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CONVEXIFIED MODULARITY MAXIMIZATION FOR
DEGREE-CORRECTED STOCHASTIC BLOCK MODELS

BY YUDONG CHEN1, XIAODONG LI2 AND JIAMING XU3

Cornell University, University of California, Davis and Purdue University

The stochastic block model (SBM), a popular framework for studying
community detection in networks, is limited by the assumption that all nodes
in the same community are statistically equivalent and have equal expected
degrees. The degree-corrected stochastic block model (DCSBM) is a natural
extension of SBM that allows for degree heterogeneity within communities.
To find the communities under DCSBM, this paper proposes a convexified
modularity maximization approach, which is based on a convex programming
relaxation of the classical (generalized) modularity maximization formula-
tion, followed by a novel doubly-weighted �1-norm k-medoids procedure.
We establish nonasymptotic theoretical guarantees for approximate and per-
fect clustering, both of which build on a new degree-corrected density gap
condition. Our approximate clustering results are insensitive to the minimum
degree, and hold even in sparse regime with bounded average degrees. In the
special case of SBM, our theoretical guarantees match the best-known results
of computationally feasible algorithms. Numerically, we provide an efficient
implementation of our algorithm, which is applied to both synthetic and real-
world networks. Experiment results show that our method enjoys competitive
performance compared to the state of the art in the literature.

1. Introduction. Detecting communities/clusters in networks and graphs is
an important task in many applications across computer, social and natural sci-
ences and engineering. A standard framework for studying community detection
in a statistical setting is the stochastic block model (SBM) proposed in [27]. Also
known as the planted partition model in the computer science literature [16], SBM
generates a random graph from a set of underlying clusters. The statistical task is
to accurately recover the underlying true clusters given a single realization of the
random graph.
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SBM is arguably the most popular model for studying community detection due
to its versatility and analytic tractability. It however falls short of abstracting a key
aspect of real-world networks: an unrealistic assumption of SBM is that within each
community, the degree distributions of each node are the same and have light tails
(Poisson or Gaussian tails). In empirical network data sets, however, the degree
distributions are often highly inhomogeneous across nodes, sometimes exhibiting
a heavy tail behavior with some nodes having very high degrees (so-called hubs).
At the same time, sparsely connected nodes with small degrees are also common
in real networks. To overcome this shortcoming of the SBM, the degree-corrected
stochastic block model (DCSBM) was introduced in the literature to allow for de-
gree heterogeneity within communities, thereby providing a more flexible and ac-
curate model of real-world networks [17, 29].

A number of community detection methods have been proposed under DCSBM.
Several methods are model-based, including profile likelihood maximization and
modularity maximization [29, 38]. Although these methods enjoy certain statis-
tical guarantees [48], they often involve optimization over all possible partitions,
which is computationally intractable. Recent work in [5, 32] discusses efficient
solvers, but theoretical guarantees are only established under restricted settings
such as those with two communities. Another popular class of algorithms are spec-
tral methods, which estimate the communities using the graph eigenvectors and are
often computationally fast. Statistical guarantees are derived for spectral methods
under certain settings (see, e.g., [11, 15, 17, 23, 28, 34, 41]), but numerical valida-
tion on synthetic and real data has not been as thorough. One notable exception is
the SCORE method in [28], which achieved one of the best known performances
on the political blogs dataset from [2]. Spectral methods are also known to suffer
from inconsistency in sparse graphs [30] as well as sensitivity to outliers [9]. See
Section 5 for more detailed discussion of the literature.

In this paper, we seek for a clustering algorithm that is computationally fea-
sible, has strong statistical performance guarantees under DCSBM, and provides
competitive empirical performance. Our approach makes use of the robustness and
computational power of convex optimization. Under the standard SBM, methods
based on convex optimization have been proven to be statistically efficient under a
broad range of model parameters; see, for example, [4, 6, 13, 14, 22, 39]. A recent
line of work shows that these methods can in fact achieve the optimal recovery
thresholds under SBM [1, 3, 7, 24–26, 37, 40]. In the work [9], convex meth-
ods are proved to be robust against arbitrary outlier nodes, and moreover shown
to achieve state-of-the-art misclassification rates in the political blogs dataset, in
which the node degrees are highly heterogeneous. These observations motivate us
to study whether strong theoretical guarantees under DCSBM can be established
for convex-optimization-based methods.

Building on the work of [13] and [9], we introduce in Section 2 a new com-
munity detection approach called Convexified Modularity Maximization (CMM).
CMM is based on convexifying the elegant modularity maximization formulation,



CONVEXIFIED MODULARITY MAXIMIZATION FOR DCSBM 1575

followed by a novel and computationally tractable weighted �1-norm k-medoids
clustering procedure. As we show in Section 3 and Section 4, our approach has
strong theoretical guarantees, applicable even in the sparse graph regime with
bounded average degree, and at the same time enjoys state-of-the-art empirical
performance. In both aspects, our approach is comparable to or improves upon the
best-known results in the literature.

Computationally, CMM involves solving semidefinite and linear programs,
whose time complexity is polynomial in the number of nodes n [a generous bound
is O(n6)]. Empirically, our implementation of CMM (see Section 4) is much faster
than the theoretical bound suggests. Though still not as fast as spectral methods and
conditional pseudo-likelihood maximization, convex optimization based methods
continue to benefit from the advances of fast LP/SDP solvers. We note that the
convergence of greedy methods such as profile likelihood maximization [29] and
conditional pseudo-likelihood maximization [5] are not established in general, so
their theoretical computational complexity is in fact unknown.

2. Problem setup and algorithms. In this section, we set up the community
detection problem under DCSBM, and describe our algorithm based on convexified
modularity maximization and weighted k-medoids clustering. Throughout this pa-
per, we use lower-case and upper-case bold letters such as u and U to represent
vectors and matrices, respectively, with ui and Uij denoting their elements. We let
U i• denote the ith row of the matrix U , and U•j the j th column vector of U If
all coordinates of a vector v are nonnegative, we write v ≥ 0. The notation v > 0,
as well as U ≥ 0 and U > 0 for matrices, are defined similarly. For a symmetric
matrix U ∈ R

n×n, we write U � 0 if U is positive definite, and U � 0 if it is posi-
tive semidefinite. For any sequences {an} and {bn}, we write an � bn if there is an
absolute constant c > 0 such that an/bn ≤ c, ∀n, and we define an � bn similarly.

2.1. The degree-corrected stochastic block model. In DCSBM, a graph G is
generated randomly as follows. A total of n nodes, which we identify with the set
[n] := {1, . . . , n}, are partitioned into r fixed but unknown clusters C∗

1 ,C∗
2 . . . ,C∗

r .
Each pair of distinct nodes i ∈ C∗

a and j ∈ C∗
b are connected by an (undirected)

edge with probability θiθjBab ∈ [0,1], independently of all others. Here, the vector
θ = (θ1, . . . , θn)

	 ∈ R
n+ is referred to as the degree heterogeneity parameters of

the nodes, and the symmetric matrix B ∈ R
r×r+ is called the connectivity matrix of

the clusters. Note that if θi = 1 for all nodes i, DCSBM reduces to the classical
SBM. Given a single realization of the resulting random graph G = ([n],E), the
statistical goal is to estimate the true clusters {C∗

a }ra=1.
Before describing our algorithms, let us first introduce some useful notation.

Denote by A ∈ {0,1}n×n the adjacency matrix associated with the graph G, with
Aij = 1 if and only if nodes i and j are connected. For each candidate partition of
n nodes into r clusters, we associate it with a partition matrix Y ∈ {0,1}n×n, such
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that Yij = 1 if and only if nodes i and j are assigned to the same cluster, with the
convention that Yii = 1, ∀i. Let Pn,r be the set of all such partition matrices, and
Y ∗ the true partition matrix associated with the ground-truth clusters {C∗

a }ra=1. The
notion of partition matrices plays a crucial role in the subsequent discussion.

2.2. Generalized modularity maximization. Our clustering algorithm is based
on Newman and Girvan’s classical notion of modularity (see, e.g., [38]). Given the
graph adjacency matrix A of n nodes, the modularity of a partition represented by
the partition matrix Y ∈ ⋃

r Pn,r , is defined as

(2.1) Q(Y ) := ∑
1≤i,j≤n

(
Aij − didj

2L

)
Yij ,

where di := ∑n
j=1 Aij is the degree of node i, and L = 1

2
∑n

i=1 di is the total num-
ber of edges. The modularity maximization approach to community detection is
based on finding a partition Ym that optimizes Q(Y ):

(2.2) Ym ← arg max
Y∈⋃

r Pn,r

Q(Y ).

This standard form of modularity maximization is known to suffer from a “reso-
lution limit” and cannot detect small clusters [19]. To address this issue, several
authors have proposed to replace the normalization factor 1

2L
by a tuning parame-

ter λ [31, 42], giving rise to the following generalized formulation of modularity
maximization:

(2.3) Ym ← arg max
Y∈⋃

r Pn,r

Qλ(Y ) := ∑
1≤i,j≤n

(Aij − λdidj )Yij .

While modularity maximization enjoys several desirable statistical properties
under SBM and DCSBM [48], the associated optimization problems (2.2) and (2.3)
are not computationally feasible due to the combinatorial constraint, which limits
the practical applications of these formulations. In practice, modularity maximiza-
tion is often used as a guidance for designing heuristic algorithms [18], Section VI.

Here, we take a more principled approach to computational feasibility while
maintaining provable statistical guarantees: we develop a tractable convex surro-
gate for the above combinatorial optimization problems, whose solution is then
refined by a novel weighted k-medoids algorithm.

2.3. Convex relaxation. Introducing the degree vector d = (d1, . . . , dn)
	, we

can rewrite the generalized modularity maximization problem (2.3) in matrix form
as

max
Y

〈
Y ,A − λdd	〉

(2.4)
subject to Y ∈ ⋃

r

Pn,r ,
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where 〈·, ·〉 denotes the trace inner product between matrices. The objective func-
tion is linear in matrix variable Y , so it suffices to convexify the combinatorial
constraint Y ∈ ⋃

r Pn,r .
Recall that each matrix Y in Pn,r corresponds to a unique partition of n nodes

into r clusters. There is another representation of such a partition via a membership
matrix � ∈ {0,1}n×r , where �ia = 1 if and only if node i belongs to cluster a.
These two representations are related by the identity

(2.5) Y = ��	,

which implies that Y � 0. The membership matrix of a partition is only unique up
to permutation of the cluster labels 1,2, . . . , r , so each partition matrix Y corre-
sponds to multiple membership matrices � . We use Mn,r to denote the set of all
possible membership matrices of r-partitions.

Besides being positive semidefinite, a partition matrix Y also satisfies the lin-
ear constraints 0 ≤ Yij ≤ 1 and Yii = 1 for all i, j ∈ [n]. Using these properties
of partition matrices, we obtain the following convexification of the modularity
optimization problem (2.4):

(2.6)

Ŷ = arg max
Y

〈
Y ,A − λdd	〉

subject to Y � 0,

0 ≤ Y ≤ J ,

Yii = 1, for each i ∈ [n].
Here, J is the n×n matrix with all entries equal to 1. Implementation of the formu-
lation (2.6) requires choosing an appropriate tuning parameter λ. The theoretical
range for λ for consistent clustering is given in Section 3; for all our numerical ex-
periments in Section 4, λ is set to be 〈A,J 〉−1. As our convexification is based on
the generalized version (2.3) of modularity maximization, it is capable of detecting
small clusters, even when the number of clusters r grows with n, as is shown later.

2.4. Explicit clustering via weighted k-medoids. Ideally, the optimal solution
Ŷ to the convex relaxation (2.6) is a valid partition matrix in Pn,r and recovers
the true partition Y ∗ perfectly—our theoretical results in Section 3.3 characterize
when this happens. In general, the solution Ŷ may not lie in Pn,r , but we expect it
to be close to Y ∗. To extract an explicit clustering from Ŷ , we introduce a novel
and tractable weighted k-medoids algorithm.

Recall that by definition, the ith and j th rows of the true partition matrix Y ∗
are identical if the corresponding nodes i and j belong to the same community,
and otherwise orthogonal to each other. If Ŷ is close to Y ∗, intuitively one can
extract a good partition by clustering the row vectors of Ŷ as points in the Eu-
clidean space R

n. While there exist numerous algorithms (e.g., k-means) for such
a task, our analysis identifies a particularly viable choice—a k-medoids procedure
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appropriately weighted by the node degrees—that is efficient both theoretically
and empirically.

Specifically, our weighted k-medoids procedure consists of two steps. First, we
multiply the columns of Ŷ by the corresponding degrees to obtain the matrix Ŵ :=
ŶD, where D := diag(d) = diag(d1, . . . , dn), which is the diagonal matrix formed
by the entries of d . Clustering is performed on the row vectors of Ŵ instead of Ŷ .
Note that if we consider the ith row of Ŷ as a vector of n features for node i, then
the rows of Ŵ can be thought of as vectors of weighted features.

Then we implement a weighted k-medoids clustering on the row vectors of Ŵ .
Denoting by ŵi the ith row of Ŵ , we search for a partition C1, . . . ,Cr of [n]
and r cluster medoids x1, . . . ,xr ∈ {ŵi : i ∈ [n]} in order to minimize the degree-
weighted sum of �1-distances between each wi and the corresponding center. To
be specific, we want to solve the following optimization:

(2.7)
min

{Ca}ra=1,{xa}ra=1

∑
1≤a≤r

∑
i∈Ca

di‖ŵi − xa‖1

s.t. xa ∈ Rows(Ŵ ), ∀a = 1, . . . , r,

where Rows(Z) denotes the collection of row vectors of a matrix Z. Representing
the partition {Ca}ra=1 by a membership matrix � ∈ Mn,r and the centers {xi} as
the rows of a matrix X ∈ R

r×n, (2.7) is equivalent to

(2.8)

min
�,X

∥∥D(�X − Ŵ )
∥∥

1

s.t. � ∈ Mn,r ,

X ∈ R
r×n, Rows(X) ⊆ Rows(Ŵ ),

where ‖Z‖1 denotes the sum of the absolute values of all entries of Z.
We emphasize that the formulation (2.8) differs from standard clustering algo-

rithms (such as k-means) in several ways. The objective function is the sum of
distances rather than that of squared distances, and the distances are in �1 instead
of �2 norms. Moreover, our formulation has two levels of weighting: each column
of Ŷ is weighted to form Ŵ , and the distance of each row wi to its cluster center is
further weighted by di . This doubly-weighted �1-norm k-medoids formulation is
crucial in obtaining strong and robust statistical bounds, and is significantly differ-
ent from previous approaches, such as those in [23, 34] (which only use the second
weighting, and the weights are inversely proportional to di ). Our doubly weighting
scheme is motivated by the intuition that nodes with larger degrees tend to be clus-
tered more accurately. This intuition is made concrete in the next section when we
study the solution Ŷ of the convex relaxation (2.6)—our analysis naturally leads to
a doubly weighted �1 error bound (Theorem 3.1), with bounds on the unweighted
error following as a consequence (Corollary 3.2).

With the constraint Rows(X) ⊆ Rows(Ŵ ), the optimization problem (2.8) is
precisely the weighted �1-norm k-medoids problem considered in [10]. Computing
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the exact optimizer to (2.8), denoted by (�,X), is NP-hard. Nevertheless, [10]
provides a polynomial-time approximation algorithm, which outputs a solution
(q�, qX) feasible to (2.8) and provably satisfying∥∥D(q� qX − Ŵ )

∥∥
1 ≤ 20

3

∥∥D(�X − Ŵ )
∥∥

1.(2.9)

As the solution Ŷ to the convex relaxation (2.6) and the approximate solution
q� to the k-medoids problem (2.8) can both be computed in polynomial-time, our
algorithm is computationally tractable. In the next section, we turn to the statis-
tical aspect and show that the clustering induced by Ŷ and q� is close to the true
underlying clusters, under some mild and interpretable conditions of DCSBM.

3. Theoretical results. In this section, we provide theoretical results charac-
terizing the statistical properties of our algorithm. We show that under mild condi-
tions of DCSBM, the difference between the convex relaxation solution Ŷ and the
true partition matrix Y ∗, and the difference between the approximate k-medoids
clustering q� and the true clustering �∗, are well bounded. When additional condi-
tions hold, we further show that Ŷ perfectly recovers the true clusters. Our results
are nonasymptotic in nature, valid for any scaling of n, r , θ and B , etc.

In this section, we assume without loss of generality that max1≤i≤n θi = 1. In
general, one can multiply θ by a scalar c and divide B by c2 without changing the
distribution of the graph.

3.1. Density gap conditions. In the literature of community detection by con-
vex optimization under standard SBM, it is often assumed that the minimum
within-cluster edge density is greater than the maximum cross-cluster edge den-
sity, that is,

(3.1) max
1≤a<b≤r

Bab < min
1≤a≤r

Baa.

See, for example, [4, 9, 13, 22, 39]. This requirement (3.1) can be directly extended
to the DCSBM setting, leading to the condition

(3.2) max
1≤a<b≤r

max
i∈C∗

a ,j∈C∗
b

Babθiθj < min
1≤a≤r

min
i,j∈C∗

a ,i �=j
Baaθiθj .

However, this condition would often be overly restrictive under DCSBM, partic-
ularly when the degree parameters {θi} are imbalanced with some of them being
very small. In particular, this condition is highly sensitive to the minimum value
θmin := min1≤i≤n θi , which is unnecessary since the community memberships of
nodes with larger θi may still be recoverable.

The above observation motivates us to seek a version of the density gap con-
dition that is milder and more appropriate for DCSBM. For each cluster index
1 ≤ a ≤ r , define the quantities

(3.3) Ga := ∑
i∈C∗

a

θi and Ha :=
r∑

b=1

BabGb.
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Simple calculation gives

Edi = θiHa − θ2
i Baa ≈ θiHa.

Therefore, the quantity Ha controls the average degree of the nodes in the ath
cluster. With this notation, we consider a particular condition, called the degree-
corrected density gap condition, as follows:

(3.4) max
1≤a<b≤r

Bab

HaHb

< min
1≤a≤r

Baa

H 2
a

.

This condition can be viewed as the “average” version of (3.2), as it depends on
the aggregate quantity Ha associated with each cluster a rather than the θi’s of
individual nodes—in particular, the condition (3.4) is robust against small θmin.
Moreover, the condition (3.4) is invariant under equivalent DCSBM s (i.e., those
obtained by rescaling B and θ ). This degree-corrected density gap condition plays
a key role throughout our theoretical analysis, for both approximate and exact clus-
ter recovery under DCSBM.

To gain intuition on the degree-corrected density gap condition, consider the
following sub-class of DCSBM with symmetric and balanced clusters.

DEFINITION 3.1. We say that a DCSBM obeys a F(n, r,p, q, g)-model, if
Baa = p for all a = 1, . . . , r , Bab = q for all 1 ≤ a < b ≤ r , and G1 = G2 = · · · =
Gr = g.

In a F(n, r,p, q, g)-model, the true clusters are balanced in terms of the con-
nectivity matrix B and the sum of the degree heterogeneity parameters (rather
than the cluster size). Under this model, straightforward calculation gives Ha =
((r − 1)q + p)g for all a = 1, . . . , r . The degree-corrected density gap condi-
tion (3.4) then reduces to p > q , that is, the classical density gap condition (3.1).

3.2. Theory of approximate clustering. We now study when the solutions to
our convex relaxation (2.6) and weighted k-medoids algorithms (2.8) approxi-
mately recover the underlying true clusters. Under DCSBM, nodes with different
θi’s have varying degrees and, therefore, contribute differently to the overall graph
and in turn to the clustering quality. Such heterogeneity needs to be taken into ac-
count in order to get tight bounds on clustering errors. The following version of �1
norm, corrected by the degree heterogeneity parameters, is the natural notion of an
error metric.

DEFINITION 3.2. For a matrix Z ∈ R
n×n, its weighted elementwise �1 norm

is defined as

‖Z‖1,θ :=
n∑

i=1

n∑
j=1

|θiZij θj |.
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Also recall our definitions of Ha and Ga in equation (3.3). Furthermore, define
the vector of (approximate) expected degrees f ∈ R

n such that

(3.5) fi := θiHa, ∀1 ≤ a ≤ r, i ∈ C∗
a .

With the notation above, our first theorem shows that the convex relaxation solu-
tion Ŷ is close to the true partition matrix Y ∗ in terms of the weighted �1 norm.

THEOREM 3.1. Under DCSBM, assume that the degree-corrected density gap
condition (3.4) holds. Moreover, suppose that the tuning parameter λ in the convex
relaxation (2.6) satisfies

(3.6) max
1≤a<b≤r

Bab + δ

HaHb

≤ λ ≤ min
1≤a≤r

Baa − δ

H 2
a

for some number δ > 0. Then with probability at least 0.99 − 2(e/2)−2n, the solu-
tion Ŷ to the convex relaxation (2.6) satisfies the bound

(3.7)
∥∥Y ∗ − Ŷ

∥∥
1,θ ≤ C0

δ

(
1 + λ‖f ‖1

)(√
n‖f ‖1 + n

)
,

where C0 > 0 is an absolute constant and ‖f ‖1 = ∑
a,b BabGaGb.

We prove this claim in Section 7.1. Our analysis is inspired by the seminal
work in [22], and makes use of the Grothendieck’s inequality [21, 35] to obtain
uniform deviation bounds. Notably, the bound (3.7) is insensitive to θmin as should
be expected, because community memberships of nodes with relatively large θi are
still recoverable. In contrast, the error bounds of several existing methods, such as
that of SCORE method in [28], equations (2.15), (2.16), depend on θmin crucially.

Under the F(n, r,p, q, g)-model, recall that Ha ≡ (p + (r − 1)q)g and density
gap condition (3.4) becomes p > q . Moreover, the constraint (3.6) for δ and λ

becomes

(3.8) p − q ≥ 2δ and
q + δ

(p + (r − 1)q)2g2 ≤ λ ≤ p − δ

(p + (r − 1)q)2g2 .

Note that the first inequality above is the same as the standard density gap con-
dition imposed in, for example, [9, 13, 14]. Furthermore, the vector f satis-
fies ‖f ‖1 = r(p + (r − 1)q)g2 ≤ r2pg2. Substituting these expressions into the
bound (3.7), we obtain the following corollary for the symmetric DCSBM setting.

COROLLARY 3.1. Under the F(n, r,p, q, g)-model of DCSBM, if the condi-
tion (3.8) holds for the density gap and tuning parameter, then with probability at
least 0.99 − 2(e/2)−2n, the solution Ŷ to the convex relaxation (2.6) satisfies the
bound

(3.9)
∥∥Y ∗ − Ŷ

∥∥
1,θ �

1

δ

(
1 + rp

(p + (r − 1)q)

)
(n + rg

√
np) � 1

δ
r(n + rg

√
np).
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Note that if p
q

= c for an absolute constant c, then the first inequality in

bound (3.9) takes the simpler form ‖Y ∗ − Ŷ‖1,θ � n+rg
√

np

δ
. If θi = 1 for all

nodes i, the F(n, r,p, q, g)-model reduces to the standard SBM with equal com-
munity size. If we assume r = O(1) additionally, and note that g = n/r and let
δ = p−q

4 , then the error bound (3.9) becomes

∥∥Y ∗ − Ŷ
∥∥

1 �
n(1 + √

np)

p − q
.

This bound matches the error bounds given in [22], Theorem 1.3.
The output Ŷ of the convex relaxation needs not be a partition matrix corre-

sponding to a clustering; a consequence is that the theoretical results in [22] do
not provide an explicit guarantee on clustering errors (except for the special case
of r = 2). We give such a bound below, based on the explicit clustering extracted
from Ŷ using the weighted �1-norm k-medoids algorithm (2.8). Recall that q� is
the membership matrix in the approximate k-medoids solution given in (2.9), and
let �∗ be the membership matrix corresponding to the true clusters. A member-
ship matrix is unique only up to permutation of its columns (i.e., relabeling the
clusters), so counting the misclassified nodes in q� requires an appropriate mini-
mization over such permutations. This motivates the following definition; here for
a matrix M , M i• denotes its ith row vector.

DEFINITION 3.3. Let Sr denote the set of all r × r permutation matrices. The
set of misclassified nodes with respect to a permutation matrix � ∈ Sr is defined
as

E(�) := {
i ∈ [n] : (q��)i• �= �∗

i•
}
.

With this definition, we have the following theorem that quantifies the misclas-
sification rate of the weighted k-medoids procedure, whose input is the optimal
solution Ŷ of the convex relaxation.

THEOREM 3.2. Under the F(n, r,p, q, g)-model, assume that the parameters
δ and λ satisfy (3.8). With probability at least 0.99−2(e/2)−2n and for an absolute
constant C0, the approximate k-medoids solution q� satisfies

min
�∈Sr

{ ∑
i∈E(�)

θi

}
≤ C0

r

δ

(
n

g
+ r

√
np

)
.(3.10)

We prove this claim in Section 7.4. The proof is carried out by establishing
two general results of independent interest on the errors of k-medoids clustering
(given in Section 7.2 and Section 7.3), and combining them with Theorem 3.1
which bounds the error rate of Ŷ , the input to k-medoids.
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If we let �θ be a minimizer of the LHS of (3.10) and Eθ := E(�θ ), then the
quantity

∑
i∈Eθ

θi is the number of misclassified nodes weighted by their degree
heterogeneity parameters {θi}. Theorem 3.2 controls this weighted quantity. No-
tably, the bound given in (3.10) is applicable all the way down to the sparse graph
regime with bounded average degrees, that is, p,q = O(1/n). For example, sup-
pose that p = a/n and q = b/n for two fixed constants a > b, r = O(1) and g � n;
if (a − b)/

√
a is sufficiently large, then with the choice δ � (a − b)/n, the right-

hand side of (3.10) can be an arbitrarily small constant times n. In comparison,
conventional spectral methods are known to be inconsistent in this sparse regime
[30]. While this difficulty is alleviated under SBM by the use of regularization or
nonbacktracking matrices (e.g., [8, 33]), rigorous justification and numerical vali-
dation under DCSBM have not been well explored.

The general weighted bound (3.10) in fact implies direct (unweighted)
bounds on the number misclassified nodes, namely min�∈Sr {

∑
i∈E(�) 1} =

min�∈Sr |E(�)|, as given in the following corollary.

COROLLARY 3.2. Under the same assumptions as Theorem 3.2, the approxi-
mate k-medoids solution q� satisfies the bounds

min
�∈Sr

∣∣E(�)
∣∣ ≤

√√√√C0

δg
r(n + rg

√
np)

n∑
i=1

1

θi

, and(3.11)

min
�∈Sr

∣∣E(�)
∣∣ ≤ C0

δgτ
r(n + rg

√
np) + ∣∣{i : θi < τ }∣∣, ∀τ > 0.(3.12)

PROOF. By definition min�∈Sr |E(�)| ≤ E(�θ ) = |Eθ |. Furthermore, by the

Cauchy–Schwarz inequality, |Eθ | ≤
√∑

i∈Eθ
θi

∑
i∈Eθ

1
θi

. Alternatively, for any

τ > 0, |Eθ | ≤ 1
τ

∑
i∈Eθ

θi + |{i : θi < τ }|. The corollary then readily follows by
plugging (3.10) into the last two inequalities. �

Inequality (3.12), in fact a collection of bounds indexed by τ , is insensitive to
θmin. For illustration, consider the following F(n, r,p, q, g) model of DCSBM,
where θ1 = θmin, θ2 = 1 − θmin, θ3 = · · · = θn = 1

2 for some small θmin < 1
2 , nodes

1 2 are from the same cluster, and p ≥ 1/n. In this case, g = n/(2r). By setting
δ = (p−q)/4 and τ = 1/2 in (3.12), we get that the number of misclassified nodes
satisfies the bound min�∈Sr |E(�)| = O(r2√np/(p − q)) + 1, which is not af-
fected if the parameter θ1 = θmin of node 1 is very small. Intuitively, if a few nodes
have small θi’s, then they cannot be recovered but do not impact the recovery of the
other nodes. In comparison, the error bounds in several existing works depend on
θmin crucially. For example, the error bound of the SCORE method ([28], equations
(2.15) and (2.16)), scales with 1/θmin and approaches infinity when θmin → 0.

In the special case of standard SBM with θi ≡ 1, p ≥ 1
n

and r equal-sized clus-
ters, setting τ = 0.9 in (3.12) yields that the number of misclassified nodes is
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O(
r2√np

p−q
). This bound is consistent with those in [22] when r = 2; it is in fact

more general as it applies to r ≥ 3 clusters.

3.3. Theory of perfect clustering. In this section, we show that under an
additional condition on the minimum degree heterogeneity parameter θmin =
min1≤i≤n θj , the solution Ŷ to the convex relaxation perfectly recovers the true
partition matrix Y ∗. In this case, the true clusters can be extracted easily from Ŷ
without using the k-medoids procedure.

For the purpose of studying perfect clustering, we consider a setting of DCSBM
with Baa = p for all a = 1, . . . , r , and Bab = q for all 1 ≤ a < b ≤ r . Under this
setup, the degree-corrected density gap condition (3.6) becomes

(3.13) max
1≤a<b≤r

q + δ

HaHb

≤ λ ≤ min
1≤a≤r

p − δ

H 2
a

.

Recalling the definition of Ga in (3.3), we further define Gmin := min1≤a≤r Ga .
The following theorem, proved in the Supplementary Material [12], provides a
sufficient condition for perfect clustering.

THEOREM 3.3. Suppose that the degree-corrected density gap condition
(3.13) is satisfied for some number δ > 0 and tuning parameter λ, and that

δ > C0

(√
qn

Gmin
+

√
p logn

Gminθmin

)
(3.14)

for some sufficiently large absolute constant C0. With probability at least 1 −
10n−1, the convex relaxation (2.6) has a unique optimal solution Ŷ = Y ∗.

The condition (3.14) depends on the minimum values Gmin and θmin. Such de-
pendence is necessary for perfect clustering, as clusters and nodes with overly
small Ga and θi will have too few edges and are not recoverable. In comparison,
the approximate recovery results in Theorem 3.1 are not sensitive to either θmin
or Gmin, as should be expected. Valid for the more general DCSBM, Theorem 3.3
significantly generalizes the existing theory for standard SBM on perfect clustering
by SDP in the literature (see, e.g., [9, 13, 14]). Taking n → ∞, Theorem 3.3 guar-
antees that the probability of perfect clustering converges to one, thereby implying
the convex relaxation approach is strongly consistent in the sense of [48].

In the special case of standard SBM with θi = 1,∀i ∈ [n], the density gap lower
bound (3.14) simplifies to

δ �
√

qn

�min
+

√
p logn

�min
,

where �min := min1≤a≤r �a is the minimum community size and �a := |C∗
a | is the

size of community a. This density gap lower bound is consistent with best existing
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results given in [9, 13, 14]—as we discussed earlier, our density condition in (3.8)
under the F(n, r,p, q, g) model (which encompasses SBM with equal-sized clus-
ters) is the same as in these previous papers, with the minor difference that in
these papers the term λ

didj
in the convex relaxation (2.6) is replaced by a tuning

parameter λ′ assumed to satisfy the condition q + δ ≤ λ′ ≤ p − δ.

4. Numerical results. In this section, we provide numerical results on both
synthetic and real datasets, which corroborate our theoretical findings.

The convexified modularity maximization problem (2.6) is a semidefinite pro-
gram (SDP), and can be solved efficiently by a range of general and special-
ized algorithms. Here, we use the alternating direction method of multipliers
(ADMM) suggested in [9]. To specify the ADMM solver, we need some addi-
tional notations. For two n × n matrices X and Y , let max{X,Y } be the matrix
whose (i, j)th entry equals max{Xij , Yij }; the matrix min{X,Y } is similarly de-
fined. For a symmetric matrix X with eigenvalue decomposition X = U�U	, let
(X)+ := U max{�,0}U	, and let (X)I be the matrix obtained by setting the diag-
onal entries of X to 1. Recall that J is the n × n all-one matrix. Algorithm 1 gives
the ADMM procedure for solving (2.6) with the dual update step size equal to 1.

Our choice of the tuning parameter λ = 〈A,J 〉−1 is motivated by the following
simple observation. By standard concentration inequalities, the number 〈A,J 〉 is
close to its expectation

∑
i E[di] ≈ ‖f ‖1. Under the F(n, r,p, q, g)-model, we

have ‖f ‖1 = r(p + (r − 1)q)g2 and Ha = ((r − 1)q + p)g for all a ∈ [r]. In this
case and with the above choice of λ, the density gap assumption (3.13) simplifies
to q+δ

(r−1)q+p
≤ 1

r
≤ p−δ

(r−1)q+p
, which holds with δ = (p − q)/r .

After obtaining the solution Ŷ of the convex relaxation, we extract an explicit
clustering using the weighted k-medoids procedure in (2.8) with k = r , where the
number of major clusters r is assumed known. Our complete community detection
algorithm, Convexified Modularity Maximization (CMM), is summarized in Al-

Algorithm 1 ADMM algorithm for solving the SDP (2.6)

1: Input: A and λ = 〈A,J 〉−1.
2: Initialization: Z(0) = �(0) = 0, k = 0 and MaxIter= 100.
3: while k < MaxIter

1. Y (k+1) = (Z(k) − �(k) + A − λdd	)+
2. Z(k+1) = (min{max{Y (k) + �(k),0},J })I
3. �(k+1) = �(k) + Y (k+1) − Z(k+1)

4. k = k + 1

end while
4: Output the final solution Y (k).
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Algorithm 2 Convexified Modularity Maximization (CMM)

1: Input: A, λ = 〈A,J 〉−1, and r ≥ 2.
2: Solve the convex relaxation (2.6) for Ŷ using Algorithm 1.
3: Solve the weighted k-medoids problem (2.8) with Ŵ = ŶD and k = r , and

output the resulting r-partition of [n].

gorithm 2. In our experiments, the weighted k-medoids problem is solved by an
iterative greedy procedure that optimizes alternatively over the variables � and X

in (2.8), with random initialization.

4.1. Synthetic data experiments. In this section, we provide experiment re-
sults on synthetic data generated from DCSBM. For each node i ∈ [n], the de-
gree heterogeneity parameter θi is sampled independently from a Pareto(α,β) dis-
tribution with the density function f (x|α,β) = αβα

xα+1 1{x≥β}, where α and β are

called the shape and scale parameters, respectively. We consider different val-
ues of the shape parameter, and choose the scale parameter accordingly so that
the expectation of each θi is fixed at 1. Note that the variability of the θi’s de-
creases with the shape parameter α. Given the degree heterogeneity parameters
{θi} and two numbers 0 ≤ q < p ≤ 1, a graph is generated from DCSBM, with
the edge probability between nodes i ∈ C∗

a and j ∈ C∗
b being min(1, θiθjBab) and

Baa = p,Bab = q,∀1 ≤ a �= b ≤ r .
We applied our CMM approach in Algorithm 2 to the resulting graph, and

recorded the misclassification rate [namely, min�∈Sr |E(�)|/n; cf. the discussion
after Theorem 3.2]. For comparison, we also applied several algorithms which are
reported to have state-of-the-art empirical performance on DCSBM in the existing
literature:

• The SCORE algorithm in [28] is a spectral clustering algorithm that performs
k-means on the top-2 to top-r eigenvectors of the adjacency matrix normalized
elementwise by the top-1 eigenvector.

• The OCCAM algorithm in [47] is a type of regularized spectral clustering algo-
rithm. It can be instructed to produce nonoverlapping clusters and its regulariza-
tion parameter is given explicitly in [47].

• The profile likelihood (PL) maximization algorithm in [29] with Tabu search
[48] greedily maximizes the profile likelihood function over community parti-
tions, starting with an initial partition generated either randomly or by a regu-
larized spectral clustering algorithm.

• The conditional pseudo-likelihood (CPL) maximization algorithm in [5] max-
imizes the conditional pseudo-likelihood via EM algorithm, starting with an
initial partition provided by regularized spectral clustering.
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• To measure the performance gain by incorporating degree correction when the
degrees are indeed heterogeneous, we also compared with the SDP1 algorithm
in [6], Appendix J, developed under SBM.

For all k-means/medoids procedures used in the experiments, we set k = r and
used 100 random initializations. In both PL and CPL, the initial partition was ob-
tained using a standard spectral clustering algorithm applied to the regularized ad-
jacency matrix A+ 0.25(η/n)J , where η is the average degree of the network [5].

We note that some of these methods like SCORE have the advantages of being
conceptually simple and computationally fast. On the other hand, methods like PL
and CPL employ greedy heuristic procedures, whose convergence properties are
not fully established. Here, we mainly focus on their empirical clustering perfor-
mance in terms of misclassification rates.

The synthetic experiments were performed with different connectivity matrix
B , shape parameter α, and numbers and sizes of clusters. Note that as α increases,
the degree parameters {θi} become less heterogeneous. In the limit α → ∞, we
have θi ≡ 1 for all i, and thus DCSBM reduces to SBM. In all plots, each point
represents the average of 20 independent runs.

We first consider the setting with two equal-sized clusters, with the results given
in Figure 1. It shows that the misclassification rate of CMM decreases as the degree
parameters {θi} become less heterogeneous (larger values of the shape parameter).
Moreover, in the dense graph case, CMM consistently has lower misclassification
rates than all the other five competing methods; in the sparse graph case, CMM
has similar performance as CPL/PL. We have similar observations when cluster
sizes are unbalanced, as shown in Figure 2, and when we increase the number of
clusters to four, as shown in Figure 3.

To investigate the flexibility and robustness of CMM, we consider a setting
where the connectivity matrix B does not satisfy the so-called strong assortative
condition, that is, min1≤a≤r Baa is not necessarily larger than max1≤a<b≤r Bab.
In particular, we consider the following connectivity matrix used in [6] with p3 ∈

FIG. 1. Misclassification rate versus variability of θ for n = 800 and 2 equal-sized clusters. Left
panel: p = 0.5, q = 0.35. Right panel: p = 0.05, q = 0.015.
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FIG. 2. Misclassification rate versus variability of θ for n = 800 and 2 clusters of sizes 600 and
200, respectively. Left panel: p = 0.5, q = 0.3. Right panel: p = 0.05, q = 0.015.

[0.05,0.7]:

B =

⎡⎢⎢⎣
0.7 0.4 0.05 0.2
0.4 0.6 0.05 0.2

0.05 0.05 p3 0.05
0.2 0.2 0.05 0.4

⎤⎥⎥⎦ .

Here, strong assortativity is never satisfied. When p3 > 0.05, this matrix does sat-
isfy the so-called weak assortativity, namely, Baa > minb �=a Bab for all a ∈ [r].
SDP1 is targeted at this setting; under the additional assumption that all commu-
nity sizes are equal, it is shown in [6] that SDP1, which has additional row sum
constraints, succeeds under weak assortativity.

While CMM does not have such row sum constraints and is oblivious to the
equal-size assumption, Figure 4 shows that it still works well under weak assor-
tativity, and in particular is robust to the variation of p3, similar to SDP1, CPL
and PL. In fact, CMM significantly outperforms the other five methods when the
degree variation is high (shape parameter α = 1.2). When degree variation is low,
CMM is still on a par with SDP1, CPL and PL.

FIG. 3. Misclassification rate versus variability of θ for n = 800 and 4 equal-sized clusters. Left
panel: p = 0.5, q = 0.3. Right panel: p = 0.05, q = 0.015.
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FIG. 4. Misclassification rate versus p3 for n = 800 and 4 equal-sized clusters. The shape param-
eter is α = 1.2 in the left panel and α = 2 in the right.

We further consider a setting where even weak assortativity fails to hold, as
shown in Figure 5. We see that CMM continues to dominate other methods when
the network is relatively dense, and has similar performance to CPL/PL in the
sparse setting.

In general, the results in this section indicate that CMM is a versatile algorithm
for DCSBM, and has competitive performance compared to the state of the art in
all the settings we considered. Moreover, CMM outperforms CPL and PL in the
relatively dense setting. The comparison with SDP1 also demonstrates the gain of
degree correction and the robustness of CMM under unbalanced clusters.

4.2. Political blog network dataset. We next test the empirical performance of
CMM and the other algorithms on the US political blogs network dataset from [2].
This dataset consists of 19,090 hyperlinks (directed edges) between 1490 political
blogs collected in the year 2005. The political leaning (liberal versus conservative)
of each blog has been labeled manually by experts. We treat these labels as the true
memberships of r = 2 communities. We ignore the edge direction, and focus on the
largest connected component with n = 1222 nodes and 16,714 edges, represented

FIG. 5. n = 800 and 2 equal-sized clusters. Left panel: B = [0.7,0.3;0.3,0.2]. Right panel:
B = [0.14,0.06;0.06,0.06].
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FIG. 6. Results on largest connected component (1222 nodes) of the political blogs dataset. The
rows and columns are sorted according to the true community labels, with the first 586 corresponding
to the liberal community and the remaining 636 the conservative community. Panel (a): The adjacency

matrix. Panel (b): The output matrix Ŷ of the convex relaxation (2.6), with the entries truncated to the
interval [0,1]. Panel (c): The partition matrix corresponding to the output of CMM (Algorithm 2).
Matrix entry values are shown in gray scale with black corresponding to 1 and white to 0.

by the adjacency matrix A. This graph has high degree variation: the maximum
degree is 351 while the mean degree is around 27. Panel (a) in Figure 6 shows the
adjacency matrix A with rows and columns sorted according to the true community
labels. The output of ADMM Algorithm 1 for solving the convex relaxation (2.6)
is shown in Figure 6(b). The partition matrix corresponding to the output of the
weighted k-medoids step in Algorithm 2 is shown in Figure 6(c).

On the political blogs dataset, SCORE and PL have the best known error rates
in the literature [28]. From Table 1, we see that CMM is comparable to the state of
the art. In particular, with proper degree correction, CMM significantly improves
over SDP1, which is designed for SBM.

4.3. Facebook dataset. The Facebook network dataset from [44, 45] consists
of 100 US universities and a snapshot of all the “friendship” links between the
users within each university in September 2005. The dataset also contains several
node attributes such as the gender, dorm, graduation year and academic major of
each user. Here, we report results on the friendship network of Simmons College.
Results on the friendship network of Caltech can be found in the Supplementary
Material [12].

TABLE 1
Number of misclassified nodes in the political blogs dataset

CMM SCORE OCCAM CPL PL SDP1

# of mis. nodes 61 58 65 61 58 181
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TABLE 2
Misclassification rates in the Simmons College network

CMM SCORE OCCAM CPL PL SDP1

mis. rate 12.04% 23.57% 22.43% 18.21% 17.85% 25.42%

In the Simmons College network, the subgraph induced by nodes with gradu-
ation year between 2006 and 2009 has a largest connected component with 1137
nodes and 24,257 undirected edges, which we shall focus on. It has been observed
in [44, 45] that the community structure of the Simmons College network exhibits
a strong correlation with the graduation year—students in the same year are more
likely to be friends.

We applied CMM (Algorithm 2), SCORE, OCCAM, CPL, PL and SDP1 meth-
ods to partition the largest component into r = 4 clusters. The error rates of these
algorithms are shown in Table 2. In Figure 7, we also provide the confusion
matrices of the clustering results against the graduation years; the (i, j)th entry
of a confusion matrix represents the number of nodes that are from graduation
year i + 2005 but assigned to cluster j by the algorithm. We see that our CMM
approach produced a partition more correlated with the actual graduation years.
In fact, if we treat the graduation years as the ground truth cluster labels, then the
fractions of misclassified nodes by various algorithms are listed below.

FIG. 7. The confusion matrices of CMM, SCORE, OCCAM, CPL, PL and SDP1 applied to the
largest component of the Simmons College network.
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A closer investigation of Figure 7 indicates that CMM was better in distinguish-
ing between the nodes of year 2006 and 2007. This is consistent with visualization
results provided in the Supplementary Material [12].

We emphasize that the partition by graduate years is by no means an absolute
ground truth of the network’s community structure. Nevertheless, the above results
show that our algorithm is able to produce a meaningful, informative clustering
without any prior knowledge of the graduation years.

5. Related work. In this section, we discuss prior results that are related
to our work. Existing community detection methods for DCSBM include model-
based methods and spectral methods. In model-based methods, one fits the model
parameters to the observed network by optimizing an objective function derived
under the statistical assumptions of SBM or DCSBM. For example, one may con-
sider the profile likelihood function, which is itself obtained by plugging in the
maximum likelihood estimates of θ and B . In [29], an estimate of the community
structure is obtained by maximizing this profile likelihood using greedy heuristics.
No theoretical guarantee is known for this greedy approach, and one usually runs
the algorithm with multiple random initial solutions. The work in [48] also consid-
ers profile likelihood methods, as well as the closely related modularity maximiza-
tion approach [38]. With a fixed number of clusters, they prove strong consistency
when the average degree is �(logn), and weak consistency when it is �(1). How-
ever, directly solving the associated maximization problems is computationally
infeasible, as it involves searching over exponentially many partitions. In practice,
these optimization problems are usually solved heuristically using Tabu search and
spectral decomposition without theoretical guarantees. The algorithm proposed in
[5] involves finding an initial clustering using spectral methods, then iteratively
updating the labels via maximizing the conditional pseudo likelihood. The latter is
done using the EM algorithm in each iteration. After simplifying the iterations into
one E-step, they prove consistency when there are two clusters. The work in [32]
proposes to approximate the profile likelihood functions, modularity functions or
other criteria using surrogates defined in a 2-dimensional subspace constructed by
spectral dimension reduction. Thanks to the convexity of the surrogate functions,
the search complexity is polynomial. The algorithm and theory are however only
applicable when there are two communities.

Spectral methods for community detection have attracted interest of experts
from diverse communities; see, for example, [43] and the references therein for re-
sults of spectral clustering under SBM. The seminal work in [17] considers DCSBM
(proposed under the name of Extended Planted Partition model) and proposes a
spectral method similar to [36]. One major drawback is that the knowledge of θ

is required in both the theory and algorithm. In the algorithm proposed in [15],
the adjacency matrix is first normalized by the node degrees and then thresholded
entrywise, after which spectral clustering is applied. Strong consistency is proved
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for the setting with a fixed number of clusters. In [11], a modified spectral clus-
tering method was proposed using a regularized random-walk graph Laplacian,
and strong consistency is established under the assumption that the average de-
gree grows at least as �(

√
n). A different spectral clustering approach based on

regularized graph Laplacians is considered in [41]. Their theoretical bound on the
misclassified rates depends on the eigenvectors of the graph Laplacian, which is
still a random object. Spectral clustering based on unmodified adjacency matrices
and degree-normalized adjacency matrices are analyzed in [34] and [23], which
prove rigorous error rate results but do not provide numerical validation on either
synthetic or real data.

It is observed in [28] that spectral clustering based directly the adjacency ma-
trix (or their variants) often result in inconsistent clustering in real data, such as
the political blogs dataset [2], a popular benchmark for community detection algo-
rithms. To address this issue, a new spectral clustering algorithm called SCORE is
proposed in [28] using self-normalized eigenvectors. In their theoretical results, an
implicit assumption is that the number of communities r is bounded by a constant,
as implied by the condition (2.14) in [28]. In comparison, our convexified modular-
ity maximization approach works for growing r both theoretically and empirically.
As illustrated in Section 4.1, our method exhibited better performance on both the
synthetic and real datasets considered there, especially when r ≥ 3.

6. Discussion and future work. In this paper, we studied community detec-
tion in networks with potentially highly skewed degree distributions. We intro-
duced a new computationally efficient methodology, which is based on convexifi-
cation of the modularity maximization formulation and a novel doubly-weighted
�1 norm k-medoids clustering procedure. Our complete algorithm runs provably in
polynomial time and is computationally feasible. Nonasymptotic theoretical per-
formance guarantees were established under DCSBM for both approximate clus-
tering and perfect clustering, which are consistent with the best known rate results
in the literature of SBM.

The proposed method also enjoys good empirical performance, as was demon-
strated on both synthetic data and real-world networks. On these datasets, our
method was observed to have performance comparable to, and sometimes better
than, the state-of-the-art spectral clustering methods, particularly when there are
more than two communities.

Our work involves several algorithmic and analytical novelties. We provide a
tractable solution to the classical modularity maximization formulation via con-
vexification, achieving simultaneously strong theoretical guarantees and compet-
itive empirical performance. The theoretical results are based on an aggregate,
degree-corrected version of the density gap condition, which is robust to nodes
with small degrees. In our algorithms and error bounds, we made use of some
techniques from [22, 28, 34], but departed from these existing works in several
important aspects. In particular, we proposed a novel k-medoids formulation using
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doubly-weighted �1 norms, which allows for a tight analysis that produces strong
nonasymptotic guarantees on approximate recovery. Furthermore, we developed a
nonasymptotic theory on perfect clustering, which is based on a primal-dual analy-
sis and makes crucial use of certain weighted �1 metrics that exploit the structures
of DCSBM.

A future direction important in both theory and practice, is to handle overlap-
ping communities (i.e., a node may belong to multiple communities simultane-
ously). This setting has been considered under SBM, for example in [47], which
proposed a spectral algorithm called OCCAM. As our CMM method is shown to
be an attractive alternative to spectral methods for DCSBM, it will be interesting to
extend CMM to allow for overlapping communities with heterogeneous degrees.
Another direction of interest is to develop a general theory of optimal misclassifi-
cation rates for DCSBM in the lines of [20, 46].

7. Proofs. In this section, we prove the theoretical results in Section 3.2. The
proof of Theorem 3.3 is deferred to the Supplementary Material [12]. Introducing
the convenient shorthand � := θθ	 ∈ R

n×n+ , we can write the weighted �1 norm
of a matrix Z in Definition 3.2 as

‖Z‖1,θ = ∑
1≤i,j≤n

|θiZij θj | = ‖� ◦ Z‖1,

where ◦ denotes the Hadamard (elementwise) product. Several standard matrix
norms will also be used: the spectral norm ‖Z‖ (the largest singular value of Z);
the nuclear norm ‖Z‖∗ (the sum of the singular values); the �1 norm ‖Z‖1 =∑

i,j |Zij |; the �∞ norm ‖Z‖∞ = maxi,j |Zij |; and the �∞ → �1 operator norm
‖Z‖∞→1 = sup‖v‖∞≤1 ‖Zv‖1.

For any vector v ∈ R
n, we denote by diag(v) the n × n diagonal matrix whose

diagonal entries are correspondingly the entries of v. For any matrix M ∈ R
n,

let diag(M) denote the n × n diagonal matrix with diagonal entries given by the
corresponding diagonal entries of M . We denote absolute constants by C,C0, c1,
etc., whose value may change line by line.

7.1. Proof of Theorem 3.1. Recall that the vector f ∈ R
n is defined by let-

ting fi = θiHa for i ∈ C∗
a , where Ha is defined in (3.3) as Ha = ∑r

b=1 BabGb. It
follows from the optimality of Ŷ that

0 ≤ 〈
Ŷ − Y ∗,A − λdd	〉

= 〈
Ŷ − Y ∗,EA − λf f 	〉︸ ︷︷ ︸

S1

+λ
〈
Ŷ − Y ∗,f f 	 − dd	〉︸ ︷︷ ︸

S2

+ 〈
Ŷ − Y ∗,A −EA

〉︸ ︷︷ ︸
S3

.

We control the terms S1, S2 and S3 separately below.



CONVEXIFIED MODULARITY MAXIMIZATION FOR DCSBM 1595

Upper bound for S1. For each pair i, j ∈ C∗
a and i �= j , we have Ŷij − Y ∗

ij ≤
0, E(Aij ) = θiθjBaa , and fifj = θiθjH

2
a . Hence the condition (3.6) implies that

E(Aij ) − λfifj ≥ δθiθj , whence(
Ŷij − Y ∗

ij

)(
E(Aij ) − λfifj

) ≤ −δθiθj

∣∣Ŷij − Y ∗
ij

∣∣.
Similarly, for each pair i ∈ C∗

a and j ∈ C∗
b with 1 ≤ a < b ≤ r , we have Ŷij −Y ∗

ij ≥
0, E(Aij ) = θiθjBab, and fifj = θiθjHaHb. Hence, the condition (3.6) implies
that E(Aij ) − λfifj ≤ −δθiθj , whence(

Ŷij − Y ∗
ij

)(
E(Aij ) − λfifj

) ≤ −δθiθj

∣∣Ŷij − Y ∗
ij

∣∣.
Combining the last two inequalities, we obtain the bound

S1 := 〈
Ŷ − Y ∗,EA − λf f 	〉 ≤ −δ

∥∥Y ∗ − Ŷ
∥∥

1,θ .

Upper bound for S2. By Grothendieck’s inequality [21, 35], we have〈
Ŷ − Y ∗,f f 	 − dd	〉 ≤ 2 sup

Y�0,diag(Y )=I

∣∣〈Y ,f f 	 − dd	〉∣∣
≤ 2KG

∥∥f f 	 − dd	∥∥∞→1,

where KG is Grothendieck’s constant known to satisfy KG ≤ 1.783. Applying
Lemma 9.1 in the Supplementary Material [12] on ‖f f 	 − dd	‖∞→1 ensures
that with probability at least 0.99 and for some absolute constant C,

S2 ≤ Cλ‖f ‖1
(√

n‖f ‖1 + n
)
.

Upper bound for S3. Observe that〈
Ŷ − Y ∗,A −EA

〉 ≤ 2 sup
Y�0,diagY=I

∣∣〈Y ,A −EA〉∣∣.
It follows from Grothendieck’s inequality that

sup
Y�0,diag(Y )=I

∣∣〈Y ,A −EA〉∣∣ ≤ KG‖A −EA‖∞→1.

The norm on the last RHS can be expressed as

‖A −EA‖∞→1 = sup
x:‖x‖∞≤1

∥∥(A −EA)x
∥∥

1 = sup
x,y∈{±1}n

∣∣x	(A −EA)y
∣∣.

For each fixed pair of sign vectors x,y ∈ {±1}n, Bernstein’s inequality ensures
that for each t > 0, we have with probability at most 2e−t ,∣∣x	(A −EA)y

∣∣ ≥ √
8tσ 2 + 4

3
t,
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where σ 2 := ∑
i<j varAij ≤ 1

2
∑r

a,b=1 BabGaGb = 1
2‖f ‖1. Setting t = 2n and ap-

plying the union bound over all sign vectors, we obtain that with probability at
most 2(e/2)−2n,

‖A −EA‖∞→1 ≥
√

8n‖f ‖1 + 8

3
n.

It follows that with probability at least 1 − 2(e/2)−2n,

S3 ≤ 2KG

√
8n‖f ‖1 + 16KG

3
n.

Putting together the bounds for S1, S2 and S3, we conclude that with probability
at least 0.99 − 2(e/2)−2n, the bound (3.7) holds.

7.2. A general error bound for k-medoids clustering. The remainder of this
section is devoted to the proof of Theorem 3.2. Central to the proof are two general
results, given in this subsection and in Section 7.3 to follow, on k-medoids clus-
tering error, which may be of independent interest. The first result quantifies the
(weighted) misclassification rate of the approximate solution q� to the (weighted)
k-medoids problem (2.7).

LEMMA 7.1. Suppose Ga = g,∀a ∈ [r]. For any matrix Q ∈ R
r×n,

min
�∈Sr

{ ∑
i∈E(�)

θi

}
≤ 2

g

∥∥q�Q − Y ∗∥∥
1,θ .

PROOF. Define qY = q�Q. For each a ∈ [r], define the set of node indices

Sa := {
i ∈ C∗

a : ∥∥(qY i• − Y ∗
i•
)

Diag(θ)
∥∥

1 ≥ g
}
,

and let S := ⋃r
a=1 Sa . It follows that

(7.1)
∑
i∈S

θi ≤
n∑

i=1

θi

g

∥∥(qY i• − Y ∗
i•
)

Diag(θ)
∥∥

1 = 1

g

∥∥qY − Y ∗∥∥
1,θ .

Consider the set Ta := C∗
a \ Sa for each a = 1, . . . , r . There are three cases for

each Ta . In the first case, Ta = ∅, and we denote by R1 the collection of all such
indices a. In the second case, Ta �=∅ and q� i• = q�j• for all i, j ∈ Ta . We say that
these Ta’s are pure, and denote by R2 the collection of all such indices a. Finally,
we set R3 := {1, . . . , r} \ (R1 ∪ R2); for each a ∈ R3, we say that Ta is impure
since there exist i, j ∈ Ta such that q� i• �= q�j•.

For each a ∈ R1, we have Sa = C∗
a , which implies that

(7.2)
∑
i∈S

θi ≥ ∑
i∈⋃

a∈R1
C∗

a

θi = |R1|g.
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For each pair a, b ∈ R2 ∪ R3 with a �= b, by definition we know that Ta �= ∅ and
Tb �= ∅. Then for each pair i ∈ Ta ⊆ C∗

a , j ∈ Tb ⊆ C∗
b , we have∥∥qY i• Diag(θ) − qY j• Diag(θ)

∥∥
1

≥ ∥∥(Y ∗
i• − Y ∗

j•
)

Diag(θ)
∥∥

1 − ∥∥(Y ∗
i• − qY i•

)
Diag(θ)

∥∥
1

− ∥∥(Y ∗
j• − qY j•

)
Diag(θ)

∥∥
1

> 2g − g − g = 0,

whence qY i• �= qY j•. This implies that q�i• �= q�j•.
In conclusion, we have proved that for each pair a, b ∈ R2 ∪ R3 with a �= b and

each pair i ∈ Ta , j ∈ Tb, we have q�i• �= q�j•. Moreover, since for each a ∈ R2,
the set Ta is pure by definition, there exists a permutation matrix � ∈ Sr such
that for all i ∈ ⋃

a∈R2
Ta , there holds (q��)i• = �∗

i•. Recalling Definition 3.3, we

conclude that the set (
⋃

a∈R3
Ta) ∪ S contains the set of nodes misclassified by q�

with respect to �. It follows that

(7.3)
∑

i∈E(�)

θi ≤ ∑
i∈S

θi + ∑
i∈⋃

a∈R3
Ta

θi ≤ ∑
i∈S

θi + |R3|g.

The matrix q� consists of at most r distinct row vectors. Because R2 is pure and
R3 is impure by definition, we have the inequality

|R2| + 2|R3| ≤ r = |R1| + |R2| + |R3|,
which implies that

(7.4) |R3| ≤ |R1|.
Applying the bounds (7.3), (7.4), (7.2) and (7.1) in order, we obtain∑

i∈E(�)

θi ≤ 2
∑
i∈S

θi ≤ 2

g

∥∥qY − Y ∗∥∥
1,θ = 2

g

∥∥q�Q − Y ∗∥∥
1,θ ,

completing the proof of the lemma. �

7.3. Comparison between k-medians and k-medoids. The second general re-
sult we need for proving Theorem 3.2, is a comparison of the errors of the weighted
k-medoids formulation (2.7) and the following weighted k-medians clustering for-
mulation:

(7.5) min
{Ca}ra=1,{xa}ra=1

∑
1≤a≤r

∑
i∈Ca

di‖ŵi − xa‖1

in which the centers are not necessarily data points and {Ca}ra=1 denotes a partition
of [n]. Similar to (2.7), the formulation (7.5) can be written as

(7.6) min
�,X

∥∥D(�X − Ŵ )
∥∥

1, s.t. � ∈Mn,r , X ∈R
r×n.
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The following lemma establishes the connection between the clustering errors of
k-medoids and k-medians.

LEMMA 7.2. Suppose the optimal value of (2.7) and (2.8) is m1 and the op-
timal value of (7.5) and (7.6) is m2. Then we have

m2 ≤ m1 ≤ 2m2.

PROOF. The optimization problems (7.5) and (2.7) have the same objective
function, and the feasible set of (2.7) is contained in that of (7.5), so we have
m1 ≥ m2. To prove m2 ≥ 1

2m1, it suffices to show that for any partition {Ca}ra=1 of
[n], and any vectors {xa}ra=1, there holds∑

1≤a≤r

∑
i∈Ca

di‖ŵi − xa‖1 ≥ m1

2
.

To this end, we define the vector x̃a := arg minx∈{ŵi :i∈Ca} ‖x − xa‖1 for each a =
1, . . . , r . It follows that∑

1≤a≤r

∑
i∈Ca

di‖ŵi − xa‖1 ≥ ∑
1≤a≤r

∑
i∈Ca

di

1

2

(‖ŵi − xa‖1 + ‖x̃a − xa‖1
)

≥ 1

2

∑
1≤a≤r

∑
i∈Ca

di‖ŵi − x̃a‖1 ≥ m1

2
,

where the last inequality uses the feasibility of ({Ca}, {x̃a}) to (2.7). �

7.4. Proof of Theorem 3.2. We now prove Theorem 3.2 by combining Theo-
rem 3.1, Lemma 7.1 and Lemma 7.2. Our strategy is as follows. We first choose
an appropriate Q based on (q�, qX), so that we can apply Lemma 7.1 to bound the
weighted misclassification rate by ‖q�Q−Y ∗‖1,θ . We then bound ‖q�Q−Y ∗‖1,θ

in terms of the weighted error of the convex relaxation solution, ‖Ŷ − Y ∗‖1,θ ,
which is in turn controlled by Theorem 3.1.

To choose a Q to apply Lemma 7.1, we notice that the approximate solution
(q�, qX) is feasible to (2.8), so Rows(qX) ⊂ Rows(Ŵ ). Since Ŵ = ŶD, there exists
an r × n matrix Q, such that

qX = QD and Rows(Q) ⊂ Rows(Ŷ ).

Define qY = q�Q. In view of Lemma 7.1, it suffices to bound ‖qY − Y ∗‖1,θ .
Before bounding ‖qY −Y ∗‖1,θ , let us first control ‖qY −Y ∗‖1,d , where ‖Z‖1,d =∑n
i=1

∑n
j=1 |Zij |didj . To this end, we follow the notation in Lemma 7.2 and de-

note the optimum value of (2.7) and (2.8) as m1, and that of (7.5) and (7.6) as m2.
First, triangle inequality gives∥∥qY − Y ∗∥∥

1,d ≤ ‖qY − Ŷ‖1,d + ∥∥Y ∗ − Ŷ
∥∥

1,d .
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Since qYD = q�QD = q� qX and Ŵ = ŶD, we have

‖qY − Ŷ‖1,d = ∥∥D(qYD − Ŵ )
∥∥

1 = ∥∥D(q� qX − Ŵ )
∥∥

1 ≤ 20

3
m1,

where the last inequality is due to the definition of (q�, qX). Recall that the true
partition matrix admits the decomposition Y ∗ = �∗(�∗)	, where �∗ ∈ Mn,r is
the true membership matrix. Therefore,∥∥Y ∗ − Ŷ

∥∥
1,d = ∥∥D(

Y ∗D − Ŵ
)∥∥

1 = ∥∥D(
�∗((�∗)	D

) − Ŵ
)∥∥

1 ≥ m2,

where the last inequality is due to the fact that (�∗, (�∗)	D) is feasible to (7.6).
Then by Lemma 7.2, we have

‖qY − Ŷ‖1,d ≤ 20

3
m1 ≤ 40

3
m2 ≤ 40

3

∥∥Y ∗ − Ŷ
∥∥

1,d

and this implies

(7.7)
∥∥qY − Y ∗∥∥

1,d ≤ ‖qY − Ŷ‖1,d + ∥∥Y ∗ − Ŷ
∥∥

1,d ≤ 43

3

∥∥Y ∗ − Ŷ
∥∥

1,d .

Next, we translate the inequality between ‖qY − Y ∗‖1,d and ‖Y ∗ − Ŷ‖1,d

into an inequality between ‖qY − Y ∗‖1,θ and ‖Y ∗ − Ŷ‖1,θ . Note that under the
F(n, r,p, q, g)-model,

H1 = · · · = Hr = h := (
p + (r − 1)q

)
g,

which implies that the vector of (approximate) expected degrees f defined in (3.5)
satisfies fi = θih,∀i ∈ [n] and ‖f ‖1 = r(p + (r − 1)q)g2.

Recall that Rows(Q) ⊂ Rows(Ŷ ), which implies that Rows(qY ) =
Rows(q�Q) ⊂ Rows(Ŷ ). Since Ŷ is feasible to the convex relaxation (2.6), we
have 0 ≤ Ŷ ≤ J . It follows that 0 ≤ qY ≤ J , and hence ‖qY − Y ∗‖∞ ≤ 1. Setting
M := ‖f f T − ddT ‖1, we observe that any matrix Z satisfies the bound∣∣‖Z‖1,f − ‖Z‖1,d

∣∣ ≤ ∥∥Z ◦ (
f f T − ddT )∥∥

1 ≤ M‖Z‖∞,

where ‖Z‖1,f is defined in the same fashion as ‖Z‖1,θ given in Definition 3.2.
Therefore, the bound (7.7) implies that∥∥qY − Y ∗∥∥

1,θ = 1

h2

∥∥qY − Y ∗∥∥
1,f ≤ 1

h2

(∥∥qY − Y ∗∥∥
1,d + M

)
� 1

h2

(∥∥Ŷ − Y ∗∥∥
1,d + M

) ≤ 1

h2

(∥∥Ŷ − Y ∗∥∥
1,f + 2M

)
(7.8)

�
∥∥Ŷ − Y ∗∥∥

1,θ + M

h2 .

To bound the second term above, we apply Lemma 9.1 in the Supplementary Ma-
terial [12] to get that with probability at least 0.99,

M ≤ C‖f ‖1
(√

n‖f ‖1 + n
)
,
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and thus

M

h2 � r(
√

n‖f ‖1 + n)

p + (r − 1)q
≤ r(rg

√
np + n)

δ
.(7.9)

We can control the first term in (7.8) using the bound (3.9) in Corollary 3.1. Putting
together, straightforward calculation yields the inequality

(7.10)
∥∥q�Q − Y ∗∥∥

1,θ = ∥∥qY − Y ∗∥∥
1,θ �

1

δ
r(n + rg

√
np).

We then apply Lemma 7.1 with (7.10) to obtain the desired inequality (3.10).

SUPPLEMENTARY MATERIAL

Additional experiments and remaining proofs. (DOI: 10.1214/17-
AOS1595SUPP; .pdf). In this supplement [12], we provide additional numerical
results and the remaining proofs of the theoretical results.
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