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EMPIRICAL BEST PREDICTION UNDER A NESTED ERROR
MODEL WITH LOG TRANSFORMATION

BY ISABEL MOLINA1 AND NIRIAN MARTÍN2

Universidad Carlos III de Madrid and Universidad Complutense de Madrid

In regression models involving economic variables such as income, log
transformation is typically taken to achieve approximate normality and stabi-
lize the variance. However, often the interest is predicting individual values
or means of the variable in the original scale. Under a nested error model for
the log transformation of the target variable, we show that the usual approach
of back transforming the predicted values may introduce a substantial bias.
We obtain the optimal (or “best”) predictors of individual values of the orig-
inal variable and of small area means under that model. Empirical best pre-
dictors are defined by estimating the unknown model parameters in the best
predictors. When estimation is desired for subpopulations with small sample
sizes (small areas), nested error models are widely used to “borrow strength”
from the other areas and obtain estimators with greater efficiency than direct
estimators based on the scarce area-specific data. We show that naive pre-
dictors of small area means obtained by back-transformation under the men-
tioned model may even underperform direct estimators. Moreover, assessing
the uncertainty of the considered predictor is not straightforward. Exact mean
squared errors of the best predictors and second-order approximations to the
mean squared errors of the empirical best predictors are derived. Estimators
of the mean squared errors that are second-order correct are also obtained.
Simulation studies and an example with Mexican data on living conditions
illustrate the procedures.

1. Introduction. In econometric regression models, variables such as income
or expenditure are often transformed with a logarithm to achieve homoscedastic
errors with approximately normal distribution. However, the variable of interest
remains to be the untransformed one. Target characteristics of the study variable
such as the values for out-of-sample individuals or the means for specific subpopu-
lations become then functions of the exponentials of the dependent variable in the
model. We show that, under a nested error linear regression model [1], the predic-
tors obtained by transforming back the individual predicted values may be severely
biased and derive optimal predictors under that model. The nested-error model is
widely used in small area estimation, because it solves the problem of lack of data
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in some of the areas of interest by linking all areas through the common regres-
sion parameters. At the same time, these models include random area effects that
represent the unexplained between-area variation. The common parameters are es-
timated using the sample observations from all the areas together, and this often
leads to great efficiency gains with respect to estimators that use only the area-
specific sample data (direct estimators). In econometric applications, this model
has been used to estimate poverty indicators in small areas; see, for example, [4]
or [16]. For further details on small area estimation methods, see the monograph
by [19] and the recent review by [17].

In many applications, predicting the individual values of the original target vari-
able in the model rather than (or beyond) the area means may be of interest. For
example, the approach of Elbers, Lanjouw and Lanjouw [4] widely extended in
World Bank applications, is based on obtaining predicted censuses of the vari-
able of interest at the individual level. Important advantages of prediction at the
individual level are that, once a predicted census is obtained, it may be used to
estimate whatever desired population characteristic and at whatever level of dis-
aggregation; see, for example, [10] for prediction at different levels (including the
individual level) in the context of forest inventories.

Assessing the reliability, or uncertainty, of the obtained predictors is crucial in
practical applications. A popular uncertainty measure is the mean squared error
(MSE), also called mean squared prediction error. Second-order correct approxi-
mations to the MSEs of the optimal predictors of small area parameters have been
obtained under certain models but only for simple parameters; see, for example,
[3]. The MSE of an individual prediction under a nested-error model with log-
transformation that is second-order correct has not been obtained yet. Moreover,
when predicting the mean of the original variable in a given area, the optimal pre-
dictor depends on the predicted values for the out-of-sample individuals from that
area. Since the individuals belong to the same area, due to the presence of the
area effects, individual predictors are not independent. Then mean crossed product
errors (MCPEs) between pairs of individual predictions are needed to derive the
MSE of the predictor of the mean in that area.

Here, we obtain optimal predictors for individual values of the target variable
in out-of-sample units and also for small area means. Additionally, second-order
asymptotic approximations for the MCPEs of pairs of individual predictions are
derived, which lead to good approximations for the MSEs of predicted area means.
In the small area estimation literature, this was done previously only under area-
level models by [21]. Under a unit-level model, [12] dealt with estimation of expo-
nentials of mixed effects, that is, exponentials of linear functions of the fixed and
the random effects in the model; the individual values of the original variable can-
not be expressed as special cases of these parameters. Thus, the target parameters
are not the same, and consequently results are also different. In particular, cer-
tain crossed-product terms appearing in the MCPE that are of lower order in [12],
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are not negligible when predicting individual observations. In fact, those crossed-
product terms are typically neglected in small area estimation applications. Here,
we show that these terms cannot be neglected and give their analytical expression
up to o(D−1) terms, where D is the number of areas.

Analytical approximations for the uncertainty measures have a complex shape
and users might prefer to use resampling procedures such as bootstrap methods.
González-Manteiga et al. [6] proposed a parametric bootstrap method designed for
finite populations under a nested error model that is suitable in this paper. Here,
we use the technique of imitation used in that paper to obtain the consistency of
the bootstrap MSE estimates in our setup.

The paper is organized as follows. The considered model and the target quan-
tities are introduced in Section 2. That section also gives the best predictor and
first- and second-stage empirical best predictors of the target quantities. Section 3
describes usual likelihood-based fitting methods. MCPEs and MSEs of first-stage
empirical best predictors are obtained in Section 4, and for second-stage empirical
best predictors, second-order approximations to the analogous uncertainty mea-
sures are given in Section 5. Second-order unbiased estimators of these uncertainty
measures are provided in Section 6. Section 7 describes a parametric bootstrap
procedure for estimation of the uncertainty. Section 8 describes the result of a sim-
ulation experiment comparing the proposed predictor with existing ones. Section 9
illustrates the procedures through the estimation of mean income in municipalities
from Mexico. The proofs of theorems are included in the Appendix, and finally,
Supplement A [14] studies the bias of the proposed predictors compared to existing
ones and includes additional simulation and application results.

2. Model, target quantities and predictors. When estimating characteris-
tics of subpopulations that have varying sizes, it seems convenient to work under a
finite population setup. Here, we consider that the population U is finite and con-
tains N units. This population is partitioned into D subpopulations U1, . . . ,UD ,
called areas or domains, of sizes N1, . . . ,ND . The data is obtained from a sample
s of size n drawn from the population U . We denote by sd the subsample from
domain d , of (fixed) size nd and by s̄d = Ud − sd the sample complement from
area d , of size Nd − nd , d = 1, . . . ,D, with

∑D
d=1 nd = n.

The goal is to predict the value wdi of the variable of interest for an out-of-
sample individual i within area d , or the area mean N−1

d

∑Nd

i=1 wdi , based on a
regression model for wdi . If wdi represents a measurement of an economic vari-
able such as income or expenditure, it is customary to consider log(wdi) as de-
pendent variable in the model. Moreover, in many applications such as in small
area estimation, the available auxiliary variables do not explain sufficiently well
all the between-area heterogeneity that data exhibit. Then random area effects rep-
resenting this unexplained heterogeneity are included in the model. Thus, here we
assume the following superpopulation model, known as the nested-error model,
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for the log-transformed variables ydi = log(wdi),

ydi = x′
diβ + ud + edi,

ud
i.i.d.∼ N

(
0, σ 2

u

)
, edi

i.i.d.∼ N
(
0, σ 2

e

)
, i = 1, . . . ,Nd, d = 1, . . . ,D.

(2.1)

Here, xdi is a vector containing the values of p explanatory variables for the ith
individual in the dth area, β ∈ R

p is the vector of unknown regression coefficients,
edi is the individual error, ud is the random effect of area d , with random effects
{ud} and errors {edi} assumed to be mutually independent, and finally σ 2

u and σ 2
e

are respectively the unknown random effects and individual error variances, called
variance components.

In model (2.1), the area effects ud induce a constant correlation among the units
belonging to the same area, whereas observations from different areas are kept un-
correlated. Moreover, the log-transformation implies a log-normal distribution for
the original variables wdi . If residuals from the fitted model to the log-transformed
responses ydi indicate severe departure from the normal distribution, other trans-
formations of the original variables wdi such as those from the Box–Cox or power
families can be considered. Corresponding EB predictors can be obtained and the
Taylor-linearization approach followed in this paper to obtain uncertainty mea-
sures may also be applied. However, log is the most commonly used transforma-
tion especially for economic variables such as income, probably due to the nice
interpretation of the resulting estimated model coefficients.

Let θ = (σ 2
u , σ 2

e )′ be the vector of variance components and � = {(σ 2
u , σ 2

e )′;
σ 2

u ≥ 0, σ 2
e > 0} the space where these parameters lie. We will denote by β and θ

to generic elements from R
p and �, whereas β0 and θ0 will be their respective

true values, where θ0 is supposed to be in the interior of �. A quantity A(β, θ)

depending on β and/or θ will be sometimes denoted simply by A, omitting the
explicit dependence on β and/or θ .

If we intend to estimate the mean of an area with a poor sample size nd , the
estimators that use only the nd area-specific observations, called direct estimators,
are highly inefficient. Model (2.1) links all the areas through the common param-
eters β , σ 2

u and σ 2
e , which allows us to “borrow strength” from all the areas when

estimating a particular area mean. However, even though the model is assumed for
ydi = log(wdi), the target parameter remains to be the area mean of the untrans-
formed variables, which can be expressed in terms of the dependent variables in
the model as

τd = 1

Nd

Nd∑
i=1

wdi = 1

Nd

Nd∑
i=1

exp(ydi), d = 1, . . . ,D.

Here, we intend to estimate single values wdi = exp(ydi) of the target variable
in out-of-sample units i ∈ s̄d and area means τd = N−1

d

∑Nd

i=1 exp(ydi), when the
variables ydi in the population units follow model (2.1). These target quantities
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are special cases of a general parameter of the form h(yd), where h(·) is a measur-
able function and yd = (yd1, . . . , ydNd

)′ is the vector of outcomes for domain d .
Defining also Xd = (xd1, . . . ,xdNd

)′ and ed = (ed1, . . . , edNd
)′, the model reads

yd = Xdβ + ud1Nd
+ ed,

ud
i.i.d.∼ N

(
0, σ 2

u

)
, ed

ind∼ NNd

(
0Nd

, σ 2
e INd

)
, d = 1, . . . ,D,

(2.2)

where 0k is a k-vector of zeros, 1k is a k-vector of ones and Ik is the k × k identity
matrix. The covariance matrix of yd is equal to Vd = σ 2

u 1Nd
1′
Nd

+σ 2
e INd

= Vd(θ).
Let us arrange the elements from domain d into sample and out-of-sample ele-
ments, as

yd =
(

yds

ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.

The “best predictor” δ̃d of a general parameter δd = h(yd) is the function of the
sample data yds with minimum mean squared error MSE(δ̃d) = E(δ̃d − δd)2 and
is given by δ̃d = Eydr

{h(yd)|yds}, where the expectation is taken with respect to
the distribution of ydr |yds . The best predictor is exactly unbiased in the sense
Eyds

(δ̃d) = Eyd
(δd). Since by (2.2) we have yd ∼N (Xdβ,Vd), the desired condi-

tional distribution is

(2.3) ydr |yds
ind∼ NNd−nd

(μdr|s,Vdr|s), d = 1, . . . ,D,

with mean vector and covariance matrix given by

μdr|s = Xdrβ + VdrsV−1
ds (yds − Xdsβ), Vdr|s = Vdr − VdrsV−1

ds Vdsr .

Under the nested-error model (2.1), they reduce to

μdr|s = Xdrβ + 1Nd−nd
γd

(
ȳds − x̄′

dsβ
)
,(2.4)

Vdr|s = σ 2
u (1 − γd)1Nd−nd

1′
Nd−nd

+ σ 2
e INd−nd

,(2.5)

where γd = σ 2
u /(σ 2

u + σ 2
e /nd), ȳds = n−1

d

∑
i∈sd

ydi and x̄ds = n−1
d

∑
i∈sd

xdi .
Based on the conditional distribution (2.3) with mean vector given in (2.4) and

covariance matrix (2.5), the next theorem gives closed-form expressions for the
best predictors of wdi = exp(ydi) and τd = N−1

d

∑Nd

i=1 exp(ydi).

THEOREM 2.1. Under the nested-error model with log-transformation (2.1),
it holds:

(i) The best predictor of wdi = exp(ydi), for i ∈ s̄d , is given by

(2.6) w̃di = w̃di(β, θ) = exp(ỹdi + αd),

where ỹdi = x′
diβ + γd(ȳds − x̄′

dsβ) and αd = {σ 2
u (1 − γd) + σ 2

e }/2.
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(ii) The best predictor of τd = N−1
d

∑Nd

i=1 exp(ydi) is given by

(2.7) τ̃d = τ̃d (β, θ) = 1

Nd

(∑
i∈sd

wdi + ∑
i∈s̄d

w̃di

)
.

REMARK 2.1. In contrast with the case of estimation of a small area mean
under a nested error model without log-transformation, the best predictor of the
small area mean τd given in (2.7) requires to predict the values of the target vari-
ables wdi for each out-of-sample unit i ∈ s̄d from area d . In applications to official
statistics, the unit-level values of the auxiliary variables xdi required for prediction
of wdi might be obtained from a census or an administrative register with micro-
data for all of the population. These kinds of microdata are available in practically
all European countries and many other, although their use is typically subject to
the signature of proper confidentiality contracts. In other areas such as agriculture
or forestry (see, e.g., [1] or [10]), satellite or laser scanner images play the role of a
census with pixels acting as population units, which may be more easily available.
Other useful data sets for small area estimation are included in the R package sae
[13].

In fact, writing the best predictor as τ̃d = N−1
d {Eds + exp(ũd + αd)Ed}, where

ũd = γd(ȳds − x̄′
dsβ), Eds = ∑

i∈sd
exp(x′

diβ) and Ed = ∑Nd

i=1 exp(x′
diβ), we only

need the area totals Ed rather than all individual values xdi . These area totals Ed

might be estimated from larger surveys that contain the same auxiliary variables
and adequately cover the areas. In the case of area-level covariates xdi = xd for all
i, we get Ed = Nd exp(x′

dβ) and only the aggregates xd are needed. If the covari-
ates xdi take only a finite number of values xdi ∈ {z1, . . . , zK}, as it occurs when
using only categorical variables (the most common in household surveys), then
for xdi = zk we get Ed = Ndk exp(z′

kβ), and only the counts Ndk of individuals
in the area with xdi = zk are needed, k = 1, . . . ,K . These counts can be obtained
from aggregated data sources or may be estimated from a larger survey; see, for
example, [16] or [15].

The bias-corrected predictor w̃M
di = exp(ỹdi +αM

d ), where αM
d = σ 2

u (1 − γd)/2,
which is similar to the best predictor w̃di given in (2.6), was proposed in [12].
However, these predictors are not exactly the same because the target parameters
in [12] are of the type exp(x′

diβ + ud), which differ from our target parameters
here given by the individual observations wdi = exp(ydi) = exp(x′

diβ +ud + edi).
Nevertheless, it is interesting to study how Molina’s predictor w̃M

di performs for
wdi = exp(ydi). In Supplement A, we study the bias of w̃M

di and of the naive predic-
tor obtained by back-transforming the predicted model responses, w̃N

di = exp(ỹdi).
The best predictors w̃di(β, θ) and τ̃d (β, θ) depend on the true values of β and

θ , which are unknown in practice. Next, we define first- and second-stage em-
pirical best (EB) predictors obtained by estimating these unknown parameters in
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two stages. First, define the following vectors and matrices containing the sample
elements from all the areas:

ys = (
y′

1s, . . . ,y′
Ds

)′
, Xs = (

X′
1s, . . . ,X′

Ds

)′
, es = (

e′
1s, . . . , e′

Ds

)′
,

Zs = diag1≤d≤D(1nd
), u = (u1, . . . , uD)′.

Then the model for the sample units can be written as

ys = Xsβ + Zsu + es, u ∼ ND

(
0D,σ 2

u ID

)
, es ∼ Nn

(
0n, σ

2
e In

)
,

and the covariance matrix of ys is Vs = diag1≤d≤D(Vds), where Vds = σ 2
u 1nd

1′
nd

+
σ 2

e Ind
.

The first-stage EB predictor is obtained under the assumption that θ is known
but β is unknown. The maximum likelihood (ML) estimator of β under normality,
which is also the weighted least squares (WLS) estimator of β without normality
reads

(2.8) β̃(θ) = (
X′

sV−1
s Xs

)−1X′
sV−1

s ys .

The first-stage EB predictors of wdi and τd are then

(2.9) ŵdi = ŵdi(θ) = w̃di

(
β̃(θ), θ

)
, τ̂d = τ̂d (θ) = τ̃d

(
β̃(θ), θ

)
.

Finally, the second-stage EB predictors of wdi and τd are obtained by replacing
the unknown θ in (2.9) by a consistent estimator θ̂ , that is,

(2.10) ŵE
di = ŵdi(θ̂) = w̃di

(
β̃(θ̂), θ̂

)
, τ̂E

d = τ̂d (θ̂) = τ̃d

(
β̃(θ̂), θ̂

)
.

Section 3 describes typical methods for consistent estimation of θ under model
(2.1).

3. Fitting methods. A typical estimation method is maximum likelihood
(ML), which delivers consistent and asymptotically efficient estimators of the vari-
ance components, provided that the following conditions hold [11]:

(3.1) n ≥ p + 2, range(Xs) = p, range(Xs |Zs) > p.

The ML estimator θ̂ = (σ̂ 2
u , σ̂ 2

e )′ of θ = (σ 2
u , σ 2

e )′ maximizes the penalized log-
likelihood,

(3.2) lP (θ) = c − 1

2

(
log |Vs | + y′

sPsys

)
, Ps = V−1

s − V−1
s XsQsX′

sV−1
s ,

where c denotes a generic constant. The score vector is defined as s(θ) =
∂lP (θ)/∂θ = (s1(θ), s2(θ))′. In terms of vs = ys − Xsβ = Zsu + es , the elements
of the score vector are

(3.3) sh(θ) = −1

2
tr

(
V−1

s �h

) + 1

2
v′
sPs�hPsvs, h = 1,2,
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where �h = ∂Vs/∂θh, that is, �1 = ZsZ′
s and �2 = In. The ML estimator of

θ is then obtained solving the equation system s(θ) = 02 together with equation
(2.8) for β . Since equations are nonlinear, numerical algorithms such as Newton–
Raphson or Fisher scoring are typically applied. These algorithms require respec-
tively the elements of Hessian matrix or the Fisher information matrix. The Hes-
sian matrix is defined as H(θ) = ∂2lP (θ)/∂θ2 = (Hh
(θ)), where

Hh
(θ) = 1

2
tr

(
V−1

s �hV−1
s �


) − v′
sPs�hPs�
Psvs, h, 
 = 1,2.

Finally, the Fisher information matrix is F(θ) = E{−H(θ)} = (Fh
(θ)), where

Fh
(θ) = −1

2
tr

(
V−1

s �hV−1
s �


) + tr(Ps�hPs�
), h, 
 = 1,2.

A drawback of the ML estimator of θ is that it does not account for the de-
grees of freedom due to estimation of β . Restricted ML (REML) corrects for this
problem, providing estimators with bias of lower order. This is achieved by trans-
forming the data y as F′y, where F is any n × (n − p) matrix with rank n − p

and satisfying F′X = 0n−p . The REML estimator is the value of θ maximizing the
so-called restricted log-likelihood lR , which is the logarithm of the joint density
function of the transformed data F′y. Noting that F(F′VsF)−1F′ = Ps (see [20],
p. 451), this function can be written as

(3.4) lR(θ) = c − 1

2

(
log

∣∣F′VsF
∣∣ + y′

sPsys

)
.

The score vector obtained from lR is sR(θ) = ∂lR(θ)/∂θ = (sR,1(θ), sR,2(θ))′.
Using again the relation F(F′VsF)−1F′ = Ps , the elements of sR can be expressed
as

(3.5) sR,h(θ) = −1

2
tr

(
P−1

s �h

) + 1

2
v′
sPs�hPsvs, h = 1,2.

The Hessian matrix obtained from lR is HR(θ) = ∂2lR(θ)/∂θ2 = (HR,h
(θ)),
where

HR,h
(θ) = 1

2
tr

(
P−1

s �hP−1
s �


) − v′
sPs�hPs�
Psvs, h, 
 = 1,2.

Finally, the corresponding Fisher information matrix is in this case given by
FR(θ) = E{−HR(θ)} = (FR,h
(θ)), with elements

FR,h
(θ) = 1

2
tr(Ps�hPs�
), h, 
 = 1,2.
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4. Uncertainty of first-stage EB predictors. The reliability of a point pre-
dictor is typically assessed by its MSE. When estimating a small area mean τd , in
virtue of (2.7), the MSE of a predictor τ̃d can be directly obtained as a function
of the MCPEs of pairs of predictors ŵdi and ŵdj for out-of-sample units i, j ∈ s̄d .
For this reason, in the following we focus on giving the expressions for the MCPEs
of pairs of individual predictors.

Theorem 4.1 spells out the MCPE of the best predictors w̃di and w̃dj for out-
of-sample units i, j ∈ s̄d , defined by MCPE(w̃di, w̃dj ) = E{(w̃di − wdi)(w̃dj −
wdj )}. The mean squared error (MSE) of the best predictor of a single out-of-
sample observation MSE(w̃di) = E(w̃di − wdi)

2, i ∈ s̄d is then obtained taking
i = j . For the area mean τd , the MSE of the best predictor MSE(τ̃d) = E(τ̃d −
τd)2 is given in Corollary 4.1. In these results, 1{i=j } is equal to 1 if i = j and 0
otherwise.

THEOREM 4.1. Under the nested-error model with log-transformation (2.1),
the mean crossed product error of the best predictors w̃di and w̃dj of wdi and wdj ,
for i, j ∈ s̄d , is given by

MCPE(w̃di, w̃dj )

= exp
{
2σ 2

u + σ 2
e + (xdi + xdj )

′β
}

× [
1 + {

exp
(
σ 2

e

) − 1
}
1{i=j} − exp

{−σ 2
u (1 − γd)

}]
.

COROLLARY 4.1. The mean squared error of the best predictor τ̃d of τd is
given by

MSE(τ̃d) = N−2
d exp

(
2σ 2

u + σ 2
e

)(
2
[
1 − exp

{−σ 2
u (1 − γd)

}]
× ∑

i∈s̄d

∑
j∈s̄d ,j>i

exp
{
(xdi + xdj )

′β
}

+ [
exp

(
σ 2

e

) − exp
{−σ 2

u (1 − γd)
}] ∑

i∈s̄d

exp
{
2x′

diβ
})

.

For a pair of first-stage EB predictors obtained by estimating β using the WLS
estimator given in (2.8) but assuming that θ is known, Theorem 4.2 gives the
MCPE. The MSE of a single first-stage EB predictor is obtained setting j = i.
The following notation is required:

Qs = (
X′

sV−1
s Xs

)−1
, hd,ij = x′

diQsxdj ,

hd,i = x′
diQs x̄ds, hd = x̄′

dsQs x̄ds .
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THEOREM 4.2. Under the nested-error model with log-transformation (2.1),
the mean crossed product error of the first-stage EB predictors ŵdi and ŵdj , for
i, j ∈ s̄d , is given by

MCPE(ŵdi, ŵdj ) = exp
{
2σ 2

u + σ 2
e + (xdi + xdj )

′β
}

× [
1 + {

exp
(
σ 2

e

) − 1
}
1{i=j }

+ exp
{
(hd,ii + hd,jj )/2 + hd,ij − 2γ 2

d hd − σ 2
u (1 − γd)

}
(4.1)

− exp
{(

hd,jj − γ 2
d hd

)
/2 + γd(hd,j − γdhd) − σ 2

u (1 − γd)
}

− exp
{(

hd,ii − γ 2
d hd

)
/2 + γd(hd,i − γdhd) − σ 2

u (1 − γd)
}]

=: M1d,ij (β, θ).

5. Uncertainty of second-stage EB predictors. In practice, the vector of
variance components θ = (σ 2

u , σ 2
e )′ is also unknown. Estimation of θ to obtain

second-stage EB predictors entails an increase in uncertainty and this increase
should be accounted for in the MCPE. The additional uncertainty depends on the
estimation method used for θ . This section gives an approximation up to o(D−1)

terms for the MCPE of pairs of individual second-stage EB predictors when model
parameters are estimated by ML or REML.

For the second-stage EB predictors ŵE
di = ŵdi(θ̂) and ŵE

dj = ŵdj (θ̂) of wdi and
wdj , for i, j ∈ s̄d , the MCPE can be decomposed as

MCPE
(
ŵE

di, ŵ
E
dj

) = MCPE(ŵdi, ŵdj ) + E
{(

ŵE
di − ŵdi

)(
ŵE

dj − ŵdj

)}
+ E

{(
ŵE

di − ŵdi

)
(ŵdj − wdj )

}
(5.1)

+ E
{
(ŵdi − wdi)

(
ŵE

dj − ŵdj

)}
.

The first term on the right-hand side of (5.1) is already given in Theorem 4.2 above.
The remaining terms will be approximated up to o(D−1) terms under the following
assumptions, where λmin(A) denotes the minimum eigenvalue of A:

(H1) p < ∞, lim supD→∞ max1≤d≤D nd < ∞ and lim infD→∞ ×
min1≤d≤D nd > 1;

(H2) the elements of the matrix X are uniformly bounded as D → ∞;
(H3) lim infD→∞ D−1λmin(X′

sXs) > 0;
(H4) lim infD→∞ D−1λmin(F) > 0.

Theorem 5.1 gives an approximation for the second term on the right-hand side
of (5.1). This result uses the additional notation

xdij = xdi + xdj , md = (
0′
d−1,1,0′

D−d

)′
, ηd = σ 2

u V−1
s Zsmd,

Edij = exp
{

2αd + x′
dijβ + 1

2
x′
dij Qsxdij + 2γd

(
σ 2

u − γd x̄′
dsQs x̄ds

)}
,
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Kd = tr
(
F−1 ∂η′

d

∂θ
Vs

∂ηd

∂θ

)

+
(

∂αd

∂θ
+ 2

∂η′
d

∂θ
Vsηd

)′
F−1

(
∂αd

∂θ
+ 2

∂η′
d

∂θ
Vsηd

)
,

M2d,ij (β, θ) = EdijKd.

THEOREM 5.1. Let ŵE
di = ŵdi(θ̂) be the second-stage EB predictor of wdi ,

with θ̂ denoting either ML or REML estimator of θ under the nested-error model
with log-transformation (2.1). If assumptions (H1)–(H4) hold, then

E
{(

ŵE
di − ŵdi

)(
ŵE

dj − ŵdj

)} = M2d,ij (β, θ) + o
(
D−1)

,

where the o(D−1) is uniform over i and j in s̄d .

Theorem 5.2 gives a second-order unbiased approximation for the first of the
crossed product terms in (5.1); the last term is analogous. For this theorem, we
need to introduce additional notation. We define

E∗
dij = exp

{
αd + x′

dijβ + σ 2
e + σ 2

u (3 + γd) + hd,ii
(5.2)

+ 2hd,ij − 2γdhd,j − γ 2
d hd

}
.

We also define Ed = 2(�1ηd,�2ηd), Ad = (αd,ht ), with αd,ht = ∂2αd/∂θh∂θt ,
Bd = (bd,ht ) with bd,ht = 2η′

dVs(∂
2ηd/∂θh∂θt ),

Gd = col
1≤k≤2

{(
∂αd

∂θ
+ 2

∂η′
d

∂θ
Vsηd

)′
F−1�k

}
,

for �k = (φhk
)h,
 with φhk
 = tr(V−1
s �hV−1

s �tV−1
s �k), εd = col

1≤h≤2
(4η′

d�hηd),

ς = (ς1, ς2)
′, with ςh = 2 tr(F−1�h), h = 1,2, and ν = (ν1, ν2)

′, with νh =
tr(Ps�h) − tr(V−1

s �h), h = 1,2, and

Cd = tr
[
F−1

(
∂η′

d

∂θ
Ed + Ad + Bd

2
− Gd

)]

+
(

∂αd

∂θ
+ 2

∂η′
d

∂θ
Vsηd

)′
F−1

(
ν + εd + ς

2

)
.

Finally, we define

M∗
2d,ij (β, θ) = E∗

dijKd, Td,ij (β, θ) = EdijCd,

T ∗
d,ij (β, θ) = E∗

dijCd,
(5.3)

M3d,ij (β, θ) = 1

2
M2d,ij (β, θ) + Td,ij (β, θ)

− 1

2
M∗

2d,ij (β, θ) − T ∗
d,ij (β, θ).
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THEOREM 5.2. Let ŵE
di = ŵdi(θ̂) be the second-stage EB predictor of wdi

under the nested-error model with log-transformation (2.1), with θ̂ denoting either
ML or REML estimator of θ . If assumptions (H1)–(H4) hold, then for i, j ∈ s̄d , we
have

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )

} = M3d,ij (β, θ) + o
(
D−1)

,

where the o(D−1) is uniform over i and j in s̄d . If θ̂ is the REML estimator, set
ν = 02 in M3d,ij (β, θ).

Finally, Theorem 5.3 gives a second-order approximation to the MCPE of ŵE
di

and ŵE
dj , as a direct consequence of decomposition (5.1) and Theorems 4.2, 5.1

and 5.2.

THEOREM 5.3. Let ŵE
di = ŵdi(θ̂) be the second-stage EB predictor of wdi

under the nested-error model with log-transformation (2.1), with θ̂ denoting either
ML or REML estimator of θ . Under assumptions (H1)–(H4), it holds

MCPE
(
ŵE

di, ŵ
E
dj

) = M1d,ij (β, θ) + M2d,ij (β, θ) + M3d,ij (β, θ)

+ M3d,j i(β, θ) + o
(
D−1)

,

where the o(D−1) is uniform over i and j in s̄d .

The following corollary gives a second-order approximation to the MSE of the
second-stage EB predictor τ̂ E

d of the area mean τd .

COROLLARY 5.1. A second-order approximation to the MSE of τ̂ E
d is ob-

tained writing

MSE
(
τ̂ E
d

) = 1

N2
d

{∑
i∈s̄d

MSE
(
ŵE

di

) + 2
∑
i∈s̄d

∑
j∈s̄d ,j>i

MCPE
(
ŵE

di, ŵ
E
dj

)}
(5.4)

= M1d(β, θ) + M2d(β, θ) + 2M3d(β, θ) + o
(
D−1)

,

for Mkd(β, θ) = N−2
d (

∑
i∈s̄d

Mkd,ii(β, θ) + 2
∑

i∈s̄d

∑
j∈s̄d ,j>i Mkd,ij (β, θ)), k =

1,2,3, where we have applied Theorem 5.3 with i = j for MSE(ŵE
di) and with

i 
= j .

6. Estimation of the uncertainty. Theorem 6.1 states that replacing the un-
known parameters θ and β by their corresponding ML estimators θ̂ and β̂ = β̃(θ̂)

in M1d,ij (β, θ) leads to a O(D−1) bias. It also gives a second-order approxima-
tion for that bias, which can then be corrected. The proof follows closely that of
Theorem 4 in [12].
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THEOREM 6.1. Let θ̂ denote either ML or REML estimator of θ under the
nested-error model with log-transformation (2.1) and β̂ = β̃(θ̂). If assumptions
(H1)–(H4) hold, then

E
{
M1d,ij (β̂, θ̂)

} = M1d,ij (β, θ) +
3∑

k=1

�d,ij,k(β, θ) + o
(
D−1)

,

where �d,ij,1(β, θ) = 2(∂M1d,ij /∂θ)′F−1ν, �d,ij,2(β, θ) = (1/2) tr[(∂2M1d,ij /

∂θ2)F−1] and �d,ij,3(β, θ) = M1d,ij (β, θ)x′
dij Qsxdij . If θ̂ is the REML estimator,

�d,ij,1(β, θ) = 0 because ν = 02.

It is not difficult to see that plugging the ML estimators θ̂ and β̂ for the true
values θ and β in the above bias correction terms leads to negligible bias in the
sense

(6.1) E
{
�d,ij,k(β̂, θ̂)

} = �d,ij,k(β, θ) + o
(
D−1)

, k = 1,2,3.

The same occurs for REML estimators of θ and β . According to Theorem 6.1 and
equation (6.1), an unbiased estimator of MCPE(w̃di, w̃dj ) up to o(D−1) terms is
given by

(6.2) mcpe(w̃di, w̃dj ) = M1d,ij (β̂, θ̂) −
3∑

k=1

�d,ij,k(β̂, θ̂).

Moreover, by [12], it holds that

(6.3) E
{
M2d,ij (β̂, θ̂)

} = M2d,ij (β, θ) + o
(
D−1)

.

So far we have obtained unbiased estimators up to o(D−1) terms of the first two
terms on the right-hand side of (5.1). Thus, in order to have an unbiased estimator
of (5.1) of the same order, it only remains to estimate unbiasedly M3d,ij (β, θ).
The next theorem states that plugging the ML estimators θ̂ and β̂ in M3d,ij (β, θ)

yields an unbiased estimator of the desired order.

THEOREM 6.2. Let θ̂ denote either ML or REML estimator of θ under the
nested-error model with log-transformation (2.1) and β̂ = β̃(θ̂). If assumptions
(H1)–(H4) hold, then

E
{
M3d,ij (β̂, θ̂)

} = M3d,ij (β, θ) + o
(
D−1)

.

For the proof of this result, the reader is addressed to the preprint in arXiv:
1404.5465.

http://arxiv.org/abs/arXiv:1404.5465
http://arxiv.org/abs/arXiv:1404.5465
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The analogous result holds for M3d,j i(β, θ) = E{(ŵdi − ŵdi)(ŵ
E
dj − wdj )} +

o(D−1). Finally, from (6.2), (6.1) and Theorem 6.2, the estimator

mcpe
(
ŵE

di, ŵ
E
dj

) = M1d,ij (β̂, θ̂) −
3∑

k=1

�d,ij,k(β̂, θ̂) + M2d,ij (β̂, θ̂)

+ M3d,ij (β̂, θ̂) + M3d,j i(β̂, θ̂)

satisfies

E
{
mcpe

(
ŵE

di, ŵ
E
dj

)} = MCPE
(
ŵE

di, ŵ
E
dj

) + o
(
D−1)

.

7. Bootstrap estimation of the uncertainty. Resampling methods are very
popular among practitioners due to their conceptual simplicity, which also makes
them less prone to coding errors. Under the setup of this paper, the naive bootstrap
procedure for finite populations proposed by [6] can be applied for the estimation
of the MSE of either an individual predictor ŵE

di or for the predicted area mean
τ̂ E
d . It can also be applied to estimate the MCPE of two individual predictors ŵE

di

and ŵE
dj , with j 
= i. Here, we describe only the steps of the bootstrap procedure

for estimation of the MSE of τ̂ E
d , because for the other cases is analogous:

(1) With the available data (ys,Xs) coming from the sample s, calculate the
ML estimators of the model parameters β̂ and θ̂ = (σ̂ 2

u , σ̂ 2
e )′.

(2) Generate bootstrap random effects u∗
d

i.i.d.∼ N (0, σ̂ 2
u ), d = 1, . . . ,D.

(3) Generate bootstrap errors e∗
di

i.i.d.∼ N (0, σ̂ 2
e ), i = 1, . . . ,Nd , d = 1, . . . ,D.

(4) Generate a bootstrap population of response variables from the fitted model

(7.1) y∗
di = x′

di β̂ + u∗
d + e∗

di, i = 1, . . . ,Nd, d = 1, . . . ,D.

Let τ ∗
d = N−1

d

∑Nd

i=1 exp(y∗
di) be the true mean of area d in this bootstrap popula-

tion.
(5) Let y∗

s be the vector with the bootstrap elements whose subscripts are in the
original sample s, {y∗

di; i ∈ sd, d = 1, . . . ,D}. Using the bootstrap sample data y∗
s

and Xd , fit the bootstrap model (7.1), obtaining new model parameter estimators
β̂

∗
and θ̂

∗ = (σ̂ 2∗
u , σ̂ 2∗

e )′. Calculate the bootstrap second-stage EB predictor

τ̂ E∗
d = τ̃ ∗

d

(
β̂

∗
, θ̂

∗) = 1

Nd

{∑
i∈sd

exp
(
y∗
di

) + ∑
i∈s̄d

exp
(
ỹ∗
di + α̂∗

d

)}
,

for α̂∗
d = {σ̂ 2∗

u (1− γ̂ ∗
d )+ σ̂ 2∗

e }/2 and ỹ∗
di = x′

di β̂
∗ + γ̂ ∗

d (ȳ∗
ds − x̄′

ds β̂
∗
), where ȳ∗

ds =
n−1

d

∑
i∈sd

y∗
di and γ̂ ∗

d = σ̂ 2∗
u /(σ̂ 2∗

u + σ̂ 2∗
e /nd).

(6) The bootstrap MSE of τ̂ E∗
d is then

(7.2) MSE∗
(
τ̂ E∗
d

) = E∗
(
τ̂ E∗
d − τ ∗

d

)2
,
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where E∗ indicates expectation with respect to the probability distribution induced
by model (7.1) given the original sample data {ydi; i ∈ sd, d = 1, . . . ,D}.

In practice, (7.2) is approximated by Monte Carlo, by repeating Steps 2–5 a
large number of times B , and then averaging over the B replicates. Let τ

∗(b)
d be

the true parameter in bth replicate and τ̂
E∗(b)
d be the corresponding second-stage

EB predictor. The Monte Carlo approximation of (7.2), used here as an estimator
of MSE(τ̂E

d ), is given by

(7.3) mse∗
(
τ̂ E
d

) = 1

B

B∑
b=1

(
τ̂

E∗(b)
d − τ

∗(b)
d

)2
.

For a a linear parameter, the consistency of the bootstrap MSE of the second-
stage EB predictor was proved by [6] using the technique of imitation. With the
available analytical formula for the MCPE given in Theorem 5.3, here the result is
analogous.

THEOREM 7.1. If assumptions (H1)–(H4) hold, then under the bootstrap
model (7.1) given the sample data (ys,Xs), it holds

(7.4) MCPE∗
(
ŵE∗

di , ŵE∗
dj

) = MCPEN∗
(
ŵE∗

di , ŵE∗
dj

) + o
(
D−1)

,

where MCPEN∗(ŵE∗
di , ŵE∗

dj ) = M1d,ij (β̂, θ̂) + M2d,ij (β̂, θ̂) + M3d,ij (β̂, θ̂) +
M3,j,i(β̂, θ̂).

The result follows by imitating the proofs of Theorems 4.2, 5.1 and 5.2 under
the bootstrap model (7.1) given the sample data (ys,Xs). The following theorem
yields the consistency of the bootstrap MCPE to the real value.

THEOREM 7.2. Under the model (2.1) with assumptions (3.1) and (H1)–(H4),
it holds ∣∣MCPEN∗

(
ŵE∗

di , ŵE∗
dj

) − MCPEN

(
ŵE

di, ŵ
E
dj

)∣∣ = Op

(
D−1/2)

.

The result follows by noting that under assumptions (3.1) and (H1)–(H4), |θ̂ −
θ0| = Op(D−1/2) and |β̂ − β0| = Op(D−1/2), and that MCPEN∗(ŵE∗

di , ŵE∗
dj ) is a

continuous function of the elements of (β̂, θ̂).
The above result implies that the bootstrap MCPE is only first-order unbi-

ased, that is, E{MCPEN∗(ŵE∗
di , ŵE∗

dj )} = MCPE(ŵE
di, ŵ

E
dj ) + O(D−1), where the

O(D−1) term comes from the bias terms in Theorem 6.1. The analogous result is
obtained for τ̂ E

d using (5.4).
For bias corrections of the naive bootstrap estimator (7.3) to achieve a o(D−1)

bias in the case of linear parameters see, for example, [2] and [18]. For a bias cor-
rection based on double bootstrap, see [7]. These corrections can be directly ex-
tended to estimate our specific nonlinear parameters wdi or τd , but they might yield
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negative MSE estimates. Hall and Maiti [8] proposed a positive bias-corrected
MSE estimate through double bootstrap, but the second-order unbiasedness prop-
erty is lost. Thus, ensuring a positive bootstrap MSE estimate and second-order
unbiased is still a challenge. Recently, [9] have found a second-order unbiased and
positive estimator of the log-MSE based on jackknife.

8. Simulation experiment. We carried out a simulation experiment to com-
pare, in terms of bias and MSE under the simple mean model ydi = μ + ud + edi ,
the following estimators of the area means τd : (i) second-stage EB predictor τ̂ E

d ;
(ii) naive predictor τ̂ N

d = N−1
d (

∑
i∈sd

wdi + ∑
i∈s̄d

ŵN
di), where ŵN

di = exp(ŷdi);

Molina’s predictor τ̂M
d = N−1

d (
∑

i∈sd
wdi +∑

i∈s̄d
ŵM

di ), for ŵM
di = exp(ŷdi + α̂M

d ),

with α̂M
d = σ̂ 2

u (1 − γ̂d)/2; (iii) direct estimator τ̂D
d = n−1

d

∑
i∈sd

wdi and (iv) the
estimator obtained assuming the area-level model of [5], τ̂D

d = μ+ vd + εd , where
vd are assumed i.i.d. with E(vd) = 0, var(vd) = σ 2

v , and εd are independent with
E(εd) = 0 and var(εd) = ψd , with ψd assumed to be known and fixed to the sam-
pling variance of the direct estimator τ̂D

d , d = 1, . . . ,D. We will also analyze the
contribution of each term of MSE(τ̂d).

We consider a limited number of areas, D = 12, in order to analyze the small
sample properties of the estimators. Population sizes of the areas are taken as
Nd = 150,200,250, each value repeated for four consecutive areas, which gives a
total population size of N = 2400. Model parameters are taken as μ = 1, σ 2

e = 1
and σ 2

u = 0.3. A total of K = 10,000 Monte Carlo (MC) populations were gen-
erated from the mentioned mean model. In each MC simulation replicate, simple
random samples sd without replacement of sizes nd = 5,10,20 were drawn from
the areas with Nd = 150,200,250, respectively, independently from each area d ,
making a total sample size of n = 140. With these sample sizes, the variance frac-
tions are respectively γd = σ 2

u /(σ 2
u + σ 2

e /nd) = 0.6,0.75,0.86. In this case, by
Proposition 1.1 in Supplement A, the naive predictors w̃N

di have a relative bias that
amounts to RB(w̃N

di) = 100 × B(w̃N
di)/E(wdi) = −42.9%,−41.6%,−40.6% for

the areas with sample sizes nd = 5,10,20, respectively. For Molina’s predictor, it
is constantly equal to RB(w̃M

di ) = −39.3%.
Concerning the empirical biases and MSEs of the estimators of the area means

τd , Figure 1 (left) plots the MC means of the true values τd and of the estimators
(i)–(iv) and the corresponding MSEs (right). This figure illustrates how the naive
and Molina’s predictors are both considerably biased low and also how the EB
predictor τ̂ E

d proposed in this paper has a negligible bias together with a substan-
tially smaller MSE than all other estimators. The direct estimator τ̂D

d is unbiased

as long as n−1
d

∑
i∈sd

exp(x′
diβ) = N−1

d

∑Nd

i=1 exp(x′
diβ), which holds in this case

since xdi = 1 ∀i. However, we can see that for very small sample sizes, it has large
MSE. Still, see that for nd ≥ 10, it overperforms the naive and Molina’s estimators,
and also the estimator based on the FH model. In fact, for the areas with nd = 20
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FIG. 1. Monte Carlo means of true values, naive, Molina’s and second-stage EB predictors, direct
estimators and estimators based on FH model (left). Monte Carlo MSEs of all the estimators (right).

(last four), MSE(τ̂D
d ) = 2.9 whereas the squared biases of τ̃ N

d and τ̃M
d amount to

5 and 3.5, respectively; see Supplement A, Section 2. Hence, in this case the bi-
ases of the naive and Molina estimators ruin the efficiency provided (or “strength
borrowed”) by the model. For results on individual prediction, see Figure 1 of
Supplement A, which yields similar conclusions.

Next, we analyze the contribution of each MSE term to the total MSE(τ̂E
d ).

Figure 2 displays the MC approximation to MSE(τ̂E
d ) labelled “MC MSE(EB)”,

MSE(τ̃d) given in Corollary 4.1 labelled “MSE(B)”, MSE(τ̂d) given in Theo-
rem 4.2 labelled “MSE(EB1)”, the same but adding the crossed-product terms
M2d,ij given in Theorem 5.1, and finally the analytical approximation to MSE(τ̂E

d )

obtained from Theorem 5.3 and Corollary 5.1 that includes the terms M3d,ij +
M3d,j i . It is clear that the naive estimators MSE(τ̃d) and MSE(τ̂d) underestimate
seriously the true MSE and the additional MSE terms of Theorems 5.1 and 5.3
seem to be needed to avoid undesired underestimation of the MSE. In fact, the
average relative difference of MSE(τ̃d) and MSE(τ̂d) to the MC MSE values is
−14.1% and −11.7%, respectively, while for MSE(τ̂E

d ) it is 1%. The differences
that we observe in the MC MSE(EB) for the areas with the same sample and pop-
ulation sizes are due to MC error since, under a mean model with xdi = 1 ∀i, the
true MSE is constant for those areas.

Figure 2 in Supplement A shows the MC means, obtained with K = 1000 sim-
ulations, of the analytical estimate of MSE(τ̂E

d ) given below Theorem 6.2, and
of the bootstrap estimate of Section 7, against the true MSE values obtained pre-
viously with K = 10,000. In this plot, the analytical MSE estimates are clearly
closer to the true values than the bootstrap estimates. Averages across areas of
percent relative biases are 20.1% and 9.4% for the bootstrap and analytical MSE
estimates, respectively. These results illustrate the slower convergence rate of the
naive bootstrap MSE estimate to the true MSE.
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FIG. 2. MC MSE of second-stage EB predictor τ̂E
d labelled “MC MSE(EB)”, MSE of best predictor

τ̃d labelled “MSE(B)”, MSE of first-stage EB predictor τ̂d labelled “MSE(EB1)”, the same but
adding the crossed-product terms M2d,ij , and total MSE of second-stage EB predictor τ̂E

d labelled
“MSE(EB)”.

9. Estimation of mean income in municipalities from Mexico. In this sec-
tion, we apply the obtained results to the prediction of incomes for individuals and
of mean income in municipalities from the State of Mexico. An advantage of EB
prediction based on a unit level model is that estimates can be obtained at whatever
level of disaggregation that is desired, since a predicted census can be constructed.
Data comes from two different sources. One is the Module of Socio-economic
Conditions (MCS in Spanish) from the 2010 Mexican National Survey on Income
and Expense of Households (ENIGH in Spanish). The MCS collects microdata
on income, health, nutrition, education, social security, quality of household, basic
equipment and social cohesion in Mexico. We also have available microdata from
the census of the same year. The census contains several of the variables also con-
tained in the MCS, but the income variable used officially (monthly total per capita
income) is collected only in the mentioned survey. Based on both data sources, we
estimate the mean income, as well as the individual incomes, in each municipality
that appears in the MCS survey data (many of them are not sampled by the MCS),
except for one which, after a preliminary study of the considered variables, turned
out to be very different from the other municipalities (outlier). This makes a to-
tal of D = 57 municipalities. From these, the minimum sample size is 8 and the
maximum is 2037, with a median of 96 and an average of 185.

After a preliminary check of the relationships between income and the avail-
able variables in the MCS, we selected as auxiliary variables age, age2, age3,
the indicators of gender, indigenous population, activity sectors (including unem-
ployed and inactive), composition of household, quality of dwelling, indicator of
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receiving social benefits, classification according to the available equipment, years
of schooling, indicator of rural/urban area and the interactions between quality
of dwelling with rural/urban area and of composition of household with gender.
Since income distribution in Mexico is heavily skewed, the model was fitted to
log(income + k) where k = 171 was selected to achieve an approximately sym-
metric distribution of model residuals. Histograms of income before and after the
transformation are shown in Supplement A (Figure 3), as well as the resulting fitted
regression parameters (Table 1). The fitted variance components are σ 2

u = 0.0160
and σ 2

e = 0.3245, which lead to an average contribution of σ 2
u to the total variance

of D−1 ∑D
d=1 γd = 0.789.

We computed also direct Horvitz–Thompson estimators of mean income wdi

together with their sampling variances, obtained as

τ̂DIR
d = N−1

d

∑
i∈sd

π−1
di wdi, var

(
τ̂DIR
d

) = N−2
d

∑
i∈sd

π−2
di (1 − πdi)w

2
di,

where πdi is the inclusion probability of ith unit in the sample from municipal-
ity d . The sampling variance is obtained using the following approximation for
the second-order inclusion probabilities πd,ij ≈ πdiπdj , j 
= i, and noting that
πd,ii = πdi for all i. Figure 3 left shows EB, Molina, naive and direct estimators
of mean income for the D = 57 municipalities. This figure illustrates that direct
estimators are somewhat unstable. According to Proposition 1.1 in Supplement A,
Molina and naive estimators have an average estimated relative bias of −14.8%
and −14.9%, respectively. In this application, these two estimators take very sim-
ilar values (superposed in the plot) and are lower than EB estimates, which could
be due to the mentioned theoretical bias.

Boxplots of the estimated coefficients of variation (CVs), defined for any esti-
mator τ̂d as cv(τ̂d) = 100 × √

mse(τ̂d)/τ̂d , are shown in Figure 3, where mse(τ̂E
d )

FIG. 3. EB, Molina, naive and direct estimates of mean income for each municipality (left) and
boxplots of estimated CVs of direct and EB estimates of mean income (right).
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is obtained using the analytical estimator below Theorem 6.2. These boxplots show
the significant reduction in CV obtained when using EB estimators rather than the
default direct ones.

When looking at results for prediction at the individual level, included in Fig-
ure 4 of Supplement A, we can see that Molina’s predictors are lower than EB
predictors (16% lower on average), indicating again the mentioned negative bias
of Molina’s predictors. Naive and Molina’s predictors take practically the same
values in this application; see Figure 4 right. Figure 5 in Supplement A shows
a substantially smaller CV for individual EB predictors, where this CV has been
estimated by the bootstrap method. Finally, Figure 6, showing the bootstrap CV
estimates for the predictors of mean income (including also the direct estimator),
confirms the obtained conclusions.

APPENDIX: PROOFS

We denote by |a| = (a′a)1/2 the Euclidean norm of a vector a. For a matrix A,
we consider the norms ‖A‖ = λ

1/2
max(A

′A) and ‖A‖2 = tr1/2(A′A), where λmax(A)

denotes the maximum eigenvalue of A. Asymptotic orders refer to D → ∞.
The next lemma is required in the proofs of several of the remaining results.

LEMMA A.1. Let Vs be the covariance matrix of ys , F and FR the ML
and REML Fisher-information matrices, respectively, and Qs = (X′

sV−1
s Xs)

−1. It
holds:

(i) Condition (H1) implies ‖Vs‖ = O(1).
(ii) ‖V−1

s ‖ = O(1).
(iii) Conditions (H1) and (H3) imply ‖Qs‖ = O(D−1).
(iv) Condition (H4) implies ‖F−1‖ = O(D−1) and ‖F−1

R ‖ = O(D−1).

PROOF. (i) Since Vs is symmetric and block-diagonal with blocks equal to
Vds , d = 1, . . . ,D, we have

‖Vs‖ = λ1/2
max

(
V2

s

) = λmax(Vs) = max
1≤d≤D

{
λmax(Vds)

}
.

Now since Vds = σ 2
u 1nd

1′
nd

+ σ 2
e Ind

, we have

λmax(Vd) ≤ σ 2
uλmax

(
1nd

1′
nd

) + σ 2
e λmax(Ind

) = σ 2
und + σ 2

e .

Then, by assumption (H1), we obtain (i) from

‖Vs‖ = max
1≤d≤D

{
λmax(Vds)

} ≤ σ 2
u max

1≤d≤D
nd + σ 2

e = O(1).

(ii) Similarly, as before, we have

∥∥V−1
s

∥∥ = λmax
(
V−1

s

) = λ−1
min(Vs) =

{
min

1≤d≤D
λmin(Vds)

}−1
.
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But again, using the expression of Vds = σ 2
u 1nd

1′
nd

+ σ 2
e Ind

, we have

λmin(Vd) ≥ σ 2
uλmin

(
1nd

1′
nd

) + σ 2
e λmin(Ind

) = σ 2
e > 0,

which is true for all d ∈ {1, . . . ,D} and for all D. Therefore, ‖V−1
s ‖ = O(1).

(iii) By the definition of Qs = (X′
sV−1

s Xs)
−1, we obtain

‖Qs‖ = λmax(Qs) = λ−1
min

(
X′

sV−1
s Xs

)
.

But by the definition of eigenvalue, we have

λmin
(
X′

sV−1
s Xs

) = min
v

v′X′
sV−1

s Xsv

v′v

= min
v

(
v′X′

sV−1
s Xsv

v′X′
sXsv

v′X′
sXsv

v′v

)

≥
(

min
w

w′X′
sV−1

s Xsw

w′X′
sXsw

)(
min

v

v′X′
sXsv

v′v

)

= λmin
(
V−1

s

)
λmin

(
X′

sXs

)
= λ−1

max(Vs)λmin
(
X′

sXs

)
.

Using (i) and assumption (H3), we finally get

D‖Qs‖ = Dλ−1
min

(
X′

sV−1
s Xs

) ≤ λmax(Vs)

D−1λmin(X′
sXs)

= O(1).

(iv) Condition (H4) implies

D
∥∥F−1∥∥ = Dλmax

(
F−1) = {

D−1λmin(F)
}−1 = O(1).

Moreover, note that F = −A/2+B , where B = (bh
)h,
=1,2 and A = (ah
)h,
=1,2,
for ah
 = tr(V−1

s �hV−1
s �
) and bh
 = tr(Ps�hPs�
), whereas FR = B/2. Then

λmin(FR) = λmin(B − B/2)

= λmin(B − B/2 + A/2 − A/2)

= λmin
{
F + (A − B)/2

}
≥ λmin(F) + 1

2
λmin(A − B).

But the diagonal elements of D−1(A − B) tend to zero. Indeed

bhh − ahh = tr(Ps�hPs�h) − tr
(
V−1

s �hV−1
s �h

)
= tr(Ps�hWs�h) + tr

(
Ws�hV−1

s �h

)
,

for Ws = Ps − V−1
s = V−1

s Xs(X′
sV−1

s Xs)
−1X′

sV−1
s . Then

|bhh − ahh| ≤
∣∣tr(Ps�hWs�h)

∣∣ + ∣∣tr(Ws�hV−1
s �h

)∣∣.
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Now, for the second term on the right-hand side, we have∣∣tr(Ws�hV−1
s �h

)∣∣
= ∣∣tr(V−1

s Xs

(
X′

sV−1
s Xs

)−1XsV−1
s �hV−1

s �h

)∣∣
= ∣∣tr{(X′

sV−1
s Xs

)−1/2XsV−1
s �hV−1

s �hV−1
s Xs

(
X′

sV−1
s Xs

)−1/2}∣∣
≤ pλmax

{(
X′

sV−1
s Xs

)−1/2XsV−1
s �hV−1

s �hV−1
s Xs

(
X′

sV−1
s Xs

)−1/2}
= p

∥∥V−1/2
s �hV−1

s Xs

(
X′

sV−1
s Xs

)−1/2∥∥2

≤ pλ−4
min(Vs)‖�h‖2∥∥V−1/2

s Xs

(
X′

sV−1
s Xs

)−1/2∥∥2

= pλ−4
min(Vs)‖�h‖2 = O(1).

Similarly, it is easy to see that | tr(Ps�hWs�h)| = O(1). Therefore, for h = 1,2, it
holds D−1(ahh − bhh) → 0 as D → ∞, leading to lim infλmin{D−1(A − B)} = 0,
which implies

lim infD−1λmin(FR) ≥ lim infD−1λmin(F) + lim infλmin
{
D−1(A − B)

}
> 0.

Then, similarly as we did for F above, we obtain ‖F−1
R ‖ = O(D−1). �

PROOF OF THEOREM 2.1. (i) The best predictor of wdi = exp(ydi) is equal
to w̃di = Eydr

{exp(ydi)|yds}. For a nonstochastic vector bd of size Nd − nd , using
the conditional distribution given in (2.3), we get

(9.1) Eydr

[
exp

(
b′

dydr

)|yds

] = exp
(
μ′

dr|sbd + b′
dVdr|sbd/2

)
.

Now (i) follows from the expressions for μdr|s and Vdr|s given in (2.4) and (2.5),
and taking bd as a vector with 1 in position i and 0 in the rest of elements.

(ii) The best predictor of τd is given by

τ̃d = τ̃d (β, θ)

= Eydr
(τd |yds)

= 1

Nd

[∑
i∈sd

exp(ydi) + ∑
i∈s̄d

Eydr

{
exp(ydi)|yds

}]
.

(9.2)

The result then follows by straightforward application of (i). �

PROOF OF THEOREM 4.1. For i, j ∈ s̄d , we need to calculate

(9.3) MCPE(w̃di, w̃dj ) = E(w̃diw̃dj )−E(w̃diwdj )−E(wdiw̃dj )+E(wdiwdj ).

Since ud and edi are independent for all i, the last term on the right-hand side of
(9.3) for i 
= j is given by

(9.4) E(wdiwdj ) = exp
{
(xdi + xdj )

′β
}
E

{
exp(2ud)

}
E

{
exp(edi)

}
E

{
exp(edj )

}
.
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In contrast, for i = j we have

(9.5) E
(
w2

di

) = exp
(
2x′

diβ
)
E

{
exp(2ud)

}
E

{
exp(2edi)

}
.

Observe that the expectations appearing on the right-hand side of (9.4) and (9.5)
are respectively the moment generating function (m.g.f.) of the independent ran-
dom variables 2ud , edi , edj and 2edi , evaluated at t = 1. Since the m.g.f. of a
random variable X ∼ N (μ,σ 2) is given by MX(t) = exp(μt +σ 2t2/2), using this
expression we get

(9.6) E(wdiwdj ) = exp
{
(xdi + xdj )

′β + 2σ 2
u + σ 2

e (1 + 1{i=j })
}
.

Now we obtain E(w̃diwdj ) = E{exp(ỹdi + αd + ydj )}. But by model (2.1) we
know

ydj = x′
djβ + ud + edj ,

ỹdi = x′
diβ + γd

(
ȳds − x̄′

dsβ
) = x′

diβ + γd(ud + ēds).

Noting that ud , edj for j ∈ s̄d and ēds are independent, we have

E(w̃diwdj ) = E
{
exp(ỹdi + αd + ydj )

}
= exp

{
(xdi + xdj )

′β
}

exp(αd)E
[
exp

{
(1 + γd)ud

}]
(9.7)

× E
{
exp(edj )

}
E

[
exp{γd ēds}].

Using the m.g.f.’s evaluated at t = 1 of the random variables involved in (9.7), us-
ing the expression of αd = 1

2{σ 2
u (1−γd)+σ 2

e } and the fact that γd(σ 2
u +σ 2

e /nd) =
σ 2

u , we get

E(w̃diwdj ) = exp
{
(xdi + xdj )

′β + 2σ 2
u + σ 2

e − σ 2
u (1 − γd)

}
= E(wdiw̃dj ).

(9.8)

Finally, we calculate E(w̃diw̃dj ) = E{exp(ỹdi + ỹdj + 2αd)}. Again, by model
(2.1), it holds

ỹdi + ỹdj = (xdi + xdj )
′β + 2γd

(
ȳds − x̄′

dsβ
)

= (xdi + xdj )
′β + 2γd(ud + ēds).

Now since

2γd(ud + ēds) ∼ N
{

0,4γ 2
d

(
σ 2

u + σ 2
e

nd

)}
≡N

(
0,4γdσ 2

u

)
,

then using again the m.g.f. of γd(ud + ēds) evaluated at t = 1, we get

E
[
exp

{
2γd(ud + ēds)

}] = exp
(
2γdσ 2

u

)
.
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Finally, using the expression of αd = {σ 2
u (1 − γd) + σ 2

e }/2, we get

E(w̃diw̃dj ) = exp
{
(xdi + xdj )

′β
}

exp
{
2σ 2

u + σ 2
e − σ 2

u (1 − γd)
}

= E(w̃diwdj ).
(9.9)

The result follows by replacing (9.6), (9.8) and (9.9) in (9.3). �

PROOF OF COROLLARY 4.1. Subtracting τd = N−1
d

∑Nd

i=1 wdi to the best pre-
dictor τ̃d = N−1

d (
∑

i∈sd
wdi + ∑

i∈s̄d
w̃di), the sum in the sample elements cancels

out and we get τ̃d − τd = N−1
d

∑
i∈s̄d

(w̃di − wdi). Therefore, the MSE of τ̃d is
given by

MSE(τ̃d) = E
{
(τ̃d − τd)2}

= N−2
d

{∑
i∈s̄d

MSE(w̃di) + 2
∑
i∈s̄d

∑
j∈s̄d ,j>i

MCPE(w̃di, w̃dj )

}
.

The result follows by applying Theorem 4.1 separately for i = j and for i 
= j . �

PROOF OF THEOREM 4.2. The mean crossed product error of a pair of indi-
vidual first-stage predictors ŵdi and ŵdj , for i, j ∈ s̄d , is given by

MCPE(ŵdi, ŵdj ) = E(ŵdiŵdj ) + E(wdiwdj )

− E(ŵdiwdj ) − E(wdiŵdj ).
(9.10)

The second term on the right-hand side of (9.10) is given in (9.6). Concerning the
first term on the right-hand side of (9.10), see that for all i ∈ s̄d , using (9.12), we
get

E(ŵdiŵdj ) = exp
{
2αd + (xdi + xdj )

′β
}
E

[
exp

{
(bdi + bdj )

′vs

}]
,

where the expectation on the right-hand side is the m.g.f. of the normal random
vector (bdi + bdj )

′vs evaluated at 1, that is,

(9.11) E(ŵdiŵdj ) = exp
{
(xdi + xdj )

′β + (bdi + bdj )
′Vs(bdi + bdj )/2 + 2αd

}
.

Concerning the remaining expectations in (9.10), first note that wdi = exp(ydi)

for ydi = x′
diβ + ud + edi . Moreover, the first-stage EB predictor of wdi can be

expressed as

(9.12) ŵdi = exp(ŷdi + αd), ŷdi = x′
diβ + b′

divs,

for the vector

(9.13) bdi = V−1
s XsQsxdi + σ 2

u PsZsmd,

where md = (0′
d−1,1,0′

D−d)′. Then we have

ydi + ŷdj = (xdi + xdj )
′β + b′

dj vs + ud + edi + αd.
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Replacing now vs = Zsu + es and writing ud = m′
du, we obtain

E(wdiŵdj ) = exp
{
(xdi + xdj )

′β + αd

}
E

{
exp(edi)

}
× E

[
exp

{(
m′

d + b′
dj Zs

)
u
}]

E
{
exp

(
b′

dj es

)}
.

Similarly as before, using the m.g.f. of the normal random vectors involved in the
previous expression and rearranging the terms, we obtain

E(wdiŵdj ) = exp
{
(xdi + xdj )

′β + αd + (
σ 2

e + σ 2
u

)
/2

+ b′
dj Vsbdj /2 + σ 2

u m′
dZsbdj

}
.

(9.14)

Replacing (9.6), (9.11) and (9.14) in (9.10), we get

MCPE(ŵdi, ŵdj ) = exp
{
(xdi + xdj )

′β
}[

exp
{
2σ 2

u + σ 2
e (1 + 1{i=j })

}
+ exp

{
(bdi + bdj )

′Vs(bdi + bdj )/2 + 2αd

}
(9.15)

− exp
{(

σ 2
e + σ 2

u

)
/2 + b′

diVsbdi/2 + σ 2
u m′

dZsbdi + αd

}
− exp

{(
σ 2

e + σ 2
u

)
/2 + b′

dj Vsbdj /2 + σ 2
u m′

dZsbdj

} + αd

]
.

Let us calculate the expression of each term in (9.15). Now using the definition
of bdi given in (9.13) and Ps in (3.2), and taking into account that X′

sPs = 0p×n

and PsVsPs = Ps , it is easy to see that

(bdi + bdj )
′Vs(bdi + bdj )

= (xdi + xdj )
′Qs(xdi + xdj ) + 4

(
σ 2

u

)2m′
dZ′

sV−1
s Zsmd(9.16)

− 4
(
σ 2

u

)2m′
dZ′

sV−1
s XsQsX′

sV−1
s Zsmd .

Since Vs = diag1≤d≤D(Vds) with Vds = σ 2
u 1nd

1′
nd

+ σ 2
e Ind

, md = (0′
d−1,1,

0′
D−d)′, Zds = diag1≤d≤D(1nd

) and Xs = (X′
1s, . . . ,X′

Ds)
′, we obtain

(9.17) m′
dZ′

sV−1
s Zsmd = γd

σ 2
u

, m′
dZ′

sV−1
s Xs = γd

σ 2
u

x̄′
ds .

Replacing (9.17) in (9.16), we finally obtain

(bdi + bdj )
′Vs(bdi + bdj ) = (xdi + xdj )

′Qs(xdi + xdj )
(9.18)

+ 4γd

(
σ 2

u − γd x̄′
dsQs x̄ds

)
.

Similarly, we obtain

(9.19) b′
diVsbdi = x′

diQsxdi + γd

(
σ 2

u − γd x̄′
dsQs x̄ds

) = γdσ 2
u + hd,ii − γ 2

d hd.

On the other hand, using (9.17), we get

(9.20) σ 2
u m′

dZsbdi = γd

(
σ 2

u + x′
diQs x̄ds − γd x̄′

dsQs x̄ds

)
.
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Replacing (9.18), (9.19), (9.20) and the expression for αd in (9.15), we obtain the
desired expression for MCPE(ŵdi, ŵdj ). �

PROOF OF THEOREM 5.1. We prove it for the case in which θ̂ is the ML
estimator of θ . For the REML estimator the proof is analogous, but in fact simpler.
Following the same arguments as in the proof of Theorem 1 in [12], we obtain

(9.21) E
{(

ŵE
di − ŵdi

)(
ŵE

dj − ŵdj

)} = E
{(

h′
diF−1s

)(
h′

djF−1s
)} + o

(
D−1)

,

where hdi = ∂ŵdi/∂θ . Using the same ideas as in Theorem 2 in [12], we get

E
{(

h′
diF−1s

)(
h′

djF−1s
)}

= exp
{

2αd + (xdi + xdj )
′β + 1

2
(bdi + bdj )

′Vs(bdi + bdj )

}

×
{

tr
(
F−1 ∂η′

d

∂θ
Vs

∂ηd

∂θ

)
(9.22)

+
(

∂η′
d

∂θ
Vs(bdi + bdj ) + ∂αd

∂θ

)′
F−1

(
∂η′

d

∂θ
Vs(bdi + bdj ) + ∂αd

∂θ

)}

+ o
(
D−1)

.

Note that by (9.13), we can express bdi in terms of ηd as follows:

(9.23) bdi = ηd + V−1
s XsQs

(
xdi − X′

sηd

)
,

but ‖Zs‖ = O(1) by assumption (H1). Moreover, |md | = 1. Using Lemma A.1(ii),
we get

(9.24) |ηd | = σ 2
u

∣∣V−1
s Zsmd

∣∣ ≤ σ 2
u

∥∥V−1
s

∥∥‖Zs‖|md | = O(1).

Now observe that by Lemma A.1(iii), we have∥∥V−1/2
s XsQs

∥∥ = λ1/2
max

(
QsXsV−1

s XsQs

) = λ1/2
max(Qs) = O

(
D−1/2)

.

Since X′
sηd = X′

dsV−1
ds 1nd

, which has bounded norm, and |xdi − X′
sηd | ≤ |xdi | +

|X′
sηd |, by assumptions (H1)–(H3), we have∣∣V−1

s XsQs

(
xdi − X′

sηd

)∣∣ ≤ ∥∥V−1/2
s

∥∥∥∥V−1/2
s XsQs

∥∥∣∣xdi − X′
sηd

∣∣
= O

(
D−1/2)

.
(9.25)

From (9.23), (9.24) and (9.25), we have obtained

(9.26) bdi = ηd + fdi, |ηd | = O(1), |fdi | = O
(
D−1/2)

.

Note also that |∂ηd/∂θh| = O(1), since ∂ηd/∂θh = V−1
s {(∂σ 2

u /∂θh)In −
�hV−1

s }Zsmd , h = 1,2. This implies ‖∂ηd/∂θ‖ = O(1), because
∥∥∥∥∂ηd

∂θ

∥∥∥∥ ≤
∥∥∥∥∂ηd

∂θ

∥∥∥∥
2
= tr1/2

{(
∂ηd

∂θ

)′ ∂ηd

∂θ

}
=

( 2∑
h=1

∣∣∣∣∂ηd

∂θh

∣∣∣∣2
)1/2

≤ 21/2 max
h∈{1,2}

∣∣∣∣∂ηd

∂θh

∣∣∣∣.
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By (9.23) and (9.25), we get for any i

(9.27) F−1 ∂η′
d

∂θ
Vsbdi =F−1 ∂η′

d

∂θ
Vsηd + κdi, |κdi | = o

(
D−1)

.

Using repeatedly (9.27) we obtain{
∂η′

d

∂θ
Vs(bdi + bdj ) + ∂αd

∂θ

}′
F−1

{
∂η′

d

∂θ
Vs(bdi + bdj ) + ∂αd

∂θ

}

=
(

2
∂η′

d

∂θ
Vsηd + ∂αd

∂θ

)′
F−1

(
2
∂η′

d

∂θ
Vsηd + ∂αd

∂θ

)
+ o

(
D−1)

and using (9.18), we obtain

(9.28) exp
{
2αd + (xdi + xdj )

′β + (bdi + bdj )
′Vs(bdi/2 + bdj )

} = Edij .

Replacing (9.28) in (9.22) and then (9.22) in (9.21), we get the desired result. �

PROOF OF THEOREM 5.2. Again, we show the result for the ML estimator θ̂

of θ , because for REML the proof is analogous but simpler. The proof is based on
the following chain of results:

(A) For every ν ∈ (0,1), there exists a subset of the sample space B on which,
for large D, it holds

ŵE
di − ŵdi = h′

diF−1s + h′
diF−1(H +F)F−1s

+ 1

2
h′

diF−1d + 1

2
s′F−1SdiF−1s + rdi,

where hdi = ∂ŵdi/∂θ , Sdi = ∂2ŵdi/∂θ2, d = (d1, d2)
′, with dh = s′F−1DhF−1s,

Dh = ∂H/∂θh, h = 1,2, and the remainder term rdi satisfies |rdi | < D−3ν/2w, for
a random variable w with bounded first and second moments.

(B) If 1B is the indicator function of the set B, it holds that

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )1B

}
= E

{
h′

diF−1s(ŵdj − wdj )1B
}

+ E
{
h′

diF−1(H +F)F−1s(ŵdj − wdj )1B
}

(9.29)

+ E

{
1

2
h′

diF−1d(ŵdj − wdj )1B

}

+ E

{
1

2
s′F−1SdiF−1s(ŵdj − wdj )1B

}
+ o

(
D−1)

.

(C) E{(ŵE
di − ŵdi)(ŵdj − wdj )1Bc} = o(D−1).
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(D) It holds that

E
{
h′

diF−1s(ŵdj − wdj )
} + E

{
h′

diF−1(H +F)F−1s(ŵdj − wdj )
}

+ E

{
1

2
h′

diF−1d(ŵdj − wdj )

}
(9.30)

+ E

{
1

2
s′F−1SdiF−1s(ŵdj − wdj )

}

= M3d,ij (β, θ) + o
(
D−1)

.

(E) It holds that

E
{
h′

diF−1s(ŵdj − wdj )1Bc

} = o
(
D−1)

,

E
{
h′

diF−1(H +F)F−1s(ŵdj − wdj )1Bc

} = o
(
D−1)

,

E

{
1

2
h′

diF−1d(ŵdj − wdj )1Bc

}
= o

(
D−1)

,

E

{
1

2
s′F−1SdiF−1s(ŵdj − wdj )1Bc

}
= o

(
D−1)

.

Applying in turn (C) and (B), we obtain

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )

}
= E

{
h′

diF−1s(ŵdj − wdj )1B
}

+ E
{
h′

diF−1(H +F)F−1s(ŵdj − wdj )1B
}

+ E

{
1

2
h′

diF−1d(ŵdj − wdj )1B

}

+ E

{
1

2
s′F−1SdiF−1s(ŵdj − wdj )1B

}
+ o

(
D−1)

.

Finally, writing 1B = 1 − 1Bc and applying (E) and (D), we obtain

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )

} = M3d,ij (β, θ) + o
(
D−1)

.

Next, we give the proofs of results (A)–(C).
Proof of (A): It is obtained by applying Lemma 3 of [12] to ŵE

di = ŵdi(θ),
where θ̂ is the ML estimator of θ .

Proof of (B): Applying (A) we obtain

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )1B

}
= E

{
h′

diF−1s(ŵdj − wdj )1B
}

+ E
{
h′

diF−1(H +F)F−1s(ŵdj − wdj )1B
}
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+ E

{
1

2
h′

diF−1d(ŵdj − wdj )1B

}

+ E

{
1

2
s′F−1SdiF−1s(ŵdj − wdj )1B

}
+ E

{
rdi(ŵdj − wdj )1B

}
.

But by Theorem 4.2, we know that MSE(ŵdj ) = O(1) as D tends to infinity. Then,
applying Hölder’s inequality and taking ν ∈ (2/3,1), we obtain

E
{
rdi(ŵdj − wdj )1B

} ≤ E1/2(
r2
di1B

)
E1/2{

(ŵdj − wdj )
2}

< D−3ν/2E1/2(
w2){

MSE(ŵdj )
}1/2(9.31)

= o
(
D−1)

.

Proof of (C): Noting that ŵE
di = exp(ŷE

di + α̂d), for ŷE
di = ŷdi(θ̂) and α̂d =

αd(θ̂), we have

E
{(

ŵE
di − ŵdi

)
(ŵdj − wdj )1Bc

}
= E

[{
exp

(
ŷE
di + α̂d

) − exp(ŷdi + αd)
}

× {
exp(ŷdj + αd) − exp(ydj )

}
1Bc

]
(9.32)

≤ E
[
exp

(
ŷE
di + ŷdj + α̂d + αd

)
1Bc

]
+ E

[
exp(ŷdi + ydj + αd)1Bc

]
.

For ν ∈ (0,1), we define the neighborhood N(θ0) = {θ ∈ � : |θ − θ0| < D−ν/2}.
Using (9.13) and applying Hölder’s inequality, the first expectation on the right-
hand side of (9.32) can be bounded as

E
[
exp

(
ŷE
di + ŷdj + α̂d + αd

)
1Bc

]
≤ exp

{
2 sup

N(θ0)

αd(θ)
}

× E
[
exp

{
sup

N(θ0)

(
bdi(θ) + bdj (θ)

)′ys

}
1Bc

]

≤ exp
{
2 sup

N(θ0)

αd(θ)
}
E1/2

[
exp

{
2 sup

N(θ0)

(
bdi(θ) + bdj (θ)

)′ys

}]
P 1/2(

Bc).
But the suprema of |αd(θ)| and |bdi(θ)| over N(θ0) are bounded. Moreover, since
ys is normally distributed, the expected value on the right-hand side of the inequal-
ity is bounded. Now by Lemma 1 of [12] with ν = η ∈ (0,3/4) and b > 16, we get
P 1/2(Bc) = O(D−b/16) = o(D−1). Therefore,

(9.33) E
[
exp

(
ŷE
di + ŷdj + α̂d + αd

)
1Bc

] = o
(
D−1)

.
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Similarly, writing ydj = a′
dj ys , we have

E
[
exp(ŷdi + ydj + αd)1Bc

]
≤ exp(αd)E1/2

[
exp

{(
sup

N(θ0)

bdi(θ) + adj

)′
ys

}]
P 1/2(

Bc)(9.34)

= o
(
D−1)

.

Replacing (9.33) and (9.34) in (9.32), we obtain E{(ŵE
di − ŵdi)(ŵdj −wdj )1Bc} =

o(D−1).
Proof of (D): Consider the first term on the left-hand side of (9.30), given by

E
{
h′

diF−1s(ŵdj − wdj )
} = E

(
h′

diF−1sŵdj

) − E
(
h′

diF−1swdj

)
.

Using ŵdi = exp(δdi), for δdi = αd + x′
diβ + b′

divs , and taking into account that

(9.35) hdi = ∂ŵdi/∂θ = exp(δdi)∂δdi/∂θ,

we obtain

(9.36) E
(
h′

diF−1sŵdj

) = exp
(
2αd + x′

dijβ
)
E

{
exp

(
b′

dij vs

)
(∂δdi/∂θ)′F−1s

}
,

where bdij = bdi +bdj = 2ηd + fdi + fdj , with |ηd | = O(1) and |fdi | = O(D−1/2)

by (9.26).
To calculate the expected value in (9.36), note that δdi = αd + x′

diβ + b′
divs and

define

(9.37) gd =F−1 ∂αd

∂θ
= (gd1, gd2)

′, Cdi = F−1 ∂b′
di

∂θ
= (cdi1, cdi2)

′.

Then we can write

(9.38) F−1 ∂δdi

∂θ
= F−1 ∂αd

∂θ
+F−1 ∂b′

di

∂θ
vs = gd + Cdivs .

Moreover, denoting Ah = Ps�hPs , qh = v′
sAhvs , h = 1,2 and q = (q1, q2)

′, the
vector of scores (3.5) can be expressed as

s = (q − Eq)/2 + ν,

ν = (ν1, ν2)
′,

νh = {
tr(Ps�h) − tr

(
V−1

s �h

)}
/2.

(9.39)

Using these expressions, we get

E

{
exp

(
b′

dij vs

)(∂δdi

∂θ

)′
F−1s

}

= 1

2
g′
dE

{
exp

(
b′

dij vs

)
(q − Eq)

}

+ g′
dνE

{
exp

(
b′

dij vs

)} + 1

2
E

{
exp

(
b′

dij vs

)
v′
sC

′
di(q − Eq)

}
+ E

{
exp

(
b′

dij vs

)
v′
sC

′
di

}
ν.
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Using repeatedly Lemma 5(iv) of [12], we obtain

E
(
h′

diF−1sŵdj

) = Edij

{
tr

(
F−1 ∂η′

d

∂θ
Edj

)
(9.40)

+ 1

2

(
∂αd

∂θ
+ 2

∂η′
d

∂θ
Vsηdj

)′
F−1(2ν + εdj )

}
.

For the expected value E(h′
diF−1swdj ), note that wdj = exp(ydj ), where ydj =

x′
djβ + vdj , for vdj = ud + edj . However, since j ∈ s̄d , we cannot express ydj in

terms of vs as done above. In this case, we construct an extended vector v∗
sj =

(v′
s, vdj )

′ ∼ N(02,V∗
s ), for

V∗
s =

(
Vs σ 2

u zd

σ 2
u z′

d σ 2
u + σ 2

e

)
,

where zd = Zsmd . Defining also b∗
di = (b′

di,1)′, we can express

E
(
h′

diF−1swdj

) = exp
(
αd + x′

dijβ
)
E

[
exp

{(
b∗

di

)′v∗
sj

}(∂δdi

∂θ

)′
F−1s

]
.

Writing now F−1(∂δdi/∂θ) and s in terms of v∗
sj similarly as in (9.38) and (9.39)

by adding zero elements to the vectors and matrices multiplying vs , we can apply
the same results as used for E(h′

diF−1sŵdj ), obtaining (9.40) with Edij replaced
by E∗

dij .
The rest of terms on the left-hand side of (9.30) are obtained following a similar

procedure, by expressing the terms within the expectations as sums of products of
quadratic and linear forms in vs multiplied by exponentials of linear forms of vs

and then applying repeatedly Lemma 5 of [12].
Proof of (E): Note that

E
{∣∣h′

diF−1s(ŵdj − wdj )
∣∣1Bc

}
≤ E

{∣∣h′
diF−1sŵdj

∣∣1Bc

} + E
{∣∣h′

diF−1swdj

∣∣1Bc

}
.

(9.41)

By the definition of hdi in (9.35) and that of ŵdj in (9.12), we obtain

E
{∣∣h′

diF−1sŵdj

∣∣1Bc

}
= exp

(
2αd + x′

dijβ
)
E

[
exp

{
(bdi + bdj )

′vs

}∣∣∣∣
(

∂δdi

∂θ

)′
F−1s

∣∣∣∣1Bc

]
.

Now applying repeatedly Hölder’s inequality, we get

E
{∣∣h′

diF−1sŵdj

∣∣1Bc

} ≤ exp
(
2αd + x′

dijβ
)
E1/2[

exp
{
2(bdi + bdj )

′vs

}]
× E1/8

∣∣∣∣∂δdi

∂θ

∣∣∣∣8E1/8∣∣F−1s
∣∣8P 1/4(

Bc)(9.42)

= O
(
D−1/2−b/32) = o

(
D−1)
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for b > 16, noting that by the proof of Theorem 1 in [12], it holds

(9.43) E1/8
∣∣∣∣∂δdi

∂θ

∣∣∣∣8 = O(1), E1/8∣∣F−1s
∣∣8 = O

(
D−1/2)

,

that P 1/4(Bc) = O(D−b/32), by Lemma 1 in [12] with ν = η ∈ (0,3/4), and fi-
nally taking into account that vs is normally distributed and that exp(2αd + x′

dijβ)

and bdi are bounded. By a similar reasoning, we obtain

E
{∣∣h′

diF−1swdj

∣∣1Bc

}
≤ exp

(
αd + x′

dijβ
)
E

[
exp

{(
b∗

di

)′v∗
sj

}∣∣∣∣
(

∂δdi

∂θ

)′
F−1s

∣∣∣∣1Bc

]

= o
(
D−1)

.

(9.44)

By (9.44) and (9.42), we obtain E{|h′
diF−1s(ŵdj − wdj )|1Bc} = o(D−1). The re-

maining results in (E) are proved similarly. �
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