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APPROXIMATE �0-PENALIZED ESTIMATION
OF PIECEWISE-CONSTANT SIGNALS ON GRAPHS

BY ZHOU FAN1 AND LEYING GUAN

Stanford University

We study recovery of piecewise-constant signals on graphs by the estima-
tor minimizing an l0-edge-penalized objective. Although exact minimization
of this objective may be computationally intractable, we show that the same
statistical risk guarantees are achieved by the α-expansion algorithm which
computes an approximate minimizer in polynomial time. We establish that
for graphs with small average vertex degree, these guarantees are minimax
rate-optimal over classes of edge-sparse signals. For spatially inhomogeneous
graphs, we propose minimization of an edge-weighted objective where each
edge is weighted by its effective resistance or another measure of its contri-
bution to the graph’s connectivity. We establish minimax optimality of the
resulting estimators over corresponding edge-weighted sparsity classes. We
show theoretically that these risk guarantees are not always achieved by the
estimator minimizing the l1/total-variation relaxation, and empirically that
the l0-based estimates are more accurate in high signal-to-noise settings.

1. Introduction. Let G = (V ,E) be a known (undirected) graph, with ver-
tices V := {1, . . . , n} and edge set E. At each vertex i ∈ {1, . . . , n}, an unknown
signal value μ0,i is observed with noise:

Yi = μ0,i + εi.

For simplicity, we assume ε1, . . . , εn
i.i.d.∼ Normal(0, σ 2) and G is fully con-

nected. This paper studies the problem of estimating the true signal vector μ0 :=
(μ0,1, . . . ,μ0,n) from observed data Y := (Y1, . . . , Yn), when μ0 is (or is well ap-
proximated by) a piecewise-constant signal over G. Informally, this will mean that
the set of edges {i, j} ∈ E where μ0,i �= μ0,j is a small subset of all edges.

Examples of this problem occur in a number of applications:

• Multiple changepoint detection. The graph G is a linear chain with n ver-
tices and n − 1 edges, which identifies a sequential order to the observations. The
signal μ0 is piecewise constant in the sense μ0,i �= μ0,i+1 for a small number of
changepoints i.
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• Image segmentation. The graph G is a 2-D (or 3-D) lattice graph, and μ0 cor-
responds to the pixels (or voxels) of a digital image. The assumption of piecewise-
constancy implies that μ0 has regions of approximately constant pixel value.

• Anomaly identification in networks. The graph G represents a network. The
signal μ0 indicates locations of anomalous clusters of vertices, for example, repre-
senting individuals infected by a disease or a computer virus. Piecewise-constancy
of μ0 reflects the assumption that the anomaly spreads along the network connec-
tions.

Early and pioneering works include [8, 18, 69] on multiple changepoint de-
tection and [9, 26] on image segmentation. For general graphs and networks,
[1–3, 5, 56, 57] studied related hypothesis testing problems, and [34, 47, 66] also
recently considered estimation. We discuss some connections of our work to this
existing literature in Section 1.1.

The focus of our paper is the method of “l0-edge-denoising,” which seeks to
estimate μ0 by the values μ ∈ R

n minimizing the residual squared error 1
2‖Y −μ‖2

plus a penalty for each edge {i, j} ∈ E where μi �= μj . (Here and throughout,
‖ · ‖ without a subscript denotes the standard Euclidean norm.) More formally, this
estimate minimizes the objective function

(L0) F0(μ) := 1

2
‖Y − μ‖2 + λ‖Dμ‖0, ‖Dμ‖0 := ∑

{i,j}∈E

1{μi �= μj }.

Here, D : Rn → R
E denotes a vertex-edge incidence matrix with entries in

{−1,0,1} that maps μ ∈ R
n to the vector of edge differences (μi − μj){i,j}∈E

(with an arbitrary sign for each edge). The penalty term ‖Dμ‖0 denotes the usual
“l0-norm” of Dμ, and λ is a user-specified tuning parameter that controls the mag-
nitude of this penalty.

For reasons to be discussed, we will also consider procedures that seek to mini-
mize a more general weighted version of the above objective function,

(W) Fw(μ) := 1

2
‖Y −μ‖2 +λ‖Dμ‖w, ‖Dμ‖w := ∑

{i,j}∈E

w(i, j)1{μi �= μj },

where w : E → R+ assigns a nonnegative weight to each edge. This allows possi-
bly different penalty values to be applied to different edges of the graph.

The combinatorial nature of (L0) and (W) render exact minimization of these
objectives computationally intractable for general graphs. A primary purpose of
this paper is to show, however, that approximate minimization is sufficient to ob-
tain statistically rate-optimal guarantees. We study one such approximation algo-
rithm by Boykov, Veksler and Zabih [13], suggest its use in minimizing (W) for
applications involving inhomogeneous networks, and provide a unified analysis
of minimax squared-error risk for this estimation problem over edge-sparse signal
classes on general graphs.

We summarize our results as follows:
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1. A polynomial-time algorithm using the α-expansion procedure of [13] yields
approximate minimizers μ̂ of (L0) and (W) that achieve the same statistical risk
guarantees as the exact minimizers, up to constant factors. Computation of μ̂ is
reasonably efficient in practice and yields good empirical signal recovery in our
tested examples. In this sense, inference based on minimizing (L0) or (W) is com-
putationally tractable, even for large graphs.

2. For any graph G, the estimate μ̂ (exactly or approximately) minimizing (L0)
with λ � σ 2 log |E| satisfies an “edge-sparsity” oracle inequality

(1) E
[‖μ̂ − μ0‖2]

� inf
μ∈Rn

‖μ − μ0‖2 + σ 2 max
(‖Dμ‖0,1

)
log |E|.

This bounds the squared-error risk of μ̂ in terms of the approximability of μ0
by any piecewise-constant signal μ. If it is known that ‖Dμ0‖0 ≤ s, then setting
instead λ � σ 2(1 + log |E|

s
) yields

(2) E
[‖μ̂ − μ0‖2]

� σ 2s

(
1 + log

|E|
s

)
.

The risk bound (2) is rate-optimal in a minimax sense over the edge-sparse signal
class {μ0 : ‖Dμ0‖0 ≤ s} up to a multiplicative factor depending on the mean vertex
degree of G.

3. An alternative to minimizing (L0) is to minimize its l1/total-variation relax-
ation,

(TV) F1(μ) := 1

2
‖Y − μ‖2 + λ‖Dμ‖1, ‖Dμ‖1 := ∑

{i,j}∈E

|μi − μj |.

One advantage of this approach is that (TV) is convex and can be exactly mini-
mized in polynomial time. However, whether the risk guarantees (1) and (2) hold
for μ̂ minimizing (TV) depends on properties of the graph. In particular, they do
not hold for the linear chain graph, where instead

(3) inf
λ≥0

sup
μ0:‖Dμ0‖0≤s

E
[‖μ̂λ − μ0‖2]

� σ 2(logn)−5√sn,

μ̂λ denoting the minimizer of (TV) for each λ. This result is connected to the
“slow rate” of convergence in prediction risk for the Lasso [17, 62] in certain linear
regression settings with correlated predictors.

4. When G has regions of differing connectivity, ‖Dμ‖0 is not a spatially ho-
mogeneous measure of complexity, and it may be more appropriate to minimize
the edge-weighted objective (W) where w(i, j) measures the contribution of edge
{i, j} to the connectivity of the graph. One such weighting, inspired by the analy-
ses in [56, 57], weighs each edge by its effective resistance when G is viewed as
an electrical resistor network. In simulations on real networks, this weighting can
yield a substantial reduction in error over minimizers of the unweighted objective
(L0). For general weightings w : E →R+ belonging to the spanning tree polytope
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of G, the guarantee (2) holds over the larger class {μ0 : ‖Dμ0‖w ≤ s} for μ̂ mini-
mizing (W), and this guarantee is minimax rate-optimal up to a graph-independent
constant factor, for all graphs.

We provide a more detailed discussion of these results in Sections 2 to 5. Sim-
ulations comparing minimization of (L0), (W) and (TV) over several graphs are
presented in Section 6. Proofs are deferred to the Appendices in the Supplemen-
tary Material [25].

1.1. Related work. For changepoint problems where G is the linear chain,
(L0) may be exactly minimized by dynamic programming in quadratic time [6,
35, 67]. Pruning ideas may reduce runtime to be near-linear in practice [38]. Cor-
rect changepoint recovery and distributional properties of μ̂ minimizing (L0) were
studied asymptotically in [70, 71] when the number of true changepoints is fixed.
Nonasymptotic risk bounds similar to (1) and (2) were established for estimators
minimizing similar objectives in [11, 43]; we discuss this further below. Extension
to the recovery of piecewise-constant functions over a continuous interval was
considered in [14].

In image applications where G is the 2-D lattice, (L0) is closely related to
the Mumford–Shah functional [50] and Ising/Potts-model energies for discrete
Markov random fields [26]. In the latter discrete setting, where each μi is allowed
to take value in a finite set of “labels,” a variety of algorithms seek to minimize
(L0) using minimum s-t cuts on augmented graphs; see [39] and the contained ref-
erences for a review. For an Ising model with only two distinct labels, [29] showed
that the exact minimizer may be computed via a single minimum s-t cut. For more
than two distinct labels, exact minimization of (L0) is NP-hard [13]. We analyze
a graph-cut algorithm from [13] that applies to more than two labels, where the
exact minimization property is replaced by an approximation guarantee. We show
that the deterministic guarantee of this algorithm implies rate-optimal statistical
risk bounds, for the 2-D lattice as well as for general graphs.

For an arbitrary graph G, the estimators μ̂ exactly minimizing (L0) and (W) are
examples of general model-complexity penalized estimators studied in [7, 11]. The
penalties we impose may be smaller than those needed for the analyses of [7, 11]
by logarithmic factors, and we instead control the supremum of a certain Gaussian
process using an argument specialized to our graph-based problem. A theoreti-
cal focus of [7, 11] was on adaptive attainment of minimax rates over families of
models. For example, for the linear chain graph, [11, 43] considered penalties in-
creasing but concave in the number of changepoints, and the resulting estimates
achieve the guarantee (2) simultaneously for all s. Instead of using such a penalty,
which poses additional computational challenges, we will apply a data-driven pro-
cedure to choose λ, although we will not study the adaptivity properties of the
procedure in this paper.

The method of l0-edge-denoising and the characterization of signal complex-
ity by ‖Dμ0‖0 are “nonparametric” in the sense of [2, 4]. This is in contrast to
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methods that employ additional prior knowledge about μ0, for instance, that its
constant regions belong to parametric classes of shapes [4], are thick and blob-like
in nature [2] or have sufficiently smooth boundaries when G is embedded in a
Euclidean space [22, 40]. In this regard, our study is more closely related to the
hypothesis testing work of [5, 56, 57] in similar nonparametric contexts. An ad-
vantage of this perspective is that the inference algorithm is broadly applicable to
general graphs and networks, where appropriate notions of boundary smoothness
or support constraints for μ0 are less naturally defined. A disadvantage is that such
an approach may not be statistically optimal in more specialized settings when
such prior assumptions hold true.

A connection between this problem, effective edge resistances, and graph span-
ning trees emerged in the analyses of [56, 57]. In [56], a procedure was proposed
to construct an orthonormal wavelet basis over a spanning tree of G and to per-
form inference by thresholding in this basis. Our proposal to minimize (W) for
w : E → R+ in the spanning tree polytope of G may be viewed as a derandom-
ization of this idea when the spanning tree is chosen at random; we discuss this
connection in Remark 5.7. Sampling edges by effective resistances is also a popu-
lar method of graph sparsification [58, 59], and effective-resistance edge weighting
may be viewed as a derandomization of procedures such as in [53] that operate on
a randomly sparsified graph.

There is a large body of literature on the l1-relaxation (TV). This method and
generalizations were suggested in different contexts and guises for the linear chain
graph in [17, 21, 42, 48, 63] and also studied theoretically in [19, 30, 31, 44, 51].
For 2-D lattice graphs in image denoising, variants of (TV) were proposed and
studied in [16, 28, 52]. For more general graphs, this method and generalizations
have been studied in [33, 34, 41, 54, 55, 60, 64, 66], among others. In particu-
lar, [15, 20, 68] developed algorithms for minimizing (TV) and related objectives
also using iterated graph cuts, although these algorithms yield exact solutions and
are different from the algorithm we study. A body of theoretical work establishes
that μ̂ minimizing (TV) is (or is nearly) minimax rate-optimal over signal classes
of bounded variation, {μ0 : ‖Dμ0‖1 ≤ s}, for the linear chain graph and higher-
dimensional lattices [34, 48, 54, 66]. Several risk bounds over the exact-sparsity
classes {μ0 : ‖Dμ0‖0 ≤ s} that we consider were also established for the linear
chain graph in [19, 30, 44] and for general graphs in [34, 47]; we discuss some
of these results in Section 4. We believe that benefits of using effective resistance
weighted edge penalties may also apply to the l1/TV setting, and we leave further
exploration of this to future work.

1.2. Notation and conventions. We assume throughout that G is fully con-
nected with n ≥ 3 vertices. Theoretical results are nonasymptotic, in the sense that
they are valid for all finite n and s with universal constants C,c > 0 independent
of n, s, and the graph G. For positive a and b, we write informally a � b if a ≤ Cb

and a � b if ca ≤ b ≤ Ca for universal constants C,c > 0 and all n ≥ 3.
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For a vector v, ‖v‖ := (
∑

i v
2
i )

1/2 is the Euclidean norm, ‖v‖0 := |{i : vi �= 0}|
the “l0-norm,” ‖v‖1 := ∑

i |vi | the l1-norm and ‖v‖∞ := maxi |vi | the l∞-norm.
For vectors v and w, 〈v,w〉 = ∑

i viwi is the Euclidean inner-product.
R+ denotes the nonnegative reals. For an edge weighting w : E → R+,

w(i, j) is shorthand for w({i, j}), and we denote w(E′) := ∑
{i,j}∈E′ w(i, j)

for any edge subset E′ ⊆ E. For two edge weightings w, r : E → R+, we
write w ≥ r if w(i, j) ≥ r(i, j) for all edges {i, j} ∈ E. For v ∈ R

E , ‖v‖w :=∑
{i,j}∈E w(i, j)v{i,j} denotes the l0-norm weighted by w.
1{·} denotes the indicator function, that is, 1{E} = 1 if condition E is true and 0

otherwise.

2. Approximation algorithm. As discussed in Section 1.1, whether (L0) and
(W) may be minimized exactly in polynomial time depends on the graph G. How-
ever, good approximation of the solution is tractable for any graph. We review in
this section one approach that achieves such an approximation, based on discretiz-
ing the range of values of the entries of μ and applying the α-expansion local move
of [13] for discrete Markov random fields. We describe the algorithm for (W), as
(L0) is a special case.

The fundamental property of this algorithm will be that its output is a (τ, δZ)-
local-minimizer for the objective function (W), defined as follows.

DEFINITION 2.1. For δ > 0, denote by

δZ := {. . . ,−3δ,−2δ,−δ,0, δ,2δ,3δ, . . .}
the set of all integer multiples of δ. For any μ ∈ R

n, a δZ-expansion of μ is any
other vector μ̃ ∈ R

n such that there exists a single value c ∈ δZ for which, for
every i ∈ {1, . . . , n}, either μ̃i = μi or μ̃i = c. For δ > 0 and τ ≥ 0, a (τ, δZ)-
local-minimizer of (W) is any μ ∈ R

n such that for every δZ-expansion μ̃ of μ,

Fw(μ) − τ ≤ Fw(μ̃).

More informally, a δZ-expansion of μ can replace any subset of vertex values
by a single new value c ∈ δZ, and a (τ, δZ)-local-minimizer is such that no further
δZ-expansion reduces the objective value by more than τ . This definition does
not require (τ, δZ)-local-minimizers to have all entries belonging to δZ; hence,
in particular, a global minimizer of (W) is also a (τ, δZ)-local-minimizer for any
δ > 0 and τ ≥ 0. We define analogously (τ, δZ)-local-minimizers for (L0).

The α-expansion procedure of [13] may be used to compute a (τ, δZ)-local-
minimizer efficiently with graph cuts. We review this procedure and how we apply
it to our problem in Algorithm 1. We will use a small discretization δ so as to yield
a good solution to the original continuous problem.

The following propositions verify that this algorithm returns a (τ, δZ)-local-
minimizer in polynomial time; proofs are contained in Appendix S1.
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Algorithm 1 Algorithm to compute a (τ, δZ)-local-minimizer of (W)

1: Let Ȳ , Ymin, and Ymax be the mean, minimum, and maximum of Y , rounded to
δZ.

2: Initialize μ̂ ∈R
n by setting μ̂i = Ȳ for all i ∈ {1, . . . , n}.

3: loop
4: for each c ∈ δZ∩ [Ymin, Ymax] do
5: Compute the best δZ-expansion μ̃ of μ̂ with new value c using Algo-

rithm 2.
6: If Fw(μ̃) ≤ Fw(μ̂) − τ , then set μ̂ = μ̃.
7: end for
8: If μ̂ was unchanged, then return μ̂.
9: end loop

PROPOSITION 2.2. Algorithm 1, using Edmonds–Karp or Dinic’s algo-
rithm for solving minimum s-t cut, has worst-case runtime O(n|E|3 ×
(Ymax − Ymin)

3/(δτ )).

PROPOSITION 2.3. Among all δZ-expansions of μ̂ with new value c, the vec-
tor μ̃ returned by Algorithm 2 has lowest objective value in (W). The estimate μ̂

returned by Algorithm 1 is a (τ, δZ)-local-minimizer of (W).

In particular, if Ymax − Ymin, 1/δ, and 1/τ are polynomial in n, then Algo-
rithm 1 is polynomial-time in n. We will use the Boykov–Kolmogorov algorithm
[12] instead of Edmonds–Karp or Dinic to solve minimum s-t cut. This has slower
worst-case runtime but is much faster in practice on our tested examples. We have
found Algorithm 1 to be fast in practice, even with τ = 0, and we discuss empirical
runtime in Section 6.2.

The l2 vertex-cost (Yi − μi)
2 and l0 edge cost 1{μi �= μj } of (L0) and (W) are

not intrinsic to this algorithm, and the same method may be applied to approxi-
mately minimize

F(μ) =
n∑

i=1

ci(Yi,μi) + ∑
{i,j}∈E

ci,j (μi,μj )

for any vertex cost functions ci and edge cost functions ci,j such that each ci,j

satisfies a triangle inequality. Thus the algorithm is easily applicable to other like-
lihood models and forms of edge penalties.

3. Theoretical guarantees for l0 denoising. In this section, we describe
squared-error risk guarantees for μ̂ (exactly or approximately) minimizing (L0).
Although these results are corollaries of those in Section 5 for the weighted objec-
tive (W), we state them here separately as they are simpler to understand and also
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Algorithm 2 α-expansion subroutine [13]
1: Construct the following edge-weighted augmentation Gc,μ̂ of G:
2: Introduce a source vertex s and a sink vertex t.
3: Connect s to each i ∈ {1, . . . , n} with weight 1

2(Yi − c)2.
4: Connect t to each i ∈ {1, . . . , n} with weight 1

2(Yi −μ̂i)
2 if μ̂i �= c, or weight

∞ if μ̂i = c.
5: for each edge {i, j} ∈ E do
6: if μ̂i = μ̂j then
7: Assign weight λw(i, j)1{μ̂i �= c} to {i, j}.
8: else
9: Introduce a new vertex ai,j .

10: Replace edge {i, j} by the three edges {i,ai,j }, {j,ai,j }, and {t,ai,j },
with weights λw(i, j)1{μ̂i �= c}, λw(i, j)1{μ̂j �= c}, and λw(i, j), re-
spectively.

11: end if
12: end for
13: Find the minimum s-t cut (S, T ) of Gc,μ̂ such that s ∈ S, t ∈ T .
14: For each vertex i ∈ {1, . . . , n}, set μ̃i = c if i belongs to T and μ̃i = μ̂i other-

wise.
15: Return μ̃.

provide a basis for comparison with total-variation denoising discussed in the next
section. We defer discussion of the proofs to Section 5.

Recall Definition 2.1 of (τ, δZ)-local-minimizers, which include both the exact
minimizer and the estimator computed by Algorithm 1. A sparsity-oracle inequal-
ity for any such minimizer holds when the penalty λ in (L0) is set to a “universal”
level Cσ 2 log |E|.

THEOREM 3.1. Let δ ≤ σ/
√

n and τ ≤ σ 2. For any η > 0, there exist con-
stants Cη,C

′
η > 0 depending only on η such that if λ ≥ Cησ

2 log |E| and μ̂ is any
(τ, δZ)-local-minimizer of (L0), then

(4) E
[‖μ̂ − μ0‖2] ≤ inf

μ∈Rn
(1 + η)‖μ − μ0‖2 + C′

ηλmax
(‖Dμ‖0,1

)
.

The upper bound in (4) trades off the edge-sparsity of μ and its approximation
of the true signal μ0. Setting λ = Cησ

2 log |E| yields the guarantee (1) described
in the Introduction. If μ0 is exactly edge-sparse with ‖Dμ0‖0 = s, then evaluating
(4) at μ = μ0 yields a risk bound of order σ 2s log |E|. When s is known, we may
obtain the tighter guarantee (2) by using a smaller penalty.

THEOREM 3.2. Let δ ≤ σ/
√

n and τ ≤ σ 2. There exist universal constants
C,C′ > 0 such that for any s ∈ [1, |E|], if λ ≥ Cσ 2(1 + log |E|

s
) and μ̂ is any
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(τ, δZ)-local-minimizer of (L0), then

(5) sup
μ0:‖Dμ0‖0≤s

E
[‖μ̂ − μ0‖2] ≤ C′λs.

Theorems 3.1 and 3.2 are analogous to estimation guarantees in the sparse
normal-means problem: For estimating a signal μ0 ∈ R

n with at most k nonzero
entries, asymptotically if n → ∞ and k/n → 0, then

(6) inf
μ̂

sup
μ0:‖μ0‖≤k

E
[‖μ̂ − Y‖2] ∼ 2σ 2k log

n

k
.

This risk is achieved by μ̂ = argminμ
1
2‖Y − μ‖2 + λ‖μ‖0 for λ = σ 2 log n

k
, cor-

responding to entrywise hard-thresholding at level
√

2λ [36], Theorem 8.20. Set-

ting λ = σ 2 logn hard-thresholds instead at the universal level
√

2σ 2 logn, and
Lemma 1 of [23] implies an oracle bound

E
[‖μ̂ − μ0‖2] ≤ inf

μ∈Rn
1.2‖μ − μ0‖2 + σ 2(2 logn + 1)

(‖μ‖0 + 1
)

for any true signal μ0 ∈ R
n.

When there is an underlying graph G, the sparsity condition ‖μ0‖0 ≤ k is a no-
tion of vertex sparsity, in contrast to our notion of edge-sparsity. The edge-sparsity
of a “typical” piecewise-constant signal may be graph-dependent. For example,
if G is a K-dimensional lattice graph with side length n1/K and μ0 consists of
two constant pieces separated by a smooth boundary, then s � n1−1/K . For such
choices of μ0 and for K ≥ 2, the risk in (5) grows polynomially in n and does
not represent a parametric rate. On the other hand, vertex-sparse signals are also
edge-sparse for low-degree graphs. This containment may be used to show, when
G has bounded average degree, that the above nonparametric rate is optimal in a
minimax sense over {μ0 : ‖Dμ0‖0 ≤ s}.

THEOREM 3.3. Suppose G has average vertex degree d . There exists a uni-
versal constant c > 0 such that for any s ∈ [4d, |E|],
(7) inf

μ̂
sup

μ0:‖Dμ0‖0≤s

E
[‖μ̂ − μ0‖2] ≥ cσ 2 s

d

(
1 + log

|E|
s

)
,

where the infimum is taken over all possible estimators μ̂ := μ̂(Y ).

When the average degree d is not small, there is a gap between (5) and (7) of
order d , which we will discuss in Section 5.

REMARK 3.4. We assume s ≥ 4d for (7) so that the result does not de-
pend on the exact structure of near-minimum cuts in G. For example, if vertices
{1, . . . , n − 1} are connected in a single cycle and vertex n is connected to ver-
tex 1 by a single edge, then for s = 1, any μ0 with ‖Dμ0‖0 ≤ 1 must be constant
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over vertices {1, . . . , n − 1} and take a possibly different value on vertex n. The
minimax risk over this class is then 2σ 2, rather than order σ 2 logn. Considering
the graph tensor product of this example with the complete graph on d vertices,
a similar argument shows that a general lower bound must restrict to s ≥ cd for
some small constant c > 0.

While our main focus is estimation, let us state a result relevant to testing:

THEOREM 3.5. Let δ ≤ σ/
√

n and τ ≤ σ 2, and suppose μ0 is constant
over G. There exist universal constants C,C′ > 0 such that if λ ≥ Cσ 2 log |E|
and μ̂ is any (τ, δZ)-local-minimizer of (L0), then

P[μ̂ is constant over G] ≥ 1 − C′n−3.

This implies that we may test the null hypothesis

(8) H0 : μ0 is constant

by setting λ � σ 2 log |E| and rejecting H0 if μ̂ is not constant. Denoting by P ⊥
the orthogonal projection onto the space orthogonal to the all-1’s vector, since

min
μ:μ is constant

‖μ − μ0‖2 = ∥∥P ⊥μ0
∥∥2

,

the risk bound (5) [or more precisely, Lemma S2.3(b) which establishes an
analogous bound in probability] implies that this test can distinguish a non-
constant alternative μ0 with probability approaching 1 as long as ‖P ⊥μ0‖2 ≥
Cσ 2‖Dμ0‖0 log |E|, for a universal constant C > 0.

4. Comparison with l1/total-variation denoising. We compare the guaran-
tees of the preceding section with those attainable by μ̂ minimizing (TV). The-
oretical risk bounds for the TV-penalized estimator have been established for
both piecewise-constant classes {μ0 : ‖Dμ0‖0 ≤ s} and bounded-variation classes
{μ0 : ‖Dμ0‖1 ≤ s}, and we focus our comparison on the former. We will empiri-
cally explore in Section 6 some trade-offs between the l0 and TV approaches for
signals that are both piecewise-constant and of small total-variation norm.

One general risk bound for μ̂ minimizing (TV) was established in [34]. For an
arbitrary graph G, let D : Rn → R

E be its vertex-edge incidence matrix, S = D†

the Moore–Penrose pseudo-inverse of D, and ρ the maximum Euclidean norm of
any column of S. Theorem 2 of [34] implies, for the estimator μ̂ minimizing (TV)
with the choice λ = σρ

√
2(1 + log(|E|/δ)), and for any μ ∈ R

n, with probability
at least 1 − 2δ,

(9) ‖μ̂ − μ0‖2 ≤ ‖μ − μ0‖2 + 8σ 2
(

ρ2‖Dμ‖0

κ2

(
1 + log

|E|
δ

)
+ log

e

δ

)
,
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where κ is a compatibility constant bounded as κ−2 ≤ 4 min(d,‖Dμ‖0) and d is
the mean vertex degree of G. (The result of [34] is more general, involving both
‖Dμ‖1 and ‖Dμ‖0, and we have specialized to the “pure-l0” setting.)

An important difference between this result and Theorem 3.1 is the appearance
of ρ2, which is graph-dependent. Assuming G has small average degree d , the
above guarantee is similar to Theorem 3.1 if ρ2 is small. It is shown in [34] that
ρ2 � 1 for 3-D (and higher-dimensional) lattice graphs and ρ2 � logn for 2-D
lattice graphs, indicating that μ̂ is nearly rate-optimal over {μ0 : ‖Dμ0‖0 ≤ s} for
these graphs. However, for example, when G is the linear chain, ρ2 � n and the
bound (9) is larger than those of the preceding section by a factor of n.

More specialized analyses were performed for the linear chain in [19, 44], where
sharper results were obtained that depend on the minimum spacing �(μ0) be-
tween two changepoints of μ0. More precisely, denoting by 1 ≤ i1 < · · · < is < n

the values i for which μ0,i �= μ0,i+1 and letting i0 := 0 and is+1 := n, define
�(μ0) := min0≤r≤s ir+1 − ir . Then Theorem 4 of [44] shows, if ‖Dμ0‖0 = s and
λ = σ(n�(μ0))

1/4, then

E
[‖μ̂ − μ0‖2]

� σ 2s
(
(log s + log logn) logn +

√
n/�(μ0)

)
.

If �(μ0) � n/(s + 1) so that changepoints are nearly equally-spaced, then this
bound is of order s3/2 times logarithmic factors, and furthermore this has been im-
proved to the optimal bound E[‖μ̂ − μ0‖2] � σ 2s log(1 + n/s) in [30]. However,
if �(μ0) � nα for any α < 1, then the above bound differs from the guarantee of
Theorem 3.2 by a factor of roughly n(1−α)/2, and in the worst case this subopti-
mality is of order

√
n.

It has been conjectured, for example in Remark 3 of [44] and Remark 2.3 of
[30], that this suboptimality is not an artifact of the theoretical analysis, but rather
that the TV-penalized estimate μ̂ exhibits a slower rate of convergence when the
equal spacing condition �(μ0) � n/(s + 1) is not met. We provide in this section
a theoretical validation of this conjecture; proofs are given in Appendix S3.

First, suppose the true signal μ0 is constant and equal to zero.

THEOREM 4.1. Let G be the linear chain graph with n vertices, and suppose
μ0 = 0. There exists a constant c > 0 such that for any fixed λ ∈ [0, σ

√
cn/ logn],

if μ̂ is the minimizer of (TV), then the following hold:

(a) For some constants C,c′ > 0, letting k̂ := ‖Dμ̂‖0 + 1 be the number of
constant intervals of μ̂,

P

[
k̂ >

cn

max(λ2/σ 2,1) logn

]
≥ 1 − Ce−c′n/max(λ2/σ 2,1).

(b) For some constant c′ > 0, the squared-error risk of μ̂ satisfies

E
[‖μ̂‖2] ≥ c′σ 2n

max(λ2/σ 2,1)(logn)4 .
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Hence, if μ0 = 0 and λ � σnα for any α < 1/2, then the number of change-
points and the squared-error risk of the TV-penalized estimator μ̂ are (up to log-
arithmic factors) at least of order n1−2α and σ 2n1−2α , respectively. As a conse-
quence, we obtain the following lower bound in a minimax sense.

THEOREM 4.2. Let G be the linear chain graph with n vertices, and let �(μ0)

denote the minimum distance between two changepoints in μ0. For each fixed λ ≥
0, let μ̂λ denote the minimizer of (TV) for this λ. Then there exists a constant c > 0
such that for any s ∈ [2, n − 1] and � ≤ n/(s + 1),

inf
λ≥0

sup
μ0:‖Dμ0‖0≤s,�(μ0)≥�

E
[‖μ̂λ − μ0‖2] ≥ cσ 2

(logn)5

√
sn

�
.

In particular, setting � = 1 removes restrictions on the minimum spacing be-
tween changepoints and yields (3) stated in the Introduction.

Theorem 4.2 may be reinterpreted in the context of the Lasso estimate for sparse
linear regression: Setting β0 := Dμ0 and

X := D† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−n − 1

n
−n − 2

n
−n − 3

n
· · · −1

n

1

n
−n − 2

n
−n − 3

n
· · · −1

n

1

n

2

n
−n − 3

n
· · · −1

n
...

...
...

. . .
...

1

n

2

n

3

n
· · · n − 1

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×(n−1),

minimizing (TV) is equivalent to minimizing the Lasso objective

1

2
‖Ỹ − Xβ‖2 + λ‖β‖1

over β ∈ R
n−1, where Ỹ = (Y1 − Ȳ , . . . , Yn − Ȳ ) denotes Y centered by its mean.

The maximum column norm of X is
√

n/4, the error ‖μ̂ − μ0‖2 corresponds to
n times the “prediction loss” n−1‖Xβ̂ − Xβ0‖2, and in this context Theorem 4.2
(with � = 1) implies

inf
λ≥0

sup
β0:‖β0‖0≤s

E

[
1

n

∥∥Xβ̂λ − Xβ0
∥∥2

]
≥ cσ 2

(logn)5

√
s

n
.

Hence the minimax prediction risk for the Lasso estimate over {β0 : ‖β0‖0 ≤ s}
decays essentially no faster than order n−1/2. This is in contrast to the faster rate
of n−1 that is achievable when X has well-behaved restricted eigenvalue constants
(see, e.g., [10, 65] and the references contained therein).
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More generally, for any connected graph G, noting that D† ∈ R
n×E is of rank

n − 1 with range orthogonal to the all-1’s vector, minimizing (TV) is equivalent to
minimizing

1

2

∥∥Ỹ − D†β
∥∥2 + λ‖β‖1 subject to β ∈ range(D),

where range(D) denotes the column span of D in R
E . The results of the two

preceding sections imply that whenever G has small average degree, the “fast”
optimal rate for prediction risk over the class {β0 ∈ range(D) : ‖β0‖0 ≤ s} for the
above problem is attainable in polynomial time, even if it is not achieved by the l1
estimator. This may be contrasted with the negative results of [72, 73], which show
that there exist adversarial design matrices X for sparse regression where such fast
rates are not achieved by a broad class of M-estimators or by any polynomial-time
algorithm returning an s-sparse output.

5. Edge-weighting for inhomogeneous graphs. In this section, we general-
ize the results of Section 3 by considering (exact or approximate) minimizers μ̂

of the edge-weighted objective (W). Proofs are contained in Appendix S2, with a
brief summary of proof ideas at the end of this section.

We motivate our discussion by the following example, which examines the
factor-d gap between the upper and lower bounds of (5) and (7).

EXAMPLE 5.1. Let G be the complete graph on n vertices. Then the average
vertex degree of G is d = n − 1, and (7) implies

(10) inf
μ̂

sup
μ0:‖Dμ0‖0≤s

E
[‖μ̂ − μ0‖2]

� σ 2 s

n

(
1 + log

|E|
s

)
.

This lower bound is in fact tight, and the upper bound of (5) is loose by a factor of
n: Theorem 5.5 below will imply that setting λ � σ 2

n
(1 + log |E|

s
) in (L0) achieves

the above level of risk, when G is the complete graph.
On the other hand, let G be a “tadpole” graph consisting of a linear chain of

n/2 vertices with one endpoint connected by an edge to a clique of n/2 remaining
vertices. The average vertex degree of G in this case is d = (n + 1)/2, so a direct
application of (7) still yields (10). However, by restricting to the subclass of signals
that take a constant value on the n/2-clique, it is clear that the minimax risk over
{μ0 : ‖Dμ0‖0 ≤ s} is at least that of estimating the signal over only the linear chain
portion of G with n/2 vertices. The lower bound (7) applied to only this subgraph
implies that in this case, the upper bound (5) is tight up to a constant factor, and
the lower bound (10) is loose by a factor of 1/n.

This example highlights the problem that the complexity measure ‖Dμ0‖0 is
not necessarily spatially homogeneous over G. For example, when G is the tadpole
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graph, a signal μ0 that is constant over all but one vertex belonging to the n/2-
clique has ‖Dμ0‖0 = n/2 − 1, but a signal taking a different value at each of the
vertices of the linear chain also has ‖Dμ0‖0 = n/2−1. A theoretical consequence
is that the minimax risk over {μ0 : ‖Dμ0‖0 ≤ s} is controlled by the least well-
connected portion of the graph. A practical consequence is that any choice of λ

will either oversmooth the signal over the n/2-clique or undersmooth the signal
over the linear chain, and no single choice of λ leads to good signal recovery in
both of these regions.

While the tadpole graph is an extreme example, the same phenomenon arises in
any graph with regions of varying connectivity. In such applications, we propose
to consider the weighted objective function (W) where each edge is weighted by
a measure of its contribution to the connectivity of G. We believe both that mini-
mizing this weighted objective is usually a more reasonable procedure in practice
and that the value ‖Dμ0‖w provides a better indication of the complexity of the
piecewise-constant signal μ0.

One specific weighting w : E → R+ that implements this idea is to weigh each
edge by its effective resistance.

DEFINITION 5.2. Let G be a connected graph and {i, j} an edge in G. The ef-
fective resistance r(i, j) of this edge has the following four equivalent definitions:

1. r(i, j) is the effective electrical resistance measured across vertices i and j

when G represents an electrical network where each edge is a resistor with resis-
tance 1.

2. Let L be the (unweighted) Laplacian matrix of G, L† the pseudo-inverse of
L, and ei the basis vector with ith entry 1 and remaining entries 0. Then r(i, j) =
(ei − ej )L

†(ei − ej ).
3. Consider a simple random walk on G starting at vertex i, and let t be the

number of steps taken to reach vertex j and then return to vertex i for the first
time. Then r(i, j) = 1

2|E|E[t].
4. Let T be (the edges of) a random spanning tree of G chosen uniformly from

the set of all spanning trees of G. Then r(i, j) = P[{i, j} ∈ T ].

For verification of the equivalence of these definitions, see [27, 46]. In prac-
tice, r(i, j) may be computed via the second characterization using fast Laplacian
solvers [45, 59].

The fourth characterization above describes one sense in which r(i, j) measures
the “contribution” of edge {i, j} to the connectivity of G: For example, if removing
{i, j} breaks G into two disconnected components, then every spanning tree T of
G must contain {i, j}, so r(i, j) = 1. Conversely, if there are many short alternative
paths from i to j not using edge {i, j}, then r(i, j) is much smaller than 1.

More generally, the contribution of each edge to the graph connectivity may be
measured by any weighting belonging to the spanning tree polytope of G.
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DEFINITION 5.3. A weighting w : E → R+ is a spanning tree weighting if
there exists a spanning tree T of G such that w(i, j) = 1 if {i, j} ∈ T and w(i, j) =
0 otherwise. The spanning tree polytope ST (G) is the convex hull of all spanning
tree weightings.

[With a slight abuse of notation, we will henceforth denote general weightings
by w and any weighting in ST (G) by r.] Thus, if r ∈ ST (G), then there exist
spanning trees T1, . . . , TM of G and λ1, . . . , λM > 0 with

∑M
m=1 λm = 1 such that

r(i, j) =
M∑

m=1

λm1
{{i, j} ∈ Tm

}

for every edge {i, j} ∈ E. The weighting r is thus identified with the probability
distribution of a random spanning tree T , where T = Tm with probability λm. This
distribution satisfies the property, for all {i, j} ∈ E,

r(i, j) = P
[{i, j} ∈ T

]
.

For any subset of edges E′ ⊆ E and weighting w : E →R+, let us denote w(E′) =∑
{i,j}∈E′ w(i, j) as the total weight of these edges. Then the above implies, for the

random spanning tree T associated to r ∈ ST (G),

(11) r
(
E′) = E

[∣∣E′ ∩ T
∣∣].

The effective resistance weighting of Definition 5.2 corresponds to the uniform
distribution for T .

The results below describe the squared-error risk of the estimator μ̂ that (exactly
or approximately) minimizes (W) for any edge-weighting w : E →R+. We derive,
for all graphs G, minimax upper and lower bounds on this risk over the class
{μ0 : ‖Dμ0‖w ≤ s}. The tightness of these bounds will depend on how close w is
to the spanning tree polytope ST (G); for effective resistance weighting, or more
generally for any r ∈ ST (G), these bounds are tight up to a universal constant
factor independent of the graph.

Let us make a remark about scaling, which is important for the interpretation of
the below results: As rescaling w by c > 0 and λ by 1/c leads to the same penalty
in (W), we will state all of our results, for simplicity and without loss of generality,
under a scaling such that w ≥ r for some r ∈ ST (G), meaning w(i, j) ≥ r(i, j) for
every edge. For any w (where G remains connected by edges with positive weight),
there is a smallest constant c > 0 for which this property holds for w̃ = cw; the
below results yield the tightest risk bounds when applied to w̃ scaled in this way.
Whenever w ≥ r for some r ∈ ST (G), (11) implies that the total weight of all
edges satisfies

(12) w(E) ≥ r(E) = n − 1,

since every spanning tree has n − 1 edges. The ratio w(E)/(n − 1) provides a
measure of the distance of w to ST (G). Furthermore, if E′ is any subset of edges
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whose removal disconnects G into k + 1 connected components, then every span-
ning tree contains at least k edges of E′, so w(E′) ≥ r(E′) ≥ k. In particular,

(13) μ ∈ R
n has k + 1 distinct values ⇒ ‖Dμ‖w ≥ k.

The following results generalize Theorems 3.1, 3.2, and 3.3.

THEOREM 5.4. Let w : E → R+ be such that w ≥ r for some r ∈ ST (G),
and let δ ≤ σ/

√
n and τ ≤ σ 2. For any η > 0, there exist constants Cη,C

′
η > 0

depending only on η such that if λ ≥ Cησ
2 log w(E) and μ̂ is any (τ, δZ)-local-

minimizer of (W), then

(14) E
[‖μ̂ − μ0‖2] ≤ inf

μ
(1 + η)‖μ − μ0‖2 + C′

ηλmax
(‖Dμ‖w,1

)
.

THEOREM 5.5. Let w : E →R+ be such that w ≥ r for some r ∈ ST (G), and
let δ ≤ σ/

√
n and τ ≤ σ 2. There exist universal constants C,C′ > 0 such that for

any s ∈ [1,w(E)], if λ ≥ Cσ 2(1 + log w(E)
s

) and μ̂ is any (τ, δZ)-local-minimizer
of (W), then

(15) sup
μ0:‖Dμ0‖w≤s

E
[‖μ̂ − μ0‖2] ≤ C′λs.

Conversely, there exists a universal constant c > 0 such that for any s ∈
[4w(E)

n
,w(E)],

inf
μ̂

sup
μ0:‖Dμ0‖w≤s

E
[‖μ̂ − μ0‖2] ≥ cσ 2s

n

w(E)

(
1 + log

w(E)

s

)
,

where the infimum is taken over all possible estimators μ̂ := μ̂(Y ).

The restriction to s � w(E)/n in the lower bound is necessary for generality of
the result to all graphs G, for the same reason as in Remark 3.4.

The minimax upper and lower bounds above differ by the factor n/w(E). Recall
from (12) that w(E) ≥ n − 1, with w(E) = n − 1 precisely when w ∈ ST (G).
Hence the above immediately implies the following corollary.

COROLLARY 5.6. If w = r where r(i, j) is the effective resistance of each
edge {i, j}, or more generally where r ∈ ST (G), then for any s ∈ [4, n − 1],
(16) inf

μ̂
sup

μ0:‖Dμ0‖w≤s

E
[‖μ̂ − μ0‖2] � σ 2s

(
1 + log

n

s

)
.

REMARK 5.7. One may compare (15) with a guarantee achieved by the
wavelet spanning tree method of [56]: In this method, for a fixed spanning tree
T of G, an orthonormal basis of Haar-like wavelet functions is constructed over
T such that a signal μ0 cutting s edges of T has a representation of sparsity
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s(logdmax(T ))(logn) in this basis, where dmax(T ) is the maximal vertex degree
of T . The corresponding wavelet thresholding estimator then satisfies

E
[‖μ̂ − μ0‖2]

� σ 2s
(
logdmax(T )

)
(logn)2.

If T is chosen at random from the spanning tree distribution corresponding to any
weighting w ∈ ST (G), then bounding dmax(T ) ≤ dmax(G) and averaging over the
random choice of T yields

E
[‖μ̂ − μ0‖2]

� σ 2(
logdmax(G)

)
(logn)2‖Dμ0‖w,

which agrees with (15) up to extra logarithmic factors. Whereas this defines a
randomized algorithm and the above risk is averaged also over the algorithm ex-
ecution, minimizing (W) for w ∈ ST (G) directly penalizes the number of edges
cut by μ̂ in the average spanning tree, and thus may be interpreted loosely as a
derandomization of this wavelet approach.

Finally, we state a result of relevance to testing the null hypothesis (8).

THEOREM 5.8. Let w : E →R+ be such that w ≥ r for some r ∈ ST (G), and
let δ ≤ σ/

√
n and τ ≤ σ 2. There exist universal constants C,C′ > 0 such that if

μ0 is constant over G, λ ≥ Cσ 2 log w(E) and μ̂ is any (τ, δZ)-local-minimizer of
(W), then

P[μ̂ is constant over G] ≥ 1 − C′n−3.

Thus we may test H0 in (8) by setting λ � σ 2 log w(E) and rejecting H0 if μ̂

minimizing (W) is not constant. Denoting by P ⊥ the projection orthogonal to the
all-1’s vector, the risk bound (15) [or more precisely, the probability guarantee of
Lemma S2.3(b)] implies that this test can distinguish a nonconstant alternative μ0
with probability approaching 1 as long as ‖P ⊥μ0‖2 ≥ Cσ 2‖Dμ0‖w log w(E), for
a universal constant C > 0. When w : E → R+ is the effective resistance weight-
ing, this recovers a similar detection threshold as established for the tests in [56,
57].

In the case of uniform edge weights w ≡ 1, it is clear that w(E) = |E| and
w ≥ r for all r ∈ ST (G). Then Theorems 3.1, 3.2, 3.3 and 3.5 follow directly by
specializing these results. If there exists r ∈ ST (G) such that r(i, j) < 1 for ev-
ery edge, then the results of Section 3 are trivially strengthened by rescaling λ by
max{i,j}∈E r(i, j). For example, if G is the complete graph, then every edge has ef-
fective resistance r(i, j) = 2/n, and Theorems 5.4 and 5.5 imply that λ may in fact
be set to Cn−1 log |E| and Cn−1 log |E|/s in Theorems 3.1 and 3.2, respectively,
as claimed in Example 5.1.

We prove Theorems 5.4, 5.5 and 5.8 in Appendix S2. The upper bound in The-
orem 5.5 uses the idea of [37], Theorem 3.3, for bounding the number of small
graph cuts by controlling the number of cut edges in a given spanning tree. We
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apply this idea in Lemma S2.2, controlling a supremum over all small cuts by se-
lecting a random spanning tree according to the weighting r and taking a union
bound over cuts of this tree. In conjunction with a Chernoff bound and a standard
Cauchy–Schwarz argument, this establishes (14) and (15) for the exact minimizer
of (W) with high probability. We obtain bounds in expectation using Holder’s in-
equality to control the risk on the complementary low-probability event. The ex-
tension to approximate minimizers uses the factor-2 approximation guarantee for
the alpha-expansion algorithm established in [13]. However, whereas the optimal
objective value for (W) is usually dominated by the squared-error term, we verify
in Lemma S2.1 that the approximation factor applies not to this term but only to
the l0 penalty, and it holds not only with respect to the global minimizer of (W)
but also with respect to any candidate vector μ. This yields (14) and (15) for local
minimizers. Theorem 5.8 uses the preceding risk bounds together with the obser-
vation that the optimal constant estimate is within one alpha-expansion from any
vector μ. Finally, the lower bound in Theorem 5.5 follows from an embedding
of vertex-sparse vectors into {μ0 : ‖Dμ0‖w ≤ s} and a standard lower bound for
sparse normal-means; similar arguments were used in [54, 56].

6. Simulations. We study empirically the squared-errors of the approximate
minimizers of (L0) and (W) as returned by Algorithm 1, as well as the exact mini-
mizer of (TV) (computed using the pygfl library [60]). We denote these estimates
by μ̂L0, μ̂W and μ̂TV. We consider piecewise-constant signals over various graphs,
corrupted by Gaussian noise for various noise levels σ . We report in each setting
the standardized mean-squared-error

(st.MSE)
1

nσ 2 ‖μ̂ − μ0‖2.

Due to this normalization by σ 2, one may equivalently interpret these results as
for a fixed noise level σ under various rescalings of the true signal μ0.

6.1. Parameter tuning. For Algorithm 1, we fix throughout δ = 0.01 and
τ = 0. This value of δ may be larger than that prescribed by the theory of the
preceding section, but represents a compromise to yield faster runtime.

We select λ by minimizing an empirical estimate of E[‖μ̂ − μ0‖2]. Typically,
cross-validation is used to obtain such an estimate. However, we observe that naive
cross-validation does not necessarily work well for all graphs and signals. (Con-
sider, e.g., a case where the primary contribution to error comes from vertices i

near the boundaries of the constant pieces of μ0, and estimation of these values
μ0,i is more difficult when Yi is removed.) We instead use the following procedure
based on [32, 61]:

1. Compute an estimate σ̂ for σ . Set α = 0.04.
2. For repetitions b = 1, . . . ,B:
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(a) Generate z = (z1, . . . , zn) ∼ Normal(0, ασ̂ 2Id), and set Y ∗ = Y + z and
Y ∗∗ = Y − z/α.

(b) For each λ, compute μ̂ based on data Y ∗, and compute err(b)(λ) =
‖μ̂ − Y ∗∗‖2.

3. Choose λ that minimizes the average error err(λ) = 1
B

∑B
b=1 err(b)(λ).

This is motivated by the insight that if σ̂ = σ , then Y ∗ and Y ∗∗ are independent, so
E[err(b)(λ)] = nσ 2(1 + α−1) + E[‖μ̂ − μ0‖2]. Hence err(λ) estimates a constant
plus the risk of μ̂ applied to data at the slightly elevated noise level σ(1 + √

α) =
1.2σ . Due to this elevation in noise level, this procedure has a slight tendency to
oversmooth.

For each edge {i, j} where μ0,i = μ0,j , we have Yi − Yj ∼ Normal(0,2σ 2).
Hence σ may be estimated from the edge differences (Yi − Yj ){i,j}∈E by iden-
tifying a normal mixture component corresponding to this subset of values; we
used the method of [24] as implemented in the locfdr R package. Increasing B

reduces the variability of the selection procedure. For the smaller graphs (linear
chain, Oldenburg, Gnutella P2P) we set B = 20, and for the larger graphs (2-D
cow, San Francisco, Enron email) we set B = 5.

We will report both the st.MSE achieved using this method, as well as the best-
attained st.MSE corresponding to retrospective optimal tuning of λ. For (TV), λ

may alternatively be selected by minimizing Stein’s unbiased risk estimate (SURE)
using the simple degrees-of-freedom formula derived in [64]. We found results of
the SURE approach to be very close to those obtained using the above procedure.

6.2. Empirical runtime. For Algorithm 1, we computed minimum s-t cuts us-
ing the method of [12]. The outer loop required no more than 15 iterations, and
typically fewer than 10 iterations, in all tested examples. Table 1 displays the aver-
age runtimes of this algorithm on our personal computer for computing μ̂L0 with a
single value of λ. The runtimes of the algorithm for computing μ̂W were compara-
ble, although computing effective resistance weights required an additional a priori
cost of 10 seconds, 3 hours, 45 seconds and 30 minutes for the four networks in the
order listed, using the approxCholLap method of the Laplacians-0.2.0 Julia pack-
age with error tolerance 0.01. (The effective resistance computation is a one-time
cost per network, reusable across different λ values and data vectors Y .)

In our experiments, the runtimes in Table 1 were roughly comparable to those of
the TV denoising algorithm of [60], but slower than more optimized TV denoising
algorithms on lattice graphs. Parameter tuning using the approach of Section 6.1
is much slower as it requires running the method multiple times over a range of λ

values, although this computation is easily parallelized.

6.3. Linear chain graph. Two signals on a linear chain graph with n = 1000
vertices are depicted in Figure 1. The first signal has 19 equally-spaced break
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TABLE 1
Average computational time of Algorithm 1 for one value of λ

Graph

1-D Cow Oldenburg San Fran. Gnutella Enron

Runtime (seconds) 0.13 45 0.7 40 4 240

points, while the second has 20 break points at unequal spacing. We studied recov-
ery for noise levels σ = 0.1 to σ = 1. Figure 1 displays one instance of simulated
noise and the resulting estimates μ̂L0 and μ̂TV. In both examples, for data-tuned
λ, μ̂L0 tends to over-smooth (missing two and four changepoints, resp.) and μ̂TV

tends to undersmooth.
Figure 2 plots st.MSE comparisons for μ̂L0 and μ̂TV. The μ̂L0 estimate achieves

significantly smaller risk than μ̂TV at higher signal-to-noise regimes, for exam-
ple those displayed in Figure 1, while μ̂TV becomes competitive or better in
lower signal-to-noise regimes, corresponding to lower values of normalized total-
variation ‖Dμ0‖1/σ for the true signal. Figure 3 presents a different example to
further explore this trade-off, in which the normalized total-variation of the signal
is fixed at ‖Dμ0‖1/σ = 20, and we increase the number of changepoints while
simultaneously decreasing the jump sizes. (Changepoints are equally spaced, and
distinct signal values are normally distributed.) The estimate μ̂L0 is better under
strong edge-sparsity, while μ̂TV becomes better as we transition to weaker edge-
sparsity.

FIG. 1. Signals on a linear chain graph. Top: Equally-spaced breaks, σ = 0.5. Bottom:
Unequally-spaced breaks, σ = 0.3. The true signal μ0 is displayed on the left, μ̂L0 in the middle,
and μ̂TV on the right (both with data-tuned λ).
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FIG. 2. Comparisons of st.MSE in (left) the equally-spaced and (right) unequally-spaced examples
of Figure 1, for μ̂L0, μ̂TV, the exact minimizer of (L0), and μ̂TV,relaxed. Solid lines correspond to
data-tuned λ, and dashed transparent lines to best-achieved error. All errors are averaged over 100
replicates of the simulated noise.

For the linear chain, we may compare μ̂L0 with the exact minimizer of (L0)
(computed using PELT in the changepoint R package [38]). Algorithm 1 achieves
risk comparable to the exact minimizer in all tested settings. One may ask, at the
higher signal-to-noise regimes, how much of the sub-optimality of μ̂TV is due
to estimator bias incurred by shrinkage. To address this, we computed also the
“relaxed” TV estimate

μ̂TV,relaxed = αμ̂TV + (1 − α)μ̂TV,debiased,

where α ∈ {0,0.1,0.2, . . . ,1} is an additional tuning parameter, and where
μ̂TV,debiased replaces each constant interval of μ̂TV with the mean of Y over this
interval. The error of μ̂TV at high signal-to-noise is partially reduced, but not to
the same levels as μ̂L0.

FIG. 3. Left: Comparisons of st.MSE for signals of fixed total-variation ‖Dμ0‖1/σ = 20 and in-
creasing numbers of segments/decreasing jump sizes. Right: Raw data and true signal in black, μ̂L0

in red, and μ̂TV in blue, for the signal with 20 segments.
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FIG. 4. Far left: Original image, with pixel values normalized to [0,1]. (middle left) Noisy image,
σ = 0.3. Middle right: μ̂L0, and far right: μ̂TV, both with data-tuned λ.

6.4. 2-D lattice graph. Figure 4 displays a cartoon gray-scale image of a cow,
represented by its pixel values on a 2-D lattice graph of size 320 × 283. Pure white
corresponds to μ0 = 1, and pure black to μ0 = 0. The figure also displays μ̂L0 and
μ̂TV when the image is contaminated by noise at level σ = 0.3. We again observe
that μ̂L0 oversmooths, missing details in the cow’s feet, right horn and the shadows
of the image. In contrast, μ̂TV undersmooths and returns a blotchy cow.

Table 2 reports st.MSE comparisons for σ = 0.1 to σ = 0.5. At the level σ = 0.3
displayed in Figure 4, the st.MSE of μ̂L0 is slightly greater than that of μ̂TV. At
higher signal-to-noise levels, μ̂L0 is better, while it is worse at lower signal-to-
noise.

6.5. Road and digital networks. We tested signal recovery over four real net-
works: the Oldenburg and San Francisco road networks from www.cs.utah.edu/
~lifeifei/SpatialDataset.htm, and the Gnutella08 peer-to-peer network and Enron
email network from snap.stanford.edu/data. Duplicate edges were removed, and
only the largest connected component of each network was retained.

For each network, we simulated an epidemic according to a simple graph-based
discrete-time SI model [49], randomly selecting a source vertex to infect at time
t = 0 and, for each of T timesteps, allowing each infected vertex to independently

TABLE 2
Comparison of st.MSE for the cow image of Figure 4. Nonparenthesized

values correspond to data-tuned λ, and parenthesized
values to best-attained error

sigma

0.1 0.2 0.3 0.4 0.5

μ̂L0 st.MSE 0.041 0.067 0.076 0.081 0.082
(0.039) (0.067) (0.071) (0.081) (0.082)

μ̂TV st.MSE 0.083 0.075 0.065 0.061 0.054
(0.083) (0.075) (0.065) (0.059) (0.053)

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://snap.stanford.edu/data
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TABLE 3
For each network: Number of total vertices, total edges, variability of effective edge resistances

(measured by standard deviation/mean) and numbers of infected vertices and
cut edges corresponding to the signal at three observation times

Network Verts. Edges Res. var. Inf. T1 Cut T1 Inf. T2 Cut T2 Inf. T3 Cut T3

Oldenburg 6105 7029 0.118 57 16 515 75 2108 164
San Fran. 174,956 221,802 0.203 8574 306 27,724 562 70,925 774
Gnutella 6299 20,776 0.826 19 91 67 477 271 3894
Enron 33,696 180,811 1.297 179 7319 2564 74,117 16,868 29,253

infect each noninfected neighbor with probability 0.5. We associated the values
μ0 = 1.005 and μ0 = 0.005 to infected and noninfected vertices. For each net-
work, we considered three signals corresponding to observations of the epidemic
at three different times T . Various properties of these networks and signals are
summarized in Table 3.

FIG. 5. A simulated epidemic signal over the San Francisco road network is displayed on the far
left. Three columns display the true signal (left), μ̂W (middle) and μ̂TV (right) for the three boxed
areas of the map. Both μ̂W and μ̂TV are estimated on noisy data with σ = 0.3, using data-tuned λ,
and μ̂W uses effective-resistance edge weighting.
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For noise level σ = 0.3, the simulated signal, μ̂TV, and μ̂W computed with
effective-resistance edge weights are depicted in Figure 5 for the San Francisco
road network at observation time T2. The most difficult regions to estimate are the
signal boundaries; we zoom in on three regions of the map where μ̂TV is inaccurate
at these boundaries, but μ̂W is mostly correct. At this noise level, the st.MSE of
μ̂TV exceeds μ̂W by a factor of about 2.

Figure 6 displays st.MSE comparisons for μ̂L0, μ̂TV and μ̂W with effective-
resistance weighting at noise levels σ = 0.1 to σ = 0.5 in each example. We

FIG. 6. Comparisons of st.MSE for recovery of epidemic signals on four networks, for μ̂L0, μ̂TV

and μ̂W with effective-resistance edge weights. Solid lines correspond to data-tuned λ, and dashed
transparent lines to best-achieved error.
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observe that μ̂W is not substantially worse than μ̂L0 in any tested setting, and
that in the Gnutella and Enron digital networks where there is large variation in
effective edge resistances, μ̂W is sometimes substantially better. At the tested
noise levels, these methods are (with the exception of Enron T3) not substan-
tially worse than μ̂TV, and can be substantially better in the lower noise set-
tings.

7. Conclusion. We have studied estimation of piecewise-constant signals
over arbitrary graphs using an l0 edge penalty, establishing minimax rate-optimal
statistical guarantees for the local minimizer computed by an approximation al-
gorithm for minimizing this objective. We have shown theoretically that the same
guarantees are not necessarily achieved by total-variation denoising, and empir-
ically that l0-penalization may be more effective in high signal-to-noise settings.
For application to networks with regions of varying connectivity, we have proposed
minimization of an edge-weighted objective, which achieves better empirical per-
formance in tested examples and leads to theoretical guarantees that are spatially
uniform over all graphs.

We note that while Algorithm 1 is provably polynomial-time, discretization
of the continuous parameter domain yields poor worst-case runtime and may be
computationally costly to extend to likelihood models with multi-dimensional pa-
rameters. The development of faster nondiscretized algorithms is an interesting
direction for future work. Finally, our problem may be reformulated as sparse
regression with particular graph-based designs, and we believe it is an inter-
esting question whether similar computational ideas may be used to achieve
better prediction error in sparse regression for more general families of de-
signs.
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supplementary appendices contain proofs of theoretical results.
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