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MEASURING AND TESTING FOR INTERVAL
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of Finance and Economics†

In this article, we introduce the notion of interval quantile independence
which generalizes the notions of statistical independence and quantile inde-
pendence. We suggest an index to measure and test departure from interval
quantile independence. The proposed index is invariant to monotone trans-
formations, nonnegative and equals zero if and only if the interval quantile
independence holds true. We suggest a moment estimate to implement the
test. The resultant estimator is root-n-consistent if the index is positive and n-
consistent otherwise, leading to a consistent test of interval quantile indepen-
dence. The asymptotic distribution of the moment estimator is free of parent
distribution, which facilitates to decide the critical values for tests of interval
quantile independence. When our proposed index is used to perform feature
screening for ultrahigh dimensional data, it has the desirable sure screening
property.

1. Introduction. Suppose Y1 and Y2 are two univariate random variables,
QY1|Y2(τ1) is the τ1th quantile of Y1 conditional on Y2 and QY1(τ1) is the un-
conditional τ1th quantile of Y1. The τ1th quantile of Y1 is independent of Y2 if
QY1|Y2(τ1) = QY1(τ1), and Y1 is independent of Y2 if QY1|Y2(τ1) = QY1(τ1) for
all τ1 ∈ (0,1). In other words, the difference between QY1|Y2(τ1) and QY1(τ1)

characterizes the deviation from quantile independence at a single τ1 and sta-
tistical independence for all τ1 ∈ (0,1). Characterizing the difference between
QY1|Y2(τ1) and QY1(τ1) requires to estimate QY1|Y2(τ1) and QY1(τ1) and test
whether QY1|Y2(τ1) = QY1(τ1) at a single τ1 or for all τ1 ∈ (0,1). Estimating
the unconditional quantile QY1(τ1) is straightforward. However, estimating the
conditional quantile function QY1|Y2(τ1) is nontrivial and has received consid-
erable attention in the past two decades, by assuming either QY1|Y2(τ1) is a
linear [14, 15] or nonlinear function of Y2 [8, 11]. In contrast to estimation,
testing whether QY1|Y2(τ1) = QY1(τ1) received little attention in the literature,
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partly because the covariance structures of the quantile estimates are compli-
cated. Li et al. [17] proposed a linear quantile correlation coefficient, defined

as qcorrτ1
(Y1 | Y2)

def= cov{I (Y1 ≥ QY1(τ1)), Y2}/{τ1(1 − τ1)var(Y2)}1/2, to test
whether QY1|Y2(τ1) = QY1(τ1). However, the test based on quantile correlation is
possibly inconsistent if QY1|Y2(τ1) is a nonlinear function of Y2.

In this article, we aim to measure and test the departure from

H0 : QY1|Y2=QY2 (τ2)(τ1) = QY1(τ1)

for (τ1, τ2) ∈ I1 ⊗ I2 ⊆ (0,1) ⊗ (0,1),

versus H1 : others.

(1.1)

We refer to H0 in (1.1) as the interval quantile independence because both I1 and
I2 can be intervals and we are concerned with quantile independence over two
intervals. In particular, if I1 is a singleton, say, I1 = {τ1}, and I2 = (0,1), H0 in
(1.1) boils down to the quantile independence H0 : QY1|Y2(τ1) = QY1(τ1) at a sin-
gle τ1. If I1 = I2 = (0,1), then H0 in (1.1) reduces to the statistical independence
H0 : QY1|Y2(τ1) = QY1(τ1) for all τ1 ∈ (0,1). In this sense, the interval quantile
independence defined in H0 of (1.1) bridges the gap between quantile indepen-
dence and statistical independence by choosing I1 ⊆ (0,1) and I2 = (0,1). The
concept of interval quantile independence generalizes the notions of both quantile
independence and statistical independence.

The interval quantile dependence allows practitioners to draw interpretable con-
clusions obtained through various quantile ranges I1 ⊗ I2. In what follows, we il-
lustrate the usefulness of the interval quantile dependence through two motivating
examples:

1. Hypertension study: It is common knowledge that hypertension is age re-
lated, possibly due to reduction in vascular compliance and stiffening of the arter-
ies. However, the aging effect on the systolic blood pressure is possibly different
for young, middle-aged and old people. In other words, how the systolic blood
pressure varies with age may vary at different stages. Measuring aging effect at
different ages amounts to testing departure from interval quantile independence
for different quantile ranges of ages. Our analysis indicates that the aging effect on
the systolic blood pressure is much more significant for middle-aged people than
for both young and old people.

2. Happiness study: It is generally believed that household income has a small
and positive impact on happiness, which diminishes as income increases. In other
words, money does buy happiness, but up to a certain point. Measuring the re-
lationship between household income and happiness at different income levels
amounts to testing departure from interval quantile independence for different
quantile ranges of household incomes. Our analysis shows that a household need
to make RMB 372,121 yuan (around 53,931 US$) a year if one lives in rural ar-
eas in China and RMB 462,102 yuan (around 66,971 US$) a year if one lives in
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urban areas in China, but some extra income does not really translate into more
happiness.

The interval quantile independence is different from statistical independence
and quantile independence. In particular, if Y1 is statistically independent of Y2,
H0 in (1.1) is true for all I1 ⊗ I2 ⊆ (0,1) ⊗ (0,1). However, even if the interval
quantile independence holds true for some I1 ⊗I2 ⊆ (0,1)⊗ (0,1), Y1 is not nec-
essarily independent of Y2. Consequently, the independence tests, such as those
based on distance correlation [23, 24], ranks of distances [12] and sign covari-
ance related to Kendall’s tau [3], may have an inflated test size when used to test
(1.1). The quantile independence, QY1|Y2(τ1) = QY1(τ1), may hold true when the
interval quantile independence does not, even if τ1 ∈ I1 and I2 = (0,1). There-
fore, the quantile independence tests, such as those based on martingale difference
correlation [21, 22] and [25], may lose power when used to test (1.1).

The interval quantile independence is related to but conceptually different from
both the lower and the upper tail dependence [13], which are defined respectively
as follows:

lim
τ1→0

pr
{
Y2 ≤ QY2(τ1) | Y1 ≤ QY1(τ1)

}
and

lim
τ1→1

pr
{
Y2 ≥ QY2(τ1) | Y1 ≥ QY1(τ1)

}
.

The lower and upper tail dependence of (Y1, Y2) corresponds to the interval quan-
tile dependence with I1 = I2 = (0, τ1) for τ1 → 0, and I1 = I2 = (τ1,1) for
τ1 → 1, respectively. It describes the comovements in the tails of their distribu-
tions. In contrast, the interval quantile dependence allows for general intervals
I1 ⊗ I2 and does not concern necessarily the tail behaviors of the distributions of
(Y1, Y2).

In this article, we introduce an index, denoted by q(Y1, Y2;I1,I2), to test and
measure the departure from the interval quantile independence defined in H0 of
(1.1). Our proposed index can be used to measure nonlinear quantile dependence.
We will show that q(Y1, Y2;I1,I2) ≥ 0 with equality holding if and only if H0
in (1.1) holds true. The proposed index is invariant to monotone transforma-
tions in the sense that q(Y1, Y2;I1,I2) = q(m1(Y1),m2(Y2);I1,I2) for mono-
tonically increasing functions m1 and m2. It can also be used to test quantile
independence through setting I1 = {τ1} and I2 = (0,1) and statistical indepen-
dence through setting I1 = I2 = (0,1). We suggest a moment estimator to im-
plement our proposed test. The resulting estimate, denoted by q̂(Y1, Y2;I1,I2),
depends only on the ranks of the observations. We show that, in the general case
of q(Y1, Y2;I1,I2) > 0, n1/2{q̂(Y1, Y2;I1,I2) − q(Y1, Y2;I1,I2)} is asymptoti-
cally normal, and in the particular case of q(Y1, Y2;I1,I2) = 0, nq̂(Y1, Y2;I1,I2)

follows a non-normal limiting distribution. These asymptotic null distributions are
free of parent distribution of (Y1, Y2), which facilitates the determination of critical
values when the proposed index is used to test (1.1).
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This paper is organized as follows. In Section 2, we introduce the concept of in-
terval quantile independence and propose an index to measure the departure from
interval quantile independence. The theoretical properties of our proposed index
are also studied under both the population and sample levels. We also demonstrate
the theoretical properties through numerical studies. In Section 3, we generalize
the application of our proposed index to feature screening for ultrahigh dimen-
sional data. We conclude this paper in Section 4. The proof of Proposition 1 is
given in the Appendix and the proofs of Theorems 1–5 are given in the supple-
mentary material [27].

2. Interval quantile independence.

2.1. Some notation. The following notation will be used repetitively in subse-

quent exposition. Denote by “�k” the support of Yk , namely, �k
def= {yk : fk(yk) >

0} where fk stands for the marginal density function of Yk . Denote by QYk
(τk) the

τk th quantile of Yk and QY1|Y2(τ1) the τ1th quantile of Y1 conditional on Y2. In
general, QY1|Y2(τ1) varies with (τ1, Y2). We assume throughout that QY1|Y2(τ1) is
uniquely defined as a function of τ1 for each y2 ∈ �2. Let “⇔” stand for “is equiv-
alent to,” “

d−→” stand for “converges in distribution,” “
pr−→” stand for “converges

in probability” and “ d=” stand for “has the same distribution as.” Define Fk(yk)
def=

pr(Yk ≤ yk) and F1,2(y1, y2)
def= pr(Y1 ≤ y1, Y2 ≤ y2). We further assume the joint

distribution function F1,2(y1, y2) of (Y1, Y2) is continuous. Let f1,2(y1, y2) be the
joint density function of (Y1, Y2) and f1|2(y1 | y2) be the conditional density of
Y1 given Y2. Let Fn,k and Fn,1,2 be the respective empirical versions of Fk and
F1,2 when a random sample of size n, denoted by {(Yi,1, Yi,2), i = 1, . . . , n}, is
available. To be precise, Fn,k(yk)

def= n−1 ∑n
i=1 I (Yi,k ≤ yk) and Fn,1,2(y1, y2)

def=
n−1 ∑n

i=1 I (Yi,1 ≤ y1, Yi,2 ≤ y2), where I (A) stands for an indicator function
which equals one if the event A is true and zero otherwise.

2.2. The rationale. We start with the test for quantile independence. Suppose
for now we aim to test H0: QY1|Y2(τ1) = QY1(τ1) for a single τ1 ∈ (0,1), versus
H1: otherwise. It follows from the uniqueness of QY1|Y2(τ ) for each y2 ∈ �2 that

QY1|Y2(τ1) = QY1(τ1)

⇔ E
{
I
(
Y1 ≤ QY1(τ1)

) | Y2
} = τ1

⇔ cov
{
I
(
Y1 ≤ QY1(τ1)

)
, I (Y2 ≤ y2)

} = 0 for all y2 ∈ �2

⇔
∫
�2

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ y2)}
τ1(1 − τ1)F2(y2){1 − F2(y2)} dy2 = 0

⇔
∫ 1

0

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ QY2(τ2))}
τ1(1 − τ1)τ2(1 − τ2)

dτ2 = 0.
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The first equivalency follows from the definition and the uniqueness of QY1|Y2(τ1).
The second follows from the fact that E(ε | X) = 0 ⇔ E{εI (X ≤ x)} = 0, for all
x lies in the support of X. The third equivalency is obvious because the integrand
is nonnegative. Note that∫

�2

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ y2)}
τ1(1 − τ1)F2(y2){1 − F2(y2)} dy2

=
∫ 1

0

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ QY2(τ2))}
τ1(1 − τ1)τ2(1 − τ2)f2(QY2(τ2))

dτ2

and f2(y2) > 0 for all y2 ∈ �2. This immediately entails the last equivalency. The
denominators in the last two equivalencies are used to rescale the integrand to be
not greater than one.

The above discussion motivates us to define the following index to measure and
test the interval quantile independence between Y1 and Y2. Specifically, we let Iks
be two subsets of (0,1), namely, Ik ⊆ (0,1), Ik can be a singleton, say, Ik = {τk}.
We define the following index to measure and test H0 in (1.1):

q(Y1, Y2;I1,I2)

def=
∫
I1

∫
I2

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ QY2(τ2))}
τ1(1 − τ1)τ2(1 − τ2)

dμ1(τ1) dμ2(τ2),
(2.1)

where μks are two probability measures which can be different and depend on Ik .
The denominator of the integrand in (2.1) is used for normalization. We define
0/0 = 0 to avoid possible confusion in calculation. Our proposed index is related
to the martingale difference correlation [21, 22] if we set I1 = {τ1} and I2 = (0,1)

in q(Y1, Y2;I1,I2). In this sense, the martingale difference correlation is a special
case of our proposed index. There are however two distinctions. The martingale
difference correlation is based on characteristic function while our proposed index
is in spirit based on distribution function, and the martingale difference correlation
allows for multivariate Y1 and Y2 and our proposed index requires that both Y1 and
Y2 be univariate.

We first present some properties of q(Y1, Y2;I1,I2) at the population level.

PROPOSITION 1. We assume that Ik = {τk : dμk(τk)/dτk > 0}.
(i) If QY1|Y2=QY2 (τ2)(τ1) is unique for (τ1, τ2) ∈ I1 ⊗ I2, then q(Y1, Y2;

I1,I2) = 0 ⇔ QY1|Y2=QY2 (τ2)(τ1) = QY1(τ1), for (τ1, τ2) ∈ I1 ⊗ I2.
(ii) If QY1|Y2(τ1) is unique for τ1 ∈ I1 given Y2, then q(Y1, Y2; I1, (0,1)) =

0 ⇔ QY1|Y2(τ1) = QY1(τ1), for all τ1 ∈ I1; q(Y1, Y2; (0,1), (0,1)) = 0 if and only
if Y1 and Y2 are statistically independent.

(iii) If m1 and m2 are monotonically increasing functions, q(Y1, Y2;I1,I2) =
q(m1(Y1),m2(Y2);I1,I2).
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The first property in Proposition 1 indicates that, through using different Iks,
q(Y1, Y2;I1,I2) can be used to quantify nonlinear dependence between a cer-
tain range of Y1 and a certain range of Y2. The second property states that,
q(Y1, Y2;I1,I2) can be used to test statistical independence and quantile inde-
pendence by choosing Iks properly. Note that Iks are not tuning parameters. The
role of Iks in q(Y1, Y2;I1,I2) is in spirit the same as that of quantile levels in
quantile regressions [14, 15]. How to choose Iks depends on our purposes. Dif-
ferent users may specify different Iks for different purposes, leading to different
conclusions. For instance, if we hope to test whether the median function of Y1 de-
pends on Y2, we may set I1 = {0.5} and I2 = (0,1); if we aim to test whether the
τ1th quantile function of Y1 depends on Y2 for τ1 ∈ (0.25,0.75), we may spec-
ify I1 = (0.25,0.75) and I2 = (0,1); if we hope to test whether the first and
the third quartiles of Y1 depend on Y2, we may specify I1 = {0.25,0.75} and
I2 = (0,1); and if we aim to test whether Y1 is independent of Y2, we may choose
I1 = I2 = (0,1).

How to choose the probability measures μks depends on the intervals Iks.
We require throughout that Ik = {τk : dμk(τk)/dτk > 0}. We specify μk as a
Lebesgue measure if Ik is an interval and a counting measure if Ik is a count-
able set. If Ik = (τk,1, τk,2) for τk,1 < τk,2, we can set the Lebesgue measure
μk(τk) = (τk − τk,1)/(τk,2 − τk,1) if τk,1 ≤ τk < τk,2, μk(τk) = 0 if τk < τk,1 and
μk(τk) = 1 if τk ≥ τk,2. In this case, dμk(τk)/dτk = 1/(τk,2 − τk,1)I (τk,1 ≤ τk <

τk,2). If Ik = {τk,1, τk,2}, we set the counting measure μk(τk) = 0 if τk < τk,1,
μk(τk) = 1/2 if τk,1 ≤ τk < τk,2, and μk(τk) = 1 if τk ≥ τk,2. In this case,
dμk(τk)/dτk = 1/2I (τk ∈ Ik). In the particular case of I1 = {0.25,0.75} and
I2 = (0.25,0.75), our proposed index reduces to the following simple form:

q(Y1, Y2;I1,I2) = ∑
τ1∈I1

∫
I2

cov2{I (Y1 ≤ QY1(τ1)), I (Y2 ≤ QY2(τ2))}
τ1(1 − τ1)τ2(1 − τ2)

dτ2.

The third property in Proposition 1 shows that, q(Y1, Y2;I1,I2) is invariant
when monotonically increasing transformations are used. This property is not
shared with Pearson correlation, distance correlation or quantile correlation [17,
23, 24]. Because the cumulative distribution functions Fk(yk)s are strictly increas-
ing, we can simply choose mk(yk) = Fk(yk) in Theorem 1, then our proposed
index has an equivalent form of

q(Y1, Y2;I1,I2)

=
∫
I1

∫
I2

cov2{I (F1(Y1) ≤ τ1), I (F2(Y2) ≤ τ2)}
τ1(1 − τ1)τ2(1 − τ2)

dμ1(τ1) dμ2(τ2).

This invariant property plays an important role here in that it allows us to assume
subsequently that Yks have compact support because otherwise we replace Yks
with their respective monotonically increasing transformations Fk(Yk)s. In what
follows, we shall work with the above form of q(Y1, Y2;I1,I2) in that it facilitates
estimation of q(Y1, Y2;I1,I2).
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2.3. Asymptotic properties. Next, we study estimation of q(Y1, Y2;I1,I2).
Suppose the observations {(Yi,1, Yi,2), i = 1, . . . , n} are independent and identi-
cally distributed. Estimating q(Y1, Y2;I1,I2) is nontrivial, because integral ap-
proximation is typically not straightforward. In the present context, we make use
of the fact that the empirical distributions are step functions to simplify estimation.
We first note that

q(Y1, Y2;I1,I2)

= q
(
F1(Y1),F2(Y2);I1,I2

)
=

n∑
j1=1

n∑
j2=1

∫
I1∩[(j1−1)/n,j1/n)

∫
I2∩[(j2−1)/n,j2/n)

(
cov2{

I
(
F1(Y1) ≤ τ1

)
,

I
(
F2(Y2) ≤ τ2

)}
/
(
τ1(1 − τ1)τ2(1 − τ2)

)
dμ1(τ1) dμ2(τ2)

)
,

which motivates us to estimate q(Y1, Y2;I1,I2) through

q̂(Y1, Y2;I1,I2)

def=
n∑

j1=1

n∑
j2=1

∫
I1∩[(j1−1)/n,j1/n)

∫
I2∩[(j2−1)/n,j2/n)

(
ĉov2{

I
(
Fn,1(Y1) ≤ τ1

)
,

I
(
Fn,2(Y2) ≤ τ2

)}
/
(
τ1(1 − τ1)τ2(1 − τ2)

))
dμ1(τ1) dμ2(τ2),

where Ik ∩ [(jk − 1)/n, jk/n) stands for the intersection of Ik and [(jk −
1)/n, jk/n), and

ĉov
{
I
(
Fn,1(Y1) ≤ τ1

)
, I

(
Fn,2(Y2) ≤ τ2

)}
def= n−1

n∑
i=1

I
(
Fn,1(Yi,1) ≤ τ1

)
I
(
Fn,2(Yi,2) ≤ τ2

)

− n−2
n∑

i=1

I
(
Fn,1(Yi,1) ≤ τ1

) n∑
i=1

I
(
Fn,2(Yi,2) ≤ τ2

)
.

Because Fn,k(Yk) is a step function, the numerator of the integrand remains un-
changed for τk ∈ Ik ∩ [(jk − 1)/n, jk/n). Consequently, the integral approxima-
tion is straightforward. In particular,

q̂
(
Y1, Y2; (0,1), (0,1)

)
def=

n∑
j1=1

n∑
j2=1

[
ĉov2{

I
(
Fn,1(Y1) ≤ j1/n

)
, I

(
Fn,2(Y2) ≤ j2/n

)}
×

∫
I1∩[(j1−1)/n,j1/n)

1

τ1(1 − τ1)
dμ1(τ1)

×
∫
I2∩[(j2−1)/n,j2/n)

1

τ2(1 − τ2)
dμ2(τ2)

]
,
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and

q̂
(
Y1, Y2; τ1, (0,1)

)
def=

n∑
j2=1

[
ĉov2{

I
(
Fn,1(Y1) ≤ τ1

)
, I

(
Fn,2(Y2) ≤ j2/n

)}
× 1

τ1(1 − τ1)

∫
I2∩[(j2−1)/n,j2/n)

1

τ2(1 − τ2)
dμ2(τ2)

]
.

Note that the integrals∫
Ik∩[(jk−1)/n,jk/n)

1

τk(1 − τk)
dμk(τk), k = 1,2,

have closed forms for μk being either a counting or a Lebesgue measure. For
instance, if μk is a Lebesgue measure, say, μk(τk) = τk ,∫ b

a

1

τk(1 − τk)
dμk(τk) = {

log(b) − log(1 − b)
} − {

log(a) − log(1 − a)
}
.

If μk is a counting measure, say, μk(τ) = I (τ ≥ τk,0), then, for τk,0 ∈ [a, b],∫ b

a

1

τk(1 − τk)
dμk(τk) = 1

τk,0(1 − τk,0)
.

To avoid potential ambiguity in practice, we define log(0) = 0 and 1/0 = 0.
Theorem 1 states that q̂(Y1, Y2;I1,I2) converges in distribution.

THEOREM 1. Assume that the density of Yk , fk{QYk
(τk)}, and its first deriva-

tive with respect to τk are bounded away from zero and infinity on Ik ⊆ (0,1):

1. If H0 in (1.1) is false, then q(Y1, Y2;I1,I2) > 0, and

n1/2{
q̂(Y1, Y2;I1,I2) − q(Y1, Y2;I1,I2)

} d−→ N
(
0, σ 2)

,

where σ 2 def= 4 var(Z) and Z is defined in (S1.5).
2. If H0 in (1.1) is true, then q(Y1, Y2;I1,I2) = 0, and

nq̂(Y1, Y2;I1,I2)
d−→

∫
I1

∫
I2

B2(τ1, τ2)

τ1(1 − τ1)τ2(1 − τ2)
dμ1(τ1) dμ2(τ2)

d=
∞∑

j=1

λjχ
2
j (1),

where B(τ1, τ2) is a separable Gaussian process depending on (τ1, τ2) for
(τ1, τ2) ∈ I1 ⊗ I2 ⊆ (0,1) ⊗ (0,1), E{B(τ1, τ2)} = 0 and

E
{
B(τ1, τ2)B

(
τ ′

1, τ
′
2
)} = {

min
(
τ1, τ

′
1
) − τ1τ

′
1
}{

min
(
τ2, τ

′
2
) − τ2τ

′
2
}
.
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The loadings λj s are eigenvalues defined in (S1.7) which depend on (I1,I2) rather
than the joint distribution of (Y1, Y2), and χ2

j (1)s are independent chi-square ran-
dom variables with one degree of freedom.

We remark on the boundedness assumption on fk{QYk
(τk)}. We assume such

conditions to ensure that Q̂Yk
(τk) converges in probability to QYk

(τk) uniformly
for τk ∈ Ik ⊆ (0,1). Similar conditions are also used in the literature; see,
for example, condition (C1) in [26] and condition (F) in [16]. The bounded-
ness assumption is satisfied if both Yks have compact support. If Yk does not
have a compact support, we can simply replace Yk with Fk(Yk), which appar-
ently has a compact support. The invariant property in Proposition 1 ensures
that q(Y1, Y2;I1,I2) = q(F1(Y1),F2(Y2);I1,I2). We estimate q(Y1, Y2;I1,I2)

using the ranks of Yks only. The empirical distribution functions Fn,k(Yk)s
are monotonically increasing. It follows immediately that q̂(Y1, Y2;I1,I2) =
q̂(Fn,1(Y1),Fn,2(Y2);I1,I2). In general, if mk(Yk)s are monotonically increas-
ing, we can replace Yks with mk(Yk)s as long as mk(Yk)s have compact sup-
port. The invariant property in Proposition 1 ensures that q(Y1, Y2;I1,I2) =
q(m1(Y1),m2(Y2);I1,I2) and q̂(Y1, Y2;I1,I2) = q̂(m1(Y1),m2(Y2);I1,I2). In
addition, we require that the boundedness assumption holds uniformly for τk ∈ Ik

only. Therefore, the condition on fk is regarded as reasonable and acceptable in
the present context.

Given a random sample of size n from a bivariate population, our test for (1.1)
can be carried out as follows: we reject H0 if nq̂(Y1, Y2;I1,I2) > cα , where the
critical value at the significance level α, cα , is defined as the upper α quantile of
the asymptotic null distribution of nq̂(Y1, Y2;I1,I2) under H0. Theorem 1 ensures
that using q(Y1, Y2;I1,I2) to test (1.1) is consistent, and the power is approxi-
mately

βn
def= pr

{
nq̂(Y1, Y2;I1,I2) > cα | q(Y1, Y2;I1,I2) > 0

}
≈ 1 − 


[{
cα − nq(Y1, Y2;I1,I2)

}
/
(
n1/2σ

)]
,

where 
 is the cumulative distribution function of N (0,1). Apparently, βn → 1
as n → ∞, indicating that our test for (1.1) is consistent.

How to decide a critical value cα is nontrivial. Suppose I1 = {τ1} and I2 =
(0,1), μ1(τ ) = I (τ ≥ τ1) and μ2(τ ) = τ . Accordingly, dμ1(τ )/dτ = I (τ = τ1)

and dμ2(τ ) = dτ . Following [1] and [4], we can show that∫
I1

∫
I2

B2(τ1, τ2)

τ1(1 − τ1)τ2(1 − τ2)
dμ1(τ1) dμ2(τ2)

d=
∞∑

j=1

χ2
j (1)

j (j + 1)
.

The limiting distribution can be approximated with

N∑
j=1

χ2
j (1)

j (j + 1)
,
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for a sufficiently large N . Suppose I1 = I2 = (0,1), μ1(τ ) = μ2(τ ) = τ . Accord-
ingly, dμk(τ ) = dτ . Following [1] and [4], we can also show that∫

I1

∫
I2

B2(τ1, τ2)

τ1(1 − τ1)τ2(1 − τ2)
dμ1(τ1) dμ2(τ2)

d=
∞∑
i=1

∞∑
j=1

χ2
ij (1)

i(i + 1)j (j + 1)
,

where χ2
ij (1)s are independent chi-square random variables with one degree of

freedom. This limit distribution can also be approximated with

(2.2)
N∑

i=1

N∑
j=1

χ2
ij (1)

i(i + 1)j (j + 1)
.

Because the asymptotic distributions are approximately tractable, the critical
value cα can be easily decided under these two situations. We use a toy ex-
ample to demonstrate how accurate these approximates are. We choose N =
10,20,50 and 100 in Figure 1(A), from which it can be clearly seen that as long
as N ≥ 20, such approximations are very accurate.

In general, we suggest a simulation-based procedure to decide cα . Theorem 1
states that, under H0 in (1.1), the asymptotic distribution of nq̂(Y1, Y2;I1,I2)

does not depend on the joint distribution of (Y1, Y2). This inspires us to ran-
domly generate new samples from uniform distribution to approximate the asymp-
totic null distribution. To be precise, we generate Y �

i,k independently from uni-
form distribution, i = 1, . . . , n, k = 1,2, and re-estimate q(Y1, Y2;I1,I2) based
on {(Y �

i,1, Y
�
i,2), i = 1, . . . , n}. We repeat this procedure for B times and set cα to

FIG. 1. (A): We approximate the limiting distribution of nq̂(Y1, Y2; (0,1), (0,1)) with the first
N × N terms when Y1 and Y2 are statistically independent, N = 10,20,50 and 100. (B): The den-
sity functions of nq̂(Y1, Y2; (0,1), (0,1)) when Y1 and Y2 are drawn independently from cauchy
distribution, standard normal distribution and uniform distribution. The reference density function
is the limiting distribution of nq̂(Y1, Y2; (0,1), (0,1)) when Y1 and Y2 are statistically independent.
(C): The density functions of nq̂(Y1, Y2; {0.5}, (0,1)) for two simulated models: Y1 = exp(Y2)ε and
Y1 = |Y2|ε, where Y1 and ε are independent and standard normal. We also present the density func-
tion of nq̂(Y1, Y2; {0.5}, (0,1)) when Y1 and Y2 are independent and uniformly distributed.
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be the upper α quantile of the estimates of q(Y1, Y2;I1,I2) obtained from the
randomly generated samples. Because all Y �

i,ks are independent, it is natural to an-
ticipate that this procedure provides a reasonable approximation of the asymptotic
null distribution of nq̂(Y1, Y2;I1,I2) for a sufficiently large B . Throughout, we
use this method to decide cα in the test for (1.1).

Theorem 2 establishes the consistency of this simulation-based procedure.

THEOREM 2. Under the conditions of Theorem 1, it follows that

nq̂
(
Y �

1 , Y �
2 ;I1,I2

) d−→
∫
I1

∫
I2

B2(τ1, τ2)

τ1(1 − τ1)τ2(1 − τ2)
dμ1(τ1) dμ2(τ2),

where B(τ1, τ2) is defined in Theorem 1.

To illustrate the appealing distribution-free property of our proposed test,
we generate Y1 and Y2 independently from Cauchy, standard normal and uni-
form distribution, and draw the density functions of the test statistic nq̂(Y1, Y2;
(0,1), (0,1)) in Figure 1(B). A reference density function is also given, which
is obtained through choosing N = 100 in the right-hand side of (2.2). It can be
clearly seen that all four curves match perfectly, indicating that our proposed test
is indeed distribution-free.

We consider three additional toy examples. In the first example, Y1 = exp(Y2)ε;
in the second example, Y1 = |Y2|ε. In both examples, we draw ε and Y2 in-
dependently from standard normal distribution. In the third example, we gen-
erate Y1 and Y2 independently from uniform distribution. In all examples,
q(Y1, Y2, {0.5}, (0,1)) = 0. The sample size n = 100. We repeat this procedure
1000 times and plot the density functions of nq̂(Y1, Y2; {0.5}, (0,1)) in Fig-
ure 1(C). Again we can see that these three density functions are almost identical,
indicating that the simulation-based procedure is consistent.

The asymptotic normality of q̂(Y1, Y2;I1,I2) stated in Theorem 1 allows us
to construct confidence intervals for q(Y1, Y2;I1,I2) when it is nonzero, if we
can have a consistent estimate of σ 2. In what follows, we discuss how to estimate
σ 2 consistently. We estimate QYk

(τk) with Q̂Yk
(τk) = inf{x : Fn,k(x) ≥ τk}, and

estimate the conditional distribution of (Yk | Yl), denoted by Fk|l(yk | yl), with the
following Nadaraya–Watson kernel estimate:

F̂k|l(yk | yl)
def=

n∑
i=1

I (Yi,k ≤ yk)Khl
(Yi,l − yl)

/ n∑
i=1

Khl
(Yi,l − yl),

where Khl
(·) = K(·/hl)/hl , K is a second-order kernel function and hl is the

associated bandwidth, l = 1,2. Throughout our numerical studies, we simply use
hl = 1.06n−1/5ŝtd(Yl), where ŝtd(Yl) is a robust estimate of the standard deviation
of Yl . For notational clarity, we write qk = QYk

(τk) and q̂k = Q̂Yk
(τk). Define
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�̂(q̂1, q̂2) = Fn,1,2(q̂1, q̂2)− τ1τ2. We replace all unknowns in Zi defined in (S1.5)
with their respective estimates. This gives

(2.3) Ẑi
def=

∫
I1

∫
I2

T̂i(τ1, τ2)/
{
τ1(1 − τ1)τ2(1 − τ2)

}
dμ1(τ1) dμ2(τ2),

where

T̂i(τ1, τ2)
def= �̂(q̂1, q̂2)

[{
I
(
Fn,1(Yi,1) ≤ τ1,Fn,2(Yi,2) ≤ τ2

) − Fn,1,2(q̂1, q̂2)

− τ1I
(
Fn,2(Yi,2) ≤ τ2

) − τ2I
(
Fn,1(Yi,1) ≤ τ1

) + 2τ1τ2
}

+ {
F̂2|1(q̂2 | q̂1) − τ2

}{
τ1 − I

(
Fn,1(Yi,1) ≤ τ1

)}
+ {

F̂1|2(q̂1 | q̂2) − τ1
}{

τ2 − I
(
Fn,2(Yi,2) ≤ τ2

)}]
.

(2.4)

By noting that Fn,k , Fn,1,2 and F̂k|l are all step functions, we evaluate the integrals
using the same ideas as we used to estimate q(Y1, Y2;I1,I2). The estimator of σ 2

is given by

(2.5) σ̂ 2 def= 4n−1
n∑

i=1

Ẑ2
i .

The following theorem establishes the consistency of σ̂ 2.

THEOREM 3. In addition to the conditions in Theorem 1, we assume that the
first derivative of fk , denoted by f ′

k , the density function of (Yk | Yl), denoted by
fk|l , and the first derivative of Fk|l(yk | yl) with respect to yl , denoted by F ′

k|l(yk |
yl), k �= l, are all Lipschitz continuous uniformly, that is, there exists a positive
constant C such that

sup
yl∈�l

∣∣f ′
l (yl + u) − f ′

l (yl)
∣∣ ≤ C|u| and

sup
(yk,yl)∈�k⊗�l

∣∣fk|l(yk + u | yl) − fk|l(yk | yl)
∣∣ ≤ C|u| and

sup
(yk,yl)∈�k⊗�l

∣∣F ′
k|l(yk | yl + u) − F ′

k|l(yk | yl)
∣∣ ≤ C|u|.

In addition, we assume that the kernel K is a probability density function, K is
symmetric and Lipschitz continuous, and has a compact support. We further as-
sume that the bandwidth hl satisfies nh4

l → ∞ and nh8
l → 0 as n → ∞, for

l = 1,2. Then σ̂ 2 pr−→ σ 2 as n → ∞.

Theorem 2 ensures that, the asymptotic null distribution can be well approx-
imated through our proposed simulation-based method. When the null hypothe-
sis H0 in (1.1) is rejected, the asymptotic normality presented in Theorem 1, to-
gether with Theorem 3, allows us to construct a reasonable confidence interval for
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nonzero q(Y1, Y2;I1,I2). Some alternative methods, such as the pairwise boot-
strap, may also be used to construct confidence intervals. However, theoretical jus-
tification for the validity of the pairwise bootstrap appears not straightforward. We
also remark here that, it is highly nontrivial, yet theoretically challenging [2, 6],
to devise an adaptive method that can be used to construct confidence intervals for
general q(Y1, Y2;I1,I2). The theoretical challenge lies in the nonstandard asymp-
totics, where the limiting distribution of q̂(Y1, Y2;I1,I2) is discontinuous on the
boundary of the parameter space. Such discontinuity and nonstandard asymptotics
pose huge challenges for us to design a uniform method to construct confidence
intervals for general q(Y1, Y2;I1,I2). Andrews [2] gave several examples that the
usual bootstrap does not work when the null hypothesis is on the boundary of the
parameter space. This type of nonregularity occurs in many other settings as well,
such as change-point detection [5] and post-selection inference [20].

Next, we consider local alternatives of the following form:

(2.6) F1,2
{
QY1(τ1),QY2(τ2)

} − τ1τ2 = n−1/2h(τ1, τ2),

for all (τ1, τ2) ∈ I1 ⊗ I2, where h(·) satisfies

sup
(τ1,τ2)∈I1⊗I2

h2(τ1, τ2) > 0.

Taking the derivative on both sides of (2.6) with respect to τ2, we obtain that
F1|2{QY1(τ1) | QY2(τ2)} − τ1 = n−1/2∂h(τ1, τ2)/∂τ2. This indicates that

QY1|Y2=QY2 (τ2)

{
τ1 + n−1/2∂h(τ1, τ2)/∂τ2

} = QY1(τ1).

It follows from Taylor expansion that QY1|Y2=QY2 (τ2){τ1 +n−1/2∂h(τ1, τ2)/∂τ2} =
QY1|Y2=QY2 (τ2)(τ1) + n−1/2{∂h(τ1, τ2)/∂τ2}/f1|2{QY1|Y2=QY2

(τ1) | QY2(τ2)} +
o(n−1/2). Therefore, the local alternative (2.6) implies that

QY1|Y2=QY2 (τ2)(τ1) = QY1(τ1) + n−1/2∂h(τ1, τ2)/∂τ2

f1|2{QY1|Y2=QY2
(τ1) | QY2(τ2)} + o

(
n−1/2)

,

for (τ1, τ2) ∈ I1 ⊗I2, which seems to match the hypotheses in (1.1) more naturally
than (2.6). However, we consider the local alternative of the form (2.6) for techni-
cal reasons. Theorem 4 indicates that the test for (1.1) using nq̂(Y1, Y2;I1,I2) has
nontrivial power under the local alternative (2.6).

THEOREM 4. Suppose that ∂h(τ1, τ2)/∂τ1 and ∂h(τ1, τ2)/∂τ2 are bounded
uniformly on I1 ⊗ I2. Under the conditions of Theorem 1, we have

nq̂(Y1, Y2;I1,I2)
d−→

∫
I1

∫
I2

{B(τ1, τ2) + h(τ1, τ2)}2

τ1(1 − τ1)τ2(1 − τ2)
dμ1(τ1) dμ2(τ2),

where B(τ1, τ2) is defined in Theorem 1.
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2.4. Numerical studies. In this section, we investigate the finite sample behav-
ior of our proposed test for (1.1).

EXAMPLE 1 (A simulation study). We consider three simulated models:

Y2 = A
{
Y 2

1 I (Y1 > 0) + Ỹ 2
1 I (Y1 ≤ 0)

} + ε;(2.7)

Y2 = exp
(
AY 2

1
)
ε;(2.8)

Y2 = AY 2
1 + ε;(2.9)

where ε, Y1 and Ỹ1 are drawn independently from standard Cauchy distribution.
We set A = 0,0.5,1.0,1.5 and 2. When A = 0, Y1 and Y2 are independent in all
three models. When A �= 0, QY1|Y2(τ1) depends on Y2 for τ1 ∈ I1 = (0.5,1) in
model (2.7), for τ1 ∈ I1 = (0,0.5) ∪ (0.5,1) in model (2.8) and for τ1 ∈ (0,1) in
model (2.9). In other words, q(Y1, Y2;I1, (0,1)) attains its maximum when I1 ⊇
(0.5,1) in model (2.7), I1 ⊇ (0,0.5) ∪ (0.5,1) in model (2.8) and I1 = (0,1) in
model (2.9) for any nonzero A.

We compare our proposed test for the interval quantile independence (1.1)
with the Kendall’s rank test (“Kendall’s tau(Y1, Y2),” [1]), the rank-based dis-
tance correlation test (“dcorr{F1(Y1),F2(Y2)},” [23]), the linear quantile correla-
tion test [17] and the martingale difference correlation test for quantile dependence
[22] at three different quantile levels [“qcorrτ1

(Y1 | Y2)” and “MDCτ1(Y1 | Y2)”
for τ1 = 0.50,0.75 and 0.90]. To implement our proposed test using the statis-
tic {nq̂(Y1, Y2;I1,I2)}, we vary I1 = {0.50}, {0.75}, {0.90}, (0,0.25), (0,0.5),

(0,0.75), (0.25,0.75), (0.5,1), (0.75,1), (0,0.5) ∪ (0.5,1) and (0,1), and fix
I2 = (0,1). We set the sample size n = 50 and the significance level α = 0.05,
and repeat each scenario 1000 times. We report both the sizes and the powers of
the aforementioned tests in Table 1.

It can be seen from Table 1 that the empirical sizes of almost all tests are pretty
close to the significance level α. The power performance is however quite dif-
ferent. In particular, the Kendall’s rank test fails to detect the heterogeneity ef-
fect in model (2.8) and the “symmetric pattern” in the sense that E(Y1 | Y2) =
E(Y1) in models (2.7) and (2.9). The rank-based distance correlation test and
q̂(Y1, Y2; (0,1), (0,1)) have comparable power performance in model (2.9). In
models (2.7) and (2.8), q̂(Y1, Y2; (0,1), (0,1)) is significantly superior to the rank-
based distance correlation test. However, the independence tests cannot tell which
quantile levels of Y1 depend on Y2.

We compare the interval quantile independence test [q(Y1, Y2; {τ1}, (0,1))] with
the martingale difference correlation test [MDCτ1(Y1 | Y2)] and the linear quantile
correlation test [qcorrτ1

(Y1 | Y2)] in testing the quantile independence at a single
quantile level τ1 = 0.75 and 0.90. All of these three quantile independence tests
have different power performance at different quantile levels. Given each quantile
level τ1, in all three models, our proposed test is the most powerful, followed by the
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TABLE 1
The empirical size and power of the Kendall’s rank test, the rank-based distance correlation test,

the linear quantile correlation test [qcorrτ1
(Y1 | Y2)], the martingale difference correlation test for

quantile dependence [MDCτ1 (Y1 | Y2)] and our proposed test q(Y1, Y2;I1,I2) for models
(2.7)–(2.9) at the significance level 0.05

Model Method A = 0 A = 0.5 A = 1 A = 1.5 A = 2

(2.7) Kendall tau(Y1, Y2) 0.044 0.231 0.307 0.375 0.395
dcorr{F1(Y1),F2(Y2)} 0.050 0.332 0.451 0.536 0.573
qcorr0.50(Y1 | Y2) 0.025 0.005 0.004 0.009 0.007
qcorr0.75(Y1 | Y2) 0.047 0.183 0.197 0.197 0.203
qcorr0.90(Y1 | Y2) 0.089 0.520 0.530 0.543 0.541
MDC0.50(Y1 | Y2) 0.050 0.054 0.064 0.051 0.061
MDC0.75(Y1 | Y2) 0.071 0.332 0.340 0.357 0.379
MDC0.90(Y1 | Y2) 0.051 0.578 0.591 0.610 0.614
q(Y1, Y2; {0.50}, (0,1)) 0.042 0.068 0.073 0.067 0.060
q(Y1, Y2; {0.75}, (0,1)) 0.054 0.514 0.652 0.731 0.785
q(Y1, Y2; {0.90}, (0,1)) 0.063 0.882 0.933 0.960 0.973
q(Y1, Y2; (0,0.25), (0,1)) 0.040 0.059 0.050 0.049 0.049
q(Y1, Y2; (0,0.5), (0,1)) 0.042 0.055 0.055 0.061 0.056
q(Y1, Y2; (0,0.75), (0,1)) 0.051 0.148 0.200 0.226 0.241
q(Y1, Y2; (0.25,0.75), (0,1)) 0.053 0.576 0.730 0.797 0.852
q(Y1, Y2; (0.5,1), (0,1)) 0.056 0.730 0.821 0.880 0.910
q(Y1, Y2; (0.75,1), (0,1)) 0.061 0.894 0.949 0.970 0.976
q(Y1, Y2; (0,0.5) ∪ (0.5,1), (0,1)) 0.041 0.668 0.754 0.785 0.801
q(Y1, Y2; (0,1), (0,1)) 0.048 0.517 0.631 0.733 0.775

(2.8) Kendall tau(Y1, Y2) 0.054 0.173 0.228 0.198 0.206
dcorr{F1(Y1),F2(Y2)} 0.062 0.245 0.337 0.358 0.393
qcorr0.50(Y1 | Y2) 0.027 0.016 0.027 0.025 0.017
qcorr0.75(Y1 | Y2) 0.040 0.131 0.130 0.132 0.118
qcorr0.90(Y1 | Y2) 0.078 0.414 0.390 0.411 0.399
MDC0.50(Y1 | Y2) 0.063 0.073 0.080 0.076 0.067
MDC0.75(Y1 | Y2) 0.047 0.476 0.492 0.498 0.510
MDC0.90(Y1 | Y2) 0.044 0.742 0.699 0.720 0.727
q(Y1, Y2; {0.50}, (0,1)) 0.048 0.062 0.067 0.072 0.074
q(Y1, Y2; {0.75}, (0,1)) 0.058 0.308 0.439 0.442 0.491
q(Y1, Y2; {0.90}, (0,1)) 0.045 0.748 0.827 0.830 0.817
q(Y1, Y2; (0,0.25), (0,1)) 0.054 0.800 0.862 0.881 0.893
q(Y1, Y2; (0,0.5), (0,1)) 0.058 0.573 0.666 0.674 0.708
q(Y1, Y2; (0,0.75), (0,1)) 0.054 0.486 0.595 0.646 0.708
q(Y1, Y2; (0.25,0.75), (0,1)) 0.052 0.436 0.554 0.603 0.648
q(Y1, Y2; (0.5,1), (0,1)) 0.050 0.521 0.645 0.660 0.662
q(Y1, Y2; (0.75,1), (0,1)) 0.049 0.806 0.878 0.888 0.891
q(Y1, Y2; (0,0.5) ∪ (0.5,1), (0,1)) 0.048 0.880 0.928 0.930 0.951
q(Y1, Y2; (0,1), (0,1)) 0.051 0.777 0.919 0.957 0.981
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TABLE 1
(Continued)

Model Method A = 0 A = 0.5 A = 1 A = 1.5 A = 2

(2.9) Kendall tau(Y1, Y2) 0.054 0.128 0.160 0.178 0.174
dcorr{F1(Y1),F2(Y2)} 0.057 0.810 0.962 0.986 0.999
qcorr0.50(Y1 | Y2) 0.025 0.007 0.012 0.010 0.011
qcorr0.75(Y1 | Y2) 0.049 0.205 0.211 0.196 0.189
qcorr0.90(Y1 | Y2) 0.087 0.524 0.535 0.549 0.525
MDC0.50(Y1 | Y2) 0.049 0.059 0.084 0.076 0.080
MDC0.75(Y1 | Y2) 0.064 0.337 0.367 0.349 0.344
MDC0.90(Y1 | Y2) 0.054 0.576 0.604 0.612 0.601
q(Y1, Y2; {0.50}, (0,1)) 0.057 0.088 0.119 0.125 0.141
q(Y1, Y2; {0.75}, (0,1)) 0.045 0.477 0.641 0.713 0.752
q(Y1, Y2; {0.90}, (0,1)) 0.058 0.871 0.941 0.961 0.960
q(Y1, Y2; (0,0.25), (0,1)) 0.036 0.878 0.925 0.948 0.956
q(Y1, Y2; (0,0.5), (0,1)) 0.047 0.764 0.844 0.890 0.911
q(Y1, Y2; (0,0.75), (0,1)) 0.056 0.856 0.974 0.991 0.997
q(Y1, Y2; (0.25,0.75), (0,1)) 0.057 0.813 0.960 0.987 0.994
q(Y1, Y2; (0.5,1), (0,1)) 0.052 0.712 0.827 0.890 0.902
q(Y1, Y2; (0.75,1), (0,1)) 0.050 0.874 0.947 0.958 0.970
q(Y1, Y2; (0,0.5) ∪ (0.5,1), (0,1)) 0.046 0.936 0.961 0.966 0.964
q(Y1, Y2; (0,1), (0,1)) 0.053 0.980 1.000 1.000 1.000

martingale difference correlation test. The quantile correlation test has the smallest
power in that it is designed to detect linear quantile dependence.

Recall that in model (2.8) QY1|Y2(0.50) = 0 for all τ2 ∈ I2 = (0,1). This partly
explains why the powers of the linear quantile correlation test qcorr0.50(Y1 | Y2),
the martingale difference correlation test MDC0.50(Y1 | Y2) and our proposed test
q̂(Y1, Y2; {0.50}, (0,1)) are close to the significance level α. In this heteroge-
neous model, our proposed tests q̂(Y1, Y2; (0,1), (0,1)) and q̂(Y1, Y2; (0,0.5) ∪
(0.5,1), (0,1)) have comparable power performance.

Next, we demonstrate how our proposed index tells at which quantile levels
QY1|Y2(τ1) depends on Y2. In model (2.7) with A = 2, the power of q̂(Y1, Y2;
(0,0.5), (0,1)) is 0.056 whereas that of q̂(Y1, Y2; (0.5,1), (0,1)) is 0.910. This
indicates that QY1|Y2(τ1) depends on Y2 for τ1 ∈ (0.5,1) and yet are inde-
pendent of Y2 for τ1 ∈ (0,0.5). In model (2.8) with A = 2, the power of
q̂(Y1, Y2; {0.50}, (0,1)) is 0.074 whereas that of q̂(Y1, Y2; (0,0.5) ∪ (0.5,1),

(0,1)) is as large as 0.951. This again indicates that QY1|Y2(τ1) depends upon Y2
for τ1 ∈ (0,0.5) ∪ (0.5,1) and yet are independent of Y2 for τ1 ∈ {0.5}. None of
the competitors can convey such messages.

The above discussion also motivates us to expect a test which is consistent with
respect to a large class of alternatives will have a lower power with regard to a
subclass of alternatives than a test which has optimum properties with respect to
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this particular subclass. This consideration suggests the problem of selecting from
a given class of tests a test which is most powerful with respect to certain alterna-
tives.

EXAMPLE 2 (The hypertension study). High blood pressure is perhaps one of
the most common medical problems in China. Long-term, prolonged high blood
pressure put added stress on the heart and arteries and is thus a main risk factor for
cardiovascular, cerebrovascular and renal diseases. It is estimated that one-third
of adults in China have hypertension. However, many who have it are unaware
that they have it. Therefore, it is important to disseminate the awareness of taking
precautions against hypertension.

It is common knowledge that hypertension is age related, possibly due to re-
duction in vascular compliance and stiffening of the arteries. Aging effect on the
systolic blood pressure is however possibly different for young, middle-aged and
old people. The Chinese government conducted a hypertension study in the In-
ner Mongolian Autonomous Region in 2002. In this study, both the systolic blood
pressure (Y1) and age (Y2) of 1051 subjects are recorded simultaneously. The goal
of our study is to quantify the aging effect on the systolic blood pressure at differ-
ent stages, which can be achieved through studying how q(Y1, Y2; (0,1),I2) varies
with I2. We choose I2 = (0,0.1), (0.1,0.2), . . . , (0.9,1). In this study, QY2(τ2) =
20,33,36,39,42,45,49,52,56,64 and 83 for τ2 = 0,0.1, . . . ,1.0, respectively.
Table 2 shows that q(Y1, Y2; (0,1),I2) is concentrated at I2 = (0.2,0.9), which
corresponds to age ranging from 36 to 64, and decreases significantly on either
side. This apparently indicates that the aging effect is much more significant for
middle-aged people than for both young and old people.

We use the simulation-based approach introduced in Section 2.3 to test whether
q̂(Y1, Y2; (0,1),I2)s are significantly different from zero. All resulting p-values

TABLE 2
The Hypertension Study: q̂(Y1, Y2; (0,1),I2) and its standard deviation, denoted by
σ̂ {q̂(Y1, Y2; (0,1),I2)}, for different I2s. All numbers below are multiplied by 1000

I2

(0,0.1) (0.1,0.2) (0.2,0.3) (0.3,0.4) (0.4,0.5)

q̂(Y1, Y2; (0,1),I2) 0.9592 1.8988 4.4976 5.2453 5.4556
σ̂ {q̂(Y1, Y2; (0,1),I2)} 0.1618 0.3108 0.4466 0.4839 0.5105

I2

(0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) (0.9,1)

q̂(Y1, Y2; (0,1),I2) 5.2591 5.3519 5.0317 4.7689 1.8907
σ̂ {q̂(Y1, Y2; (0,1),I2)} 0.5141 0.5275 0.5240 0.4842 0.2649



2700 L. ZHU, Y. ZHANG AND K. XU

are less than 10−3, which strikes the chord with common knowledge that hyper-
tension is age related. Table 2 charts the estimates of σ 2 given by (2.5). It can be
seen from Table 2 that σ̂ 2 for I2 = (0.2,0.9) is also comparatively larger than that
for I2 = (0,0.1) or I2 = (0.9,1), indicating that the aging effect for middle-aged
people is also more diversified than for both young and old people.

EXAMPLE 3 (The happiness study). Can money buy us happiness? Would
more money really make us happier? These interesting questions fascinate and di-
vide both psychologists and econometricians. South West University of Finance
and Economics conducted a large scale household finance survey in China. In this
study, a total of 10,332 households, 4321 from rural and 6011 from urban areas,
are visited. For each household, both the self-reported levels of well being (Y1) and
the household income (Y2) are recorded. The densities of the household income are
given in Figure 2(A). Both indicate that the household income are highly skewed.
Again we use q(Y1, Y2; (0,1),I2) to quantify the relations between Y1 and Y2,
for I2 = (0,1), (0.1,1), (0.2,1), (0.3, 1), (0.4, 1), (0.5, 1), (0.6, 1), (0.7, 1), (0.8,
1), (0.9, 1), (0.95, 1), (0.99,1) and (0.995,1). In this study, QY2(τ2) = 901, 9,520,
16,000, 19,791, 26,803, 30,000, 36,987, 45,880, 56,818, 83,492, 108,153, 247,983,
372,121, 1,000,000 in rural areas and QY2(τ2) = 400, 18,046, 26,870, 31,425,
40,000, 47,483, 55,856, 70,000, 89,897, 120,392, 180,000, 368,240, 462,102,
1,000,000 in urban areas, for τ2 = 0,0.1, . . . ,0.9,0.95,0.99,0.995 and 1. The cir-
cles and stars in Figure 2(B) exhibit the patterns of q(Y1, Y2; (0,1),I2) varying
with I2. Both indicate that the relations between personal sense of happiness

FIG. 2. The Happiness Study. Panel (A): The density functions of household income for
both urban and rural households. Panel (B): The circles “o” and stars “∗” exhibit how
q(Y1, Y2; (0,1),I2) varies with I2 for both urban and rural households. From left to right in (B),
I2 = (0,1), (0.1,1), (0.2,1), . . . , (0.9,1), (0.95,1), (0.99,1) and (0.995,1).
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TABLE 3
The p-values of the interval quantile independence tests using nq̂(Y1, Y2; (0,1),I2) for different I2

I2

(0,1) (0.1,1) (0.2,1) (0.3,1) (0.4,1) (0.5,1) (0.6,1)

Rural <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Urban <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

I2

(0.7,1) (0.8,1) (0.9,1) (0.95,1) (0.99,1) (0.995,1)

Rural <0.001 <0.001 <0.001 <0.001 0.025 0.156
Urban <0.001 <0.001 <0.001 <0.001 0.018 0.057

and household incomes becomes weaker and weaker as the household income in-
creases.

We use the simulation-based approach to test whether q(Y1, Y2; (0,1),I2) is
zero for each I2. The p-values are reported in Table 3. It can be clearly seen that
the self-reported levels of well being increased with annual household income up
to RMB 372,121 yuan (roughly 53,931 US$) in rural areas and RMB 462,102 yuan
(roughly 66,971 US$) in urban areas. But after that, increasing amounts of money
had no further effect on happiness. In other words, once an individual can afford to
satisfy their most basic needs, having more money no longer translates into more
happiness. To put it in a nutshell, money does make us happier, but only up to a
certain point.

3. Application to feature screening. In this section, we generalize the ap-
plication of our proposed index to feature screening in ultrahigh dimensional re-

gressions. Suppose Y is a univariate response variable and x def= (X1, . . . ,Xp)T

is an ultrahigh dimensional covariate vector. We assume that the covariate di-
mension p is much larger than the sample size n. With a sample of size n, de-
noted by {(xi , Yi), i = 1, . . . , n}, we aim to identify which covariates are pre-
dictive for some quantile levels of the response variable Y . Denote A the in-

dices of the important covariates, namely, A def= {k: The τ1th quantile of Y con-
ditional on x = (X1, . . . ,Xp)T depends on the τ2th quantile level of Xk , for
(τ1, τ2) ∈ I1 ⊗ I2 ⊆ (0,1) ⊗ (0,1)}.

We propose the following screening procedure to remove as many unimpor-
tant covariates as possible. We calculate q̂(Y,Xk;I1,I2) for each covariate and
rank their relative importance in a descending order. It is natural to anticipate that
q̂(Y,Xk;I1,I2) for the important covariates is larger than that for unimportant
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covariates. This motivates us to retain the covariates indexed by

Â def= {
k : q̂(Y,Xk;I1,I2) ≥ c1n

t−1/2}
for some 0 < t ≤ 1/2 and c1 > 0. Theorem 5 ensures that A ⊆ Â with an over-
whelming probability if the number s of elements in A satisfies ns exp(−c2n

2t ) →
0 as n → ∞ and

(3.1) q(Y,Xk;I1,I2) ≥ 2c1n
t−1/2 for all k ∈ A,

where c1 and c2 will be defined shortly.

THEOREM 5. Assume the conditions in Theorem 1 hold. For any 0 < t ≤ 1/2,
there exist positive constants c1 and c2 such that, as n → ∞,

pr
{∣∣q̂(Y,Xk;I1,I2) − q(Y,Xk;I1,I2)

∣∣ > c1n
t−1/2} = O

{
n exp

(−c2n
2t )}.

If we further assume (3.1) holds, then

pr(A ⊆ Â) ≥ 1 − O
{
sn exp

(−c2n
2t )}.

Assumption (3.1) allows that the marginal signal strength of the important co-
variates, which is quantified by q̂(Y,Xk;I1,I2), shrinks to zero at a certain rate.
It also requires that those signals be strong enough to be detectable. This is a key
assumption to ensure our proposed screening procedure to have the desirable sure
screening property. Similar conditions are widely assumed in the screening lit-
erature to ensure corresponding screening approaches to work properly; see, for
example, condition 3 in [9], condition E in [10], condition C in [7], condition (C1)
in [28] and condition (C2) in [19].

EXAMPLE 4 (A simulation study). We use a simulated example to illustrate
the finite-sample performance of this screening procedure. Consider

(3.2) Yi = 5Xi,1 + X2
i,2 + 2Xi,3Xi,4 + exp(Xi,5)εi,

where xi = (Xi,1,Xi,2, . . . ,Xi,p)T is generated from a mixture of multivariate nor-
mal population with mean zero and covariance matrix � = (0.9|k−k′|)p×p with
probability 0.9 and standard Cauchy distribution with probability 0.1, and εi is
drawn from (i) standard normal and (ii) standard Cauchy distribution. In this ex-
ample, the active covariate set A = {1,2,3,4,5}. We set n = 200 and p = 5000 in
our simulations.

We consider four choices for (I1,I2) in q(Y,Xk;I1,I2) to perform screen-
ing: (i) I1 = {0.50}, I2 = (0,1); (ii) I1 = {0.75}, I2 = (0,1); (iii) I1 = I2 =
(0.05,0.95) and (iv) I1 = I2 = (0,1). The third choice excludes 10% data points
in both Xk and Y , for k = 1, . . . , p, because with probability 0.1, the observations
of Xk may contain some extreme values. We compare our screening procedure
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with the following four competitors: the Pearson correlation based sure indepen-
dence screening ([9], SIS), the Kendall’s rank correlation based sure independence
screening ([18], Kendall’s tau), the distance correlation based sure independence
screening ([19], DC-SIS), the sure independent ranking and screening procedure
([28], SIRS), MDC based quantile sure independence screening ([22], MDCτ1 -
SIS) and the quantile-adaptive sure independence screening ([11], Qaτ1

-SIS).
We evaluate the performance of independence screening procedures using the

following three criteria [19, 28]:

1. The minimal model size S which is required to ensure inclusion of all truly
important covariates. The closer S is to the number of truly important covariates
in model (3.2), the better performance the corresponding screening procedure has.
We report the minimum, the first quartile, the median, the third quartile, the 95th
percentile, the 99th percentile and the maximum number of S for each screening
procedure out of 1000 replications.

2. The selection probability PA that all five important covariates are ranked
at the top [n/ logn] and 2[n/ logn] positions. The closer PA is to one, the better
performance the corresponding screening procedure has. We report this empirical
selection probability PA for each screening procedure out of 1000 replications.

3. The selection probability PS that each individual important covariate is
ranked at the top [n/ logn] and 2[n/ logn] positions. If a screening procedure is
able to identify Xk as an important covariate, it is reasonable to expect that PS
will be close to one for this covariate. We report this empirical selection proba-
bility PS for each screening procedure and each important covariate out of 1000
replications.

It can be seen from Tables 4–5 that our proposed screening proposals perform
the best throughout. In particular, the medians of S for both q(Y1, Y2; (0.05,0.95),

(0.05,0.95)) and q(Y1, Y2; (0,1), (0,1)) equal exactly the number of truly impor-
tant covariates and their inter-quartiles are at most 2. Table 5 also indicates that our
proposal can detect all the truly important covariates with an overwhelming prob-
ability. Due to the presence of extreme values in the covariates, SIS [9], DC-SIS
[19] and the quantile-adaptive sure independence screening procedure [11] (Qa0.5-
SIS and Qa0.75-SIS) fail in this example. The SIRS [28] procedure fails when the
error term follows Cauchy distribution. The Kendall’s tau [18] and MDCτ1 -SIS
[22] work satisfactorily in terms of the median values of S . However, they are
substantially inferior to our proposal in terms of inter-quartiles of S .

Table 5 charts the empirical probabilities PA and PS that the important co-
variates are retained after screening for a given model size. The SIS, DC-SIS and
Qaτ1

-SIS are very inefficient in detecting either of the first four important covari-
ates Xks, for k = 1, . . . ,4. The Kendall’s tau and the MDCτ1 -SIS are much better,
but worse than our proposed screening method.
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TABLE 4
The minimum, the first quartile, the median, the third quartile, the 95th percentile, the 99th

percentile and the maximum of S

Error Method min 25% 50% 75% 95% 99% max

Cauchy q(Y,Xk; {0.5}, (0,1)) 5 6 11 52 546 1241 2450
q(Y,Xk; {0.75}, (0,1)) 5 5 5 7 22 122 380
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 5 5 5 7 26 90 241
q(Y,Xk; (0,1), (0,1)) 5 5 5 7 22 79 181
SIS 5 2168 3578 4423 4891 4980 5000
Kendall’s tau 5 6 11 57 899 2865 4626
SIRS 5 305 1028 2334 4390 4971 5000
DC-SIS 5 173 1340 3672 4812 4955 4987
MDC0.5-SIS 5 7 32 252 2020 3663 4145
MDC0.75-SIS 5 5 7 28 860 4097 4955
Qa0.5-SIS 5 305 437 952 4602 4943 4998
Qa0.75-SIS 5 345 506 1073 4602 4943 4997

Normal q(Y,Xk; {0.5}, (0,1)) 5 5 5 6 10 113 360
q(Y,Xk; {0.75}, (0,1)) 5 5 5 5 6 8 12
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 5 5 5 7 21 77 97
q(Y,Xk; (0,1), (0,1)) 5 5 5 6 19 58 119
SIS 5 1989 3575 4327 4868 4967 4976
Kendall’s tau 5 6 13 55 530 4188 4626
SIRS 5 5 6 8 38 88 5000
DC-SIS 5 274 1038 2245 4333 4958 4986
MDC0.5-SIS 5 5 6 13 59 831 2989
MDC0.75-SIS 5 5 5 6 13 294 2370
Qa0.5-SIS 5 142 227 425 4487 4897 4995
Qa0.75-SIS 5 170 294 530 4491 4867 4995

4. Concluding remarks. In this article, we introduce the concept of inter-
val quantile independence, which generalizes the notions of both statistical in-
dependence and quantile independence. We also suggest an index in (2.1) to
measure and test the departure from interval quantile independence. The pro-
posed test based on (2.1) is consistent, unbiased and powerful. By contrast, the
independence tests, such as those based on distance correlation, ranks of dis-
tances and sign covariance related to Kendall’s tau, may have an inflated test
size when used to test the interval quantile independence. The quantile inde-
pendence tests, such as those based on linear quantile correlation and martin-
gale difference correlation, may lose power when there exists interval quan-
tile dependence. We further utilize the proposed interval quantile index as a
marginal utility to perform feature screening for ultrahigh dimensional data. This
screening procedure is model-free, conceptually simple, convenient to implement
with no tuning parameters or nonparametric model fitting involved. The desir-
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TABLE 5
The empirical probabilities PS and PA

PSModel
Error size Method X1 X2 X3 X4 X5 PA

Cauchy [n/ logn] q(Y,Xk; {0.5}, (0,1)) 1.000 1.000 0.970 0.886 0.741 0.709
q(Y,Xk; {0.75}, (0,1)) 1.000 1.000 0.996 0.988 0.974 0.967
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 1.000 1.000 0.997 0.991 0.978 0.970
q(Y,Xk; (0,1), (0,1)) 1.000 1.000 0.997 0.990 0.983 0.974
SIS 0.129 0.286 0.063 0.049 0.468 0.022
Kendall’s tau 1.000 0.998 0.958 0.852 0.761 0.700
SIRS 0.912 0.567 0.513 0.467 0.500 0.082
DC-SIS 0.294 0.433 0.144 0.118 0.542 0.056
MDC0.5-SIS 0.975 0.958 0.894 0.822 0.674 0.523
MDC0.75-SIS 0.973 0.974 0.944 0.930 0.904 0.765
Qa0.5-SIS 0.093 0.231 0.039 0.054 0.565 0.023
Qa0.75-SIS 0.070 0.118 0.037 0.058 0.492 0.023

2[n/ logn] q(Y,Xk; {0.5}, (0,1)) 1.000 1.000 0.979 0.924 0.823 0.798
q(Y,Xk; {0.75}, (0,1)) 1.000 1.000 0.997 0.996 0.987 0.982
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 1.000 1.000 0.999 0.995 0.989 0.986
q(Y,Xk; (0,1), (0,1)) 1.000 1.000 0.999 0.995 0.993 0.989
SIS 0.197 0.339 0.084 0.072 0.525 0.022
Kendall’s tau 1.000 0.999 0.974 0.896 0.819 0.782
SIRS 0.931 0.609 0.562 0.526 0.574 0.114
DC-SIS 0.392 0.502 0.247 0.211 0.680 0.124
MDC0.5-SIS 0.982 0.966 0.915 0.863 0.754 0.610
MDC0.75-SIS 0.978 0.988 0.960 0.951 0.925 0.817
Qa0.5-SIS 0.185 0.387 0.076 0.090 0.644 0.025
Qa0.75-SIS 0.138 0.295 0.064 0.083 0.611 0.024

able sure screening property is also established. We demonstrate the effective-
ness of our proposed screening procedure in comparison with existing meth-
ods.

There is another closely relevant measure which can also be used to quantify
the degree of quantile dependence. It is defined as

qcommon(Y1, Y2;I)
def=

∫
I

cov2{I (Y1 ≤ QY1(τ )), I (Y2 ≤ QY2(τ ))}
τ 2(1 − τ)2 dμ(τ).

This metric is related to the tail dependence [13] if we set I = (0, τ ) or I = (1 −
τ,1) for τ → 0. One can show that QY1|Y2=QY2 (τ )(τ ) = QY1(τ ), for τ ∈ I , implies
q(Y1, Y2;I) = 0; and q(Y1, Y2;I) = 1 if Y2 = m1(Y1) for some strictly mono-
tone function m1. However, q(Y1, Y2;I) = 0 does not imply QY1|Y2=QY2 (τ )(τ ) =
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TABLE 5
(Continued)

PSModel
Error size Method X1 X2 X3 X4 X5 PA

Normal [n/ logn] q(Y,Xk; {0.5}, (0,1)) 1.000 1.000 1.000 0.990 0.900 0.895
q(Y,Xk; {0.75}, (0,1)) 1.000 1.000 1.000 1.000 1.000 1.000
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 1.000 1.000 1.000 0.995 0.980 0.980
q(Y,Xk; (0,1), (0,1)) 1.000 1.000 1.000 0.995 0.990 0.985
SIS 0.145 0.345 0.045 0.060 0.440 0.025
Kendall’s tau 1.000 1.000 0.970 0.885 0.760 0.690
SIRS 0.940 0.605 0.520 0.470 0.555 0.085
DC-SIS 0.335 0.490 0.120 0.130 0.500 0.065
MDC0.5-SIS 0.975 0.965 0.940 0.930 0.825 0.710
MDC0.75-SIS 0.980 0.975 0.975 0.955 0.950 0.845
Qa0.5-SIS 0.179 0.372 0.091 0.085 0.554 0.039
Qa0.75-SIS 0.151 0.229 0.083 0.091 0.491 0.042

2[n/ logn] q(Y,Xk; {0.5}, (0,1)) 1.000 1.000 1.000 0.990 0.940 0.935
q(Y,Xk; {0.75}, (0,1)) 1.000 1.000 1.000 1.000 1.000 1.000
q(Y,Xk; (0.05,0.95), (0.05,0.95)) 1.000 1.000 1.000 0.995 0.995 0.990
q(Y,Xk; (0,1), (0,1)) 1.000 1.000 1.000 0.995 1.000 0.995
SIS 0.230 0.400 0.070 0.070 0.495 0.025
Kendall’s tau 1.000 1.000 0.975 0.900 0.825 0.785
SIRS 0.955 0.640 0.575 0.540 0.640 0.135
DC-SIS 0.390 0.560 0.255 0.240 0.675 0.155
MDC0.5-SIS 0.985 0.970 0.955 0.945 0.865 0.770
MDC0.75-SIS 0.985 0.985 0.980 0.980 0.960 0.900
Qa0.5-SIS 0.343 0.540 0.192 0.171 0.667 0.067
Qa0.75-SIS 0.255 0.457 0.150 0.147 0.617 0.060

QY1(τ ), for τ ∈ I . In other words, qcommon(Y1, Y2;I) is possibly inconsistent in
testing the interval quantile independence (1.1). Thus, we advocate using our pro-
posed index defined in (2.1).

The distance correlation can be used to characterize statistical independence
between two random vectors in arbitrary dimensions. The martingale difference
correlation can be used to quantify quantile dependence of a univariate variable
on another random vector, and the mean dependence of a random vector on an-
other. It is thus natural to ask whether and how we can generalize the proposed
index to the cases with random vectors. This is however not straightforward be-
cause defining quantiles for random vectors is essentially different from that for
a univariate random variable. If the componentwise quantile dependence between
two random vectors, y1 = (Y11, . . . , Y1p)T and y2 = (Y21, . . . , Y2q)

T, is of inter-
est at quantile levels I1 = I11 ⊗ I12 · · · ⊗ I1p ⊆ (0,1) ⊗ (0,1) · · · ⊗ (0,1) and
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I2 = I21 ⊗ I22 · · · ⊗ I2q ⊆ (0,1) ⊗ (0,1) · · · ⊗ (0,1), we can define

qsum(y1,y2;I1,I2)

def=
∫
I1

∫
I2

(
cov2

{ p∏
k=1

I
(
Y1k ≤ QY1k

(τ1k)
)
,

q∏
l=1

I
(
Y2l ≤ QY2l

(τ2l)
)}

/( p∏
k=1

τ1k(1 − τ1k)

q∏
l=1

τ2l(1 − τ2l)

))
dμ1(τ1) dμ2(τ2),

where dμ1(τ1) = ∏p
k=1 dμ1k(τ1k) and dμ2(τ2) = ∏q

l=1 dμ2l(τ2l). Similarly, we
define

qmax(y1,y2;I1,I2)

def= max
1≤k≤p

max
1≤l≤q

∫
I1k

∫
I2l

(
cov2{

I
(
Y1k ≤ QY1k

(τ1k)
)
, I

(
Y2l ≤ QY2l

(τ2l)
)}

/( p∏
k=1

τ1k(1 − τ1k)

q∏
l=1

τ2l(1 − τ2l)

))
dμ1k(τ1k) dμ2l(τ2l).

One may also wonder how to quantify the interval quantile dependence between
two univariate random variables Y1 and Y2 (or two multivariate random vectors
y1 an y2) in the presence of a high-dimensional covariate vector x. This is an
interesting and yet very challenging issue, which warrants thorough investigation.

APPENDIX: PROOF OF PROPOSITION 1

(i) We first notice that q(Y1, Y2;I1,I2) = 0 ⇔ pr{Y1 ≤ QY1(τ1), Y2 ≤
QY2(τ2)} = τ1τ2, for (τ1, τ2) ∈ I1 ⊗ I2. Taking derivative with respective to τ2 on
both sides of the above equation and using the fact that f2{QY2(τ2)}d{QY2(τ2)}/
dτ2 = 1, we obtain that pr{Y1 ≤ QY1(τ1) | Y2 = QY2(τ2)} = τ1. Therefore, a direct
consequence of the uniqueness of QY1|Y2(τ1) is that QY1|Y2=QY2 (τ2)(τ1) = QY1(τ1),
for (τ1, τ2) ∈ I1 ⊗ I2, which completes the “⇒” part.

Now we turn to the “⇐” part; that QY1|Y2=QY2 (τ2)(τ1) = QY1(τ1) yields imme-
diately that pr{Y1 ≤ QY1(τ1) | Y2 = QY2(τ2)} = τ1 for (τ1, τ2) ∈ I1 ⊗ I2. Conse-
quently,

pr
{
Y1 ≤ QY1(τ1), Y2 ≤ QY2(τ2)

} = E
[
pr

{
Y1 ≤ QY1(τ1) | Y2

}
I
(
Y2 ≤ QY2(τ2)

)]
= τ1E

{
I
(
Y2 ≤ QY2(τ2)

)} = τ1τ2.

This completes the proof of the “⇐” part.
(ii) To prove the first part, it suffices to prove the special case I1 = {τ1} because

the integrand is nonnegative. We note that

q
(
Y1, Y2; τ1, (0,1)

) = 0 ⇔ E
{
I
(
Y1 ≤ QY1(τ1)

) | Y2
} = τ1.

Therefore, the first part is proven through the uniqueness of QY2|Y1(τ1).
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We are in the position to prove the second part. Note that

q
(
Y1, Y2; (0,1), (0,1)

) = 0

⇔ cov
{
I (Y1 ≤ y1), I (Y2 ≤ y2)

} = 0

∀yk ∈ {
QYk

(τk) : τk ∈ (0,1)
}
, k = 1,2.

Therefore, q(Y1, Y2; (0,1), (0,1)) = 0 is tantamount to that the intergrand is zero.
The second equivalency follows from the arbitrariness of τk ∈ (0,1). The right-
hand side of the above display entails that Y1 and Y2 are independent.

(iii) Using the fact both m1 and m2 are strictly increasing functions, we have
that I (mk(Yk) ≤ Qmk(Yk)(τk)) = I (mk(Yk) ≤ mk(QYk

(τk))) = I (Yk ≤ QYk
(τk)),

which yields that q(Y1, Y2;I1,I2) = q(m1(Y1),m2(Y2);I1,I2).
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SUPPLEMENTARY MATERIAL

Supplement to “Measuring and testing for interval quantile dependence”
(DOI: 10.1214/17-AOS1635SUPP; .pdf). This supplement contains the proofs of
all the theorems.
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