameter under L2 loss and more general criterion functions.

One well-known critical issue is the discrepancy between the algorithmic and
statistical properties (e.g., [6, 51]). In some existing works, the statistical frame-
work may require the estimated parameter to be a global minimizer, which might
not be existent or attainable.

Our theoretical development, nevertheless, bridges this gap from two aspects.
First and foremost, we relax the strict condition such that a global minimizer is no
longer required to establish statistical properties, as long as the criterion function
converges to its infimum asymptotically. Second, we provide technical solutions
on finding possible global minima or satisfactory local minima, with additional
computational cost.

4.1. Identifiability. Identifiability is critical for tensor representations. For rec-
ommender systems, although having identifiable latent factors does not improve
prediction accuracy, it could still be important for algorithmic convergence which
may lead to favorable statistical properties. Here, we provide sufficient conditions
to achieve identifiable latent factors prior to establishing theoretical properties.

In the proposed framework, unidentifiability is attributed to four aspects. The
first three aspects are elementary indeterminacies of scaling, permutation and ad-
dition, whereas the last one is the so-called nonuniqueness of the CPD with more
than one possible combination of rank-one tensors sum to Y after controlling for
the three elementary indeterminacies [20].

Let B = ((B1)′, . . . , (Bd)′)′ where Bk = P k + Qk , k = 1, . . . , d . The scaling
indeterminacy refers to nonuniqueness with respect to a scale change of each col-
umn vector of Bk . That is, for d diagonal scaling matrices �k = diag(γ k

1 , . . . , γ k
r ),
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k = 1, . . . , d , we have B̃ = ((B1�1)′, . . . , (Bd�d)′)′ such that
∏d

k=1 γ k
j = 1 for

j = 1, . . . , r . The permutation indeterminacy comes from an arbitrary r × r per-
mutation matrix �, such that B̃ = ((B1�)′, . . . , (Bd�)′)′. In addition to scaling
and permutation, the proposed tensor representation may suffer from the addi-
tion indeterminacy, that is, for arbitrary nk × r matrix �k , P̃ k = P k + �k and
Q̃k = Qk − �k .

As a special case of d = 2, the elementary indeterminacy reduces to the nonsin-
gular transformation indeterminacy for a matrix. Specifically, for a r × r nonsingu-
lar matrix ϒ , B̃1 = B1ϒ and B̃2 = B2(ϒ−1)′. Nevertheless, this issue can always
be solved by the singular value decomposition, which imposes orthonormality to
column vectors. Therefore, we focus our attention on higher-order tensors with
d ≥ 3, although some of the results continue to hold for a matrix.

LEMMA 4.1. Predicted values given by (3.1) are invariant with respect to
scaling, permutation and addition indeterminacies.

The proof is straightforward by applying the aforementioned definition of scal-
ing, permutation and addition indeterminacies to (3.1), and is hence skipped. We
introduce the concept of k-rank, which is the Kruskal rank introduced in [22].
Specifically, for a matrix A, the k-rank of A is

KA = max{k : any k columns of A are linearly independent}.
PROPOSITION 4.1. Suppose

∑d
k=1 KBk ≥ 2r + (d − 1). Minimizers of

L(P,Q|Y) in P and Q are unique up to permutation almost surely.

The above condition
∑d

k=1 KBk ≥ 2r + (d − 1) is not strong. In numerical stud-
ies, factors in (P k + Qk) are usually linearly independent, and hence we have
KBk = r . Then this condition reduces to r ≥ 1 + 1/(d − 2) for d ≥ 3, which is
achievable even for low-rank high-order tensors.

As shown in Proposition 4.1, the issue of scaling and addition indeterminacies
is resolved almost surely through penalization imposed on L(P,Q|Y). To treat
the permutation indeterminacy, we rearrange r column vectors (pk·1 + qk·1,pk·2 +
qk·2, . . . ,pk·r + qk·r ) for each mode such that

d∑
k=1

∥∥pk·1 + qk·1
∥∥2

2 ≥
d∑

k=1

∥∥pk·2 + qk·2
∥∥2

2 ≥ · · · ≥
d∑

k=1

∥∥pk·r + qk·r
∥∥2

2,

which is analogous to imposing a descending order of eigenvalues as in matrix
decomposition. The rearrangement of column vectors can be implemented during
or after the proposed algorithm, since it does not affect the estimation procedure.
We acknowledge that the above choice is arbitrary. One may carry out other rear-
rangements. For example, [50] suggest imposing ordering based on the first ele-
ment rather than the vector norm. Alternatively, one may utilize prior knowledge if
available. In the rest of Section 4, we assume that parameter (P,Q) is identifiable.
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4.2. Algorithmic properties.

4.2.1. Convergence with an arbitrary initial point. This subsection investi-
gates the convergence property of the proposed algorithm in terms of (P,Q) from
an arbitrary initial point. We first establish the property in a compact parameter
space and then generalize it to an unbounded open parameter space with extra
conditions.

Let D ⊂ R
2r

∑d
k=1 nk be the parameter space of (P,Q). Then (P̃ , Q̃) ∈ D is

called a blockwise local minimizer of L(·|Y) if

P̃ k = arg min
P k

L
(
P̃ 1, . . . , P̃ k−1,P k, P̃ k+1, . . . , P̃ d, Q̃1, . . . , Q̃d |Y)

,

and

Q̃k = arg min
Qk

L
(
P̃ 1, . . . , P̃ d, Q̃1, . . . , Q̃k−1,Qk, Q̃k+1, . . . , Q̃d |Y)

,

which is equivalent to a local minimizer along each block direction. In the rest of
Section 4.2, we consider the criterion function L(·|Y) as defined in (3.2).

LEMMA 4.2. Suppose D is compact, and the iterates obtained from Algo-
rithm 1 have a cluster point (P̃ , Q̃). Then (P̃ , Q̃) is a blockwise local minimizer
of the criterion function L(·|Y).

Algorithm 1 A two-step algorithm with parallel computing
1. (Initialization) Input all observed yi1···id ’s, the rank r , the tuning parameter λ,

initial value (P0,Q0) and a stopping criterion ε = 10−4.
2. (Latent-factors update) At the sth iteration (s ≥ 1), estimate Ps .

(i) For each P k , solve (3.3) through parallel computing and obtain P k∗ =
(p̂k

1, . . . , p̂k
nk

)′. Calculate I k
s through (3.5).

(ii) Assign P
k0
s ← P k0∗, if I

k0
s = max{I 1

s , . . . , I d
s }.

3. (Nested-factors update) At the sth iteration (s ≥ 1), estimate Qs .
(i) For each Qk , solve (3.4) through parallel computing and obtain Qk∗ =

(q̂k
1, . . . , q̂k

nk
)′. Calculate J k

s through (3.6).

(ii) Assign Q
k0
s ← Qk0∗, if J

k0
s = max{J 1

s , . . . , J d
s }.

4. (Stopping Criterion) Stop if

max
{
I 1
s , . . . , I d

s , J 1
s , . . . , J d

s

}
< ε.

Set (P̂ 1, . . . , P̂ d , Q̂1, . . . , Q̂d) = (P 1
s , . . . ,P d

s ,Q1
s , . . . ,Q

d
s ).

Otherwise set s ← s + 1 and go to step 2.
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In the following, we assume that D is open. We consider L(·|Y) at each of its
block coordinates. Let

Lk(P k) = L
(
P k|Y,P (−k),Q

)
and Lk+d(

Qk) = L
(
Qk|Y,P ,Q(−k))

be L(P,Q|Y) given (P (−k),Q) and (P,Q(−k)), respectively, where X(−k) =
(X1, . . . ,Xk−1,Xk+1, . . . ,Xd) for X = P or Q, k = 1, . . . , d . Then Assumption
4.1 implies that the improvement on (P k)’s or (Qk)’s is not dominated by each
other.

ASSUMPTION 4.1. Let {(Ps,Qs)}s≥1 be a sequence of estimated parameters
generated by Algorithm 1, where s represents the sth iteration. Then

O
(

max
k=1,...,d

∥∥∇Lk(P k
s

)∥∥
F

)
∼ O

(
max

k=1,...,d

∥∥∇Lk+d(
Qk

s

)∥∥
F

)
.

Furthermore, let H(Lk) be the Hessian matrix of Lk(·), k = 1, . . . ,2d . We as-
sume that ‖H(Lk)‖2 ≤ ζ k , where the constant ζ k > 0 is bounded above and may
depend on all block coordinates of L(·|Y) except the kth block. The following
proposition leads to the convergence to a blockwise local minimizer.

PROPOSITION 4.2. Suppose D is open and Assumption 4.1 holds. Let
‖H(Lk)‖2 ≤ ζ k for k = 1, . . . ,2d . Then the sequence {(Ps,Qs)}s≥1 obtained from
Algorithm 1 converges to a blockwise local minimizer of the criterion function
L(P,Q|Y).

Notice that, since the parameter space is open, a blockwise local minimizer
satisfies ∇L = 0, and hence is a special case of a stationary point.

4.2.2. Local convergence. In this subsection, we provide the local conver-
gence property of Algorithm 1. Specifically, we follow [27] and show that Al-
gorithm 1 converges to a local minimum at the linear rate, provided that an initial
value is sufficiently close to the local minimizer. Moreover, the same property ap-
plies to a global minimum if it exists.

Let (P̃ , Q̃) be a local minimizer of L(P,Q|Y), and H̃ = H(L(P̃ , Q̃|Y)) be the
Hessian matrix at (P̃ , Q̃). We define the energy norm based on H̃ as ‖(P,Q)‖E =
〈vec(P,Q), H̃vec(P,Q)〉1/2.

PROPOSITION 4.3. Suppose D is open, and let (P̃ , Q̃) ∈ D be a strict lo-
cal minimizer of L(P,Q|Y). For a small neighborhood V of (P̃ , Q̃), suppose
(Ps0,Qs0) ∈ V for some s0 ≥ 0. Then a sequence {(Ps,Qs)}s≥s0 ⊂ V obtained
from Algorithm 1 exists, and converges to (P̃ , Q̃) at least linearly in the energy
norm. That is, there exists μ ∈ [0,1), such that∥∥(Ps+1,Qs+1) − (P̃ , Q̃)

∥∥
E ≤ μ

∥∥(Ps,Qs) − (P̃ , Q̃)
∥∥
E.
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Suppose the tolerance error of Algorithm 1 is ε, and s0 = 0. Then the number
of iterations has an upper bound:

niter ∼ O
({

log ε − log
∥∥(P0,Q0) − (P̃ , Q̃)

∥∥
E

}
/ logμ

)
.

Several methods are available to obtain a good initial value. One suggestion is
to increase the sample size |�| [4, 49]. For an n1 × · · · × nd -dimensional tensor,
the sample size can potentially reach |�| = n1 · · ·nd , while the number of param-
eters is r

∑d
k=1 nk . Since each step of the algorithm is a ridge regression, a larger

sample size leads to more accurate estimation. However, sample size is not the
only determinant. As discussed in [13] and [20], there does not exist a best rank-r
approximation for high-order tensors in general. Alternatively, one could employ
the branch-and-bound technique [11, 24], or utilize multiple random start points.
These techniques could result in a satisfactory local minimum if computational
capacity allows.

Since the parameter space is open, a global minimum is also a local minimum
if it exists. Therefore, Proposition 4.3 applies if an initial value is in a small neigh-
borhood of the global minimum.

COROLLARY 4.1. Suppose D is open, and that a global minimizer (P̃ , Q̃)

of L(P,Q|Y) exists. Let H̃ be positive definite. For a small neighborhood V of
(P̃ , Q̃), suppose (Ps0,Qs0) ∈ V for some s0 ≥ 0, then a sequence {(Ps,Qs)}s≥s0 ⊂
V obtained from Algorithm 1 exists, and converges at least linearly to (P̃ , Q̃) in
the energy norm. That is, there exists μ ∈ [0,1), such that∥∥(Ps+1,Qs+1) − (P̃ , Q̃)

∥∥
E ≤ μ

∥∥(Ps,Qs) − (P̃ , Q̃)
∥∥
E.

The proof is a straightforward exercise of Proposition 4.3 given that ∇L = 0 and
H̃ is positive. Nevertheless, the existence of a global minimum is not guaranteed.
For instance, as demonstrated in [33] and [13], a tensor might be approximated
arbitrarily well by lower-rank tensors. De Silva and Lim (2008) also demonstrate
that the best rank-r approximation problem could be ill-posed: for tensors with
some rank r in certain tensor spaces, there is a strictly positive probability that a
global minimum cannot be obtained. For the recommender system framework, this
issue is further complicated since a large proportion of tensor entries is missing.
In the proposed setting, however, the criterion function L(·|Y) is always bounded
below by zero. Therefore, even if a global minimum does not exist, we can still
minimize L(·|Y) such that it is sufficiently close to its infimum.

4.3. Asymptotic properties. In this subsection, we derive asymptotic proper-
ties for the proposed method. Specifically, we prove consistency of estimated pa-
rameters when the sample size goes to infinity. The result holds true under the
L2-loss, or more general loss functions with additional smoothness conditions. As
illustrated in the previous section, the global minimum of the criterion function
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may not exist, but the criterion function is bounded below by zero. We demon-
strate that our asymptotic properties still hold even if the estimated parameter is
not a global minimizer, as long as the criterion function converges to its infimum.

4.3.1. Consistency under the L2-loss. In this section, we focus on the asymp-
totic properties of the predicted values instead of the latent and nested factors
(P,Q), since prediction accuracy instead of parameter estimation is the primary
concern.

For this purpose, we redefine the parameter space. Suppose Y is a dth order
tensor with dimension n1 × · · · × nd . Let Y = � + E , where � = E(Y) is our
primary interest, and E is an n1 × · · · × nd -dimensional random error. We assume
that E has i.i.d. elements with mean 0, variance σ 2 and a finite moment generating
function at an open interval containing 0. For an arbitrary element yi1i2···id of Y,
the L2-loss function is

l(�, yi1i2···id ) = (yi1i2···id − θi1i2···id )2,

where θi1i2···id = ∑r
j=1(p

1
i1j

+q1
i1j

)(p2
i2j

+q2
i2j

) · · · (pd
idj +qd

idj ) is the correspond-
ing element in � and is a function of P and Q. Notice that each l(�, yi1i2···id ) re-
lies on � only through θi1i2···id . Since, in practice, the utilities are usually nonneg-
ative and finite, we assume that ‖(P,Q)‖∞ ≤ c0, where c0 is a positive constant.
Let J (�) be a nonnegative penalty function. Then the overall criterion function is
redefined as

(4.1) L(�|Y) = ∑
(i1,...,id )∈�

l(�, yi1i2···id ) + λ|�|J (�) for � ∈ S,

where λ|�| is the penalization coefficient and S ⊆ R
n1×···×nd is the parameter

space for �.
Let �0 be the unique true parameter. We assume that �̂|�| is a sample estimator

of �0 satisfying

(4.2) L(�̂|�||Y) ≤ inf
�∈S L(�|Y) + τ|�|,

where lim|�|→∞ τ|�| = 0. Note that �̂|�| is identifiable by Proposition 4.1. Con-
dition (4.2) implies that �̂|�| converges to a global minimizer of L(�|Y) as
|�| → ∞. However, the verification of (4.2) could still be challenging in that
L is nonconvex in � given missing values associated with Y. Nevertheless, for
a finite sample, condition (4.2) does not impose any restrictions on the existence
of a global minimum, and �̂|�| is not required to be a global minimizer even if
one exists. In practice, one could use a good initial point to sufficiently reduce the
value of L, as discussed in Section 4.2.2, which would lead to more satisfactory
numerical results.
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Let l�(�|·) = l(�, ·) − l(�0, ·) be the loss difference, and

(4.3) K(�0,�) = 1

n1 · · ·nd

n1∑
i1=1

· · ·
nd∑

id=1

E
{
l�(�, yi1i2···id )

}

be the expected loss difference. Since �0 is the unique true parameter, we have
K(�0,�) ≥ 0 for all � ∈ S and K = 0 only if � = �0. We define the distance
between � and �0 as ρ(�0,�) = K1/2(�0,�), and let

(4.4) V (�0,�) = 1

n1 · · ·nd

n1∑
i1=1

· · ·
nd∑

id=1

Var
{
l�(�, yi1i2···id )

}
.

Then, under the L2-loss, we have K(�0,�) = 1
n1···nd

‖�0 −�‖2 and V (�0,�) =
4σ 2

n1···nd
‖�0 − �‖2, where ‖ · ‖ stands for the Euclidean norm of the vectorized

tensor.

THEOREM 4.1. Suppose �̂|�| is a sample estimator satisfying (4.2). Then we
have

P
(
ρ(�̂|�|,�0) ≥ η|�|

) ≤ 7 exp
(−c1|�|η2|�|

)
,

where c1 ≥ 0 is a constant, η|�| = max(ε|�|, λ1/2
|�| ), and ε|�| ∼ 1

|�|1/2 is the best

possible rate achieved when λ|�| ∼ ε2|�|.

Theorem 1 states that if the penalty term shrinks to zero at a rate no slower than
the rate ε2|�| as the sample size tends to infinity, then the proposed method can

achieve the convergence rate of 1
|�|1/2 , the same rate as the maximum likelihood

estimator. In addition, the development of the convergence rate is under the L2
distance, which, as a special case of the Kullback–Leiber information, is stronger
than the commonly used Hellinger distance [39].

4.3.2. General asymptotic properties. Next, we develop the estimation con-
sistency under more general settings. For each element of Y, we assume

E(yi1···id ) = ν(θi1···id ),
where ν(·) is a mean function. For example, when Y is binary, we might adopt the
logistic link ν(θ) = exp(θ)

1+exp(θ)
, and when Y is ordinal, we have ν(θ) = exp(θ). We

also assume Var(yi1···id ) < ∞.
In this general setting, l(·, ·) in (4.1) is not necessarily an L2-loss function. Let

K(�0,�) and V (�0,�) be defined as in (4.3) and (4.4), respectively, and let
ρ(�0,�) = K1/2(�0,�). Here, K(·, ·) reduces to the Kullback–Leiber pseudo
distance if l(·, ·) corresponds to a log-likelihood. Let Wα

p [a, b]n1×···×nd be a
Sobolev space with finite Lp-norm, where a and b are some constants and α is
the parameter associated with the degree of smoothness of functions [14].
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ASSUMPTION 4.2. For each yi1···id , suppose
∣∣l(�0, yi1···id ) − l(�, yi1···id )

∣∣ ≤ g(yi1···id )‖�0 − �‖,
where g(·) satisfies E[exp{t0g(yi1···id )}] ≤ c2 < ∞, for a constant c2 and some
constants t0 around 0. In particular, there exists a constant c′

2 > 0, such that
E{g2(yi1,...,id )} ≤ c′

2 for all yi1···id ’s.

ASSUMPTION 4.3. Suppose there exist δ > 0 and β ∈ [0,1), such that for a

δ-ball centered at �0, we have ρ(�0,�) ≥ c3‖�0 − �‖ 1
1+β , where c3 ≥ 0 is a

constant.

Assumption 4.3 indicates that in a neighborhood of the true parameter �0, the
distance ρ(�0, ·) is no smaller than the Euclidean distance up to a certain order.
On the contrary, if ρ(�0, ·) is dominated by the Euclidean distance for all neigh-
borhoods of �0, then the convergence result under ρ(·, ·) can be shown similar to
the proof of Theorem 4.1.

THEOREM 4.2. Let �̂|�| be a sample estimator satisfying (4.2). Assume that
l� ∈ Wα

p [a, b]n1×···×nd , where p > 2, and that Assumptions 4.2 and 4.3 hold. Then

P
(
ρ(�̂|�|,�0) ≥ η|�|

) ≤ 7 exp
(−c4|�|η2|�|

)
,

where c4 ≥ 0 is a constant, and η|�| = max(ε|�|, λ1/2
|�| ) with

ε|�| ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

|�|1/2

) 2ω
2ω+1

if ω >
1

2(
1

|�|1/2

)ω

if ω ≤ 1

2

being the best possible rate, which can be achieved when λ|�| ∼ ε2|�|. Here, ω =
α/γ , and γ = ∑d

k=1(nk + mk)r is the total number of parameters.

The assumption of p > 2 can be relaxed to p ≥ 2 if pω does not go to 0 as
|�| → ∞. Notice that the convergence rate in Theorem 4.2 becomes ε|�| ∼ 1

|�|1/2

if ω = ∞, which is the convergence rate of the maximum likelihood estimator
achieved in Theorem 4.1.

5. Simulation studies. In this section, we perform simulations to compare the
proposed method (REM) with five competing tensor factorization methods. Three
methods are existing methods, namely Bayesian probabilistic tensor factorization
(BPTF; [47]), the factorization machine (libFM; [36]) and the Gaussian process
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factorization machine (GPFM; [31]). The programming codes of these three meth-
ods can be obtained from https://www.cs.cmu.edu/~lxiong/bptf/bptf.html, http://
www.libfm.org/, and http://trungngv.github.io/gpfm/, respectively. Since subgroup
information is available, another naive but effective tensor factorization method
is to conduct CPD for each subgroup separately, and combine the final result.
This method is referred to as the groupwise Canonical Polyadic Decomposition
(GCPD). In addition, we also investigate the performance of matrix factorization
(MF) under the tensor framework, which is the misspecified proposed method with
d = 2 and ignoring contextual information.

5.1. The “cold-start” problem. The first simulation study is designed to com-
pare the performance of each method under various severity levels of the “cold-
start” problem. Specifically, we consider a third-order tensor with user, item and
one contextual variable. We set the number of users n1 = 400, the number of
items n2 = 1100 and the number of contexts n3 = 9. We assume that the users,
items and contexts are from m1 = 10, m2 = 11 and m3 = 3 subgroups, respec-
tively, and assume the number of latent factors r = 3. We generate each latent

factor pk
ik

iid∼ N(0, Ir ) for ik = 1, . . . , nk , and k = 1,2,3. To distinguish differ-
ent subgroups, we set the nested factors as a simple ordered sequence, where
q1

(u1)
= (−5.5 + u1)1r , q2

(u2)
= (−3.6 + 0.6u2)1r , and q3

(u3)
= (−4 + 2u3)1r for

uk = 1, . . . ,mk . Users, items and contexts are evenly assigned to each subgroup.
For each simulation, we generate N = n1n2n3(1 − π0) entries out of the entire

tensor, where π0 = 80%, 95% or 99% are the missing percentages. Furthermore,
we use φcs to measure the severity of the “cold-start” problem, and φcs = 30%,
60% or 95% represents the proportion of the testing data whose utilities are about
new items and are not available from the training set. Each utility is generated by
yi1i2i3 = ∑r

j=1(p
1
i1j

+ q1
i1j

)(p2
i2j

+ q2
i2j

)(p3
i3j

+ q3
i3j

)/3 + ε, where ε ∼ N(0,1) is
the random error.

For all methods, we assume that r = 3 is known. For REM and GCPD, we also
assume that the subgroup memberships are correctly specified, and the tuning pa-
rameter λ is preselected from grid points ranging from 1 to 11. Since the subgroup
structure is assumed to be known, these two methods have more advantage and
are expected to have better performance. For MF, we assume the same setting as
the proposed method. For BPTF, we choose the number of Gibbs samples to be
50 and keep the remaining parameters by their default choices. For libFM, we use
their default setting, and for GPFM, we select the radial basis function kernel with
noise being equal to 10 and the standard deviation of latent variables being equal
to 1. All methods are replicated by 200 simulation runs.

Table 1 provides the performance of each method based on the root mean square
error (RMSE) and the mean absolute error (MAE), where the MAE is defined as

1
|�|

∑
� |yi1···id − ŷi1···id |. We observe that most methods perform worse when ei-

ther the missing percentage or the severity of the “cold-start” problem increases.

https://www.cs.cmu.edu/~lxiong/bptf/bptf.html
http://www.libfm.org/
http://trungngv.github.io/gpfm/
http://www.libfm.org/
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TABLE 1
The proposed method (REM) is compared to matrix factorization (MF), groupwise Canonical
Polyadic Decomposition (GCPD), Bayesian probabilistic tensor factorization (BPTF; [47]),

factorization machine (libFM; [36]) and the Gaussian process factorization machine (GPFM; [31])
on simulated third-order tensors with different missing rates and different degrees of the
“cold-start” problem; the RMSE and the MAE are provided with standard error in each

parenthesis; π0 and φcs represent the missing rate and the severity of the “cold-start” problem,
respectively; and the simulation results are based on 200 replications

φcs = 0.3 φcs = 0.6 φcs = 0.95

π0 = 80% REM RMSE 4.586 (0.562) 6.467 (0.823) 8.228 (1.052)

MAE 2.210 (0.214) 3.606 (0.432) 5.292 (0.687)

MF RMSE 10.307 (1.012) 10.279 (1.020) 10.373 (1.062)

MAE 6.789 (0.658) 6.783 (0.673) 6.822 (0.700)

GCPD RMSE 5.892 (0.754) 8.083 (0.851) 9.949 (0.974)

MAE 2.781 (0.226) 4.467 (0.421) 6.389 (0.628)

BPTF RMSE 5.793 (0.590) 8.142 (0.837) 10.192 (1.050)

MAE 2.645 (0.222) 4.442 (0.438) 6.518 (0.685)

libFM RMSE 10.361 (1.070) 10.373 (1.070) 10.355 (1.073)

MAE 6.778 (0.707) 6.786 (0.713) 6.768 (0.718)

GPFM RMSE 9.017 (1.391) 9.852 (1.894) 11.068 (1.406)

MAE 5.215 (1.131) 5.624 (0.761) 6.992 (0.814)

π0 = 95% REM RMSE 3.322 (0.510) 4.658 (0.773) 6.082 (1.055)

MAE 1.760 (0.196) 2.702 (0.401) 3.943 (0.674)

MF RMSE 10.768 (1.179) 10.728 (1.148) 10.656 (1.160)

MAE 7.055 (0.761) 7.045 (0.751) 6.992 (0.761)

GCPD RMSE 13.489 (2.059) 12.247 (1.632) 10.461 (1.153)

MAE 6.213 (0.826) 6.386 (0.767) 6.638 (0.701)

BPTF RMSE 5.847 (0.696) 8.173 (0.881) 10.197 (1.050)

MAE 2.736 (0.411) 4.498 (0.507) 6.524 (0.683)

libFM RMSE 10.384 (1.074) 10.395 (1.071) 10.359 (1.076)

MAE 6.789 (0.717) 6.799 (0.716) 6.769 (0.719)

GPFM RMSE 10.397 (1.072) 10.406 (1.070) 10.369 (1.078)

MAE 6.812 (0.718) 6.822 (0.717) 6.792 (0.720)

π0 = 99% REM RMSE 3.361 (1.032) 4.329 (1.379) 4.988 (1.582)

MAE 1.865 (0.414) 2.588 (0.722) 3.289 (1.021)

MF RMSE 12.647 (1.940) 12.612 (1.883) 12.379 (1.706)

MAE 8.016 (1.071) 8.016 (1.050) 7.903 (0.981)

GCPD RMSE 10.925 (1.191) 10.808 (1.124) 10.283 (1.058)

MAE 6.748 (0.755) 6.808 (0.721) 6.685 (0.691)

BPTF RMSE 8.246 (2.829) 9.243 (1.737) 10.268 (1.093)

MAE 4.696 (1.917) 5.537 (1.256) 6.616 (0.723)

libFM RMSE 10.387 (1.058) 10.389 (1.058) 10.342 (1.075)

MAE 6.790 (0.707) 6.792 (0.713) 6.759 (0.717)

GPFM RMSE 10.450 (1.068) 10.456 (1.072) 10.410 (1.084)

MAE 6.874 (0.712) 6.878 (0.722) 6.845 (0.723)
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In contrast, the proposed method is relatively robust against these changes. Specif-
ically, REM performs the best across all settings, especially in the worst setting
when the missing percentage is 99% and the proportion of new items reaches 95%,
that is, 95% of the items are new and are not available from the training set. In this
scenario, the proposed method is at least 100% better than other methods in terms
of both the RMSE and the MAE.

5.2. High-order tensors. We design the second simulation study to evaluate
the performance of the proposed method under fourth-order tensors. Specifically,
we let the number of users and the number of items be the same, namely, 500 or
1000, and the number of contexts be 4 for the two contextual variables. Further-
more, we allow 10 subgroups for users and for items, and 2 subgroups for each
of the two contextual variables. We also assume that the number of members in
each subgroup is the same. The number of latent factors is r = 3, and each latent
factor is generated from an i.i.d. standard normal distribution. The nested factors
for users and items are (−5.5 + u)1r for u = 1, . . . ,10, and the nested factors
for the two contextual variables are −0.25 · 1r and 0.25 · 1r corresponding to the
two subgroups. Each utility is generated as yi1i2i3i4 = ∑r

j=1(p
1
i1j

+ q1
i1j

)(p2
i2j

+
q2
i2j

)(p3
i3j

+ q3
i3j

)(p4
i4j

+ q4
i4j

)/4 + ε, where ε ∼ N(0,1) is the random error.
For each replication in the tensor, we assume that the missing percentage

π0 = 95%,97% or 99%, corresponding to the high-missing situation for high-
order tensors. Furthermore, we assume that 30% of the items are not available in
the training set, that is, the “cold-start” severity level is fixed. The tuning parame-
ter selection for each method is the same as in simulation study 1. All methods are
replicated by 200 simulations. REM, GCPD, libFM and GPFM are able to utilize
the fourth order of the tensor, while MF and BPTF use up to the second and the
third order, respectively.

Table 2 provides the comparisons of the proposed method and other methods
under the fourth-order tensor setting. It is clear that REM has the overall best per-
formance in terms of both RMSEs and MAEs. For the two misspecified methods,
namely the MF and BPTF, their performances are similar to each other and close
to the unreported grand mean imputation, although BPTF has better performance
when the missing percentage is low. For the three correctly-specified competing
methods, namely GCPD, libFM and GPFM, their performances are not signifi-
cantly better than the misspecified methods, although they utilize all tensor in-
formation. In contrast, the proposed method provides much smaller RMSEs and
MAEs in all settings. For example, when the missing percentage is 99% and the
number of users and items are both equal to 1000, the existing methods perform
mostly similar to that of the grand mean imputation, producing RMSEs slightly
above 4 and MAEs around 2.6. That is, these methods do not utilize subject-
specific information effectively. In contrast, the proposed method is able to im-
prove on both the RMSE and the MAE by more than 100%.
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TABLE 2
The proposed method (REM) is compared to matrix factorization (MF), groupwise Canonical
Polyadic Decomposition (GCPD), Bayesian probabilistic tensor factorization (BPTF; [47]),

factorization machine (libFM; [36]) and the Gaussian process factorization machine (GPFM; [31])
on simulated fourth-order tensors with different missing rates and different number of users and

items; the RMSE and the MAE are provided with standard error in each parenthesis; d̂ is the
assumed tensor order for each method with the true order being 4; π0, n1 and n2 represent the

missing rate, the number of users and the number of items, respectively; and the simulation results
are based on 200 replications

d̂ n1 = n2 = 500 n1 = n2 = 1000

π0 = 95% REM d̂ = 4 RMSE 1.427 (0.351) 1.799 (0.570)
MAE 1.015 (0.138) 1.148 (0.202)

MF d̂ = 2 RMSE 4.040 (1.206) 4.099 (1.373)
MAE 2.582 (0.679) 2.601 (0.759)

GCPD d̂ = 4 RMSE 4.691 (1.906) 4.565 (1.807)
MAE 2.599 (0.732) 2.395 (0.638)

BPTF d̂ = 3 RMSE 3.944 (1.212) 3.896 (1.322)
MAE 2.472 (0.650) 2.454 (0.722)

libFM d̂ = 4 RMSE 4.057 (1.172) 4.136 (1.423)
MAE 2.578 (0.655) 2.585 (0.773)

GPFM d̂ = 4 RMSE 3.958 (1.103) 3.052 (1.194)
MAE 2.533 (0.640) 1.916 (0.602)

π0 = 97% REM d̂ = 4 RMSE 1.512 (0.670) 1.689 (0.524)
MAE 1.050 (0.227) 1.108 (0.174)

MF d̂ = 2 RMSE 4.048 (1.210) 4.103 (1.375)
MAE 2.588 (0.682) 2.605 (0.761)

GCPD d̂ = 4 RMSE 4.640 (1.792) 5.384 (1.876)
MAE 2.665 (0.795) 2.779 (0.699)

BPTF d̂ = 3 RMSE 4.047 (1.264) 3.952 (1.345)
MAE 2.503 (0.662) 2.473 (0.726)

libFM d̂ = 4 RMSE 4.087 (1.214) 4.198 (1.371)
MAE 2.593 (0.677) 2.648 (0.768)

GPFM d̂ = 4 RMSE 4.115 (1.215) 3.604 (1.128)
MAE 2.616 (0.682) 2.341 (0.634)

π0 = 99% REM d̂ = 4 RMSE 2.780 (1.915) 1.880 (1.540)
MAE 1.579 (0.742) 1.187 (0.433)

MF d̂ = 2 RMSE 4.108 (1.233) 4.124 (1.390)
MAE 2.625 (0.692) 2.621 (0.769)

GCPD d̂ = 4 RMSE 4.168 (1.364) 4.453 (1.680)
MAE 2.567 (0.718) 2.611 (0.753)

BPTF d̂ = 3 RMSE 4.399 (1.477) 4.174 (1.497)
MAE 2.620 (0.706) 2.540 (0.754)

libFM d̂ = 4 RMSE 4.124 (1.226) 4.164 (1.399)
MAE 2.613 (0.678) 2.624 (0.761)

GPFM d̂ = 4 RMSE 4.121 (1.221) 4.248 (1.391)
MAE 2.619 (0.680) 2.678 (0.778)
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6. IRI marketing data. In this section, we apply the proposed method to IRI
marketing data [8]. The data contain 116.3 million observations of average sales
volumes collected from 2447 grocery stores on 161,114 products from 2001 to
2011. There are 30 promotion strategies for various products to attract consumers.
Each observation consists of a store ID, a product ID, a promotion strategy and the
corresponding average sales volume. The 2447 stores are selected from 47 markets
across the United States, where demographic information within two miles of each
store is collected as well. The 161,114 products include all items sold from these
stores during the 11-year period. These products can be classified into 31 cate-
gories, including beer, coffee, frozen pizza, paper towels, etc. The 30 promotion
strategies are combinations of 5 advertisement features, 3 types of merchandise
display and an indicator on whether the product has a price reduction of more than
5%. The data have a 99% missing rate after being reorganized into a third-order
tensor by store, product and promotion.

The goal of our study is to predict the average sales volume of each product from
each store, and the average sales volume when a particular promotion strategy is
applied. Through this prediction procedure, we are able to potentially recommend
the most profitable products for each store, and evaluate how each specific promo-
tion strategy plays a role for each product sales.

The data are randomly split into a 50% training set, a 25% validation set and a
25% testing set. The random split is replicated 50 times. Sales volumes from each
category of product are standardized before analysis to avoid large differences of
sales volumes from different categories. We compare the proposed method with
the existing methods listed in Section 5.1. In addition, we also compare it to the
grand mean imputation where all missing elements in the tensor are imputed by
the mean of the observed values. Tuning parameters for each method are selected
from a wide range of grid points to minimize the RMSE on the validation set.
Most methods require that the number of latent factors r ≥ 15 in order to capture a
majority of the data variation. For the proposed method, we classify stores, prod-
ucts and promotion strategies into subgroups based on their geographical locations
(the first digit of the zip code), product categories and whether a price reduction is
applied, respectively.

Since the data are standardized, the grand mean imputation returns an RMSE
close to 1, which can be regarded as a benchmark basis for comparison. Table 3
indicates that the proposed REM has the best performance in terms of both RMSE
and MAE. Specifically, REM improves the RMSE of the MF by the largest per-
centage, which demonstrates the great advantage of incorporating contextual in-
formation through tensor structure. In addition, the RMSE of the proposed method
is less than that of BPTF and libFM, illustrating that REM has better prediction
accuracy among the competing tensor factorization methods. GPFM does not con-
verge due to the high missing rate and the large number of parameters involved.
Meanwhile, BPTF has nearly the same MAE as the proposed method, but pro-
duces a larger RMSE, indicating that BPTF’s performance is possibly better than
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TABLE 3
The proposed method (REM) is compared to matrix factorization (MF), groupwise Canonical
Polyadic Decomposition (GCPD), Bayesian probabilistic tensor factorization (BPTF; [47]),

factorization machine (libFM; [36]), the Gaussian process factorization machine (GPFM; [31]),
and the grand mean imputation (GMI; as a reference level) on 116 million IRI marketing data

points; GPFM is not included because it fails to converge; and the other results are based on 50
replications of random testing sets. In the first tabular, the comparison is made based on root mean
square error (RMSE), mean absolute error (MAE) and computational time in hours (Comp. Time);

and in the second tabular, the relative improvement of the proposed method over existing methods is
provided

RMSE MAE Comp. Time (h)

REM 0.637 (0.009) 0.209 (0.001) 3.9
MF 0.969 (0.010) 0.371 (0.007) 0.7
GCPD 0.640 (0.010) 0.229 (0.001) 5.4
BPTF 0.782 (0.155) 0.209 (0.001) 8.4
libFM 0.705 (0.010) 0.236 (0.001) 0.5
GMI 1.000 (0.006) 0.392 (4.483 × 10−5) N/A

RMSE MAE

MF 34.2% 43.7%
GCPD 0.5% 8.7%
BPTF 18.5% 0%
libFM 9.6% 11.4%
GMI 36.3% 46.7%

the proposed method for certain subjects, but has inferior performance for the rest
of the subjects.

Furthermore, the naive method GCPD has the second best performance. This
might be explained by the following two reasons. One is that the GCPD utilizes
additional subgroup information as does the REM, which is not applicable to the
other competing methods. The other is that, unlike in the simulation studies, the
size of the IRI data is large enough so that the number of observations within each
subgroup is sufficient to make good estimations.

Most of the numerical studies are implemented on Dell C8220 computing sleds
equipped with two 10-core Intel Xeon E5-2670V2 processors and 64 GB RAM.
The running time for each method is provided in Table 3. Notice that BPTF’s
method also requires large memory storage due to the high demand of the Gibbs’
samples. Reducing the number of Gibbs’ samples may lead to more efficient com-
putation but less accurate predictions.

7. Discussion. In this article, we propose a new tensor-based recommender
system which makes recommendations through incorporating contextual informa-
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tion. A unique contribution of our method is that we achieve tensor completion
through utilizing an additional layer of nested factors, in addition to applying the
latent factors as in the commonly used canonical polyadic decomposition. The
nested factors incorporate subject-subject dependency, which are estimated based
on subgrouping. This leads to a significant advantage in solving the “cold-start”
problem effectively. That is, for a new subject, information from other subgroup
members can be borrowed to make more accurate predictions even though the
subject’s own information is not collected sufficiently. In addition, the proposed
method is able to address high-order tensors which are beyond the third order. Ex-
isting methods are not effective in handling the high-order tensor problem due to
the high computational cost and the high missing rate. We propose a new algo-
rithm that integrates maximum block improvement into the blockwise coordinate
descent algorithm, which avoids operating high-order tensors directly and, there-
fore, achieves scalable computation. Moreover, the proposed nested factors borrow
information from all members in the same subgroup, and hence accommodate a
high missing rate.

The proposed method also shows excellent numerical performance and theo-
retical properties. In Section 6, the proposed method is applied to IRI marketing
data which consists of 116 million observations. The proposed method improves
prediction accuracy compared to existing methods with relatively small computa-
tional cost. In theory, we demonstrate the convergence properties of the proposed
algorithm, which converges to a stationary point from an arbitrary initial point, and
local convergence to a local minimum with linear convergence rate. The estimated
parameter achieves asymptotic consistency under the L2-loss function and other
more general circumstances.

Acknowledgments. The authors thank the Associate Editor and two anony-
mous reviewers for their suggestions and helpful feedback which improved the
paper significantly.

SUPPLEMENTARY MATERIAL

Supplement to “Multilayer tensor factorization with applications to rec-
ommender systems.” (DOI: 10.1214/17-AOS1659SUPP; .pdf). Technical proof
of all lemmas, propositions and theorems are provided in the supplementary mate-
rial [5].
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