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ON THE EXPONENTIALLY WEIGHTED AGGREGATE WITH THE
LAPLACE PRIOR

BY ARNAK S. DALALYAN∗,1, EDWIN GRAPPIN∗ AND QUENTIN PARIS†,2

CREST, ENSAE, Université Paris-Saclay∗ and National Research
University—Higher School of Economics†

In this paper, we study the statistical behaviour of the Exponentially
Weighted Aggregate (EWA) in the problem of high-dimensional regression
with fixed design. Under the assumption that the underlying regression vec-
tor is sparse, it is reasonable to use the Laplace distribution as a prior. The
resulting estimator and, specifically, a particular instance of it referred to as
the Bayesian lasso, was already used in the statistical literature because of
its computational convenience, even though no thorough mathematical anal-
ysis of its statistical properties was carried out. The present work fills this
gap by establishing sharp oracle inequalities for the EWA with the Laplace
prior. These inequalities show that if the temperature parameter is small, the
EWA with the Laplace prior satisfies the same type of oracle inequality as the
lasso estimator does, as long as the quality of estimation is measured by the
prediction loss. Extensions of the proposed methodology to the problem of
prediction with low-rank matrices are considered.

1. Introduction. We investigate statistical properties of the Exponentially
Weighted Aggregate (EWA) in the context of high-dimensional linear regression
with fixed design and under the sparsity scenario. This corresponds to considering
data that consist of n random observations y1, . . . , yn ∈ R and p fixed covariates
x1, . . . ,xp ∈ R

n. We further assume that there is a vector β� ∈ R
p such that the

residuals ξi = yi − β�
1x1

i − · · · − β�
px

p
i are independent, zero mean random vari-

ables. In vector notation, this reads as

(1) y = Xβ� + ξ ,

where y = (y1, . . . , yn)
� is the response vector, X = (x1, . . . ,xp) ∈ R

n×p is the
design matrix and ξ is the noise vector. For simplicity, in all mathematical results,
the noise vector is assumed to be distributed according to the Gaussian distribution
N (0, σ 2In). We are mainly interested in obtaining mathematical results that cover
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the high-dimensional setting. This means that our goal is to establish risk bounds
that can be small even if the ambient dimension p is large compared to the sam-
ple size. In order to attain this goal, we will consider the, by now, usual sparsity
scenario. In other words, the established risk bounds are small if the underlying
large vector β∗ is well approximated by a sparse vector. Note that this setting can
be extended to the matrix case, sometimes termed trace-regression [Koltchinskii,
Lounici and Tsybakov (2011), Rohde and Tsybakov (2011)]. Indeed, if the rows
x1, . . . ,xn of the design matrix X are replaced by m1 × m2 matrices X1, . . . ,Xn,
then the regression vector β� is replaced by a m1 × m2 matrix B� and the model
of trace regression is

yi = Tr
(
X�

i B�) + ξi, i = 1, . . . , n.

Our focus here is on the statistical properties related to the prediction risk. The im-
portant questions of variable selection and estimation in various norms are beyond
the scope of the present work.

In the aforementioned vector- and trace-regression models, the most thoroughly
studied statistical procedures of estimation and prediction rely on the principle
of penalised least squares.3 In the vector-regression model, assuming that the
quadratic loss is used, this corresponds to analysing the properties of the estimator

(2) β̂
PLS ∈ arg min

β∈Rp

{
1

2n

n∑
i=1

(
yi − x�

i β
)2 + λPen(β)

}
,

where λ > 0 is a tuning parameter and Pen : Rp → R is a sparsity promoting
penalty function. The literature on this topic is so rich that it would be impossible
to cite here all the relevant papers. We refer the interested reader to the books
[Bühlmann and van de Geer (2011), Giraud (2015), Koltchinskii (2011), van de
Geer (2016)] and the references therein. Among the sparsity promoting penalties,
one can mention the �0 penalty (which for various choices of λ leads to the BIC
[Schwarz (1978)], the AIC [Akaike (1974)] or to Mallows’s Cp [Mallows (1973)]),
the �1 penalty or the lasso [Tibshirani (1996)], the �q (with 0 < q < 1) or the bridge
penalty [Frank and Friedman (1993), Fu (1998)], the SCAD [Fan and Li (2001)],
the minimax concave penalties [Zhang (2010)], the entropy [Koltchinskii (2009)],
the SLOPE [Bogdan et al. (2015), Su and Candès (2016)], etc.

The aggregation by exponential weights is an alternative approach to the prob-
lems of estimation and prediction that, roughly speaking, replaces the minimisa-
tion by the averaging. Assuming that every vector β ∈ R

p is a candidate for es-
timating the true vector β�, aggregation (cf., for instance, the survey [Tsybakov
(2014)]) consists in computing a weighted average of the candidates. Naturally,
the weights are to be chosen in a data-driven way. In the case of the exponentially

3Or, more generally, on the penalised empirical risk minimisation.
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weighted aggregate (EWA), the weight π̂n(β) of each candidate vector β has the
exponential form

π̂n(β) ∝ exp
(−Vn(β)/τ

)
where Vn(β) = 1

2n

n∑
i=1

(
yi − x�

i β
)2 + λPen(β)

is the potential used above for defining the penalised least squares estimator and
τ > 0 is an additional tuning parameter referred to as the temperature (see Fig-
ure 1). Using this notation, the EWA is defined by

(3) β̂EWA =
∫
Rp

βπ̂n(β)dβ.

Exponential weights have been used for a long time in statistical learning theory
[cf., for instance, Vovk (1990)]. Their use in statistics was initiated by Yuhong
Yang in [Yang (2000a, 2000b, 2000c, 2001)] and by Olivier Catoni in a series of
preprints, later on included in [Catoni (2004, 2007)]. Precise risk bounds for the
EWA in the model of regression with fixed design have been established in [Leung
and Barron (2006), Dalalyan and Tsybakov (2007, 2008, 2012b), Dalalyan and
Salmon (2012), Dai et al. (2014), Chernousova, Golubev and Krymova (2013),
Golubev and Ostrovski (2014)]. In the model of regression with random design,
the counterpart of the EWA, often referred to as mirror averaging, has been thor-
oughly studied in [Juditsky, Rigollet and Tsybakov (2008), Yuditskiı̆ et al. (2005),
Audibert (2009), Chesneau and Lecué (2009), Gaï ffas and Lecué (2007), Dalalyan
and Tsybakov (2012a), Lecué and Mendelson (2013)]. Note that when the tem-
perature τ equals σ 2/n, the EWA coincides with the Bayesian posterior mean
in the regression model with Gaussian noise provided that the prior is defined
by π0(β) ∝ exp(−λPen(β)/τ ). Thanks to this analogy, we will call π̂n pseudo-
posterior density. Let us mention here that, considering the path τ �→ β̂EWA for
τ ∈ (0, σ 2/n], we get a continuous interpolation between the penalised least
squares and the Bayesian posterior mean. Along with these studies, several authors
have demonstrated the ability of the EWA to optimally estimate a sparse signal. To
this end, various types of priors have been used. For instance, [Arias-Castro and
Lounici (2014), Leung and Barron (2006), Rigollet and Tsybakov (2011), Alquier
and Lounici (2011)] have employed discrete priors over the set of least-squares
estimators with varying supports whereas [Dalalyan and Tsybakov (2008, 2012b)]
have used student-type heavy-tailed priors. In the context of structured sparsity, the
EWA has been successfully used in [Alquier and Biau (2013), Dalalyan, Ingster
and Tsybakov (2014), Guedj and Alquier (2013)]. Given the close relationship
between the EWA and the Bayes estimator, it is worth mentioning here that the
problem of sparse estimation has also received much attention in the literature on
Bayesian Statistics [Hans (2009), Park and Casella (2008), Wipf, Palmer and Rao
(2003)]. Posterior concentration properties for these methods have been investi-
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gated in [Castillo and van der Vaart (2012), Castillo, Schmidt-Hieber and van der
Vaart (2015), van der Pas, Salomond and Schmidt-Hieber (2016), Gao, van der
Vaart and Zhou (2015)].

Despite these efforts, some natural questions remain open. One of them, de-
scribed in details below, is at the origin of this work. Let us consider the prediction
error of a candidate vector β with respect to the quadratic loss

(4) �n

(
β,β�) = 1

n

∥∥X
(
β − β�)∥∥2

2 = 1

n

n∑
i=1

(
x�

i β − x�
i β�)2

.

On the one hand, theoretical studies of the lasso [Bellec, Lecué and Tsybakov
(2016), Bellec et al. (2016), Belloni, Chernozhukov and Wang (2014), Bickel, Ri-
tov and Tsybakov (2009), Candes and Tao (2007), Dalalyan, Hebiri and Lederer
(2017)], established4 sharp upper bounds for the prediction risk of the PLS esti-
mator (2) for the �1-penalty Pen(β) = ‖β‖1.

Therefore, one could expect the EWA with the Laplace prior π0(β) ∝
exp(−λ‖β‖1/τ) to have a high prediction performance. On the other hand, to
the best of our knowledge, there is no result in the literature establishing accurate
risk bounds for the EWA with Laplace prior. Indeed, a straightforward application
of the PAC-Bayesian type risk bounds [McAllester (1998)] for the EWA [such as,
for instance, Theorem 1 in Dalalyan and Tsybakov (2012b)] to the Laplace prior
leads to strongly suboptimal remainder terms. This raises the following questions:

Q1. Is the EWA with the Laplace prior suitable for prediction under the sparsity
scenario?

Q2. If it is, what is the range of temperature τ providing good prediction accu-
racy?

Q3. How do the statistical properties of the EWA with the Laplace prior com-
pare with those of the lasso?

Related questions are considered in [Castillo, Schmidt-Hieber and van der Vaart
(2015)]. Indeed, for β� = 0p , p = n and X�X/n = In, Theorem 7 from [Castillo,
Schmidt-Hieber and van der Vaart (2015)] establishes the following property.
For all the reasonable choices5 of the tuning parameter λ, if the temperature τ

in the EWA with the Laplace prior is chosen as τ = σ 2/n, then the resulting
posterior puts asymptotically no mass on the ball centered at β� and of radius
Const(1/logn)1/2. This negative result, stated in terms of the posterior contraction
rate, can be easily adapted in order to show that, under the previous conditions, the
Bayesian posterior mean is suboptimal.

4Provided that the Gram matrix X�X/n satisfies suitable assumptions (restricted isometry, re-
stricted eigenvalues, compatibility, etc.).

5By “reasonable” we understand here the choice λ = Constσ(
logp

n )1/2, for which the lasso is
provably rate optimal under the sparsity scenario, provided that the design satisfies a version of the
restricted eigenvalue condition.
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FIG. 1. Top: the plots of the pseudo-posterior π̂n with the Laplace prior for the temperature τ = 0.5
(left) and τ = 0.8 (right). One can observe that decreasing the value of τ strengthens the peakedness
of the density. Bottom: the level curves of the pseudo-posterior π̂n with the Laplace prior for the
temperature τ = 0.5 (left) and τ = 0.8 (right). One clearly observes the nondifferentiability of the
density along the axes β1 and β2 (caused by the nondifferentiability of the �1-norm).

The present paper completes the picture by establishing some positive results.
In particular, it turns out that if the temperature parameter of the EWA with the
Laplace prior is of the order sσ 2/(pn), where s is the sparsity of β�, then the EWA
with the Laplace prior does attain the optimal rate of convergence. Furthermore, it
satisfies the same type of sharp sparsity inequality as the lasso does. Interestingly,
the proof of this result is based on arguments which differ from those used in
the aggregation literature. Indeed, the two previously used techniques for getting
oracle inequalities for the EWA and related procedures rely either on the PAC-
Bayesian inequality or on the Stein unbiased risk estimate. Instead, the key idea of
our proof is to take advantage of the following relations:∫

Rp
∇(

βα
j e−Vn(β)/τ )

dβ = 0, j = 1, . . . , p,α = 0,1.

Hence, most of our arguments are independent of the noise distribution and can be
extended to other settings (as opposed to the results relying on the Stein formula).
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Elaborating on this, we prove that the pseudo-posterior π̂n puts an overwhelming
weight on the set of vectors β satisfying a sharp oracle inequality with rate-optimal
remainder term. In the case of the Gaussian noise, we also obtain the explicit form
of the Stein unbiased estimator of the risk of β̂EWA, which can be used for choos-
ing the tuning parameter. Finally, we extend these results to the model of trace
regression when the underlying true matrix B� has low rank.

The rest of the paper is organised as follows. The notation used throughout
the paper is introduced in the next section. Section 3 analyses the prediction loss
of the EWA with the Laplace prior, and Section 4 gathers results characterising
the concentration of the pseudo-posterior π̂n. Extensions of these results to the
case where the unknown parameter is a (nearly) low-rank matrix are considered in
Section 5. A brief summary of the obtained results along with some conclusions is
given in Section 6. Finally, the most important proofs are postponed to Section 7.

2. Notation. This paragraph collects notation used throughout the paper. For
every integer k ≥ 1, we write 1k (resp., 0k) for the vector of Rk having all coor-
dinates equal to one (resp., zero). We set [k] = {1, . . . , k}. For every q ∈ [0,∞],
we denote by ‖u‖q the usual �q -norm of u ∈ R

k , that is, ‖u‖q = (
∑

j∈[k] |uj |q)1/q

when 0 < q < ∞, ‖u‖0 = Card({j : uj �= 0}) and ‖u‖∞ = maxj∈[k] |uj |. For ev-
ery integer k ≥ 1 and any T ⊂ [k], we denote by T c and |T | the complementary set
[p] \ T and the cardinality of T , respectively. For u ∈ R

k and T ⊂ [k], we denote
uT ∈ R

|T | the vector obtained from u by removing all the coordinates belonging
to the set T c.

In Sections 3 and 4, we recall that X ∈ R
n×p refers to the deterministic de-

sign matrix with columns x1, . . . ,xp ∈ R
n and rows x1, . . . ,xn ∈ R

p . Finally, our
analysis will involve the compatibility factor of the design matrix defined, for any
J ⊂ [p] and c > 0, by

(5) κJ,c = inf
u∈Rp :‖uJc‖1<c‖uJ ‖1

c2|J |‖Xu‖2
2

n(c‖uJ ‖1 − ‖uJ c‖1)2 .

Note that the compatibility factor, often used for the analysis of the lasso, is slightly
larger6 than the restricted eigenvalue [Bickel, Ritov and Tsybakov (2009)]. For
a better understanding of these (and related) quantities, we refer the reader to
[Bickel, Ritov and Tsybakov (2009), Sections 3 and 4] and [van de Geer and
Bühlmann (2009)].

Risk bounds established in the present work for the EWA contain a new term,
as compared to the analogous risk bounds for the lasso. This term reflects the
peakedness of the pseudo-posterior density π̂n and is defined by

(6) H(τ) = pτ −
∫

G(u)π̂n(u)du + G
(
β̂EWA)

,

6Since this factor appears in the denominator of the risk bound, the larger is the better.
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where G(u) = 1
n
‖Xu‖2

2 +λ‖u‖1. When the temperature τ is low, close to zero, the
pseudo-posterior π̂n is close to a Dirac measure centred at the lasso, which implies
that H(τ) is close to zero. Furthermore, since the above function G is convex, we
have the following bound:

H(τ) ≤ pτ.

In Sections 3 and 4, we will occasionally use the following matrix notation. For
all integers p ≥ 1, Ip refers to the identity matrix in R

p×p . For any integers p ≥ 1
and q ≥ 1, any matrix A ∈ R

p×q and any subset T of [q], we denote by AT the
matrix obtained from A by removing all the columns belonging to T c. Finally, the
transpose and the Moore–Penrose pseudo-inverse of a matrix A are denoted by A�
and A†, respectively.

3. Risk bound for the EWA with the Laplace prior. This section is devoted
to discussing statistical properties of the EWA with the Laplace prior. Recall that
it is defined by (3) as the average with respect to the pseudo-posterior density

(7) π̂n(β) ∝ exp
(−Vn(β)/τ

)
where Vn(β) = 1

2n

n∑
i=1

(
yi − x�

i β
)2 + λ‖β‖1.

The emphasis is put on nonasymptotic guarantees in terms of the prediction loss.
It is important to mention here that the Laplace prior, π0(β) ∝ exp(−λ‖β‖1/τ),
makes use of the same scale for all the coordinates of the vector β . This pre-
sumes that the covariates (columns of the matrix X) are already rescaled so that
their Euclidean norms are almost equal. An alternative approach [see, for instance,
Bickel, Ritov and Tsybakov (2009), Bunea, Tsybakov and Wegkamp (2007)]—
that we will not follow here—would consist in replacing the �1-norm of β by the
weighted �1-norm

∑
j∈[p] ‖xj‖|βj |. The next result provides the main risk bound

for the EWA.

THEOREM 1. Assume that data are generated by model (1) with ξ drawn from
the Gaussian distribution N (0, σ 2In) and that the covariates are rescaled so that
maxj∈[p] 1

n
‖xj‖2

2 ≤ 1. Suppose, in addition, that λ ≥ 2σ( 2
n

log(p/δ))1/2, for some
δ ∈ (0,1). Then, with probability at least 1 − δ,

(8) �n

(
β̂EWA,β�) ≤ inf

β̄∈Rp

J⊂[p]

{
�n

(
β̄,β�) + 4λ‖β̄J c‖1 + 9λ2|J |

4κJ,3

}
+ 2pτ,

where �n is defined in (4) and β̂EWA is defined in (3) and (7).

For the lasso estimator, risk bounds of this nature have been developed in
[Bellec et al. (2016), Koltchinskii, Lounici and Tsybakov (2011), Sun and Zhang
(2012), Dalalyan, Hebiri and Lederer (2017)]. The risk bound in (8) extends the
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risk bounds available for the lasso [cf., Theorem 2 in Dalalyan, Hebiri and Lederer
(2017)] to the EWA with the Laplace prior. Indeed, letting the temperature τ go to
zero, the last term in the right-hand side of (8) disappears and we retrieve the risk
bound for the lasso. An attractive feature of risk bound (8) is that the factor in front
of the term �n(β̄,β�) is equal to one; this is often referred to as a sharp or exact
oracle inequality. Furthermore, the other three terms in the right-hand side of (8)
are neat and have a simple interpretation. The second term, 4λ‖β̄J c‖1, accounts for
the approximate sparsity; when Xβ� is well approximated by Xβ̄ with a s-sparse
vector β̄ , then choosing J = {j : β̄j �= 0} annihilates this term. The third term of
the risk bound corresponds to the optimal rate, up to a logarithmic factor, of es-
timation of a vector β� concentrated on the known set J . Indeed, if |J | = s and
the compatibility factor is bounded away from zero, this term is of order s

n
log(p).

Finally, the last term in the above risk bound, 2pτ , reflects the influence of the
temperature parameter τ . In particular, it shows that if τ = σ 2/(pn) then this term
is negligible with respect to the other remainder terms.

The inequality stated in Theorem 1 is a simplified version of the following one
(proved in Section 7): for any γ > 1, in the event ‖X�ξ‖∞ ≤ nλ/γ , it holds

(9)
�n

(
β̂EWA,β�) ≤ inf

β̄∈Rp

J⊂[p]

{
�n

(
β̄,β�) + 4λ‖β̄J c‖1 + λ2(γ + 1)2|J |

γ 2κJ,(γ+1)/(γ−1)

}

+ 2H(τ),

where H(τ) is defined in (6). On the one hand, one can use this more general re-
sult for getting an oracle inequality under more general assumptions on the noise
distribution such as those considered, for instance, in [Belloni, Chernozhukov and
Wang (2014), Bunea, Tsybakov and Wegkamp (2007)]. On the other hand, one can
infer from (9) that the term H(τ) highlights the difference, in terms of statistical
complexity, between the lasso and the EWA with the Laplace prior. It is therefore
important to get a precise evaluation of H(τ) as a function of τ , p and n, and to
understand how tight the inequality H(τ) ≤ pτ is. To answer this question, we
restrict our attention to orthonormal designs and show the tightness of the afore-
mentioned inequality. To this end, let us introduce the scaled complementary error

function �v(t) = et2/2v 1√
2πv

∫ ∞
t e−u2/2v du.

PROPOSITION 1. Let �̂n = 1
n

X�X be the Gram matrix and β̂LS = 1
n
�̂

†
nX�y

be the least-squares estimator. Then we have

H(τ) = ∥∥�̂1/2
n β̂EWA∥∥2

2 + λ
∥∥β̂EWA∥∥

1 − (
β̂EWA)�

�̂nβ̂
LS.

Furthermore, when the design is orthonormal, that is, �̂n = Ip , then the EWA
with the Laplace prior is a thresholding estimator, β̂EWA

j = sign(β̂LS
j )(|β̂LS

j | −
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λw(τ,λ, |β̂LS
j |)), where

w
(
τ, λ,

∣∣β̂LS
j

∣∣) = �τ(λ − |β̂LS
j |) − �τ(λ + |β̂LS

j |)
�τ (λ − |β̂LS

j |) + �τ(λ + |β̂LS
j |)

and

H(τ) =
p∑

j=1

λ
(∣∣β̂LS

j

∣∣ − λw
(
τ, λ,

∣∣β̂LS
j

∣∣))(1 − w
(
τ, λ,

∣∣β̂LS
j

∣∣)).
The last expression of H(τ) provided by the proposition may be used for a nu-

merical evaluation. First, let us note that if we set β̄j = β̂LS
j /

√
τ and λ̄ = λ/

√
τ , the

function H(τ)/τ is independent of τ . Indeed, we have H(τ)/τ = ∑
j h(λ̄, |β̄j |)

where

h(λ̄, z) = λ̄
(
z − λ̄w(1, λ̄, z)

)(
1 − w(1, λ̄, z)

) ∀z > 0.

In Figure 2, we plot the curves of the functions z �→ h(λ̄, z) for different values of
the parameter λ̄. These curves clearly show that the bound H(τ) ≤ pτ , a conse-
quence of h(λ̄, z) ≤ 1, is tight. Another interesting observation is that the function
H(τ) is always nonnegative. This basically implies that the value of τ minimising
the right-hand side of (9) is τ = 0. In other terms, the lowest risk bound is obtained
for the lasso. This legitimately raises the following question: is there any advan-
tage of using the EWA with the Laplace prior as compared to the lasso? Our firm
conviction is that there is an advantage, and will try to explain our viewpoint in the
rest of this section.

The point is that the lasso estimator is a nonsmooth function of the data. One
of the consequences of this is that the Stein unbiased risk estimate (SURE) for

FIG. 2. For different values λ̄ ∈ {10,20,40,60,80,100}, we plot the function z �→ h(λ̄, z).
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the lasso is a discontinuous function of data. Indeed, as proved in [Tibshirani and
Taylor (2012)], The SURE for the lasso (see also the earlier work [Donoho and
Johnstone (1995), Zou, Hastie and Tibshirani (2007)]) is given by

R̂lasso(λ) = 1

n

∥∥y − Xβ̂ lasso(λ)
∥∥2

2 − σ 2 + 2σ 2

n
rank(XA(λ)),

where A(λ) = {j ∈ [p] : β̂ lasso
j (λ) �= 0} is the active set for the lasso estimator with

the tuning parameter λ. In theory, this quantity R̂lasso(λ) can be used for choosing
the tuning parameter λ of the lasso. However, in practice, this solution is rarely
employed, since A(λ) has a very unstable behaviour as a function of λ and y. As
a consequence, not only one can get very different “optimal” values of λ for two
very close vectors y and y′, but is also likely to obtain very different “optimal”
values of λ for the same vector y if using two different optimisation algorithms for
computing an approximate solution to the lasso problem.

Using Stein’s lemma, in the case where ξ is drawn from the Gaussian
N (0, σ 2In) distribution, one checks that

(10)

R̂EWA(λ, τ ) = 1

n

∥∥y − Xβ̂EWA
λ,τ

∥∥2
2 − σ 2

+ 2σ 2

n2τ

∫
Rp

∥∥X
(
β − β̂EWA

λ,τ

)∥∥2
2π̂n,λ,τ (dβ)

is an unbiased estimator of the risk E[�n(β̂
EWA,β�)]. Furthermore, the function

(λ, τ ) �→ R̂EWA(λ, τ ) is clearly continuous on (0,∞) × (0,∞). One can also
check that the unbiased risk estimate R̂EWA(λ, τ ) depends continuously on the
data vector y. Therefore, this quantity is arguably more robust to the variation in
data and more regular as a function of the tuning parameters as compared to R̂lasso.
This implies that minimising R̂EWA(λ, τ ) with respect to λ or τ might be a good
strategy for choosing these parameters adaptively.

Of course, this requires to be able to numerically compute the right-hand
side of (10) or, equivalently, the mean and the covariance matrix of the pseudo-
posterior distribution π̂n. For smooth and strongly log-concave densities, the cost
of such computations has been recently assessed in [Dalalyan (2017), Durmus
and Moulines (2016)]. The adaptation of the approaches developed therein to the
pseudo-posterior π̂n, which is neither smooth nor strongly log-concave (but can be
approximated by such a function), is an ongoing work.

4. Pseudo-posterior concentration. Since the EWA estimator has a Bayesian
flavour, it is appealing to look at the concentration properties of the pseudo-
posterior distribution π̂n. This is particularly important in the light of the results in
Castillo, Schmidt-Hieber and van der Vaart (2015) establishing that, for the tem-
perature τ = σ 2/n, the pseudo-posterior π̂n with the Laplace prior puts asymptoti-
cally no mass on the set of vectors β having a small prediction error. Furthermore,



2462 A. S. DALALYAN, E. GRAPPIN AND Q. PARIS

this result is proven for the orthonormal design matrix X, which, intuitively, is a
rather favourable situation for the Laplace prior.

The first property that we establish here and that characterises the concentration
of the pseudo-posterior around its average is the following upper bound on the
variance of the prediction Xβ when β is drawn from π̂n. (Recall that the matrix X
has n rows, so the normalisation by multiplicative factor 1/n is natural.)

PROPOSITION 2. If π̂n(u) ∝ exp (−Vn(u)/τ ) is the pseudo-posterior with the
Laplace prior defined by (7), then, for every β̄ ∈ R

p , we have

(11)
∫
Rp

Vn(u)π̂n(u)du ≤ pτ + Vn(β̄) − 1

2n

∫
Rp

∥∥X(u − β̄)
∥∥2

2π̂n(u)du.

Furthermore, choosing β̄ = β̂EWA = ∫
Rp uπ̂n(u)du, we get

(12)
1

n

∫
Rp

∥∥X
(
u − β̂EWA)∥∥2

2π̂n(u)du ≤ pτ.

The proof of this result is rather simple and plays an important role in the proof
of the oracle inequality stated in Theorem 1. For these reasons, we opted for pre-
senting this proof in this section, instead of postponing it to Section 7.

PROOF. The convexity of the function β̄ �→ ‖β̄‖1 readily implies that the
function β̄ �→ Wn(β̄) = Vn(β̄) − 1

2n
‖X(u − β̄)‖2

2 is a convex function, for every
fixed u ∈ R

p . Furthermore, we have Wn(u) = Vn(u) and ∇Wn(u) = ∇Vn(u) at
any point u of differentiability of Vn. Therefore,

(13) Vn(β̄) ≥ Vn(u) + (β̄ − u)�∇Vn(u) + 1

2n

∥∥X(u − β̄)
∥∥2

2,

for all β̄ ∈ R
p and for almost all u ∈ R

p (those for which Vn is continuously
differentiable at u). Using the fundamental theorem of calculus, we remark that

(14)
∫
Rp

∇Vn(u)π̂(u)du = −τ

∫
Rp

[∇π̂n(u)
]
du = 0p

and that

(15)

∫
Rp

u�∇Vn(u)π̂(u)du − pτ =
∫
Rp

p∑
j=1

(
uj

∂Vn

∂uj

(u) − τ

)
π̂(u)du

= −τ

∫
Rp

p∑
j=1

∂[uj π̂n(u)]
∂uj

du = 0.

Integrating inequality (13) on R
p with respect to the density π̂n and using relations

(14) and (15), we arrive at

(16) Vn(β̄) ≥
∫
Rp

Vn(u)π̂n(u)du − pτ + 1

2n

∫
Rp

∥∥X(u − β̄)
∥∥2

2π̂n(u)du.

This completes the proof of the first claim of the proposition.
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To prove the second claim, we replace β̄ by β̂EWA in (16). After rearranging the
terms, this yields

(17)
1

2n

∫
Rp

∥∥X
(
u − β̂EWA)∥∥2

2π̂n(u)du ≤ pτ + Vn

(
β̂EWA) −

∫
Rp

Vnπ̂n.

Using once again the fact that u �→ Wn(u) = Vn(u) − 1
2n

‖X(u − β̂EWA)‖2
2 is a

convex function, we obtain Vn(β̂
EWA) = Wn(β̂

EWA) ≤ ∫
Wn(u)π̂n(u)du, which is

equivalent to

Vn

(
β̂EWA) −

∫
Rp

Vnπ̂n ≤ − 1

2n

∫
Rp

∥∥X
(
u − β̂EWA)∥∥2

2π̂n(u)du.

This inequality, combined with (17), completes the proof of (12) and of the propo-
sition. �

REMARK 4.1. A careful inspection of the proof reveals that the claims of the
proposition are independent of the precise form of the �1-penalty. Therefore, the
proposition still holds if we replace the �1-norm by any convex penalty.

The second claim of the proposition establishes that the dispersion of the distri-
bution π̂n around its average value β̂EWA is of the order (pτ)1/2. Interestingly, we
show below that the same order of magnitude appears when we determine a region
of concentration for the pseudo-posterior π̂n. A key argument in the proof of the
latter claim is the following result.

PROPOSITION 3 [Bobkov and Madiman (2011), Theorem 1.1]. Assume that
π̂n(u) ∝ exp(−Vn(u)/τ ) is a log-concave probability density7 and let β be a ran-
dom vector drawn from π̂n. Then, for any t > 0, the inequality

Vn(β) ≤
∫
Rp

Vn(u)π̂n(u)du + τ
√

pt

holds with probability at least 1 − 2e−t/16.

Using this proposition, we establish the following result (the proof of which is
postponed to Section 7) characterising the concentration of π̂n.

THEOREM 2 (Posterior concentration bound). Assume that data are gen-
erated by model (1) with ξ ∼ N (0, σ 2In) and rescaled covariates, that is,
maxj∈[p] 1

n
‖xj‖2

2 ≤ 1. Let the quality of an estimator be measured by the
squared prediction loss (4). Assume that the tuning parameter λ satisfies λ ≥

7This means that Vn is a convex function.
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2σ( 2
n

log(
p
δ
))1/2, for some δ ∈ (0,1). Then, with probability at least 1 − δ, the

pseudo-posterior π̂n with the Laplace prior defined by (7) satisfies

π̂n

(
β : �n

(
β,β�) ≤ inf

β̄∈Rp

J⊂[p]

{
�n

(
β̄,β�) + 4λ‖β̄J c‖1 + 9λ2|J |

2κJ,3

}
+ 8pτ

)

≥ 1 − 2e−√
p/16.

The latter theorem, in conjunction with Theorem 1, tells us that if we generate a
random vector β distributed according to the density π̂n, then with high probability
it will have a prediction loss almost as small as the one of the EWA, the average
with respect to π̂n. This remark might be attractive from the computational point
of view, since, at least for some distributions, drawing a random sample is easier
than computing the expectation. Note also that by increasing the factor in front
of the term pτ it is possible to make the π̂n-probability of the event considered
in Theorem 2 even closer to one. The optimality of the term

√
p in the argument

of the exponential present in the last result remains a challenging open question
which may be tackled using approaches developed in Hoffmann, Rousseau and
Schmidt-Hieber (2015).

5. Sparsity oracle inequality in the matrix case. In this section, we extend
the results of the previous sections to the problem of matrix regression with a
low-rankness inducing prior. We first need to introduce additional notation used
throughout this section.

5.1. Specific notation. For two matrices A and B of the same dimension, the
scalar product is defined by

〈A,B〉 = Tr
(
A�B

)
.

The nuclear norm of a p × q matrix A is ‖A‖1 = ∑r
k=1 sA,k , where sA,k is the

kth largest singular value of A and r = rank(A). The operator norm is ‖A‖ =
supx∈Rq ‖Ax‖2/‖x‖2 = sA,1. We denote by X = (X1, . . . ,Xn) ∈ R

n×m1×m2 the
three-dimensional tensor playing the role of the design matrix. Besides, let
‖A‖2

L2(X ) = 〈A,A〉L2(X ) be the prediction loss defined via the “scalar prod-

uct” 〈A,C〉L2(X ) = 1
n

∑n
i=1(〈Xi ,A〉〈Xi ,C〉). We will use the notation u�X =∑

i∈[n] uiXi ∈ Mm1,m2 for the product of the tensor X with the vector u ∈ R
n.

We now need to define the matrix compatibility factor. Its definition is more
involved than in the vector case because of the fact that the left and right singular
spaces differ from one matrix to another. Let B̄ be any m1 × m2 matrix of rank
r = rank(B̄) having the singular value decomposition B̄ = V1�V�

2 . Here, � is a
r × r diagonal matrix with positive diagonal entries, �11 ≥ · · · ≥ �rr > 0, and Vj

is a mj × r matrix with orthonormal columns for j = 1,2. For any J ⊂ [r] and
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j = 1,2, we define Vj,J as the mj × |J | matrix obtained from Vj by removing
the columns with indices lying outside of J . This allows us to introduce the linear
operators PB̄,J c and P⊥̄

B,J c from Mm1,m2 to Mm1,m2 :

PB̄,J c (U) = (
Im1 − V1,J V�

1,J

)
U

(
Im2 − V2,J V�

2,J

)
,

P⊥̄
B,J c (U) = U −PB̄,J c (U).

We define, for every B̄ ∈ Mm1,m2 , J ⊂ [rank(B̄)] and c > 0, the compatibility
factor

κB̄,J,c = inf
U∈Mm1,m2

‖PB̄,J c (U)‖1<c‖P⊥̄
B,J c (U)‖1

c2|J |‖U‖2
L2(X )

(c‖P⊥̄
B,J c (U)‖1 − ‖PB̄,J c (U)‖1)2

.

When J = [rank(B̄)], we use the notation κB̄,c instead of κB̄,J,c. Note that the

set C(B̄, J, c) = {U ∈ Mm1,m2 : ‖PB̄,J c (U)‖1 < c‖P⊥̄
B,J c (U)‖1} defines the cone

of dimensionality reduction. It consists of matrices U that can be written as a
sum of two matrices U1 and U2 such that U1 is of small rank and dominates the
possibly full-rank matrix U2, in the sense that ‖U2‖1 ≤ c‖U1‖1. Indeed, it suf-
fices to set U1 = P⊥̄

B,J c (U) and to remark that P⊥̄
B,J c (U) = V1,J V�

1,J U + (Im1 −
V1,J V�

1,J )UV2,J V�
2,J is of rank not exceeding 2|J |.

Similar to (6), we also define the function

(18) H(τ) = m1m2τ −
∫
Mm1,m2

G(U)π̂n(U)dU + G(B̂),

where G(U) = ‖U‖2
L2(X ) + λ‖U‖1. The convexity property of the function G en-

tails that H(τ) ≤ m1m2τ for every τ > 0.

5.2. Nuclear-norm prior and the exponential weights. The observed outcomes
are n real random variables y1, . . . , yn ∈ R. Contrary to Sections 3 and 4 where the
design points are x1, . . . ,xn ∈ R

p , this section studies the situation in which we
consider n design matrices Xi ∈ R

m1×m2 for i ∈ [n]. We further assume that there
is a regression matrix B� ∈ Mm1,m2 such that

(19) yi = Tr
(
X�

i B�) + ξi, i ∈ [n],
where the residuals ξi are independent and identically distributed according to a
centred Gaussian distribution with variance σ 2. This model is referred to as trace-
regression; see, for instance, Rohde and Tsybakov (2011). In this model, the nu-
clear norm is akin to the �1 norm in the vector case. Therefore, to some extent, the
equivalent of the lasso estimator B̂NNP-LS

λ with a positive smoothing parameter λ,
is defined by

B̂NNP-LS
λ ∈ arg min

B∈Mm1,m2

{
1

2n

∑
i∈[n]

(
yi − 〈Xi ,B〉)2 + λ‖B‖1

}
.
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This is the nuclear-norm penalized least-squares estimator. Similar to the vector
case, the above defined estimator B̂NNP-LS

λ is the maximum a posteriori estimator
corresponding to the nuclear-norm prior

π0(B) ∝ exp
{
−λσ 2‖B‖1

n

}
.

This section investigates the prediction performance of the procedure obtained
by replacing the optimisation step by averaging. In the matrix case, we define the
potential function Vn and the pseudo-posterior, respectively, by

(20) Vn(B) = 1

2n

∑
i∈[n]

(
yi − 〈Xi ,B〉)2 + λ‖B‖1,

and π̂n(B) ∝ exp{− 1
τ
Vn(B)}. Using these ingredients, we define the EWA with the

nuclear-norm prior by

(21) B̂EWA =
∫
Mm1,m2

Bπ̂n(B)dB.

We aim at studying the performance of this estimator in terms of the in-sample
prediction loss

(22) �n

(
B̂,B�) = ∥∥B̂ − B�

∥∥2
L2(X ) = 1

n

n∑
i=1

〈
Xi , B̂ − B�〉2.

5.3. Oracle inequality. The problem of assessing the quality of the nuclear-
norm penalised estimators has received a great deal of attention; see, for instance
Candès and Tao (2010), Gaïffas and Lecué (2011), Srebro and Shraibman (2005),
Candès and Plan (2011), Bunea, She and Wegkamp (2011), Negahban and Wain-
wright (2011, 2012), Klopp (2014). Such an interest in these methods is mainly
motivated by the variety of applications in computer vision and image analysis
[Shen and Wu (2012), Harchaoui et al. (2012)], recommendation systems [Lim
and Teh (2007), Zhou et al. (2008)], and many other areas. Bayesian approaches
to the problem of low-rank matrix estimation and prediction has been recently
analysed by Alquier (2013), Cottet and Alquier (2016), Mai and Alquier (2015).

Making the parallel with the sparse vector estimation and prediction problem,
we can note that the counterpart of the vector sparsity s = ‖β�‖0 in the matrix case
is the product (m1 +m2) rank(B�), representing the number of potentially nonzero
terms in the singular values decomposition of B�. Similarly, the counterpart of the
ambient dimension p is the overall number of entries in B� that is m1m2. In view
of these analogies, the next theorem is a natural extension of Theorem 1 to the
model of trace-regression. To state it, we need the following notation:

vX =
∥∥∥∥∥1

n

n∑
i=1

XiX�
i

∥∥∥∥∥
1/2

∨
∥∥∥∥∥1

n

n∑
i=1

X�
i Xi

∥∥∥∥∥
1/2

.
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THEOREM 3. Assume that data are generated by model (19) with ξ drawn
from the Gaussian distribution N (0n, σ

2In). Suppose, in addition, that λ ≥
2σvX { 2

n
log((m1 + m2)/δ)}1/2, for some δ ∈ (0,1). Then, with probability at least

1 − δ, the matrix B̂EWA defined in (21) satisfies

(23) �n

(
B̂EWA,B�) ≤ inf

B̄,J

{
�n

(
B̄,B�) + 4λ

∥∥PB̄,J c (B̄)
∥∥

1 + 9λ2|J |
4κB̄,J,3

}
+ 2m1m2τ,

where the inf is over all matrices B̄ ∈ Mm1,m2 and all subsets J ⊂ [rank(B̄)].

This result can be seen as an extension of Koltchinskii, Lounici and Tsybakov
(2011), Theorem 2, to the exponentially weighted aggregate with a prior propor-
tional to the exponential of the scaled nuclear norm. Indeed, if we upper bound the
infimum over all matrices B by the infimum over matrices such that rank(B) ≤ r

for some given integer r , we easily see that (23) yields

�n

(
B̂EWA,B�) ≤ inf

B̄∈Mm1,m2
rank(B̄)≤r

{
�n

(
B̄,B�) + 9λ2r

4κB̄,3

}
+ 2m1m2τ.

An advantage of inequality (23) is that it offers a continuous interpolation be-
tween the so-called “slow” and “fast” rates. “Slow” rates refer typically to risk
bounds that are proportional to λ, whereas “fast” rates are proportional to λ2. For
procedures based on �1-norm or nuclear-norm penalty, “slow” rates are known
to hold without any assumption on the design, while “fast” rates require a kind
of compatibility assumption. In (23), taking J = ∅, the term with λ2 disap-
pears and we get the “slow” rate proportional to λ‖B̄‖1. The other extreme
case corresponding to J = [rank(B̄)] leads to the “fast” rate proportional to
λ2 rank(B̄), provided that the compatibility factor is bounded away from zero.
The risk bound in (23) bridges these two extreme situations by providing the rate
minq∈[r]{λ(sq+1,B̄ + · · · + sr,B̄) + λ2q}, where r = rank(B̄) and s�,B̄ is the �th

largest singular value of B̄. Thus, our risk bound quantifies the quality of predic-
tion in the situations where the true matrix (or the best prediction matrix) is nearly
low-rank, but not necessarily exactly low-rank.

Similar to the vector case, the inequality stated in Theorem 3 is a simplified
version of the following one: for any γ > 1, in the event ‖ξ�X‖ ≤ nλ/γ , the risk
�n(B̂EWA,B�) is upper bounded by the expression

inf
B̄,J

{
�n

(
B̄,B�) + 4λ

∥∥PB̄,J c (B̄)
∥∥

1 + λ2(γ + 1)2|J |
γ 2κB̄,J,(γ+1)/(γ−1)

}
+ 2H(τ),

where H is defined by (18). This inequality as well as Theorem 3 is proved in the
Supplementary Material [Dalalyan, Grappin and Paris (2018)].
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5.4. Pseudo-posterior concentration. In what follows, we state the result on
the pseudo-posterior concentration in the matrix case. Akin to the vector case,
one of the main building blocks is Bobkov and Madiman (2011), Theorem 1.1;
see Proposition 3 above. Since the potential Vn in (20) is convex, the proposition
applies and implies that, for every t > 0,

π̂n

(
B : Vn(B) ≤

∫
M

Vn(U)π̂n(U)dU + τ
√

m1m2t

)
≥ 1 − 2e−t/16.

After some nontrivial algebra, this allows us to show that a risk bound similar to
(3) holds not only for the pseudo-posterior-mean B̂EWA, but also for any matrix B
randomly sampled from π̂n.

THEOREM 4. Let data be generated by model (19) with ξ ∼N (0n, σ
2In) and

let the quality of an estimator be measured by the prediction loss (22). Assume
that λ satisfies λ ≥ 2σvX { 2

n
log((m1 + m2)/δ)}1/2, for some δ ∈ (0,1). Then, with

probability at least 1 − δ, the pseudo-posterior π̂n with the nuclear-norm prior
defined by (20) is such that the π̂n-probability of the event

�n

(
B,B�) ≤ inf

B̄∈Mm1,m2
J⊂[rank(B̄)]

{
�n

(
B̄,B�) + 4λ

∥∥PB̄,J c (B̄)
∥∥

1 + 9λ2|J |
2κB̄,J,3

}
+ 8m1m2τ

is larger than 1 − 2e−√
m1m2/16.

The proof of Theorem 4 is deferred to the Supplementary Material. One can
deduce from Theorem 4 that if the temperature parameter τ is sufficiently small,
for instance, τ ≤ λ2/(m1m2), then a random matrix sampled from the pseudo-
posterior π̂n satisfies nearly the same oracle inequality as the nuclear-norm penal-
ized least-squares estimator. Indeed, the term 8m1m2τ , which is the only differ-
ence between the two upper bounds, is in this case negligible with respect to the
term involving λ2.

6. Conclusions. We have considered the model of regression with fixed de-
sign and established risk bounds for the exponentially weighted aggregate with
the Laplace prior. This class of estimators encompasses important particular cases
such as the lasso and the Bayesian lasso. The risk bounds established in the present
work exhibit a range of values for the temperature parameter for which the EWA
with the Laplace prior has a risk bound of the same order as the lasso. This offers
a valuable complement to the negative results by Castillo, Schmidt-Hieber and
van der Vaart (2015), which show that the Bayesian lasso is not rate-optimal in the
sparsity scenario. Note that the Bayesian lasso corresponds to the EWA with the
Laplace prior for the temperature parameter τ = σ 2/n, where σ 2 is the variance
of the noise. Our results imply that in order to get rate-optimality in the sparsity
scenario, it is sufficient to choose τ smaller than σ 2/(np).
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We have extended the result outlined in the previous paragraph in two direc-
tions. First, we have shown that one can replace the pseudo-posterior mean by any
random sample from the pseudo-posterior distribution. This eventually increases
the risk by a negligible additional term, but might be useful from a computational
point of view. Second, we have established risk bounds of the same flavour in the
case of trace-regression, when the unknown parameter is a nearly low-rank large
matrix. This result extends those of [Koltchinskii, Lounici and Tsybakov (2011)]
and unifies risk bounds leading to the “slow” and “fast” rates. Furthermore, our
result offers an interpolation between these two extreme cases; see the discussion
following Theorem 3.

With some additional work, all the results established in the present work can
be extended to the model of regression with random design. Furthermore, the case
of a partially labelled sample can be handled by coupling the methodology of
the present work with that of [Bellec et al. (2016)]. An interesting line of future
research is to apply our approach to other priors constructed from convex penalties
such as the mixed �1/�2-norm used in the group-lasso [Yuan and Lin (2006)], or
the weighted �1-norm of ordered entries used in the slope [Bogdan et al. (2015)].
Another highly relevant and challenging topic for future work will be to investigate
the computational complexity of various methods for approximating the pseudo-
posterior mean or for drawing a sample from the pseudo-posterior density.

7. Proofs.

7.1. Proof of the oracle inequality of Theorem 1. To ease notation, throughout
this section we write β̂ instead of β̂EWA. Furthermore, for a function h : Rp → R,
we often write

∫
hπ̂n instead of

∫
Rp h(u)π̂n(u)du. We split the proof into three

steps. The first step, carried out in Lemma 1, consists in deriving an initial upper
bound on the prediction loss from the fundamental inequality stated in (11). The
second step, performed in Lemma 2, shares many common features with the anal-
ogous developments for the lasso and provides a proof of (9). Finally, the third step
is a standard bound of the probability of the event Eγ = {‖X�ξ‖∞ ≤ nλ/γ } based
on the union bound and properties of the Gaussian distribution.

LEMMA 1. For any β̄ ∈ R
p , we have

�n

(
β̂,β�) ≤ �n

(
β̄,β�) + 2H(τ)

+ 2

n

∥∥X�ξ
∥∥∞‖β̂ − β̄‖1 + 2λ

(‖β̄‖1 − ‖β̂‖1
) − 1

n

∥∥X(β̄ − β̂)
∥∥2

2.

PROOF. On the one hand, inequality (11) can be rewritten as

(24) Vn(β̂) ≤ Vn(β̄) + Vn(β̂) −
∫
Rp

Vnπ̂n + pτ − 1

2n

∫
Rp

∥∥X(u − β̄)
∥∥2

2π̂n(du)︸ ︷︷ ︸
:=A

.
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On the other hand, one can check that

Vn(β̂) −
∫

Vnπ̂n = 1

2n
‖Xβ̂‖2

2 + λ‖β̂‖1

−
∫ (

1

2n
‖Xu‖2

2 + λ‖u‖1

)
π̂n(du),∫

Rp

∥∥X(u − β̄)
∥∥2

2π̂n(du) = ∥∥X(β̄ − β̂)
∥∥2

2 +
∫
Rp

‖Xu‖2
2π̂n(du) − ‖Xβ̂‖2

2.

These inequalities, combined with the definition of H , given in (6), yield

(25)
A = 1

n
‖Xβ̂‖2

2 + λ‖β̂‖1 −
∫
Rp

(
1

n
‖Xu‖2

2 + λ‖u‖1

)
π̂n(du)

+ pτ − 1

2n

∥∥X(β̄ − β̂)
∥∥2

2 = H(τ) − 1

2n

∥∥X(β̄ − β̂)
∥∥2

2.

Finally, using the definitions of the prediction loss �n and the potential Vn, we get
that the difference �n(β̂,β�) − �n(β̄,β�) equals

(26) 2
(
Vn(β̂) − Vn(β̄)

) + 2

n
ξ�X(β̂ − β̄) + 2λ

(‖β̄‖1 − ‖β̂‖1
)
.

In view of the duality inequality, the term ξ�X(β̂−β̄) is upper bounded in absolute
value by ‖X�ξ‖∞‖β̂ − β̄‖1. Inserting this inequality and (24) in (26) and using
relation (25), we get the claim of the lemma. �

According to Lemma 1, in the event Eγ = {‖X�ξ‖∞ ≤ nλ/γ }, the loss
�n(β̂,β�) is upper bounded by

�n

(
β̄,β�) + 2λ

γ

(‖β̂ − β̄‖1 + γ ‖β̄‖1 − γ ‖β̂‖1
) + 2H(τ) − 1

n

∥∥X(β̄ − β̂)
∥∥2

2.

LEMMA 2. For every J ⊂ [p], we have

2λ

γ

(‖β̂ − β̄‖1 + γ ‖β̄‖1 − γ ‖β̂‖1
) − 1

n

∥∥X(β̄ − β̂)
∥∥2

2

≤ 4λ‖β̄J c‖1 + λ2(γ + 1)2|J |
γ 2κJ,(γ+1)/(γ−1)

.

This lemma is essentially a copy of Proposition 2 in [Bellec et al. (2016)]. We
provide here its proof for the sake of self-containedness.

PROOF. Let us fix a J ⊂ {1, . . . , p} and set u = β̂ − β̄ . We have

(27)
‖β̂ − β̄‖1 + γ ‖β̄‖1 − γ ‖β̂‖1 = ‖uJ ‖1 + ‖uJ c‖1 + γ ‖β̄J ‖1 + γ ‖β̄J c‖1

− γ ‖β̂J ‖1 − γ ‖β̂J c‖1.
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Using inequalities ‖β̄J ‖1 − ‖β̂J ‖1 ≤ ‖uJ ‖1 and ‖β̂J c‖1 ≥ ‖uJ c‖1 − ‖β̄J c‖1, we
deduce from equation (27) that

(28) ‖β̂ − β̄‖1 +γ ‖β̄‖1 −γ ‖β̂‖1 ≤ (γ +1)‖uJ ‖1 − (γ −1)‖uJ c‖1 +2γ ‖β̄J c‖1.

Now, from the definition of the compatibility factor κJ,c given by equation (5), we
infer

(29) ‖uJ ‖1 − γ − 1

γ + 1
‖uJ c‖1 ≤

( |J |‖Xu‖2
2

nκJ,(γ+1)/(γ−1)

)1/2
.

Hence, inequalities (28) end (29) imply that

2λ

γ

(‖β̂ − β̄‖1 + γ ‖β̄‖1 − γ ‖β̂‖1
) − 1

n

∥∥X(β̄ − β̂)
∥∥2

2 ≤ 4λ‖β̄J c‖1 + 2ab − a2,

where we have used the notation a2 = ‖Xu‖2
2/n and b2 = λ2(γ+1)2|J |

γ 2κJ,(γ+1)/(γ−1)
. Finally,

noticing that

2ab − a2 ≤ b2 = λ2(γ + 1)2|J |
γ 2κJ,(γ+1)/(γ−1)

,

we get the claim of the lemma. �

Combining the claims of the previous lemmas and taking the minimum with
respect to J and β̄ , we obtain that the inequality

(30) �n

(
β̂,β�) ≤ inf

β̄∈Rp

J⊂[p]

{
�n

(
β̄,β�) + 4λ‖β̄J c‖1 + λ2(γ + 1)2|J |

γ 2κJ,(γ+1)/(γ−1)

}
+ 2H(τ)

holds in the event Eγ . The third and the last step of the proof consists in assessing
the probability of this event.

LEMMA 3. If X = (x1, . . . ,xp) is a n × p deterministic matrix with columns
xj satisfying ‖xj‖2

2 ≤ n and if ξ ∼N (0n, σ
2In), then, for all ε > 0,

P
(∥∥X�ξ

∥∥∞ > nε
) ≤ p exp

(−nε2/
(
2σ 2))

.

PROOF. By the union bound, we get

P
(∥∥X�ξ

∥∥∞ > nε
) = P

(
max
j∈[p]

∣∣ξ�xj
∣∣ > nε

)
≤

p∑
i=1

P
(∣∣ξ�xj

∣∣ > nε
)
.

Then, noticing that for each j ∈ [p] the random variable ξ�xj is distributed ac-
cording to N (0, σ 2‖xj‖2

2), we deduce that

P
(∥∥X�ξ

∥∥∞ > nε
) ≤ 2

p∑
j=1

∫ +∞
nε/(σ‖xj‖2)

φ(u)du,
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where φ stands for the probability density function of the standard Gaussian dis-
tribution. Finally, by using the inequality

∫ +∞
x φ(u)du ≤ 1

2 exp(−x2/2) that holds
for every x > 0, we obtain the result. �

A proof of Theorem 1 can be deduced from the three previous lemmas as fol-
lows. Choosing γ = 2 and ε = λ/2 ≥ σ

√
(2/n) log(p/δ) in Lemma 3, we get that

the event Eγ has a probability at least 1 − δ. Furthermore, on this event, we have
already established inequality (30). Finally, upper bounding H(τ) by pτ leads to
the claim of the theorem.

7.2. Proof of the concentration property of Theorem 2. Let us introduce the
set B = {β ∈ R

p : Vn(β) ≤ ∫
Vnπ̂n + pτ }. Applying Proposition 3 with t = √

p,
we get π̂n(B) ≥ 1 − 2e−√

p/16. To prove Theorem 2, it is sufficient to check that
in the event Eγ (in particular, with γ = 2), every vector β from B satisfies the
inequality

�n

(
β,β�) ≤ inf

β∈Rp

J⊂[p]

{
�n

(
β̄,β�) + 4λ‖β̄J c‖1 + 9λ2|J |

2κJ,3

}
+ 8pτ.

In the rest of this proof, β is always a vector from B. In view of (11), it satisfies

(31) Vn(β) ≤ 2pτ + Vn(β̄) − 1

2n

∫
Rp

∥∥X(u − β̄)
∥∥2

2π̂n(u)du.

Note that (31) holds for every β̄ ∈ R
p . Therefore, it also holds for β̄ = β and yields

(32)
1

n

∫
Rp

∥∥X(u − β)
∥∥2

2π̂n(u)du ≤ 4pτ.

In addition, we have

(33)
�n

(
β,β�) − �n

(
β̄,β�)

= 2
(
Vn(β) − Vn(β̄)

) + 2

n
ξ�X(β − β̄) + 2λ

(‖β̄‖1 − ‖β‖1
)
.

Combining (31), (33) and the duality inequality, we get that in Eγ ,

(34)

�n

(
β,β�) − �n

(
β̄,β�) ≤ 4pτ − 1

n

∫
Rp

‖X(u − β̄)‖2
2π̂n(u)du

+ 2λ

γ
‖β − β̄‖1 + 2λ

(‖β̄‖1 − ‖β‖1
)
.

We use now the inequality ‖X(u − β̄)‖2
2 ≥ 1

2‖X(β − β̄)‖2
2 − ‖X(u − β)‖2

2, in
conjunction with (32), to deduce from (34) that

�n

(
β,β�) − �n

(
β̄,β�) ≤ 8pτ + 2λ

γ
‖β − β̄‖1 + 2λ

(‖β̄‖1 − ‖β‖1
)

− 1

2n

∥∥X(β − β̄)
∥∥2

2.
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We can apply now Lemma 2 with β instead of β̂ and X/
√

2 instead of X in order
to get the claim of Theorem 2.

7.3. Proof of Proposition 1. For the sake of simplicity, we abbreviate β̂ =
β̂EWA and β̂0 = β̂LS throughout the proof. In particular, notation β̂j (resp. β̂0

j )

will refer to the j th entry of β̂EWA (resp., β̂LS). First, observe that one can write
the posterior density as π̂(u) ∝ exp(−V̄n(u)/τ ) with

(35)
V̄n(u) = Vn(u) − 1

2n
‖y‖2 + 1

2

∥∥�̂1/2
n β̂0∥∥2

2

= 1

2

∥∥�̂1/2
n

(
u − β̂0)∥∥2

2 + λ‖u‖1.

On the one hand, the integration by parts formula yields∫
Rp

[
u�∇V̄n(u)

]
π̂(u)du = −τ

∫
Rp

u�∇π̂(u)du = pτ.

On the other hand, the expression of V̄n(u) written in (35) leads directly to∫
Rp

[
u�∇V̄n(u)

]
π̂(u)du =

∫
Rp

G(u)π̂(u)du − β̂
�
�̂nβ̂

0,

where we recall that G(u) = ‖Xu‖2
2/n+λ‖u‖1 = ‖�̂1/2

n u‖2
2 +λ‖u‖1. This yields∫

Rp
G(u)π̂(u)du = pτ + β̂

�
�̂nβ̂

0,

and hence,

(36)
H(τ) = pτ −

∫
Rp

G(u)π̂(u)du + ∥∥�̂1/2
n β̂

∥∥2
2 + λ‖β̂‖1

= ∥∥�̂1/2
n β̂

∥∥2
2 + λ‖β̂‖1 − β̂

�
�̂nβ̂

0,

which proves the first claim of Proposition 1. Let us now consider the case where
�̂n = Ip . Then, recalling the definition of V̄n(u) in (35), a straightforward calcu-
lation reveals that

V̄n(u) = −λ2p

2
+

p∑
j=1

[
1

2

(
uj − β̂0

j + λ sign(uj )
)2 + λβ̂0

j sign(uj )

]
.

Hence, we deduce that π̂(u) = ∏p
j=1 π̂j (uj ) where

π̂j (t) ∝ exp
(
− 1

2τ

(
t − β̂0

j + λ sign(t)
)2 − λ

τ
β̂0

j sign(t)

)
.

Next, let ϕ(t) = ∫ +∞
t φ(x)dx where φ denotes the density function of the standard

normal distribution. For a fixed j ∈ [p], we consider the abbreviations a = λ/
√

τ
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and b = β̂0
j /

√
τ . Then the change of variable u = t/

√
τ in the first integral below,

together with the observation that sign(t) = sign(t/
√

τ) for all real t , leads to

β̂j =
∫

t π̂j (t)dt = √
τ

∫
u exp{−1

2(u − b + a sign(u))2 − ab sign(u)}du∫
exp{−1

2(u − b + a sign(u))2 − ab sign(u)}du

= √
τ
(a + b)eabϕ(a + b) − (a − b)e−abϕ(a − b)

eabϕ(a + b) + e−abϕ(a − b)

= √
τ sign(b)

(a + |b|)ea|b|ϕ(a + |b|) − (a − |b|)e−a|b|ϕ(a − |b|)
ea|b|ϕ(a + |b|) + e−a|b|ϕ(a − |b|)

= β̂0
j + λ sign

(
β̂0

j

)ea|b|ϕ(a + |b|) − e−a|b|ϕ(a − |b|)
ea|b|ϕ(a + |b|) + e−a|b|ϕ(a − |b|)

= β̂0
j + λ sign

(
β̂0

j

)�(a + |b|) − �(a − |b|)
�(a + |b|) + �(a − |b|) ,

where �(t) = et2/2ϕ(t). In other terms, noticing that �τ(t) = �(t/
√

τ), we have
obtained

(37) β̂j = sign
(
β̂0

j

)(∣∣β̂0
j

∣∣ − λw
(
τ, λ,

∣∣β̂0
j

∣∣)),
where we have denoted w(τ,λ, t) = (�τ (λ− t)−�τ(λ+ t))/(�τ (λ− t)+�τ(λ+
t)). Injecting (37) in (36), we arrive at the desired expression for H .

SUPPLEMENTARY MATERIAL

Supplement to “On the exponentially weighted aggregate with the Laplace
prior” (DOI: 10.1214/17-AOS1626SUPP; .pdf). The proofs of equation (10), as
well as the proofs of results of Section 5, have been gathered in the Supplementary
Material.
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