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MARGINS OF DISCRETE BAYESIAN NETWORKS

BY ROBIN J. EVANS

University of Oxford

Bayesian network models with latent variables are widely used in statis-
tics and machine learning. In this paper, we provide a complete algebraic
characterization of these models when the observed variables are discrete
and no assumption is made about the state-space of the latent variables. We
show that it is algebraically equivalent to the so-called nested Markov model,
meaning that the two are the same up to inequality constraints on the joint
probabilities. In particular, these two models have the same dimension, dif-
fering only by inequality constraints for which there is no general description.
The nested Markov model is therefore the closest possible description of the
latent variable model that avoids consideration of inequalities. A consequence
of this is that the constraint finding algorithm of Tian and Pearl [In Proceed-
ings of the 18th Conference on Uncertainty in Artificial Intelligence (2002)
519–527] is complete for finding equality constraints.

Latent variable models suffer from difficulties of unidentifiable parame-
ters and nonregular asymptotics; in contrast the nested Markov model is fully
identifiable, represents a curved exponential family of known dimension, and
can easily be fitted using an explicit parameterization.

1. Introduction. Directed acyclic graph (DAG) models, also known as
Bayesian network models, are widely used multivariate models in probabilis-
tic reasoning, machine learning and causal inference [Bishop (2007), Darwiche
(2009), Pearl (2009)]. These models are defined by simple factorizations of the
joint distribution, and in the case of discrete or jointly Gaussian random variables,
are curved exponential families of known dimension. The inclusion of latent vari-
ables within Bayesian network models can greatly increase their flexibility, and
also account for unobserved confounding. However, this flexibility comes at the
cost of creating models that are not easy to explicitly describe when considered as
marginal models over the observed variables. Latent variable models generally do
not have fully identifiable parameterizations [Allman, Matias and Rhodes (2009)],
and contain “singularities” that lead to nonregular asymptotics [Drton (2009)]. In
addition, using them may force a modeller to specify a parametric structure over
the latent variables, introducing additional assumptions that are generally difficult
to test and may be unreasonable.
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FIG. 1. A directed acyclic graph on five vertices.

In order to avoid potentially erroneous assumptions about the parametric struc-
ture of the latent variables or their state-space, we can use an implicitly defined
marginal model. However, no explicit characterization of this model is available,
nor is there any obvious method for fitting it to data.

EXAMPLE 1.1. Consider the DAG on five vertices shown in Figure 1. The
graph represents a multivariate model over five random variables X0, X1, X2, X3
and X4, with the restriction that the joint density factorizes as

p(x0, x1, x2, x3, x4) = p(x0) · p(x1) · p(x2 | x0, x1) · p(x3 | x2) · p(x4 | x0, x3);
here, for example, p(x3 | x2) represents the conditional density of X3 given X2.
This model arises naturally in the context of dynamic treatment regimes and lon-
gitudinal exposures [Robins (1986)]: X1 and X3 represent treatments and X2 and
X4 some outcome of interest. The treatments are randomized, though the second
treatment X3 may depend upon the first outcome X2, for example, a dose may be
dynamically adjusted. Since the outcomes are measured on the same patient, they
are assumed to be correlated due to a common cause X0, which might represent
an underlying health status, as well as genetic and lifestyle factors.

If we treat X0 as a latent variable, the marginal model over the remaining ob-
served variables (X1,X2,X3,X4) is the collection of probability distributions that
can be written in the form

p(x1, x2, x3, x4)

=
∫
X0

p(x0) · p(x1) · p(x2 | x0, x1) · p(x3 | x2) · p(x4 | x0, x3) dx0.
(1)

That is, the model consists of any (X1,X2,X3,X4)-margin of a distribution which
factorizes according to the DAG over all five variables, for any state-space or
distribution1 of X0. From (1), we can deduce that the conditional independence
X3 ⊥⊥ X1 | X2 holds in the marginal model; that is,

p(x3 | x1, x2) = p(x3 | x2).(2)

1In general, it is sufficient to assume hidden variables are uniform on (0,1) [see, for example,
Evans (2016)]; for this particular graph, it is a consequence of Theorem 4.7 that we can choose X0 to
be finite and discrete without loss of generality provided it has a sufficiently large number of states.
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In addition, this model satisfies the so-called Verma constraint, originally due to
Robins (1986) [see also Verma and Pearl (1990)], because the expression

q(x4 | x3) ≡ ∑
x2

p(x2 | x1) · p(x4 | x1, x2, x3)(3)

does not depend upon x1 (see Example 3.2).
The set of distributions satisfying both (2) and (3) is a so-called nested Markov

model [Richardson et al. (2017)]. If the four observed variables are binary, these
equations represent four independent constraints, and the nested model is an 11-
dimensional subset of the 15-dimensional probability simplex.

It is not immediately clear whether or not this nested model is the same as
the marginal model defined by (1): in principle the marginal model might impose
additional restrictions beyond (2) and (3). This begs the question: Is the set of
distributions that satisfy (1) characterized by (2) and (3)?

The answer turns out to be “almost”, in the sense that the set of distributions that
can be written in the form (1) is a full-dimensional subset of the set that satisfy (2)
and (3), though there are additional inequality constraints. This situation is repre-
sented by Figure 2, which shows the marginal model (M, in blue) lying strictly
within the nested model (N , in red), but the two having the same dimension.

This paper shows that this near-equivalence between the marginal and nested
models holds generally for all graphs of this kind. Nested models in general are
defined by conditional independences such as (2), and Verma-type constraints such
as (3). These latter constraints may always be interpreted as a conditional indepen-
dence that holds under a different experimental regime to the one observed: in the
example above, it implies that if we intervene to perform an experiment that sets
{X1 = x1,X3 = x3} then the resulting distribution of the final outcome X4 does
not causally depend upon the value of the first treatment, x1.

1.1. Other approaches. Alternative approaches to the problem of describing
Bayesian network models with hidden variables either make use of parametric
structure on the latent variables [e.g., Silva and Ghahramani (2009), Anandkumar
et al. (2013)], or are restricted to testing conditional independences and do not
consider constraints such as (3). This latter category includes the ancestral graph
models of Richardson and Spirtes (2002) and the equivalent2 models on acyclic
directed mixed graphs (ADMGs) of Richardson (2003); these pure conditional
independence models, which we refer to as the ordinary Markov models, generally
have a larger dimension than the observable part of any latent variable model, so
using them as a proxy leads to a loss of power to distinguish between certain kinds
of model.

2The models are equivalent if selection variables are not present, which is the case throughout this
paper.
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FIG. 2. Diagrammatic representation of the probability simplex (dashed outline) and a marginal
model (M, in blue) sitting strictly within the associated nested model (N , in red); note the two
models have the same dimension. The boundary of N is in the simplex boundary, while that of M
is given by inequalities which are generally unknown. Any parametric latent variable model will be
contained strictly within M, but it may have a smaller dimension (an example is shown as L). The
“ordinary Markov model” is not shown, but contains N and would generally have larger dimension.

On the other hand, parametric hidden variable models suffer from various prob-
lems caused by the choice of state-space. They may be “too large”, in the sense that
the dimension of the parameter space is greater than the dimension of the set of
probability distributions in the induced model, thereby introducing identifiability
problems. They may also be “too small”, in that unwanted additional restrictions
are implied by the parametric structure and, therefore, the models have a smaller
dimension than the marginal model: this is depicted by the curve labelled L in
Figure 2.

Paradoxically, it may even be the case that a hidden variable model is “too large”
and “too small” at the same time. For example, take a latent variable model in
Example 1.1 with the simplest possible state-space in which everything is binary:
the full model over all five variables has dimension 12; however, we have already
established that the dimension of the marginal model over the observed variables
is at most 11, so the model is clearly over-parameterized. In fact, it can be shown
that the dimension of this latent variable model over the observed variables is only
10, so an additional—and perhaps unwelcome—restriction is present due to the
choice of a binary latent variable model [see Appendix A, Evans (2018)].

If X0 is given enough states, the latent variable model and the marginal model
coincide for graphs such as the one in Figure 1, a fact we will exploit in our proofs.
However, such a latent variable model is less useful for statistical inference because
it is generally massively over-parameterized. See Example 6.2 for a demonstration
of this.
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None of this should be construed as suggesting that the marginal model su-
persedes all latent variable models, since sometimes the additional parametric as-
sumptions made in a latent variable model are crucial to their utility. For example,
hidden Markov models and phylogenetic tree models are important and widely
used latent variable models, but their corresponding marginal models are satu-
rated. Using the marginal model would therefore be statistically uninteresting and
likely lead only to trivial inferences. However, as noted above for Example 1.1
and as we will see again in Example 6.2, in some examples marginal models are
more suitable than any latent variable model. Marginal models are also of interest
in the Quantum Information literature, because they enable comparison between
“classical” latent variable models and the more general quantum entangled states
[Henson, Lal and Pusey (2014)]. We discuss the implications of our results for
quantum models in Section 6.2.

1.2. A short algebra tutorial. This paper makes use of some results from real
algebraic geometry, which provides powerful tools for analysing these compli-
cated sets of distributions. All our statistical models are collections of distributions
within the probability simplex that satisfy certain constraints. The constraints on
a Bayesian network model are conditional independences, and can be represented
as the requirement that certain polynomials in the probabilities are equal to zero;
for example, the conditional independence X1 ⊥⊥ X3 | X2 is equivalent to

p(x2) · p(x1, x2, x3) − p(x1, x2) · p(x2, x3) = 0 ∀x1, x2, x3.

The set of points at which a collection of polynomials are all zero is called an
algebraic variety, or sometimes an algebraic set. This perspective is explored in
depth for Bayesian network models by Garcia, Stillman and Sturmfels (2005). In
addition to equality constraints, these models will satisfy polynomial inequalities;
that is, p(xV ) ≥ 0. A set defined by a combination of polynomial equalities and
inequalities is said to be semi-algebraic; this category includes many common
finite-dimensional statistical models. Semi-algebraic sets have the nice property
that their images are semi-algebraic under any polynomial map, which includes
elimination of variables or projection onto a linear subspace. A consequence of
this is that the margin of any model defined by a semi-algebraic set is also defined
by a semi-algebraic set.

The Zariski closure of a set is the smallest algebraic variety that contains it; the
fact that this is well defined is a significant result in algebraic geometry. For a semi-
algebraic set, one can informally think of its Zariski closure as the set obtained by
keeping the equality constraints and “throwing away” the inequality constraints.
Semi-algebraic sets have many interesting properties, but they are not necessarily
“nice” from a statistical perspective, in the sense of leading to regular asymptotics.
For this, we need our set to be a manifold, that is, to be locally Euclidean.
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1.3. Contribution. In this paper, we show that marginal models with finite
discrete observed variables are algebraically equivalent to the appropriate nested
Markov model, in the sense that the Zariski closures of the marginal model and
the nested model are the same. A consequence of this is that a margin of a DAG
model and its nested counterpart have the same dimension, and differ only by in-
equality constraints. The marginal model defined by (1) in Example 1.1 is indeed
11-dimensional, and is algebraically defined by (2) and (3); however, the marginal
model also satisfies polynomial inequality constraints that the nested model does
not. The result can be interpreted as showing that the constraint finding algorithm
of Tian and Pearl (2002) is “complete”, in the sense that no other equality con-
straints are necessary to describe the marginal model.

THEOREM 1.2. Let G be a Bayesian network model with vertices V ∪ H ,
where XV are discrete random variables and XH have an arbitrary state-space.
The resulting model over the margin of XV has the same Zariski closure as the set
of distributions satisfying the constraints listed in Tian and Pearl (2002).

This means that we have, for the first time, a full algebraic characterization of
margins of Bayesian network models. It also shows that the nested model repre-
sents a sensible and pragmatic approximation to the marginal model: we currently
have no way to derive inequality constraints efficiently, so the nested model—
which has a factorization criterion, separation criteria and a discrete parameter-
ization [Richardson et al. (2017)]—is much easier to work with, and can easily
be fitted with existing algorithms [Evans and Richardson (2010)]. In addition, the
nested model inside the probability simplex is a manifold and, therefore, regular
whenever the joint distribution is positive, whereas the marginal model may have a
boundary that lies strictly inside the simplex. The nested model therefore has bet-
ter statistical properties than the marginal model, in the sense that data generated
from any strictly positive distribution will lead to regular asymptotics.

Causal discovery methods such as the FCI algorithm [Spirtes, Glymour and
Scheines (2000)] that use conditional independence constraints could, in principle,
be extended to use the constraints implied by nested models; our main result shows
that is “as good as it gets”, in the sense that there are no other equality constraints to
test without making further (e.g., parametric) assumptions. Thus, this paper probes
the limits of what it is possible to learn about causal models with hidden variables
from observational data when we have no further knowledge about the latent state-
space.

We work with a class of hyper-graphs called mDAGs, with which we asso-
ciate marginals of DAG models [Evans (2016)]. That paper also shows that these
mDAGs are a sufficiently rich class of graphs as to represent all the marginal mod-
els we will consider. Nested models are introduced in detail by Richardson et al.
(2017), and a parameterization of them in the discrete case given by Evans and
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Richardson (2015). The existence of this parameterization will allow us to prove
our main results.

The remainder of the paper is organized as follows: Section 2 reviews DAG
models, their margins and mDAGs, and carefully defines the problem of inter-
est. Section 3 defines the nested Markov model, and recalls relevant properties
from Richardson et al. (2017) and Evans and Richardson (2015). The remaining
sections contain entirely new material: in Section 4, we introduce latent variable
models with specific state-spaces, and show that they can be used to represent some
marginal models without loss of generality; Section 5 contains the main results of
the paper, including the proof of Theorem 1.2. Finally, in Section 6 we show that
a large class of marginal models represent smooth manifolds, and provide some
discussion.

2. Directed graphical models. We begin with some elementary graphical
definitions.

DEFINITION 2.1. A directed graph, G(V ,E), consists of a finite set of ver-
tices, V , and a collection of edges, E , which are ordered pairs of distinct elements
of V . If (v,w) ∈ E, we denote this by v → w, and say that v is a parent of w; the
set of parents of w is denoted by paG(w). Similarly, w is a child of v, and the child
set is denoted by chG(v).

A directed graph is acyclic if there is no sequence of edges v1 → v2 → ·· · →
vk → v1 for k > 1. We call such a graph a directed acyclic graph, or DAG.

Graphs are best understood visually: an example of a DAG with five vertices
and five edges is given in Figure 1. We will require the following generalization of
a DAG that allows for two separate types of vertex.

DEFINITION 2.2. A conditional DAG G(V ,W,E) is a DAG with vertices3

V ∪̇W and edge set E , with the restriction that no vertex in W may have any par-
ents. The elements of V are the random vertices, and W the fixed vertices; these
two sets are disjoint.

If W = ∅, this reduces to the ordinary definition of a DAG. We depict fixed
vertices with square nodes, and random ones with round nodes: see the example in
Figure 3(a).

2.1. Graphical models. A graphical model arises from the identification of
a graph with a collection of multivariate probability distributions; see Lauritzen
(1996) for an introduction. Each vertex v ∈ V represents a random variable Xv

3Here and throughout, ∪̇ denotes a disjoint union of sets.
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FIG. 3. (a) A conditional directed acyclic graph with three random vertices (0,2,4) and two fixed
vertices (1,3). (b) An mDAG representing the DAG in Figure 1, with the vertex 0 treated as unob-
served.

taking values in a finite state-space Xv , and a model for their joint distribution is
determined by the structure of the graph. With a conditional DAG G, we associate a
collection of probability measures P(· | xW) on XV ≡⨉v∈V Xv , indexed by xW ∈
XW . Mathematically, fixed nodes play a similar role to the “parameter nodes” used
by Dawid (2002).

Following Lauritzen (1996), we say a probability kernel over XA given XB is
a nonnegative function q : XA × XB → R such that

∑
xA

q(xA | xB) = 1 for all
xB ∈XB . A kernel behaves much like a conditional probability distribution, but no
assumption is made about any distribution over the indexing set XB . We apply the
usual definitions for marginalizing and conditioning in kernels:

q(xA | xB) ≡ ∑
xC

q(xA, xC | xB), q(xA | xB, xC) ≡ q(xA, xC | xB)

q(xC | xB)
.

If q(xA | xB, xC) does not depend upon xB , then we will denote it q(xA | xC), and
say that XA ⊥⊥ XB | XC[q]. Below, and elsewhere, we use the shorthand V W for
V ∪ W in subscripts.

DEFINITION 2.3. Let p(xV | xW) be a probability kernel over XV indexed by
XW . We say that p obeys the factorization criterion with respect to a DAG G if it
factorizes into univariate kernels as

p(xV | xW) = ∏
v∈V

p(xv | xpa(v)), xV W ∈XV W .(4)

Note that if G(V ∪W,E) is a causally interpreted DAG, then (4) gives the usual
formula for p(xV | do(xW )), the distribution of XV after intervening to set XW =
xW .

The definition reduces to the familiar factorization criterion for DAGs if W = ∅.
The extra generality will be useful for discussing Markov properties which involve
factorization of the distribution into conditional pieces. The fixed vertices are anal-
ogous to variables that have been conditioned upon.

A Bayesian network model can also be defined by insisting that each random
variable Xv can be written as a measurable function of Xpa(v) and an independent
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noise variable; we call this the structural equation property; for discrete variables
in particular, these two criteria are equivalent. Although the factorization property
is often simpler to work with for practical purposes such as modelling and fitting,
the structural equation property is useful in proofs.

EXAMPLE 2.4. A distribution P with density p obeys the factorization crite-
rion for the graph in Figure 1 if the density has the form

p(x0, x1, x2, x3, x4) = p(x0) · p(x1) · p(x2 | x0, x1) · p(x3 | x2) · p(x4 | x0, x3).

Such distributions are precisely those which satisfy the conditional independences

X1 ⊥⊥ X0, X3 ⊥⊥ X0,X1 | X2, X4 ⊥⊥ X1,X2 | X0,X3.

EXAMPLE 2.5. A kernel p obeys the factorization criterion for the conditional
DAG in Figure 3(a) if it can be written as

p(x0, x2, x4 | x1, x3) = p(x0) · p(x2 | x0, x1) · p(x4 | x0, x3).

2.2. Latent variables and mDAGs. We now introduce the possibility that some
of the random variables are unobserved or latent, leaving the marginal distribu-
tion over the remaining observed variables. We represent the collection of margins
of DAG models using a larger class of hyper-graphs called mDAGs (“marginal
DAGs”). These avoid dealing with latent variables directly, by instead introducing
additional edges to represent them. For example, the DAG in Figure 1, with the
vertex 0 treated as a latent variable, is represented by the mDAG in Figure 3(b).

Define an abstract simplicial complex B over V as a collection of nonempty
subsets of V such that (i) {v} ∈ B for every v ∈ V , and (ii) if A ∈ B and B ⊆ A

with B 
=∅, then B ∈ B.

DEFINITION 2.6. An mDAG, G(V ,W,E,B), is a hyper-graph consisting of a
conditional DAG with random vertices V , fixed vertices W and directed edge set
E , together with an abstract simplicial complex B over V , called the bidirected
faces.

We say that G′(V ′,W ′,E ′,B′) is a subgraph of G if V ′ ⊆ V , E ′ ⊆ E , B′ ⊆ B,
and W ′ ⊆ V ∪ W : that is, each component is contained within the previous one,
but random vertices may become fixed.

The mDAG was introduced by Evans (2016), without the additional generality
of fixed vertices. This aspect changes very little about the theory of these graphs,
but is necessary for understanding the nested Markov model; note that bidirected
faces only involve the random vertices. As with conditional DAGs, when repre-
senting mDAGs graphically the fixed vertices are drawn as square nodes and ran-
dom vertices as circles.
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FIG. 4. (a) An mDAG, G, and (b) a DAG with hidden variables, Ḡ, representing the same model
(the canonical DAG).

The bidirected simplicial complex is represented by its maximal nontrivial ele-
ments (i.e., those of size at least 2), called the bidirected hyperedges, or just edges.
These are drawn in red, as in Figure 4(a); in this case W = {6} and the maximal
sets of B are {1,2}, {2,3,4} and {3,4,5}.

With each mDAG, G, we can associate a conditional DAG Ḡ by replacing each
maximal element B ∈ B (of size at least 2) with a new random vertex u, such
that the children of u are precisely the vertices in B . The new vertex u becomes
the “unobserved” variable represented by the bidirected edge B . We call Ḡ the
canonical DAG associated with G. The mDAG in Figure 4(a) is thus associated
with the canonical DAG in Figure 4(b).

Our interest in mDAGs lies in their representation of the margin of the asso-
ciated canonical DAG, and so we define our model in this spirit. From the defi-
nitions, it may seem as though the set of models is restricted to cases where the
latent variables have no parents; in fact this does not cause any loss of generality
since—if we make no assumption about state-space of the latents—all marginal
DAG models can be represented in this way [see Evans (2016), Theorem 2].

DEFINITION 2.7. Let G be an mDAG with vertices V ∪̇W , and let Ḡ be the
canonical DAG with vertices V ∪̇U ∪̇W . A kernel p over XV indexed by XW is
said to be in the marginal model for G if there exists a kernel q that factorizes
according to Ḡ, and

p(xV | xW) =
∫
XU

q(xV , xU | xW)dxU .

That is, the margin of q over XV is p. Denote the collection of such kernels by
M(G).

In other words, the marginal model is the collection of kernels that could be
constructed as the margin of a Bayesian network with latent variables replacing
the bidirected edges. If G is a DAG, then the marginal model is just the usual
model defined by the factorization.
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A latent variable model corresponding to a canonical DAG Ḡ (i.e., possibly with
parametric or distributional assumptions on the latent variables) always lies within
the marginal model corresponding to the mDAG G.

2.3. Districts and sterile vertices.

DEFINITION 2.8. A collection of random vertices C ⊆ V in an mDAG
G is bidirected-connected if for any distinct v,w ∈ C, there is a sequence of
vertices v = v0, v1, . . . , vk = w all in C such that, for each i = 1, . . . , k, the
pair {vi−1, vi} ∈ B. A district of an mDAG is an inclusion maximal bidirected-
connected set of random vertices.

More informally, a district is a maximal set of random vertices joined by the red
edges in an mDAG. It is easy to see from the definition that districts form a partition
of the random vertices in an mDAG. The mDAG in Figure 3(b), for example,
contains three districts, {1}, {3} and {2,4}. Districts inspire a useful reduction of
mDAGs, via the following special subgraph.

DEFINITION 2.9. Let G be an mDAG containing random vertices C ⊆ V .
Then G[C] is the subgraph of G with:

(i) random vertices C and fixed vertices paG(C) \ C;
(ii) those directed edges w → v such that v ∈ C [and w ∈ paG(C)];

(iii) the bidirected simplicial complex BC ≡ {B ∩ C : B ∈ B(G)}.
G[C] is therefore the subgraph induced over C, together with parents of C and

edges directed towards C. Any edges (whether directed or bidirected) between the
newly fixed vertices are removed.

For the graph in Figure 3(b) the subgraphs G[{1}], G[{3}] and G[{2,4}] are
shown in Figures 5(a), (b) and (c) respectively. Note in particular that the edge
2 → 3 is not in the subgraph G[{2,4}].

DEFINITION 2.10. Let G be an mDAG with random vertices V . For an ar-
bitrary set C ⊆ V , define sterileG(C) ≡ C \ paG(C). In words, sterileG(C) is the
subset of C whose elements have no children in C. We say a set C is sterile if
C = sterileG(C).

FIG. 5. Subgraphs corresponding to factorization of the graph in Figure 3(b) into districts. Parent
nodes of the district are drawn as squares.
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3. Nested Markov property. The nested Markov property imposes con-
straints on a joint distribution that mimic those satisfied by the marginal model,
including conditional independences and the Verma constraint in Example 1.1
[Richardson et al. (2017)]. It is defined in the following recursive way, which is
a modification of the algorithm of Tian and Pearl (2002).

DEFINITION 3.1 (Nested Markov property). A kernel p over XV indexed by
XW obeys the nested Markov property for an mDAG G(V ,W) if V = ∅, or both:

1. p factorizes over the districts D1, . . . ,Dl of G:

p(xV | xW) =
l∏

i=1

gi(xDi
| xpa(Di)\Di

),

where each gi is a kernel which [if l ≥ 2 or W \ paG(V ) 
= ∅] obeys the nested
Markov property with respect to G[Di]; and

2. for each v ∈ V such that chG(v) = ∅, the marginal kernel

p(xV \v | xW) = ∑
xv

p(xV | xW)

obeys the nested Markov property with respect to G[V \ {v}].
The set of kernels that obey the nested Markov property for G is the nested

Markov model, denoted by N (G).

The condition that l ≥ 2 or W \ paG(V ) 
= ∅ in the first criterion of this defini-
tion is simply to prevent an infinite recursion of the definition: all the graphs in-
voked recursively have either fewer random vertices or fewer vertices overall than
their predecessor in the recursion. When we reach a graph with a single random
vertex v such that all fixed vertices are parents of v, then any kernel p(xv | xpa(v))

satisfies the nested Markov property.
The discrete nested model is equivalently defined by the constraints above and

the parameterization in Evans and Richardson (2015) [as well the nested Markov
properties described in Richardson et al. (2017)]. We will make use of these equiv-
alent definitions throughout.

EXAMPLE 3.2. Consider again the mDAG in Figure 3(b). Applying criterion
1 to this graph implies that

p(x1, x2, x3, x4) = g1(x1) · g24(x2, x4 | x1, x3) · g3(x3 | x2)

for some g1, g3 and g24 obeying the nested Markov property with respect to the
mDAGs in Figures 5(a), (b) and (c), respectively. Applying the second criterion to
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g24 and the now childless vertex 2 [see Figure 5(c)] gives∑
x2

g24(x2, x4 | x1, x3) = h(x4 | x3),

for some function h independent of x1 (by a further application of the first crite-
rion); this is precisely the Verma constraint.

The marginal model implies additional conditions on joint distributions be-
cause, although it satisfies the properties used to define the nested model, these
properties are not sufficient to describe it. In particular, for p to be in the marginal
model, the kernel g24 must satisfy Bell’s inequalities [see, e.g., ver Steeg and Gal-
styan (2011), Section 4.1].

The nested Markov property is “sound” with respect to marginal models, in
the sense that all constraints represented by the former also hold in the latter. The
following theorem is a consequence of the results in Tian and Pearl (2002).

THEOREM 3.3. For any mDAG G, we have M(G) ⊆ N (G).

3.1. Parameterizing sets.

DEFINITION 3.4. Let G be an mDAG. A subset of random vertices S ⊆ V is
called intrinsic if S is a district in any graph that can be obtained by iteratively
applying graphical operations of the form 1 and 2 in Definition 3.1 (i.e., taking the
graph G[D] for a district D, or G[V \ {v}] for a sterile vertex v).

Given an intrinsic set, S, define H = sterileG(S) to be the recursive head, and
T = paG(S) the tail, associated with S (note that H and T are disjoint). The col-
lection of all recursive heads in G is denoted by H(G). There is a one-to-one cor-
respondence between intrinsic sets and recursive heads [Evans and Richardson
(2015)]. Throughout, we will use H and T to indicate recursive heads and tails,
respectively, with the context making it clear which intrinsic set is being referred
to. We will sometimes write T (H) to make clear that the head determines the tail.

The definitions above also appear in Evans and Richardson (2015). We intro-
duce a new definition: let

A(G) ≡ {
H ∪ A | H ∈ H(G),A ⊆ T (H)

}
be the parameterizing sets of G. This collection of sets is so-called because it
(locally) describes the set of distributions (or kernels) contained in the nested and
marginal models, as we will prove in Section 5.

EXAMPLE 3.5. The mDAG in Figure 3(b) has districts {1}, {3} and {2,4}, so
these are all intrinsic sets. Further, in the subgraph G[{2,4}] the vertices 2 and 4
have no children, so we can marginalize either to see that respectively {4} and {2}
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are intrinsic sets. The corresponding recursive heads and tails are then:

S H T A
{1} {1} ∅ {1}
{2} {2} {1} {2}, {1,2}
{3} {3} {2} {3}, {2,3}
{4} {4} {3} {4}, {3,4}
{2,4} {2,4} {1,3} {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4}

.

Note that every nonempty subset of V is represented in A except for {1,3},
{1,2,3}, {1,4} and {1,3,4}. The first two of these correspond to the conditional
independence X1 ⊥⊥ X3 | X2 in (2), and the others to the Verma constraint (3).

We use the  operator to denote the symmetric difference of two sets: AB ≡
(A \ B) ∪ (B \ A). Given a finite collection Ai , i = 1, . . . , k, let

k�

i=1

Ai ≡ A1A2· · ·Ak

denote the symmetric difference of all the Ai . That is, it is the set containing pre-
cisely those elements a which appear in an odd number of the sets Ai .

The following result gives a characterization of the parameterizing sets in terms
of symmetric differences which will be fundamental to our proof of the main re-
sults in this paper.

LEMMA 3.6. A set A ∈ A(G) if and only if there exists a bidirected-connected
set C = {v1, . . . , vk} in G, and sets Ai , i = 1, . . . , k, satisfying {vi} ⊆ Ai ⊆ {vi} ∪
paG(vi), such that

(5) A =
k�

i=1

Ai = A1· · ·Ak.

The proof is found in Section B.1 of the supplement [Evans (2018)].

3.2. Parameterization of the nested model. The nested Markov model can be
parameterized with parameters indexed by head-tail sets [Evans and Richardson
(2015)], and the parameterization defines a smooth bijection between an open sub-
set of a real vector space (i.e., the parameter space) and the model (the set of
probability distributions). This has some nice consequences that we now state [for
proofs, see Evans and Richardson (2015)].
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In particular, for a fixed state-space XV W the set N (G) is a smooth manifold
within the strictly positive probability simplex, and has dimension4

d(G,XV W ) ≡ ∑
H∈H(G)

|XT (H)|
∏
h∈H

(|Xh| − 1
)
.

In the all-binary case, this reduces to d(G,XV W) ≡ ∑
H∈H(G) 2|T (H)|. Our main

result will show that M(G) always has the same dimension as N (G). Indeed, the
parameterization of N (G) will in principle also serve as a parameterization of
M(G), except that one would also have to restrict the parameter space in order to
enforce the inequality constraints; of course, this is currently impractical since the
inequality constraints are not generally known.

3.3. Relationship between mDAGs and ADMGs. Previous papers considering
marginal and nested models for DAGs have used acyclic directed mixed graphs,
which are the restriction of mDAGs with random vertices so that each bidirected
edge has size two [Richardson (2003), Evans and Richardson (2014), Richardson
et al. (2017)]. From the perspective of the nested Markov model, this distinction is
unimportant: if we replace any bidirected simplicial complex with all its subsets of
size 2, we obtain a conditional ADMG that represents the same model under the
nested Markov property.

It therefore follows from Theorem 1.2 that there is no difference in equality
constraints between graphs that differ only in this manner; algebraically the model
defined by having a single latent parent for several variables is the same as having
separate parents for each pair of vertices. Note that the marginal models are not al-
ways equal, as the restriction to pairwise independent latent parents will sometimes
introduce additional inequality constraints. See Evans (2016) for a more detailed
discussion.

4. Geared mDAGs. In this section, we introduce a special class of mDAGs
which we term “geared”. For marginal models relating to such graphs, the state-
space of the hidden vertices can be restricted without loss of generality, making
proofs considerably easier. In Section 5, we prove our main result first for geared
graphs, and then extend the result to the general case.

DEFINITION 4.1. Let G be an mDAG with bidirected simplicial complex B.
We say that G is geared if the maximal elements of B satisfy the running intersec-
tion property. That is, there is an ordering of the edges B1, . . . ,Bk such that for
each j > 1, there exists s(j) < j with

Bj ∩ ⋃
i<j

Bi = Bj ∩ Bs(j).

4Note that we use the convention that |X∅| = 1.
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In other words, the vertices that are contained in both Bj and any previous edge
are all contained within one such edge Bs(j).

A particular ordering of the elements of B that satisfies running intersection is
called a gearing of G.5

EXAMPLE 4.2. The simplest nongeared mDAG is the bidirected 3-cycle,
which has bidirected edge sets {1,2}, {2,3}, {1,3}. We cannot order these in a
way that satisfies the running intersection property, since whichever edge is placed
last in the ordering shares a different vertex with each of the two other edges.

The following fact about geared subgraphs of mDAGs will allow us to general-
ize our later results to graphs which are not geared.

LEMMA 4.3. Let G be an mDAG with parameterizing sets A(G). For any
A ∈ A(G), there exists a geared mDAG G′ ⊆ G, such that A ∈ A(G′).

PROOF. By Lemma 3.6, A is of the form (5) for some bidirected-connected
set C. Let G′ have the same vertices (random and fixed) and directed edges as G,
but be such that the set C is singly connected by bidirected edges (i.e., the edges
are all of size 2 and removing any of them will cause C to be disconnected) chosen
to be a subgraph of G. Then G′ is geared by standard properties of trees and running
intersection, and using Lemma 3.6 again we have A ∈A(G′). �

4.1. Functional models. The key property of geared graphical models is that
we can find a finite discrete latent variable model that is the same (over the ob-
served variables) as the marginal model; that is, if the latent variables have a suf-
ficiently large state-space then they do not impose additional restrictions on the
observed distribution. This is achieved by letting each observed variable be a de-
terministic function of its latent and observed parents. We illustrate this with an
example.

EXAMPLE 4.4. Consider the mDAG in Figure 6(a) representing the instru-
mental variables model, used to model noncompliance in clinical trials; here, for
example, X1 represents a randomized treatment, X2 the treatment actually taken,

5The term “geared” is chosen because a collection of bidirected edges that satisfies running inter-
section may appear rather like “cogs” in a set of gears; see Figure 4. The definition is equivalent to
the requirement that the simplicial complex B is vertex decomposable [Provan and Billera (1980)],
and is also closely related to the notion of decomposability in an undirected or directed graph. In-
deed the term “decomposable” is used by Fox, Käufl and Drton (2015) to describe the same idea.
We avoid using this terminology because of its existing meaning in connection with undirected and
directed graphical models; for example, ordinary DAGs are trivially geared, but they may or may not
be decomposable in the original sense [Lauritzen (1996)].
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FIG. 6. (a) An mDAG representing the instrumental variables model; (b) a DAG with functional
latent variables equivalent to the potential outcomes model of instrumental variables.

and X3 a patient’s outcome or response, such as survival. Suppose that each of
these quantities is binary, taking values in {0,1}. Conceptually, it can be useful
to posit the existence of two different potential outcomes X3(0), X3(1) for the
survival response, one for each level of the treatment; X3(1) is the patient’s out-
come given that they choose to take the treatment (i.e., when X2 = 1) and X3(0)

is their outcome given that they do not (X2 = 0). For example, if X3(0) = 0 and
X3(1) = 1 then the patient survives if they take the treatment but dies if they do
not. This pair of values is known as a patient’s response type. Of course, we can
only ever observe one of these outcomes in a given patient, the one corresponding
to the observed value of X2.

Similarly, we can conceive of two versions of the treatment X2(0), X2(1) de-
pending upon the assigned value of X1, this pair being called the patient’s compli-
ance type. For example, X2(0) = X2(1) = 0 means that the patient will not take the
treatment, regardless of whether or not they are assigned to the treatment group.
These concepts have proved fruitful in causal inference, as they enable discus-
sion of whether treatments have effects at the level of individual patients, rather
than just over the entire population on average [Neyman (1923), Rubin (1974),
Richardson, Evans and Robins (2011)].

Now, since the latent variable (say U ) with children {2,3} can take any value, we
can—without loss of generality—assume that it includes the pair (X3(0),X3(1)),
or equivalently a function f3 : X2 → X3 that determines, given the observed X2,
which value X3 will take. In this case, X3 is still a measurable function of its
parents U and X2. Similarly, we can assume U includes a function f2 : X1 → X2
that determines X2 given an observed X1.

An observation for a particular patient can be obtained by drawing a ran-
dom treatment assignment X1, a random compliance type for the patient f2, and
a random response type f3, and then evaluating (X1,X2,X3) = (X1, f2(X1),

f3(f2(X1))). The key point is that one can place a distribution over (X1, f2, f3)

and obtain a distribution over the observed variables (X1,X2,X3). The only re-
quirement for the distribution to be Markov with respect to this particular graph is
that X1 ⊥⊥ {f2, f3}, as depicted in Figure 6(b).

The functional construction outlined above is mathematically equivalent to po-
tential outcomes, and provides a model that is somewhat simpler to study than the
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general latent variable model. In fact, any geared mDAG can be reduced to a latent
variable model in the way described above, something we will proceed to show in
Theorem 4.7.

The nested model in the case of Figure 6(b) is saturated and, therefore, not
particularly interesting. For causal modelling, the potential outcomes framework
is likely to be substantially more useful in this example. However, it is important to
note that potential outcomes do not always give a practical alternative to the nested
model; see Example 6.2.

4.2. Remainder sets. Given a single-district, geared mDAG with at least one
bidirected edge and a gearing B1, . . . ,Bk , define

Rj ≡ Bj \ ⋃
i<j

Bi

(taking R1 ≡ B1) to be the remainder set associated with Bj . Remainder sets par-
tition V , so for a random vertex v ∈ V , define r(v) to be the unique j such that
v ∈ Rj .

Now say that an ordering < on the vertices in V respects the gearing if for
v ∈ Ri and w ∈ Rj , we have v < w whenever i > j ; in other words, all the vertices
in Rk precede all those in Rk−1, etc.; such an ordering always exists. For each
v ∈ V with r(v) = j , let

π(v) = ⋃
i>j
v∈Bi

Ri;

that is, the remainders associated with all bidirected edges which contain v and are
later than j in the ordering. Then define a collection of functions

Fv ≡ {f :Xpa(v) ×Fπ(v) →Xv},
where FA =⨉a∈AFa and F∅ = X∅ = {1}. This is well defined since all the ver-
tices in π(v) precede v in an ordering which respects the gearing.

EXAMPLE 4.5. The mDAG in Figure 6(a) has only one bidirected edge and,
therefore, is trivially geared with R1 = B1 = {2,3}. This leads to the sets F2 =
{f2 :X1 →X2} and F3 = {f3 :X2 →X3}, which are precisely the sets of functions
for compliance type and response type, respectively.

EXAMPLE 4.6. Consider the mDAG in Figure 4, and order the bidirected
edges as B1 = {1,2}, B2 = {2,3,4} and B3 = {3,4,5}, giving respective remain-
der sets R1 = {1,2}, R2 = {3,4} and R3 = {5}. The ordering 5 < 4 < 3 < 2 < 1 of
the random vertices respects the gearing, and we have

π(1) = π(5) = ∅, π(3) = π(4) = {5}, π(2) = {3,4}.
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In this case, then

F5 = {f :X3 →X5}, F4 = {f :X2,3,6 ×F5 →X4},
F3 = {f :X1 ×F5 →X3}, F2 = {f : F3,4 →X2},
F1 = {

f : {1} →X1
}
.

Alternatively, if we order the bidirected edges as {2,3,4}, {1,2}, {3,4,5}, then we
could take 5 < 1 < 2 < 3 < 4, and

π(1) = π(5) =∅, π(3) = π(4) = {5}, π(2) = {1};
this yields F2 = {f : F1 →X2}, with other collections Fv unchanged.

4.3. Functional models for geared graphs. If a vertex v is contained within
exactly one bidirected edge, B , then without loss of generality we can assume
that the latent variable corresponding to B contains all the residual information
about how Xv should behave given the values of its visible parents, Xpa(v). In
other words, the latent variable associated with B includes a (random) function
fv : Xpa(v) → Xv which, once instantiated, “tells” Xv = fv(Xpa(v)) which value it
should take for each value of its other parents, exactly as in Example 4.5.6 All the
randomness of Xv is collapsed into fv and Xpa(v).

If v is contained within two or more bidirected edges, say Bi and Bj , we might
say that Bi tells Xv what value to take for every value of its visible parents and the
other latent variables. However, it is not clear how to define such a function until
the state-space associated with the other latent parents (i.e., Bj ) has already been
fixed. The decomposable structure of geared graphs makes it possible to iteratively
fix state-spaces for latent variables without loss of generality.

To see this, suppose we have a single-district, geared mDAG G with remainder
sets R1, . . . ,Rk , and form the canonical DAG Ḡ by replacing each bidirected edge
Bi in G with a new vertex ui , such that chḠ(ui) = Bi . Compare, for example, the
structure of the graphs in Figures 4(a) and (b).

Note that each vertex v ∈ Rk has a single latent parent uk in Ḡ. Then, with-
out loss of generality, incorporate the function fv : XpaG(v) → Xv into the latent
variable Uk . We “replace” Uk with the collection of such functions fRk

∈FRk
.

Each vertex v ∈ Rk−1 has latent parent uk−1 and possibly also uk ; but since the
state-space of Uk has been fixed as FRk

, we can define fv : Xpa(v) × FRk
→ Xv

for those v with latent parents uk−1 and uk , and just fv : Xpa(v) → Xv otherwise.
These functions fRk−1 can be integrated into Uk−1, and the process repeated for
i = k − 2, . . . ,1.

We end up with latent variables Ui taking values in FRi
for i = 1, . . . , k. For

example, with the first gearing given in Example 4.6 for the graph in Figure 4(a),

6Equivalently, one could take a deterministic function fv and introduce an “error term” Ev so that
Xv = fv(Xpa(v),Ev), as in the nonparametric structural equation models of Pearl (2009).
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FIG. 7. (a) A DAG with functional latent variables, associated with a gearing of the mDAG in
Figure 4(a). (b) Subgraph of the DAG in (a), containing the vertex 4 and its parents.

we would have U1 = (f1, f2), U2 = (f3, f4) and U3 = (f5). Associating each
variable Ui with the vertex ui leads to the DAG in Figure 7(a). Notice that, for each
v ∈ V , the function fv is contained within a parent variable of v. In addition, all the
arguments of the function fv are also parents of v. For example, take v = 4, whose
parents are drawn separately in Figure 7(b). The function f4 ∈ F4 is generated as
part of the latent variable U2 = (f3, f4), and the associated vertex u2 is indeed a
parent of 4. In addition, F4 = {f : X2,3,6 × F5 → X4}, so the arguments of the
function f4, namely X2, X3, X6 and f5, all correspond to vertices which are also
parents of 4. Thus, in setting X4 = f4(X2,X3,X6, f5) we ensure that X4 is a well-
defined function of its parent variables.

In fact, using this construction we can set Xv := fv(Xpa(v), fπ(v)) for every
v ∈ V , which is well defined because the directed part of the original mDAG is
acyclic. The following result shows that the resulting conditional distribution over
XV given XW is in the marginal model for the original mDAG.

THEOREM 4.7. Let G be a geared mDAG, and Ri , i = 1, . . . , k be the re-
mainder sets corresponding to some gearing of G. Suppose we generate functions
fv ∈ Fv according to a distribution in which

(fv | v ∈ Ri) ⊥⊥ (fw | w ∈ V \ Ri), i = 1, . . . , k,

and then define Xv = fv(Xpa(v), fπ(v)) for each v ∈ V . Then the induced condi-
tional distribution on XV given XW is in the marginal model for G.

Conversely, any distribution in the marginal model for G can be generated by
such a scheme.

PROOF. For each bidirected edge Bi , define the random variable Ui = (fv |
v ∈ Ri). The Uis are represented by exogenous variables on the DAG Ḡ, and the
conditions given in the statement of the theorem ensures they are all independent.
The structural equation property for Ḡ will therefore be satisfied if each Xv is a
well-defined function of its parents in the graph.
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In other words, the three components fv , fπ(v) and Xpa(v) must all be deter-
mined from random variables which are parents of v in Ḡ. This holds for Xpa(v) by
definition. Additionally, v ∈ Ri implies that v ∈ Bi , and that therefore the variable
Ui ≡ (fv : v ∈ Ri) is a parent variable of Xv .

Lastly, suppose w ∈ π(v); this happens if and only if w,v ∈ Bj for some j > i,
in which case w ∈ Rj for the minimal such j by the running intersection property
of the gearing. Then fw is contained in Uj , which is also a parent variable of Xv .

For the converse, suppose that p ∈ M(G) satisfies the structural equation prop-
erty and let Rk be the final remainder set with associated random variable Uk .
Each Xv for v ∈ Rk is a measurable function of its parents Xpa(v) and Uk . Define
the random function fv :Xpa(v) →Xv by fv(·) = Xv(·,Uk), and incorporate it into
the latent variable Uk . Repeating this for all v ∈ Rk gives us U ′

k = (Uk, fRk
). By

Theorem 2.2 of Čencov (1982), we can rewrite U ′
k = (g(fRk

,E), fRk
) for some

measurable function g and random variable E, independent of fRk
, whilst keeping

the distribution of U ′
k unchanged.

Since G is geared, all children of Uk that are also children of any other la-
tent variable all share a latent parent, say Uj , j < k. If we then augment Uj

with E, and replace U ′
k with U ′′

k ≡ fRk
, then all variables remain as measur-

able functions of their parents because fw(Xpa(w),Uk,Uj ) can be replaced with
fw(Xpa(w), g(U ′′

k ,E),Uj ). Now that U ′′
k has a fixed, finite state-space, we can ap-

ply this process again to Uk−1. A simple induction gives the result. �

Since each of these latent variables takes values in a finite collection of func-
tions, this means that the marginal model of a geared graph is equivalent to a
latent variable model in which all the random variables (latent and observed) are
finite and discrete. It follows from the Tarski–Seidenberg theorem [Basu, Pollack
and Roy (1996), Chapter 2] that marginal models for geared mDAGs are semi-
algebraic sets.

EXAMPLE 4.8. Consider the marginal model for the graph in Figure 3(b).
In this case, the vertices 2 and 4 are each contained in only one bidirected edge,
so without loss of generality this edge could be replaced in the canonical DAG
(Figure 1) with a latent variable taking values in F2 ×F4 where

F2 ≡ {f :X1 →X2}, F4 ≡ {f :X3 →X4}.
That is, the latent variable may be assumed to be U = (f2, f4), where f2 and f4,
respectively, assign values to X2 and X4 given particular values of X1 and X3.

For nongeared graphs such as that in Figure 8(a), there is no clear way to write
the marginal model as a latent variable model without possible loss of general-
ity. We therefore cannot use this approach to prove that marginal models corre-
sponding to nongeared mDAGs are semi-algebraic. However, it has recently been
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proven that any marginal model can be written as a latent variable model with finite
discrete latent states, provided the state-space is sufficiently large (Denis Rosset,
personal communication). It follows that all marginal models are semi-algebraic.

4.4. Generating distributions for geared mDAGs. Let G be a single-district,
geared mDAG, with gearing given by remainder sets R1, . . . ,Rk ; assign a proba-
bility distribution ρi to each collection of functions Ui ≡ (fv | v ∈ Ri). Suppose
we draw values for variables Ui = (fv)v∈Ri

independently according to ρi , and use
them to generate values for the observed variables XV for each possible value of
the fixed vertices XW . The resulting (conditional) distribution over XV given XW

is, by Theorem 4.7, in the marginal model for G.
Let π(Ri) ≡ ⋃

v∈Ri
π(v) and fA ≡ (fv | v ∈ A). Define

p[ρk, . . . , ρ1](xV | xW)

= ∑
fRk

∈�k(xV W )

ρk(fRk
) · · · ∑

fR1∈�1(fπ(R1),xV W )

ρ1(fR1),
(6)

where

�i(fπ(Ri), xV W ) = {
fRi

| fv(xpa(v), fπ(v)) = xv for each v ∈ Ri

};(7)

that is, �i(fπ(Ri), xV W ) is precisely the set of functions fRi
that, given the indi-

cated values of parent variables, jointly evaluate to xRi
. Hence (6) is a sum over

all the combinations of functions fV that, given the input XW = xW , recursively
evaluate to xV .

The function p[·] takes distributions over the functions fV and returns a ker-
nel over XV indexed by XW . For brevity, we will generally denote this by
p[ρk, . . . , ρ1] = ∑

�k
ρk · · ·∑�1

ρ1, with the dependence upon xV W left implicit.
It may be helpful to think of this as an over-parameterized family of kernels for
XV given XW , with parameters ρ1, . . . , ρk .

The mapping p[·] is clearly smooth (infinitely differentiable), and its image
defines the marginal model. Hence we will be able to deduce various aspects of
the model’s geometry by studying p[·] and its derivatives. Choosing ρi(fRi

) = 1
for each i (up to a constant of proportionality which, for simplicity, we do not
write explicitly) induces the uniform distribution on XV for each xW ∈ XW ; we
denote this kernel by p0 ≡ p[1, . . . ,1]. Clearly, p0 is contained within M(G) for
any mDAG G—as, in fact, is any distribution corresponding to all variables being
independent.

EXAMPLE 4.9. For the instrumental variables model in Figure 6 (if we con-
sider X1 to be fixed), we have

p[ρ](x2, x3 | x1) = ∑
�(x123)

ρ(f2, f3),

where �(x123) = {(f2, f3) : f2(x1) = x2, f3(x2) = x3}.
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EXAMPLE 4.10. In the case of the mDAG in Figure 4(a), we have three bidi-
rected edges and remainder sets, and the gearing used in Figure 7(a) gives

p[ρ3, ρ2, ρ1] = ∑
�3

ρ3(f5)
∑
�2

ρ2(f3, f4)
∑
�1

ρ1(f1, f2),

where

�1 = {
(f1, f2) | f1 = x1, f2(f3, f4) = x2

}
,

�2 = {
(f3, f4) | f3(x1) = x3, f4(x2, x3, x6, f5) = x4

}
,

�3 = {
f5 | f5(x3) = x5

}
.

5. Main results. In this section, we prove our main result, by showing that
the marginal model M(G) has the same dimension as the nested model. This is
done first for geared mDAGs, and the result is then extended to general graphs.
For geared graphs, the marginal model is just the image of the infinitely differen-
tiable function p[·] described in the previous section. Such functions can be locally
approximated at a particular point, say p0 = p[1, . . . ,1], by the linear map given
by the derivative of p[·].

This column space of this linear map (also called the pushforward map) gives
the linear space that approximates the model at p0, also known as the tangent
space.7 We will show that the tangent space to the marginal model at p0 is equal to
the tangent space of the nested model N (G) at p0. To do this, we take a basis of the
tangent space of N (G), and for every vector λ in the basis we explicitly construct
a vector δ such that the directional derivative of p[·] with respect to δ is equal
to λ. This shows that each λ is also contained in the tangent space of M(G). Since
the marginal model is contained within the nested model, it will then follow from
results in algebraic geometry that the two models coincide in a neighbourhood of
p0.

For nongeared graphs, we have do slightly more work, showing that we can
combine maps from different geared subgraphs to obtain the same result.

5.1. Vector spaces and tangent cones. A probability kernel p(xV | xW) can be
thought of equally as a vector with entries indexed by XV W , or a real function with
domain XV W . The following decomposition of the vector space R

|XV | will prove
useful.

DEFINITION 5.1. For any A ⊆ V , let �A be the subspace of R|XV | consisting
of vectors p such that:

(i)
∑

ya∈Xa
p(ya, xV \a) = 0 for each a ∈ A and xV \{a} ∈ XV \{a};

(ii) p(xV ) = p(yV ) whenever xA = yA.

7In general, the column space could be a subspace of the tangent space, but it is a consequence of
Theorem 5.3 that they are equal in this case.
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In other words, considered as a function p : XV → R, the value of p ∈ �A

only depends upon xA, and its sum over xa for a ∈ A (keeping the other argu-
ments fixed) is 0. In particular, �∅ is the subspace spanned by the vector of 1s.
The dimension of �A is

∏
a∈A(|Xa| − 1); in the case where all the variables are

binary, each �A has dimension one and is the same as the space spanned by the
corresponding column of a log-linear design matrix.

It is simple to check that the spaces �A are all orthogonal, and that the real
vector space R

|XV | can be decomposed as the direct sum

R
|XV | = ⊕

A⊆V

�A.

DEFINITION 5.2. Let A be a subset of Rk containing a point x. The tangent
cone of A at x is the set of vectors of the form v = limn→∞ αn(vn − x) where
αn → ∞ and each vn ∈ A.

A tangent cone is a cone, but may or may not be a vector space, depending
upon whether the set A is regular at x. If A is defined by the image of a differ-
entiable bijective map with differentiable inverse then the tangent cone is a vector
space, and the same as the image of the pushforward map. This is the case with the
nested model N (G), which has an explicit and smooth parameterization [Evans
and Richardson (2015)]. Its tangent cone at the uniform distribution p0 is

TSn
0 ≡ ⊕

A∈A(G)

�A,(8)

where A(G) are the parameterizing sets; this can be deduced by looking directly
at the parameterization.

As noted in Section 4, any marginal model M(G) also contains the uniform
distribution p0(xV | xW) ≡ |XV |−1, for all xV ∈ XV , xW ∈ XW , at which point all
variables are jointly independent. The tangent cone of the marginal model M(G)

at p0 is also the vector space (8), which forms the main result of this section.

THEOREM 5.3. The tangent cone of M(G) at p0, denoted TC0, is the vector
space TC0 = TSn

0 ≡ ⊕
A∈A �A.

That TC0 ⊆ TSn
0 follows from the fact that M(G) ⊆ N (G). The proof of the

reverse inclusion is the subject of this section. We first show this for geared graphs
in Section 5.2 then extend to general mDAGs in Section 5.3, culminating in the
proof of Theorem 1.2.

5.2. Results for geared graphs.

DEFINITION 5.4. Let λ : XA → R; we say that λ is A-degenerate (or just
degenerate) if for each a ∈ A, and xA\a ∈ XA\a ,∑

ya

λ(ya, xA\a) = 0.
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It is not hard to see that the set of A-degenerate functions is isomorphic to the
vector space �A; both formulations will be useful.

DEFINITION 5.5. Given a degenerate function εi : FRi
→R, define

Di(εi) = lim
η↓0

η−1{
p[1, . . . ,1 + ηεi, . . . ,1] − p[1, . . . ,1, . . . ,1]},

so that Di(εi) is a vector in R
|XV W |, the directional derivative of the ith compo-

nent of p[·] with respect to εi . For sufficiently small η > 0, the vector 1 + ηεi is
nonnegative and, therefore, a valid distribution over FRi

(up to the normalizing
constant); it follows that Di(εi) ∈ TC0, the tangent cone of M(G) at p0.

Let Ti = {Di(εi) | εi degenerate}. Since the function p[·] is differentiable at
[1, . . . ,1], it follows that Ti is a vector space, and also that the vector space T1 +
· · ·+Tk is contained within the tangent cone of M at the uniform distribution. We
will show that T1 + · · · + Tk is in fact the same as (8).

It will be useful to define the following collection of supersets of �i , for B ⊆ V :

�B
i (fπ(Ri), xV W ) ≡ {

fRi
| fv(xpa(v), fπ(v)) = xv for each v ∈ Ri ∩ B

}
.(9)

In words, this is the collection of functions fRi
such that, given inputs fπ(Ri) and

xpa(Ri)\Ri
, the values of fB∩Ri

jointly evaluate to xB∩Ri
. Note that �B

i = �i for
any B ⊇ Ri .

LEMMA 5.6. Let C ⊆ Ri , with sterileG(C) ⊆ A ⊆ C∪paG(C) and E ⊆ π(C).
Then for every degenerate function λ : XA × FE → R, there exists a degenerate
function δ : FC →R such that∑

fRi
∈�i

δ(fC) = λ(xA,fE),

where �i is given by (7). In addition,

∑
fRi

∈�B
i

δ(fC) =
{|XRi\B |λ(xA,fE) if C ⊆ B,

0 otherwise.

The proof is in the Supplementary Material, Section B.3 [Evans (2018)].

REMARK 5.7. Note that if we set E = ∅, the above result shows that for any
λ ∈ �A there exists a δ such that

η−1{
p[1, . . . ,1 + ηδ, . . . ,1] − p[1, . . . ,1, . . . ,1]}
= η−1

{∑
�k

· · ·∑
�i

ηδ(fC)
∑
�i−1

· · ·∑
�1

1
}

= λ.
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Hence �A ≤ Ti (i.e., �A is a subspace of the vector space Ti) for any A such that
sterileG(C) ⊆ A ⊆ C ∪ paG(C) and C ⊆ Ri .

The next result, also proved in the Supplementary Material [Evans (2018), Sec-
tion B.3], forms the backbone for proving Theorem 5.3: it extends Lemma 5.6 to
sets C that are not contained within a single remainder set.

LEMMA 5.8. Let C be a bidirected-connected set, and for each i define
Ci ≡ C ∩ Ri ; let I ≡ {i | Ci 
= ∅}. For sterileG(Ci) ⊆ Ai ⊆ Ci ∪ paG(Ci), let
A = �

i∈I Ai . Then �A is a subspace of Tl , where l is the minimal element of I .

COROLLARY 5.9. For a geared mDAG G with k ≥ 1 bidirected edges,⊕
A∈A(G)

�A ≤ T1 + · · · + Tk.

PROOF. By Lemma 3.6, there is some bidirected-connected set C such
that A = �

v∈C Av for sets {v} ⊆ Av ⊆ {v} ∪ paG(v). Take Ci ≡ C ∩ Ri =
{vi1, . . . , viki

}, so A is of the form

A =
�

i,j

A
j
i =

�

i

(�

j

A
j
i

)
,

where A
j
i ≡ Avij

(here we have changed nothing other than to label the vertices
vij by which remainder set they are contained in).

Applying Lemma 3.6 in reverse to the bidirected-connected set Ci shows that
Ai ≡ �

j A
j
i is in A(G) and, therefore, satisfies sterileG(Ci) ⊆ Ai ⊆ Ci ∪ paG(Ci).

Then by Lemma 5.8, the space �A is contained in some Ti , i = 1, . . . , k. �

EXAMPLE 5.10. The instrumental variables model from Figure 6 (see Exam-
ples 4.5 and 4.9) has a saturated nested model with the following parameterizing
sets:

Head H Tail T Parameterizing sets A
{1} ∅ {1}
{2} {1} {2}, {1,2}
{3} {1,2} {3}, {1,3}, {2,3}, {1,2,3}

.

Indeed, taking the functional parameterization suggested in Example 4.9, one
can see that altering the distribution of the compliance functions f2 will affect the
distribution of X2 conditional on X1, which is why �2 and �12 are contained in
TC0. For example, to introduce a correlation between X1 and X2 whilst keeping
the marginal distributions fixed, we can increase the proportion of “compliers”
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[i.e., the people for whom f2(0) = 0, f2(1) = 1] and decrease the proportion of
“defiers” [f2(0) = 1, f2(1) = 0].

Similarly, modifying the distribution of f3 gives us �3 and �23. Obtaining the
directional derivatives in �13 and �123 requires modifying the distribution of f2,
f3 jointly.

None of the examples given in this paper require the full generality of
Lemma 5.8 to prove that Theorem 5.3 applies to them, however, an example in
which this is necessary may be found in the Supplementary Material, Section B.4
[Evans (2018)].

5.3. Extension to nongeared graphs. Corollary 5.9 puts us in a position to
prove Theorem 5.3 for geared graphs; however, it does not so far extend to the
general case, because we cannot fix the state-spaces of the latent variables without
a gearing. In this section, we will show that the tangent cone of a general marginal
model at the uniform distribution is the vector space spanned by the tangent cones
of its geared subgraphs, and that therefore the problem can be reduced to geared
graphs.

PROPOSITION 5.11. Let G be an arbitrary mDAG containing geared sub-
graphs G1, . . . ,Gk . Suppose that, for each subgraph and a suitable gearing �Ai

≤
TC0(Gi ). Then �A1 + · · · + �Ak

≤ TC0(G).

In other words, the tangent cone of G includes the vector space spanned by
all the tangent cones of the subgraphs. The proof is found in the Supplementary
Material, Section B.5 [Evans (2018)].

EXAMPLE 5.12. The bidirected 4-cycle in Figure 8(a) is not geared and,
therefore, we cannot apply our earlier results to it directly. The nested model
for this graph is equivalent to the model defined by the constraints X1 ⊥⊥ X3 and
X2 ⊥⊥ X4, and has parameterizing sets

A(G) = {{1}, {2}, {1,2}, {3}, {2,3}, {1,2,3},
{4}, {1,4}, {1,2,4}, {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}},

FIG. 8. (a) The bidirected 4-cycle, and (b), (c) two geared subgraphs.
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which are also the bidirected-connected sets of vertices. The two subgraphs in
Figures 8(b) and (c), say G1 and G2, are geared, however, and their parameterizing
sets combined include all sets in A(G). Hence, by applying Proposition 5.11 with
these graphs, we find that⊕

A∈A(G)

�A = ⊕
A∈A(G1)

�A + ⊕
A∈A(G2)

�A ≤ TC0(G).

It follows that the marginal model is also defined by the independences X1 ⊥⊥ X3
and X2 ⊥⊥ X4, possibly with some additional inequality constraints.

We are now in a position to put together these ideas and prove the main results
for general mDAGs.

PROOF OF THEOREM 5.3. Suppose first that G is geared.
p[1, . . . ,1 + ηεi, . . . ,1] obeys the nested Markov property for any degenerate

function εi and any η sufficiently small that 1 + ηεi is positive; it follows that
Ti ≤ TC0 for each i, and that therefore using Corollary 5.9,⊕

A∈A(G)

�A ≤ T1 + · · · + Tk

is also contained in TC0, by the differentiability of p[·] at (1, . . . ,1).
Now for general G, and each A ∈ A(G), there exists a geared subgraph G′ of G

such that �A ≤ TC0(G′) by Lemma 4.3. Then applying Proposition 5.11, we see
that the space spanned by these subspaces is contained within the tangent cone for
G: that is,

⊕
A∈A(G) �A ≤ TC0(G). If a distribution is in the marginal model, then

it is also in the nested model and, therefore, TC0 is contained within the tangent
space TSn

0 of N (G) at p0, which has dimension

dim
(
TSn

0
) = ∑

H∈H(G)

|XT (H)|
∏
h∈H

(|Xh| − 1
) = ∑

A∈A(G)

dim(�A);

the second equality here follows from dim(�A) = ∏
h∈A(|Xh| − 1) and∑

H⊆A⊆H∪T

dim(�A) = ∑
H⊆A⊆H∪T

∏
h∈A

(|Xh| − 1
) = |XT (H)|

∏
h∈H

(|Xh| − 1
)
.

Combining
⊕

A∈A(G) �A ≤ TC0 ⊆ TSn
0 with the dimension of TSn

0 gives the result.
�

Theorem 1.2 is now a corollary of this result.

PROOF OF THEOREM 1.2. Since N (G) is parametrically defined via polyno-
mials, its Zariski closure is an irreducible variety [see, e.g., Cox, Little and O’Shea
(2007), Proposition 4.5.5]. The Zariski closure of M(G) is, by definition, also an
algebraic variety. For algebraic varieties V1, V2, if V1 ⊆ V2 and V2 is irreducible,



MARGINS OF DISCRETE BAYESIAN NETWORKS 2651

then either V1 has a strictly smaller dimension than V2, or they are identical. By
Theorem 5.3, the Zariski closures of M and N have the same dimension and,
therefore, they coincide. This means that, in a neighbourhood of p0, the models
themselves are also the same. �

6. Smoothness of the marginal model. The results of Section 5, together
with the smoothness of the nested model, allow us to show that for geared graphs,
the interior of the marginal model is a smooth manifold.

THEOREM 6.1. For any mDAG G and state-space XV W , the relative interior
of the marginal model M(G) is a manifold of dimension d(G,XV W ), and is de-
scribed by a finite number of semi-algebraic constraints.

PROOF. The nested Markov model is parametrically defined (with a polyno-
mial parameterization) and, therefore, its Zariski closure is an irreducible variety
[see, e.g., Cox, Little and O’Shea (2007), Proposition 4.5.5]. Furthermore, Evans
and Richardson (2015) give a diffeomorphism between the set of strictly positive
distributions obeying the nested Markov property, and an open parameter set. It
follows that N (G) is a manifold on the interior of the simplex [see, e.g., Kass and
Vos (1997), Appendix A].

As noted in Section 4, the marginal model is a semi-algebraic set. Since
M(G) ⊆ N (G) and these two sets have the same Zariski closure, it follows that
M(G) is defined from N (G) by a finite number of additional polynomial inequal-
ities. It further follows that it is also a manifold at any point these inequality con-
straints are not active. �

It follows from Theorem 6.1 that the interior of the marginal model for an
mDAG is a curved exponential family of dimension d(G,XV W ), and that there-
fore the nice statistical properties of these models can be applied. For example, the
maximum likelihood estimator (MLE) of a distribution within the model will be
asymptotically normal and unbiased, and the likelihood ratio statistic for testing
this model has an asymptotic χ2-distribution.

For a point on the boundary defined by an active inequality constraint, the
asymptotic distribution of the likelihood ratio statistic may be much more com-
plicated than for a point on the relative interior [Drton (2009)]; in general it is
a mixture of χ2-distributions, and this mixture will vary depending upon the un-
known truth. A possible advantage of the nested model is that we can guarantee
that the true distribution does not lie on the boundary of N if the MLE consists of
strictly positive probabilities, because the boundary only consists of distributions
with at least some zero probabilities; the same cannot be said for M. This is de-
picted in Figure 9, in which the MLE under the nested model (p̂n) is in the interior
of N , but the MLE for the marginal model p̂m lies on the boundary of M.
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FIG. 9. Diagramatic representation of estimation with the marginal model. The thicker line rep-
resents the marginal model, and its thinner extension the nested model. The unconstrainted MLE
is shown as p̂, and its projection to MLEs under the marginal and nested models as p̂m and p̂n,
respectively. Note that p̂m is on the boundary of M; if the true data generating distribution is on the
boundary this generally leads to irregular asymptotics.

Inequality constraints are generally much more complicated than equality con-
straints, and efforts to characterize them fully in DAGs with latent variable models
have been limited by computational challenges; see, for example, the discussion in
ver Steeg and Galstyan (2011).

6.1. Why marginal models? Theorem 4.7 tells us that we can use an explicit
latent variable model with potential outcomes to obtain the marginal model for
any geared graph; in this event, one might ask why we need the constraint-based
representation afforded by the nested model. Unfortunately, whilst often useful for
causal inference, potential outcomes are impractical to use as a full parameteri-
zation in all but the smallest models, because their state-space quickly becomes
infeasibly large if there are several treatments or several possible outcomes. In the
simplest case of two variables A → Y with with respectively m and n states, there
are nm possible types for Y , compared to only mn distinct, observable outcomes.
In reality, m is often quite large, because Y may have several parents.

EXAMPLE 6.2. Consider a longitudinal treatment program where at each
stage t = 1, . . . ,N , patients are given treatment At and an outcome Yt is mea-
sured. Treatments are chosen by clinicians to depend only on the treatment and
outcome at the previous time point, but outcomes are correlated due to unobserved
confounding. For N = 2, this is similar to Example 1.1.

Following the same approach as in Example 4.4 leads to a latent variable
consisting of random functions ft that map values of treatments At onto po-
tential outcomes Yt ; see Figure 10 for a graph of the relevant latent variable
model. For the simplest case of binary variables, each of these functions would
have four states; the full latent variable would consist of all N such functions,
so would have 4N possible states. This latent variable identifies the quantity
P(Y1, . . . , YN | do(A1, . . . ,AN)), which is the distribution of Y1, . . . , YN after in-
tervening on A1, . . . ,AN ; this has a dimension of “only” 2

3(4N − 1) under this
model, and the difference between these two models grows exponentially in N .
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FIG. 10. Bayesian network representing the dynamic treatment model in Example 6.2.

If Yt depends on k > 1 treatments, then the problem becomes much worse, as
ft requires 22k

states. This leads to a latent variable of dimension O(22kT ) on a
contingency table of dimension just 22T .

How would alternative approaches deal with this model? An ancestral graph
model [Richardson and Spirtes (2002)] would replace the latent variable with di-
rected edges Yi → Yj for each i < j and and Ai → Yj for each i ≤ j . As such,
it would throw away most of the structural information about causal relationships,
and give a model of significantly larger dimension.

An ordinary latent variable model (i.e., without explicit potential outcomes)
could reduce the dimension by using fewer states, and would eventually lead to
an identified model. However, as we have already seen in the Introduction, there
is no way to achieve identifiability in this example without imposing additional
equality constraints; in many contexts, including epidemiological examples such
as the one above, there is typically no domain knowledge about the hidden vari-
ables that would justify such assumptions. They are also difficult to test because
the additional constraints are not generally explicitly available, and goodness-of-fit
statistics such as likelihood ratio tests do not have the same asymptotic distribution
at all points in the parameter space [Drton (2009)].

By contrast, the marginal model (and therefore the nested model) has the cor-
rect dimension, which is never larger than the relevant contingency table, and does
not impose any constraints not explicitly implied by the Bayesian network model.
The discrete nested model is identified everywhere and has a smooth parameter-
ization, and can easily be fitted by maximum likelihood using the algorithm in
Evans and Richardson (2010). In addition, the parameterization is made up of
precisely of the identifiable causal quantities from the model. For large N , the
marginal model may still result in a model that is too large for a particular dataset;
in this case, further parametric constraints or simplifying assumptions such as ad-
ditivity, sparsity or symmetry can easily be placed on parameters that are identi-
fiable [see Shpitser et al. (2013) for an example of this]. Unlike a latent variable
model, these additional assumptions would lead to a transparent reduction in di-
mension, do not lead to new questions about identifiability and can be tested di-
rectly.
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6.2. Quantum causal models. In the Quantum Information literature, there is
interest in models where the latent variables are replaced with quantum states or
other, even more general objects [see Henson, Lal and Pusey (2014) and references
therein]. This can result in larger models, most famously as quantum violations of
Bell’s inequalities [see Gill (2014) for a statistical introduction]. However, as a
consequence of results by Henson, Lal and Pusey (2014), nested constraints also
apply to quantum models, and hence the quantum model is also of the same di-
mension as the nested and marginal models.

Acknowledgements. We thank Angelos Armen for a very close reading and
substantial comments, as well as the Associate Editor and several anonymous ref-
erees for excellent suggestions to improve the clarity of the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Margins of discrete Bayesian networks” (DOI: 10.1214/17-
AOS1631SUPP; .pdf). Technical proofs and some additional examples are con-
tained in the supplement.
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