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TEST FOR HIGH-DIMENSIONAL REGRESSION COEFFICIENTS
USING REFITTED CROSS-VALIDATION VARIANCE ESTIMATION

BY HENGJIAN CUI∗,1, WENWEN GUO∗ AND WEI ZHONG†,2

Capital Normal University∗ and Xiamen University†

Testing a hypothesis for high-dimensional regression coefficients is of
fundamental importance in the statistical theory and applications. In this pa-
per, we develop a new test for the overall significance of coefficients in high-
dimensional linear regression models based on an estimated U-statistics of
order two. With the aid of the martingale central limit theorem, we prove
that the asymptotic distributions of the proposed test are normal under two
different distribution assumptions. Refitted cross-validation (RCV) variance
estimation is utilized to avoid the overestimation of the variance and enhance
the empirical power. We examine the finite-sample performances of the pro-
posed test via Monte Carlo simulations, which show that the new test based
on the RCV estimator achieves higher powers, especially for the sparse cases.
We also demonstrate an application by an empirical analysis of a microarray
data set on Yorkshire gilts.

1. Introduction. Conventional multivariate statistical approaches are gener-
ally derived for low-dimensional data where the number of covariates (p) is
smaller than the sample size (n). However, high-dimensional data are increasingly
collected in many applications of statistics such as genetical, biological and finan-
cial studies. This so-called “large p, small n” phenomenon not only brings many
challenges to traditional multivariate statistical methods but also creates opportu-
nities for statisticians to derive new methods. For example, the Hotelling’s T 2 test
is the conventional test for testing whether the two populations have the same mean
when the dimension p is smaller than n. However, its power was proved by [1] to
be adversely affected due to the nearly singularity of the sample covariance ma-
trix for high-dimensional data. Several extensions of the Hotelling’s T 2 test have
been introduced in high-dimensional settings in the literature. Bai and Saranadasa
[1] proposed a test statistic based on the squared Euclidean norm of two sample
means to avoid the inverse of the sample covariance matrix. This test statistic was
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further improved by [3] via removing the cross-product terms. Srivastava and Du
[17] replaced the sample covariance matrix in the Hotelling’s T 2 test statistic by
its diagonal to ensure the invertibility. Cai et al. [2] considered a test statistic based
on a linear transformation of the data by the precision matrix. Wang et al. [19]
developed a nonparametric test based on the spatial sign transformation under the
elliptical distribution assumption.

Linear regression analysis is the most commonly used statistical approach to
model the relationship between a response variable and many covariates. It is of
fundamental importance to test the overall significance of linear regression coeffi-
cients. When the number of covariates p is fixed and less than the sample size n,
the F -test [15] is the conventional method for testing the overall significance of lin-
ear regression coefficients. However, if p is greater than n in the high-dimensional
problems, the F -test is no longer applicable. Zhong and Chen [24] showed that the
power of the F -test is affected adversely by an increasing dimension even when
p < n−1. Wang and Cui [20] proposed a generalized F -test and studied its asymp-
totic normality when p/n → ρ with 0 < ρ < 1. However, the generalized F -test
also fails when p > n because the sample covariance matrix is not invertible. To
deal with the high dimensionality, [24] developed a test based on a U-statistic for
high-dimensional linear regression coefficients for both simple random or factorial
designs. They derived its asymptotic normality under either the null hypothesis or
the local alternatives. Goeman et al. [10, 11] proposed an empirical Bayes test
by replacing a Mahalanobis norm in F -statistic by an Euclidian norm for high-
dimensional linear regression and generalized linear models, respectively. Wang
and Cui [21] further proposed a U-statistic like [24] for testing part of regression
coefficients in high-dimensional linear models. Yata and Aoshima [22] developed
a test by applying an extended cross-data-matrix methodology for testing high-
dimensional correlations.

Motivated by an empirical study of the gene-set testing, we propose a new test
for high-dimensional regression coefficients in this paper. Although this new test
statistic shares the same spirit as the work in [24], it has three distinguishing fea-
tures. First, the new test statistic based on an estimated U-statistic of order two can
substantially reduce computational complexity compared with the U-statistic of or-
der four in [24]. Second, we derive the asymptotic normality of the proposed test
statistic under two different distribution assumptions: (I) the pseudo-independence
assumption; (II) the elliptical contoured distribution assumption. Third, the idea
of Refitted Cross-Validation (RCV) method introduced by [6] is used in the esti-
mation of the test statistic to reduce the bias of the sample variance. As a result,
the empirical power performance of the new test can be substantially enhanced,
especially for the sparse cases.

The rest of the paper is organized as follows. Section 2 introduces the model
settings and the new test for testing the significance of high-dimensional regres-
sion coefficients. In Section 3, the asymptotic distributions of the test statistic are
derived under under the null hypothesis or the local alternatives. Section 4 reports



960 H. CUI, W. GUO AND W. ZHONG

empirical results from Monte Carlo simulations and Section 5 studies an empirical
analysis of a microarray data set on Yorkshire gilts. The discussion is included in
Section 6. Some useful lemmas and technical proofs as well as some figures are
given in the Appendix.

2. A new test statistic.

2.1. Model settings. Let (Xi , Yi) be the ith observation in a random sample
for i = 1,2, . . . , n, where Yi denotes the ith response variable of interest and
Xi = (Xi1, . . . ,Xip)T ∈ Rp denotes the p-dimensional vector of covariates with
mean E(Xi ) = μ and covariance matrix cov(Xi) = �. To model the regression
relationship, we consider a linear regression

(2.1) Yi = α + XT
i β + εi,

where β = (β1, . . . , βp)T ∈ Rp is a p-dimensional vector of regression coefficients
of interest, α is a nuisance intercept parameter and ε1, ε2, . . . , εn are independent
and identically distributed random errors with mean zero and variance σ 2.

Our interest is testing the high-dimensional regression coefficients simultane-
ously in (2.1). That is,

(2.2) H0 : β = β0 versus H1 : β �= β0,

for some β0 ∈ Rp . In particular, when β0 = 0, it tests the overall significance of
linear regression coefficients.

2.2. Test statistic. For testing H0 : β = β0 in the linear regression (2.1) when
α = 0, we naturally consider the difference between the ordinary least squares
estimator β̂ = (XTX)−1XTY and β0, where Y = (Y1, Y2, . . . , Yn)

T is the vector
of response values and X = (XT

1 , . . . ,XT
n) is the n × p design matrix. Note that

β̂ is practically infeasible when p > n but it serves as a motivation for the test
statistic. By noting that β̂ = β0 is equivalent to XT(Y − Xβ0) = 0, E‖Xi (Yi −
XT

i β0)‖2 can be utilized as an effective measure of the discrepancy between β
and β0. [24] considered a U-statistic with XT

i Xj (Yi −XT
i β0)(Yj −XT

j β0) for i �= j

as the kernel to estimate E‖Xi (Yi − XT
i β0)‖2 when α = 0. To remove the effect

of α when α �= 0 and μ = E(Xi ) �= 0, they further proposed the following test
statistic based on a U-statistic of order four for testing (2.2):

(2.3) Zn,p = (n − 4)!
4n!

∗∑
(Xi1 − Xi2)

T(Xi3 − Xi4)�i1,i2�i3,i4,

where �i,j = (Yi −XT
i β0)−(Yj −XT

j β0) and
∗∑

denotes summations over distinct
indices.

In this paper, without loss of generality, we focus on testing the overall sig-
nificance of the linear regression model (2.1), that is, we test H0 : β = 0. In this
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case, E‖XiYi‖2 serves as an effective measure of the discrepancy between β and
0. When μ = 0 and α = 0, it can be estimated by a U-statistic with XT

i XjYiYj

for i �= j as the kernel. To eliminate the effect of nonzero μ and α, we suggest to
replace Xi and Yi by their centralized counterparts Xi − X and Yi − Y , where X
and Y are respective means of Xi’s and Yi ’s. Although its computation is simple,
the centralization brings in the bias for the estimator. To further correct this bias,
we note the fact that E[(Xi − X)T(Xj − X)] = − tr(�)/n for i �= j and propose
the following statistic by subtracting an unbiased estimator of the bias:

�i,j (X) =: (Xi − X)T(Xj − X) + ‖Xi − Xj‖2

2n
,

where ‖ · ‖ denotes the Euclidean norm. Similarly, we define

�i,j (Y ) =: (Yi − Y )(Yj − Y) + (Yi − Yj )
2

2n
.

We can show that E[�i,j (X)] = 0, E[�i,j (Y )] = 0. This motivates us to construct
the following test statistic:

(2.4) Tn,p =
(

1 − 2

n

)−2
(
n

2

)−1 n∑
i=2

i−1∑
j=1

�i,j (X)�i,j (Y )

for testing (2.2), where (1 − 2/n)−2 is a modified constant which makes the mean
of the test statistic Tn,p have a simple dominant term βT�2β in Theorems 3.1 and
3.3. The test statistic Tn,p serves as an effective measure of the difference between
β and 0 and is invariant to location shifts in both Xi and Yi . It can be viewed as an
estimated U-statistic of order two. Compared with the U-statistic of order four in
[24], the new test statistic can substantially reduce computational complexity. This
feature will be confirmed by Monte Carlo simulations in Section 4.

3. Main results. In this section, we derive the asymptotic distributions of
the new test statistic Tn,p under two different kinds of covariates assumptions:
(I) the pseudo-independence assumption; (II) the elliptical contoured distribution
assumption; how to implement the new test is also discussed. In particular, the idea
of refitted cross-validation (RCV) technique in [6] is applied for the variance esti-
mation of Tn,p to reduce the bias of the sample variance and enhance the empirical
power.

We first impose the condition on the dimension of the covariates, which de-
scribes the “large p, small n” paradigm:

(C1) p → ∞ as n → ∞;� > 0, tr(�4) = o{tr2(�2)}.
This condition is also imposed by [3, 19, 24] to derive the asymptotic properties

of their test statistics. It does not assume any explicit relationship between p and n.
Thus, it can accommodate the high dimensionality. The positive definiteness of �



962 H. CUI, W. GUO AND W. ZHONG

ensures the identification of the linear regression coefficients. tr(�4) = o{tr2(�2)}
holds trivially if all eigenvalues of � are bounded away from 0 and ∞. [3] also
showed tr(�4) = o{tr2(�2)} holds under some general conditions even if some of
the eigenvalues are unbounded. Thus, it is milder than the Riesz condition which
is often assumed in the high-dimensional literature, such as [23]. In fact, (C1)
imposes some limitations on p and � but it be considered as mild.

For the local power analysis, we consider the following local alternative hypoth-
esis:
(C2) βT�β = o(1), and βT�3β = o{n−1 tr(�2)}.

Condition (C2) was also considered in [24]. It prescribes a small discrepancy
between β and 0, thus it specifies a class of the local alternatives.

3.1. Results on pseudo-independence assumption. We first assume that the co-
variates satisfy the following pseudo-independence assumption.

(C3) [The pseudo-independence assumption.] Suppose the random vector Xi fol-
lows the general multivariate model Xi = 	Zi + μ, where Zi = (Zi1, . . . ,

Zim)T is a m-variate random vector for some m ≥ p satisfying E(Zi ) = 0
and Var(Zi ) = Im, 	 is a p × m matrix such that 		T = �. Further-
more, we assume that E(Z4

il) = 3 + � < ∞ for some constant � and

E(Z
l1
1i1

Z
l2
1i2

· · ·Zld
1id

) = E(Z
l1
1i1

)E(Z
l2
1i2

) · · ·E(Z
ld
1id

) for any
∑d

v=1 lv ≤ 4 and
i1 �= · · · �= id , where d is a positive integer.

Condition (C3) which resembles a factor model structure assumes that the co-
variates Xi are generated linearly by a larger dimensional factor vector Zi . We
note that the number of factors m in (C3) is assumed to be at least as large as p

while the traditional factor model assumes m should be far less than p. The similar
versions of the pseudo-independence assumptions were assumed in the literature.
Bai and Saranadasa [1] require each Zil is independent from one another while [3,
24] assume that

∑d
v=1 lv ≤ 8.

The theoretical properties of the test statistic Tn,p under the pseudo-
independence assumption are presented in the following theorems.

THEOREM 3.1. Suppose conditions (C1) and (C3) hold, we have:

(i) The expectation of the test statistic (2.4) is

E(Tn,p) = βT�2β + �

2n(n − 2)

(
βT	 diag(	T	)	Tβ

)
.

(ii) Under condition (C2), the reconstruction of the test statistic (2.4) is as fol-
lows:

Tn,p − βT�2β

=
(
n

2

)−1 n∑
i=2

i−1∑
j=1

(Xi − μ)T(Xj − μ)εiεj + oP

(
n−1

√
tr
(
�2
))

.
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We can show that the second term of E(Tn,p) can be negligible when we es-
tablish the asymptotical distributions of Tn,p under conditions (C1) and (C2), that
is,

n[E(Tn,p) − βT�2β]√
tr(�2)

≤ O
(
n−1)λmax(�)βT�β√

tr(�2)

≤ O
(
n−1) [tr(�4)]1/4√

tr(�2)
βT�β

= o(1).

With the aid of the reconstruction of the test statistic (2.4) in Theorem 3.1 and the
martingale central limit theorem, we can establish the asymptotic distribution of
Tn,p in the following theorem.

THEOREM 3.2. Assume condition (C1) and the pseudo-independence as-
sumption (C3) hold. Then under either H0 or the local alternatives in (C2), as
n → ∞, we have

(3.1)
n(Tn,p − βT�2β)

σ 2
√

2 tr(�2)

D−→ N(0,1),

where
D−→ denotes the convergence in distribution.

3.2. Results on elliptical distribution assumption. In the multivariate statis-
tical analysis, elliptical distributions are often assumed. The family of elliptical
distributions includes multivariate normal distribution, multivariate t distribution,
multivariate logistic distribution and among others [9]. They extend the multivari-
ate normal distribution to a very flexible family of distributions, which are capa-
ble to accommodate tail dependence and considered to be useful for quantitative
finance research [16]. In this subsection, we assume the covariates follow the el-
liptical contoured distributions.

(C4) [The elliptical distribution assumption.] Suppose the covariates satisfy the
stochastic representation: Xi = μ + 	RiUi , where 	 is a p × p matrix, Ui

is a random vector uniformly distributed on the unit sphere in Rp and Ri is a
nonnegative random variable independent of Ui and E(R2

i ) = p,Var(R2
i ) =

O(p).

We consider the assumption that E(R2
i ) = p,Var(R2

i ) = O(p) as mild. For ex-
ample, if R2

i follows a chi-square distribution with p degrees of freedom, then
E(R2

i ) = p,Var(R2
i ) = 2p and Xi has a multivariate normal distribution with

mean μ and covariance matrix � = 		T. This assumption is also satisfied when
R2

i =∑p
j=1 ξj , where ξ1, . . . , ξp are independent, identically distributed and non-

negative with E(ξj ) = 1 and E(ξ2
j ) < +∞. Note that there exists an equivalent



964 H. CUI, W. GUO AND W. ZHONG

definition of elliptical contoured distribution, that is, aT(Xi − μ) = √
aT�aWi

for any p-dimensional vector a, where Wi follows a symmetric distribution. The
constraint that E(R2

i ) = p and Var(R2
i ) = O(p) is equivalent to E(W 2

i ) = 1 and
E(W 4

i ) = 3 + o(1), respectively.
Similar to Theorem 3.1 and 3.2, the theoretical properties of the new test statistic

(2.4) Tn,p are also studied under the elliptical contoured distribution assumption
(C4) in the following two theorems.

THEOREM 3.3. Suppose conditions (C1) and (C4) hold, we have:

(i) The expectation of the proposed test statistic (2.4) is

E(Tn,p) = βT�2β

+ 1

n(n − 2)

(
ER4

p(p + 2)
− 1

)(
βT�2β + tr(�)βT�β

2

)
.

(ii) Under condition (C2), the reconstruction of the test statistic (2.4) is as fol-
lows:

Tn,p − βT�2β

=
(
n

2

)−1 n∑
i=2

i−1∑
j=1

(Xi − μ)T(Xj − μ)εiεj + oP

(
n−1

√
tr
(
�2
))

.

THEOREM 3.4. Assume condition (C1) and the elliptical contoured distribu-
tion assumption (C4) hold. Then under either H0 or the local alternatives in (C2),
as n → ∞, we have

(3.2)
n(Tn,p − βT�2β)

σ 2
√

2 tr(�2)

D−→ N(0,1).

Under the pseudo-independence assumption (C3) or the elliptical contoured dis-
tribution assumption (C4), both Theorems 3.2 and 3.4 state that the asymptotic null
distribution of the new statistic Tn,p under H0 : β = 0 is normal, that is,

(3.3)
nTn,p

σ 2
√

2 tr(�2)

D−→ N(0,1).

Meanwhile, Theorems 3.2 and 3.4 also imply that the proposed level α test has
the following asymptotic local power under the local alternatives in (C2):

(3.4) �New
n = 

(
−zα + nβT�2β

σ 2
√

2 tr(�2)

)
,

where (·) is the cumulative distribution function of the standard normal distri-
bution and zα denotes the 1 − α quantile of the standard normal distribution. The
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signal-to-noise ratio term η(β,�) =: βT�2β/σ 2
√

tr(�2) essentially controls the
power of the test. When η(β,�) is of a smaller order of n−1, the power dimin-
ishes to α. In this case, the test can not distinguish the null hypothesis from the
local alternatives. If η(β,�) has a higher order of n−1, the power converges to 1
which implies that the proposed test is consistent. This asymptotic local power is
same as (2.3) in [24] where their asymptotic local power

(3.5) �ZC
n = 

(
−zα + nβT�2β

σ 2
√

2 tr(�2)

)
.

Thus, the new test shares the identical asymptotic local performance with the ZC
test in [24]. It will be demonstrated by numerical studies in Section 4.

In practice, we denote σ̂ 2 and t̂r(�2) be the estimators of σ 2 and tr(�2), respec-
tively. When the sample size n is large enough, the asymptotic null distribution
(3.3) can be used to construct the critical region of the proposed test, that is, we
can reject H0 at the significant level α if

(3.6) nTn,p ≥ σ̂ 2

√
2t̂r
(
�2
)
zα.

To estimate tr(�2), we choose the unbiased and ratio consistent estimator in [4,
24],

t̂r
(
�2
)= S1n − 2S2n + S3n,

where S1n = (n − 2)!(n!)−1∑
i �=j (X

T
i Xj )

2, S2n = (n − 3)!(n!)−1∑
i �=j �=k(X

T
i ×

XjX
T
j Xk) and S3n = (n − 4)!(n!)−1∑

i �=j �=k �=l(X
T
i XjX

T
k Xl). To estimate σ 2, [24]

simply used the sample variance σ̂ 2
0 = (n − 1)−1∑n

i=1(Yi − Y)2 to estimate σ 2.

3.3. Refitted cross-validation variance estimation. It can be shown that
E(σ̂ 2

0 ) = σ 2 + βT�β . When H0 : β = 0 holds, σ̂ 2
0 is unbiased and consistent

for σ 2. However, when H1 : β �= 0, the sample variance σ̂ 2
0 has a positive bias

βT�β which overestimates σ 2 and negatively reduce the power of the test in the
finite-sample performance.

In this paper, we suggest the refitted cross-validation (RCV) approach to esti-
mate σ 2 in order to reduce the bias of the sample variance and enhance the power
performance of our test. The RCV method was originally proposed by [6] for er-
ror variance estimation in ultrahigh-dimensional linear regression. The procedure
is implemented in the following way. First, the original data set {Y,X} is parti-
tioned randomly into two even data sets, denoted by (Y (k),X(k)) with sample size
nk for k = 1,2. Second, a variable selection method is applied for the first data
set to select a subset of covariates, denoted by M̂1. In this step, we require that
the sure screening property holds, that is, M̂1 contains the true set of covariates
in ultrahigh-dimensional space with probability tending to one. In practice, a sure
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independence screening method can be applied here, such as SIS in [8] for normal
linear regression, DC-SIS by [13] in a model-free sense, etc., or a sophisticated
penalized regression method can be utilized, such as Lasso [18], SCAD [7], adap-
tive Lasso [25] and among others. In the third step, we perform an ordinary least
squares method on the second data set (Y (2),X(2)

M̂1
) to estimate the variance σ 2,

where X(2)

M̂1
denotes the submatrix of X(2) whose columns are indexed by M̂1, that

is,

(3.7) σ̂ 2
1 = Y (2)T [In2 − P

M̂1
(X(2))]Y (2)

n2 − |M̂1|
,

where P
M̂1

(X(2)) = X(2)

M̂1
(X(2)T

M̂1
X(2)

M̂1
)−1X(2)T

M̂1
is the projection operator onto the

linear space that is generated by the column vectors of X(2)

M̂1
. Then we switch the

roles of two data sets and repeat the previous two steps to obtain another estimator
of σ 2:

(3.8) σ̂ 2
2 = Y (1)T [In1 − P

M̂2
(X(1))]Y (1)

n1 − |M̂2|
.

At last, the final Refitted Cross-Validation (RCV) estimator of σ 2 is defined as

(3.9) σ̂ 2
RCV = (

σ̂ 2
1 + σ̂ 2

2
)
/2.

It is crucial to establish consistency of the RCV estimator σ̂ 2
RCV under the alter-

native hypothesis. Under the sparsity assumption, the sure screening property of
the variable selection procedure and some regularity conditions, [6] showed that

σ̂ 2
RCV enjoys an oracle property, that is,

√
n(σ̂ 2

RCV − σ 2)
D−→ N(0,E(ε4) − σ 4),

which implies the consistency of σ̂ 2
RCV. If the true coefficient β is not sparse but

satisfies some decay condition such as
∑ |βj | ≤ C for some positive constant C,

the model selection method could select a majority of all variables with large coef-
ficients in the first stage, and the RCV estimator also performs well. More details
on estimation and proprieties of σ̂ 2

RCV can be found in [6].
The following theorem further shows that the RCV estimator σ̂ 2

RCV is also con-
sistent to σ 2 under the local alternative hypothesis (C2) which may be nonsparse.

THEOREM 3.5. Assume |M̂i |/n → 0 for i = 1,2, then under the local alter-

natives in (C2), as n → ∞, we have σ̂ 2
RCV

P−→ σ 2.

Thus, we propose to use the RCV estimator σ̂ 2
RCV to estimate σ 2 for the test

statistic (2.4). As a result, the asymptotic normality of the proposed test in Theo-
rems 3.2 and 3.4 is also valid by Slutsky’s theorem. Therefore, the proposed test
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based on σ̂ 2
RCV rejects H0 at a significant level α for n sufficiently large if

(3.10) nTn,p ≥ σ̂ 2
RCV

√
2t̂r
(
�2
)
zα.

The numerical studies in the next section will show that the RCV variance estima-
tion can enhance the empirical power performance, especially for the sparse case.
For simplicity of presentation, we denote the decision rule (3.6) of our test based
on σ̂ 2

0 and σ̂ 2
RCV by New0 and NewRCV, respectively.

Note that we can easily obtain σ̂ 2
0 = σ 2 +βT�β +OP (n−1/2). Thus, the sample

variance σ̂ 2
0 is still consistent under the local alternative condition βT�β = o(1).

This means that both the ZC test and the New0 test based on σ̂ 2
0 are also asymp-

totically valid under the local alternative condition. On the other hand, σ̂ 2
RCV =

σ 2 + OP (n−1/2) in the sparse case. Thus, the ratio of the two estimators σ̂ 2
0 and

σ̂ 2
RCV is

σ̂ 2
0

σ̂ 2
RCV

= σ 2 + βT�β + OP (n−1/2)

σ 2 + OP (n−1/2)

= 1 + OP (βT�β),

which tends to one in probability as n → ∞ under the local alternative condition
βT�β = o(1). However, it is greater than one in the sample level, which results
in that the NewRCV test obtains substantially higher empirical powers than the ZC
test and New0 especially in the sparse case. Tables 1 and 2 in the simulations will
confirm this result.

4. Simulations. In this section, we examine the finite sample performance of
the proposed test by Monte Carlo simulations. We compare it with the empirical
Bayes (EB) test in [11] and ZC test in [24]. Consider a linear regression model

(4.1) Yi = α + XT
i β + εi,

where α = 2 and εi follows (i) N(0,1) or (ii) t (5)/
√

5/3. We randomly generate
Xi = (Xi1, . . ., Xip)T from three p-dimensional distributions: (1) Np(μ,�), (2)√

1 − 2/qtp(μ,�,q) with q = 5, (3) X ∼ �1/2Z with Z = (Z1,Z2, . . . ,Zp) and
Zj ∼Uniform(−√

3,
√

3) for j = 1,2, . . . , p. Here, each element of the mean vec-
tor μ follows Uniform(2, 3) and the covariance matrix � = (σjl)p×p , where σjl =∑T −|j−l|

k=1 ρkρk+|j−l|I {|j − l| < T } with T = 10 and {ρk}Tk=1 ∼Uniform(0,1) in-
dependently. Two high-dimensional settings of (n,p) are considered, (20,178)

and (40,230), which are implied by an exponential form p = exp(n0.4)+ 150. We
consider two cases for β = (β1, . . . , βp)T: (a) nonsparse case, βj = ‖β‖/√p/2
for j = 1, . . . , p/2 and βj = 0, otherwise; (b) sparse case, βj = ‖β‖/√5 for
j = 1, . . . ,5 and βj = 0, otherwise, where ‖β‖ is the L2 norm of β which will
be specified later in the tables.
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TABLE 1
Empirical Powers of EB, ZC, New0 and NewRCV tests at the significant level 5% when ε ∼ N(0,1)

Nonsparse case Sparse case

(n,p) ‖β‖2 EB ZC New0 NewRCV EB ZC New0 NewRCV

(1) Xi ∼ Np(μ,�)

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.25 0.38 0.38 0.44 0.09 0.18 0.18 0.24
0.10 0.36 0.56 0.56 0.61 0.13 0.26 0.26 0.37
0.15 0.44 0.67 0.67 0.69 0.14 0.34 0.34 0.46
0.20 0.49 0.71 0.71 0.75 0.16 0.38 0.38 0.52

(40,230) 0.00 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06
0.05 0.58 0.73 0.73 0.73 0.18 0.28 0.28 0.32
0.10 0.74 0.90 0.90 0.90 0.25 0.47 0.47 0.56
0.15 0.79 0.95 0.95 0.95 0.31 0.56 0.56 0.74
0.20 0.83 0.97 0.97 0.98 0.35 0.67 0.67 0.81

(2) Xi ∼ √
1 − 2/qtp(μ,�,q)

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.27 0.36 0.38 0.42 0.12 0.17 0.18 0.22
0.10 0.33 0.52 0.53 0.58 0.15 0.26 0.27 0.32
0.15 0.37 0.59 0.60 0.64 0.18 0.31 0.32 0.43
0.20 0.41 0.64 0.65 0.69 0.19 0.34 0.36 0.45

(40,230) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.50 0.63 0.65 0.66 0.23 0.27 0.27 0.31
0.10 0.67 0.81 0.82 0.84 0.31 0.43 0.44 0.52
0.15 0.73 0.88 0.90 0.91 0.38 0.52 0.53 0.63
0.20 0.77 0.92 0.92 0.94 0.43 0.59 0.60 0.71

(3) Xi ∼ �1/2Z

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.23 0.39 0.39 0.42 0.08 0.15 0.15 0.19
0.10 0.34 0.56 0.56 0.61 0.12 0.23 0.23 0.32
0.15 0.42 0.67 0.67 0.69 0.13 0.29 0.29 0.43
0.20 0.46 0.71 0.71 0.75 0.15 0.34 0.34 0.50

(40,230) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.55 0.72 0.72 0.72 0.18 0.30 0.30 0.33
0.10 0.71 0.89 0.89 0.89 0.23 0.47 0.47 0.56
0.15 0.75 0.95 0.95 0.95 0.29 0.57 0.57 0.73
0.20 0.79 0.97 0.97 0.97 0.34 0.66 0.66 0.82

We first display the kernel density estimates of the asymptotic null distributions
of the standardized test statistic Tn,p in Figure 1, which can be well approximated
by a standard normal distribution. This confirms the theoretical results in Theo-
rems 3.2 and 3.4. Then we summarize the empirical sizes and powers of EB, ZC,
New0 and NewRCV tests for ε ∼ N(0,1) and t (5)/

√
5/3 based on 1000 simula-

tions in Tables 1 and 2, respectively. It can been observed that the empirical sizes
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TABLE 2
Empirical Powers of EB, ZC, New0 and NewRCV tests at the significant level 5% when

ε ∼ t (5)/
√

5/3

Nonsparse case Sparse case

(n,p) ‖β‖2 EB ZC New0 NewRCV EB ZC New0 NewRCV

(1) Xi ∼ Np(μ,�)

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.24 0.38 0.38 0.42 0.09 0.18 0.18 0.22
0.10 0.35 0.57 0.57 0.58 0.12 0.27 0.27 0.34
0.15 0.39 0.66 0.67 0.67 0.14 0.34 0.33 0.45
0.20 0.42 0.73 0.73 0.72 0.16 0.37 0.36 0.53

(40,230) 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.59 0.73 0.73 0.71 0.19 0.31 0.30 0.35
0.10 0.69 0.85 0.85 0.89 0.26 0.50 0.50 0.61
0.15 0.79 0.97 0.97 0.97 0.32 0.62 0.62 0.75
0.20 0.85 0.98 0.97 0.98 0.36 0.67 0.67 0.83

(2) Xi ∼ √
1 − 2/qtp(μ,�,q)

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.25 0.35 0.37 0.41 0.13 0.17 0.18 0.22
0.10 0.33 0.48 0.50 0.54 0.16 0.24 0.26 0.36
0.15 0.37 0.56 0.57 0.63 0.18 0.30 0.32 0.42
0.20 0.42 0.61 0.63 0.66 0.21 0.35 0.37 0.51

(40,230) 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.52 0.64 0.65 0.65 0.22 0.28 0.29 0.31
0.10 0.63 0.81 0.81 0.83 0.30 0.44 0.44 0.52
0.15 0.71 0.87 0.88 0.90 0.36 0.52 0.53 0.66
0.20 0.75 0.92 0.92 0.93 0.42 0.62 0.63 0.78

(3) Xi ∼ �1/2Z

(20,178) 0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.05 0.20 0.42 0.42 0.44 0.10 0.18 0.18 0.21
0.10 0.33 0.59 0.59 0.60 0.14 0.27 0.27 0.34
0.15 0.41 0.67 0.68 0.69 0.16 0.32 0.32 0.44
0.20 0.45 0.73 0.73 0.74 0.19 0.37 0.36 0.51

(40,230) 0.00 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06
0.05 0.57 0.73 0.73 0.73 0.17 0.29 0.28 0.32
0.10 0.69 0.89 0.89 0.88 0.26 0.49 0.49 0.61
0.15 0.77 0.94 0.94 0.94 0.33 0.62 0.62 0.76
0.20 0.83 0.97 0.96 0.96 0.34 0.70 0.70 0.84

of all tests are quite reasonably around 0.05 when H0 is true, that is, ‖β‖ = 0.
The three panels of Tables 1 and 2 show that the New0 test and the ZC test share
the very similar power performance. This also confirms the previous theoretical
results in Section 3 that the two tests shares the identical asymptotic local power.
However, thanks to the efficient RCV estimator of σ 2, the NewRCV test achieves
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FIG. 1. The asymptotic null distributions of the standardized UT test statistic Tn,p .

higher empirical powers than other tests, especially for the sparse case. For ex-
ample, when X ∼ �1/2Z, ε ∼ N(0,1), (n,p) = (40,230) and ‖β‖2 = 0.20, the
empirical power of the NewRCV test is 82%, which is much higher than all other
tests for the sparse case.

In addition, Table 3 reports the running time of the New0 test and the ZC test
under different scenarios of (n,p). It is shown that the New0 test can substantially
reduce computational complexity compared with the ZC test. This is because the
new test statistic is based on an estimated U-statistic of order two while the ZC test
statistic is a U-statistic of order four. Note that the running time of the New0 test
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TABLE 3
Computational time comparison between the New0 and ZC tests (in seconds)

(n,p) (20,178) (40,230) (60,320) (60,470) (100,700) (120,1036) (140,1514)

ZC 3 7 19 55 138 344 822

New0 1 3 8 23 56 136 313

NOTE: The time is calculated based on 1000 simulations.

and the NewRCV test are similar in practice because of computational efficiency of
the sure independence screening.

5. Real data analysis. We consider a real data set of 24 six-month-old Yolk-
shire gilts which was also analyzed by [24] and [14]. The gilts were genetyped by
the melanocortin-4 receptor gene, 12 of them with D298 and the rest with N298.
Two diet treatments were assigned to the 12 gilts in each genetype randomly. One
was feeding without restrictions; the other was fasting. One can refer to [14] for
more details about the experiment. The gene expression levels were measured for
24,123 genes in liver tissues, which could be classified into different sets according
to their biological functions (The Gene Ontology Consortium 2000). We call them
GO terms for short. There are 6176 GO terms whose dimension ranged from 1 to
5158 and many of the GO terms share common genes. The response variable is
the triiodothyronine (T3) measurement that is a vital thyroid hormone to increase
the metabolic rate, protein synthesis and stimulates breakdown of cholesterol. The
values of T3 were obtained in the blood of each gilt. The goal is to detect the GO
terms, which are significantly correlated with T3.

We consider the following five models to study the association between each
GO term and the response T3:

Model 0 : Y..k = αg + XgT

..kβ
g + ε

g
..k, k = 1,2, . . . ,24;

Model 1 : Y1.k = αg + XgT

1.kβ
g + ε

g
1.k, k = 1,2, . . . ,12;

Model 2 : Y2.k = αg + XgT

2.kβ
g + ε

g
2.k, k = 1,2, . . . ,12;

Model 3 : Y.1k = αg + XgT

.1kβ
g + ε

g
.1k, k = 1,2, . . . ,12;

Model 4 : Y.2k = αg + XgT

.2kβ
g + ε

g
.2k, k = 1,2, . . . ,12,

where Yijk and Xg
ijk denote the T3 measurement and the gene expression levels of

the gth GO term for the kth gilt in the j th treatment with the ith genotype, i = 1
when the genotype is D298 and i = 2 for N298, j = 1 for the fasting treatment
group and otherwise j = 2 and g = 1, . . . ,6176. The dot sign here denotes that the
corresponding index is ignored. For example, Y1.k denotes the T3 value for the kth
gilt with the first genotype (D298) where the treatment index is ignored.
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TABLE 4
The numbers of the significant GO terms

EB ZC New0 NewRCV

Model 0 110 176 177 279
Model 1 62 137 137 147
Model 2 35 109 109 120
Model 3 83 141 138 162
Model 4 18 92 87 96

For each GO term, we are interested in testing for

(5.1) H0 : βg = 0 versus H1 : βg �= 0.

We applied the EB test, the ZC test, the proposed New0 and NewRCV tests to test
(5.1) for each g. By controlling the false discover rate (FDR) for the p-value of
the tests at 1%, Table 4 summaries the numbers of GO terms which are declared
statistically significant. The EB test detects less significant GO terms than the other
three tests while the numbers of significant GO terms identified by the ZC and
New0 tests are quit similar. In general, the NewRCV test select more GO terms as
significant.

We list in Table 5 the significant GO terms, labeled by ticks “
√

,” under the five
models. GO:0007528 is the only significant gene set under all five models detected
by the three tests, ZC, New0 and NewRCV. There are six GO terms identified as

TABLE 5
The significant GO terms, labeled by “

√
,” under the five models and the corresponding number

of genes

GO term Model 0 Model 1 Model 2 Model 3 Model 4 No. of genes Satisfied test(s)

GO:0007528
√ √ √ √ √

8 ZC/New0/NewRCV

GO:0043204
√ √ √

5 NewRCV
GO:0032012

√ √ √
12 EB/ZC/New0/NewRCV

GO:0005840
√ √ √

225 ZC/New0/NewRCV
GO:0006108

√ √ √
6 ZC/New0/NewRCV

GO:0009952
√ √ √

47 ZC/New0/NewRCV
GO:0051287

√ √ √
31 ZC/New0/NewRCV

GO:0004115
√ √ √

7 ZC/New0/NewRCV
GO:0005086

√ √ √
14 ZC/New0/NewRCV

GO:0005677
√ √ √

5 ZC/New0/NewRCV
GO:0006342

√ √ √
5 ZC/New0/NewRCV

GO:0009187
√ √ √

12 ZC/New0/NewRCV
GO:0017136

√ √ √
5 ZC/New0/NewRCV
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significant by at least one test under Models 0, 1 and 2. In particular, GO:0043204
is only detected by our NewRCV, and GO:0032012 is selected by all four tests and
the other four GO terms are significant under the ZC, New0 and NewRCV tests.
Under Models 0, 3 and 4, our tests and the ZC test detect another six significant
GO terms. However, the EB test fails to find any of them. In conclusion, the EB
test detect quite few GO terms which coincides with the simulation results that it
tends to have relatively low powers. The proposed NewRCV test has higher powers
to detect more significant gene sets in this real data analysis.

6. Discussion. In this paper, we proposed a new test for high-dimensional
linear regression coefficients based on the estimated U-statistics of order two and
refitted cross-validation (RCV) error variance estimation. The two different dis-
tribution assumptions on the covariates, the pseudo-independence assumption and
the elliptical distribution assumption were considered to study the theoretical prop-
erties. The limiting null distributions of the proposed test statistic are normal under
the null hypothesis and the local alternative condition. Moveover, we demonstrated
that the RCV variance estimation could substantially enhance empirical powers,
especially for the sparse case.

In the construction of the test statistic (2.4), we have used the centralization
and the associated bias correction. Another idea is to apply the extended cross-
data-matrix (ECDM) methodology in [22]. The ECDM methodology considers the
combination of cross data matrices to construct an unbiased estimator efficiently.
This idea as well as the associated theoretical properties are worth a future study.

Although we are interested in testing the whole regression parameter β , similar
to [21], our approach can be also extended to the case of testing a part of the re-
gression parameter β1, in which the β2 could be replaced by a suitable estimator,
where β = (βT

1 ,βT
2 )T. On the other hand, by following the idea of the nonpara-

metric test based on the spatial sign transformation of the data in [19], it is also
of interest to develop a nonparametric test for testing the regression coefficients in
high-dimensional linear models.

APPENDIX: TECHNICAL PROOFS

For simplicity of presentation, we introduce some notation: A0 = 	T 	, A1 =
	T ββT 	, A2 = 	T �ββT �	, A3 = 	T �	, Bi = βT �iβ , for i = 1,2,3. We
assume, without loss of generality, that α = 0 and μ = 0 in the rest of the article.
First, we list some important lemmas in order to simplify the calculation.

LEMMA 1. Suppose conditions (C2) and (C3) hold; it can be shown that

E
(
Z1Z

T
1 MZ1Z

T
1
)= 2M + �diag(M) + tr(M)Im,(A.1)

E
[(

βT X1X
T
1 X2X

T
2 β
)2]= o

(
tr
(
�2)),(A.2)

where M is a m × m symmetric matrix.
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PROOF. Denote M = (mij ). The (k, l)′th element of
E(Z1Z

T
1 MZ1Z

T
1 ) is

E
(
Z1Z

T
1 MZ1Z

T
1
)
(k,l) =

m∑
i=1

m∑
j=1

mijZ
(i)
1 Z

(j)
1 Z

(k)
1 Z

(l)
1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

mii + (2 + �)mkk if k = l,

mkl + mlk if k �= l.

It means that E(Z1Z
T
1 MZ1Z

T
1 ) = 2M +�diag(M)+ tr(M)Im. By (A.1), we have

that

E
[(

βT X1X
T
1 X2X

T
2 β
)2]

= 4B1B3 + 4B2
2 + B2

1 tr
(
�2)

+ 4� tr{A1 ◦ A2} + 2�B1 tr(A1 ◦ A3) + �2 tr
{(

A0 diag(A1)
)2}

.

Under condition (C2), we have E[(βT X1X
T
1 X2X

T
2 β)2] = o(tr(�2)). �

LEMMA 2. Let U = (U1, . . . ,Up)T be a random vector uniformly distributed
on the unit sphere in Rp . Then E(U) = 0, Var(U) = p−1Ip , E(U4

j ) = 3
p(p+2)

,∀j ,

and E(U2
j U2

k ) = 1
p(p+2)

for j �= k.

PROOF. See Section 3.1 of Fang, Kotz and Ng [9]. �

LEMMA 3. Suppose condition (C4) holds; it follows that

E
(
U1U

T
1 MU1U

T
1
)= 1

p(p + 2)

(
2M + tr(M)Ip

)
,(A.3)

E
(
XT

1 X1Y
2
1
)= 2E(R4)

p(p + 2)
βT �2β

(A.4)

+ E(R4)

p(p + 2)
tr(�)βT �β + σ 2 tr(�),

where M is a m × m symmetric matrix.

PROOF. We here only prove equation (A.3). Let M = (mij )p×p , U1i is the
ith element of U1, bij denotes the (i, j)th element of E(U1U

T
1 MU1U

T
1 ), then we

have

bij = E

p∑
k=1

p∑
l=1

mklU1iU1jU1kU1l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2mii +∑p

k=1 mkk

p(p + 2)
if i = j,

mij + mji

p(p + 2)
if i �= j,
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by applying Lemma 2. Thus, we have E(U1U
T
1 MU1U

T
1 ) = 1

p(p+2)
(2M +

tr(M)Ip), which completes the proof. �

LEMMA 4. If (C1) and (C3) hold, or (C1) and (C4) hold, then it can be shown
that

E
[(

XT
1 X2

)4]= o
(
n tr2(�2)),(A.5)

E
[(

XT
1 �X1

)2]= o
(
n tr2(�2)).(A.6)

PROOF. Write X = 	Z and 	T 	 = (νij )p×p . Then we have

E
{(

ZT
1 	T 	Z2

)4}
= E

[( p∑
i=1

p∑
j=1

νijZ1iZ2j

)4]

=
p∑

i=1

p∑
j=1

ν4
ijE

2(Z4
1i

)
+ 3

∑
1≤i≤p,1≤j1 �=j2≤p

ν2
ij1

ν2
ij2

E
(
Z4

1i

)
E
(
Z2

2j1
Z2

2j2

)
+ 3

∑
1≤j≤p,1≤i1 �=i2≤p

ν2
i1j

ν2
i2j

E
(
Z4

2j

)
E
(
Z2

1i1
Z2

1i2

)
+ O(1)

∑
1≤i1 �=i2≤p

∑
1≤j1 �=j2≤p

(
ν2
i1j1

ν2
i2j2

+ νi1j1νi1j2νi2j1νi2j2

)
E
(
Z2

1i1
Z2

1i2

)
E
(
Z2

2j1
Z2

2j2

)
.

Under (C3) we obtain

E
[(

ZT
1 	T 	Z2

)4]
= (3 + �)2

p∑
i=1

p∑
j=1

ν4
ij + 3(3 + �)

∑
1≤i≤p,1≤j1 �=j2≤p

ν2
ij1

ν2
ij2

+ 3(3 + �)
∑

1≤j≤p,1≤i1 �=i2≤p

ν2
i1j

ν2
i2j

+ O(1)
∑

1≤i1 �=i2≤p

∑
1≤j1 �=j2≤p

(
ν2
i1j1

ν2
i2j2

+ νi1j1νi1j2νi2j1νi2j2

)
≤ O(1) tr2(	T 		T 	

)+ O(1) tr
((

	T 	
)4)

≤ O(1) tr2(�2),
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by condition (C1) and tr((	T 	)4) ≤ tr2((	T 	)2), and noticing that

max

{ p∑
i=1

p∑
j=1

ν4
ij ,

∑
1≤i≤p,1≤j1 �=j2≤p

ν2
ij1

ν2
ij2

,
∑

1≤i1 �=i2≤p

∑
1≤j1 �=j2≤p

ν2
i1j1

ν2
i2j2

}

≤
( p∑

i=1

p∑
j=1

ν2
ij

)2

= tr2(�2)
and ∑

1≤i1 �=i2≤p

∑
1≤j1 �=j2≤p

νi1j1νi1j2νi2j1νi2j2 ≤ ∑
1≤i1 �=i2≤p

ν
(2)
i1i2

ν
(2)
i1i2

≤
p∑

i=1

ν
(4)
i1i1

= tr
(
�4),

where (	T 	)2 = (ν
(2)
ij )p×p and (	T 	)4 = (ν

(4)
ij )p×p . Then (A.5) is proved. Under

(C4),

E
[(

ZT
1 	T 	Z2

)4]
= 9

(
E(R4)

p(p + 2)

)2 p∑
i=1

p∑
j=1

ν4
ij + 9

(
E(R4)

p(p + 2)

)2 ∑
1≤i≤p,1≤j1 �=j2≤p

ν2
ij1

ν2
ij2

+ 9
(

E(R4)

p(p + 2)

)2 ∑
1≤j≤p,1≤i1 �=i2≤p

ν2
i1j

ν2
i2j

+ O(1)

(
E(R4)

p(p + 2)

)2

× ∑
1≤i1 �=i2≤p

∑
1≤j1 �=j2≤p

(
ν2
i1j1

ν2
i2j2

+ νi1j1νi1j2νi2j1νi2j2

)
≤ O(1) tr2(	T 		T 	

)+ O(1) tr
((

	T 	
)4)

≤ O(1) tr2(�2).
Under (C1), we obtain that E[(ZT

1 	T 	Z2)
4] = o(n tr(�2)). For equation (A.6),

E
[(

XT
1 �X1

)2]= E
[(

ZT
1 	T 	E

(
Z2Z

T
2
)
	T 	Z1

)2]
= E

[
E2(ZT

1 	T 	Z2Z
T
2 	T 	Z1 | Z1

)]
≤ E

{
E
[(

ZT
1 	T 	Z2Z

T
2 	T 	Z1

)2 | Z1
]}
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= E
[(

ZT
1 	T 	Z2

)4]= E
[(

XT
1 X2

)4]
.

Hence, (A.6) follows from (A.5). This completes the proof. �

In order to obtain the expectation and the asymptotic distribution of the statistic,
it is needed to reformulate �i,j as follows:

n

n − 2
�i,j (X)

=
(

1 − 1

n

)
XT

i Xj − 1

2n

(
XT

i Xi + XT
j Xj − 2E

(
XT

1 X1
))

−
(

1 − 2

n

)
X

T

i,j (Xi + Xj )(A.7)

+
(

1 − 2

n

)[
X

T

i,jXi,j − E(XT
1 X1)

n − 2

]
=: Rij1 + Rij2 + Rij3 + Rij4,

n

n − 2
�i,j (Y)

=
(

1 − 1

n

)
YiYj − 1

2n

(
Y 2

i + Y 2
j − 2E

(
Y 2

1
))

(A.8)

−
(

1 − 2

n

)
Y i,j (Yi + Yj ) +

(
1 − 2

n

)[
Y i,jY i,j − E(Y 2

1 )

n − 2

]
=: Sij1 + Sij2 + Sij3 + Sij4,

where Xi,j and Y i,j are the average of X′
ks and Y ′

ks with deleting the ith and j th
samples respectively, that is, Xi,j = 1

n−2
∑

−(i,j) Xk and Y i,j = 1
n−2

∑
−(i,j) Yk . It

is obvious that under (C3) or (C4), E[RijkSij l] = 0, for k �= l, and k, l = 1,2,3,4.

PROOF OF THEOREM 3.1. (i) Using Lemma 1, we have under (C3) that

E[Rij1Sij1] = (n − 1)2

n2 βT �2β,

E[Rij2Sij2] = 1

n2 βT �2β + 1

2n2 �
(
βT 	 diag

(
	T 	

)
	T β

)
,

E[Rij3Sij3] = 2(n − 2)

n2 βT �2β,

E[Rij4Sij4] = 2

n2 βT �2β + 1

n2(n − 2)
�
(
βT 	 diag

(
	T 	

)
	T β

)
.

Put summation of the four terms, then we prove (i).
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(ii) The reconstruction of the proposed statistic could be obtained by the proof
of Theorem 3.2. �

PROOF OF THEOREM 3.3. (i) By (A.7) and (A.8), like the proof of Theo-
rem 3.1, under (C4):

E[Rij1Sij1] = (n − 1)2

n2 βT �2β,

E[Rij2Sij2] = E(R4)

n2p(p + 2)
βT �2β

+ tr(�)βT �β

2n2

(
E(R4)

p(p + 2)
− 1

)
,

E[Rij3Sij3] = 2(n − 2)

n2 βT �2β,

E[Rij4Sij4] = 2βT �2β

n2(n − 2)

(
E(R4)

p(p + 2)
+ (n − 3)

)

+ tr(�)βT �β

n2(n − 2)

(
E(R4)

p(p + 2)
− 1

)
.

Put summation of the four terms, then we prove (i).
(ii) The reconstruction of the proposed test statistic could be obtained by the

proof of Theorem 3.4. �

PROOF OF THEOREMS 3.2 AND 3.4. Applying Lemmas 1–4, we prove The-
orems 3.2 and 3.4. Because the whole proof of the two theorems are quite similar,
we only prove Theorem 3.4 and just list the sketch proof of Theorem 3.2 below in
order to save the page capacity of the paper, and the details proof of Theorem 3.2
can be put in the Supplemental Materials [5].

By the fact that

n
(
E(Tn,p) − βT�2β

)
/

√
tr
(
�2
)

≤ O
(
n−1)∣∣∣∣E(R4) − p2 − 2p

p(p + 2)

∣∣∣∣(3

2
tr(�)βT�β

)/√
tr
(
�2
)

≤ O
(
n−1) p2

p(p + 2)
λmax(�)βT�β/

√
tr
(
�2
)

≤ O
(
n−1)[tr(�4)]1/4

βT�β/

√
tr
(
�2
)

= o
(
n−1βT�β

)= o
(
n−1),
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hence we just suffice to prove that

n(Tn,p − E(Tn,p))

σ 2
√

2 tr(�2)

D−→ N(0,1).

Write T
(k,l)
n,p = n

(n
2

)−1∑
i>j (RijkSij l − E(RijkSij l)), where k, l = 1,2,3,4. By

(A.7)–(A.8), we have n(Tn,p − ETn,p) =∑
k

∑
l T

(k,l)
n,p . First, we may rewrite

T (1,1)
n,p = n

(
1 − 1

n

)2
(
n

2

)−1 n∑
i=2

i−1∑
j=1

(
βT XiX

T
i XjXT

j β − βT �2β
)

+ (
εjβ

T XiX
T
i Xj + εiβ

T XjXT
j Xi

)+ (
εiεjX

T
i Xj

)
=: T (1,1)

n,p (1) + T (1,1)
n,p (2) + T (1,1)

n,p (3).

We shall prove

(A.9)
T

(1,1)
n,p − E(T

(1,1)
n,p )

σ 2
√

2 tr(�2)
= T

(1,1)
n,p (3)

σ 2
√

2 tr(�2)
+ oP (1).

Denote T
(1,1)
n,p (k) = n(1 − 1/n)2(n

2

)−1∑n
i=2 Q

(1,1)
i (k), k = 1,2. Then it follows

from Lemma 2 and Lemma 3 that

E
[
Q

(1,1)
i (1)Q

(1,1)
i (1)

]
= (i − 1)

{
(ER4)2

p2(p + 2)2

(
4B2

2 + 4B1B3 + B2
1 tr
(
�2))− B2

2

}

+ (i − 1)(i − 2)

{
E(R4)

p(p + 2)

(
2B2

2 + B1B3
)− B2

2

}
,

E
[
Q

(1,1)
i (1)Q

(1,1)
j (1)

]
= [

(i − 1) ∧ (j − 1)
]{ E(R4)

p(p + 2)

(
2B2

2 + B1B3
)− B2

2

}
,

for i �= j . Similarly, by simple calculation, we have E[Q(1,1)
i (2)Q

(1,1)
i (2)] =

(i − 1){ E(R4)
p(p+2)

(4σ 2B3 + 2σ 2B1 tr(�2))} + (i − 1)(i − 2)σ 2B3 and E[Q(1,1)
i (2) ×

Q
(1,1)
j (2)] = [(i − 1) ∧ (j − 1)]2σ 2B3. Hence, under condition (C2), we have

T
(1,1)
n,p (k)

σ 2
√

2 tr(�2)
= oP (1), k = 1,2.

Thus, (A.9) follows.
Next, we shall prove T

(k,l)
n,p =: n

(n
2

)−1∑
i>j Rijk(X)Sijl(Y ) = oP (

√
tr(�2)),

where k, l = 1,2,3,4 and (k, l) �= (1,1). Rewrite T
(1,2)
n,p = −1

2(1 − 1
n
)T̃

(1,2)
n,p ,
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where T̃
(1,2)
n,p = (n

2

)−1∑
i>j XT

i Xj (Y 2
i +Y 2

j − 2E(Y 2
1 )) =: T̃ (1,2)

n,p (1)+ T̃
(1,2)
n,p (2)+

T̃
(1,2)
n,p (3), and

T̃ (1,2)
n,p (1) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

XT
i Xj

(
βT XjXT

j β

+ βT XiX
T
i β − 2E

(
βT X1X

T
1 β
))

,

T̃ (1,2)
n,p (2) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

2XT
i Xj

(
εjX

T
j β + εiX

T
i β
)

=: 2

(
n

2

)−1 n∑
i=2

Q̃
(1,2)
i (2),

T̃ (1,2)
n,p (3) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

XT
i Xj

(
ε2
i + ε2

j − 2σ 2)

=: 2

(
n

2

)−1 n∑
i=2

Q̃
(1,2)
i (3).

If T̃
(1,2)
n,p = oP (

√
tr(�2)), then we get T

(1,2)
n,p = oP (

√
tr(�2)). In fact, by the

Cauchy–Schwarz inequality, we have

E
∣∣T̃ (1,2)

n,p (1)
∣∣≤√

2E
(
XT

1 X2X
T
1 X2

) · Var
(
βT X1X

T
1 β
)

=
√

2
(

3
E(R4)

p(p + 2)
− 1

)
B2

1 tr
(
�2
)
,

thus, by condition (C2), T̃
(1,2)
n,p (1) = oP (

√
tr(�2)) is true. It is easy to check

E
[
Q̃

(1,2)
i (2)Q̃

(1,2)
i (2)

]= 2(i − 1)
E(R4)

p(p + 2)
σ 2(2B3 + tr

(
�2)B1

)
,

E
[
Q̃

(1,2)
i (3)Q̃

(1,2)
i (3)

]= 2(i − 1)
(
Eε4

1 − σ 4) tr
(
�2).

If i �= j , then we have E[Q̃(1,2)
i (2)Q̃

(1,2)
j (2)] = 0 and E[Q̃(1,2)

i (3)Q̃
(1,2)
j (3)] = 0.

Thus, under condition (C2), we have E[T̃ (1,2)
n,p (2)]2 = O(n−2 tr(�2)) and

E[T̃ (1,2)
n,p (3)]2 = O(n−2 tr(�2)). Then T̃

(1,2)
n,p (2) = oP (

√
tr(�2)) and T̃

(1,2)
n,p (3) =

oP (
√

tr(�2)). Rewrite T
(1,3)
n,p = −n(1 − 1

n
)(1 − 2

n
)
(n
2

)−1∑n
i=2 Q

(1,3)
i and T

(1,4)
n,p =

n(1 − 1
n
)(1 − 2

n
)
(n
2

)−1∑n
i=2 Q

(1,4)
i , where Q

(1,3)
i = ∑i−1

j=1(X
T
i XjY i,j )(Yi + Yj )
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and Q
(1,4)
i =∑i−1

j=1 XT
i Xj (Y

2
i,j − Y

2
1,2). Then, by Lemma 3, we have

E
[
Q

(1,3)
i Q

(1,3)
i

]
= 2

(i − 1)

(n − 2)

{[
E(R4)

p(p + 2)

(
2B3 + tr

(
�2)B1

)+ σ 2 tr
(
�2)](σ 2 + B1

)}

+ (i − 1)(i − 2)

(n − 2)2

[
E(R4)

p(p + 2)

(
2B2

2 + B1B3
)+ σ 2B3

]

+ (i − 1)(i − 2)
(n − 3)

(n − 2)2

(
B1B3 + σ 2B3

)
,

E
[
Q

(1,4)
i Q

(1,4)
i

]
= (i − 1)

(n − 2)3 tr
(
�2)[EY 4

1 + 3(n − 3)
(
EY 2

1
)2 − (n − 2)

(
EY 2

1
)2]

+ 4
(i − 1)(i − 2)(n − 3)

(n − 2)4 B3
(
σ 2 + B1

)
and

E
[
Q

(1,3)
i Q

(1,3)
j

]
= (i − 1) ∧ (j − 1)

(n − 2)2

[
(n − 2)σ 2B3 + (n − 3)B1B3

+ E(R4)

p(p + 2)

(
2B2

2 + B1B3
)]

+ 4
[(i − 1)(j − 1) − (i − 1) ∧ (j − 1)]

(n − 2)2 B2
2 ,

E
[
Q

(1,4)
i Q

(1,4)
j

]
= 4

(i − 1) ∧ (j − 1)(n − 3)

(n − 2)4 B3
(
σ 2 + B1

)
+ 4

[(i − 1)(j − 1) − (i − 1) ∧ (j − 1)]
(n − 2)4 B2

2 ,

for i �= j . Under condition (C2), T
(1,3)
n,p = oP (

√
tr(�2)) and T

(1,4)
n,p = oP (

√
tr(�2))

are true.
For T

(2,1)
n,p , we have very quite similar to the derivations of T

(1,2)
n,p that T

(2,1)
n,p =

oP (
√

tr(�2)) by conditions (C1) and (C2). For T
(2,2)
n,p , we obtain that E|T (2,2)

n,p | ≤
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1
2n

[Var(XT
1 X1)Var(Y 2

1 )]1/2, where

(A.10)

Var
(
XT

1 X1
)= 2

E(R4)

p(p + 2)
tr
(
�2)+ (

E(R4)

p(p + 2)
− 1

)
tr2(�),

Var
(
Y 2

1
)= (

3
E(R4)

p(p + 2)
− 1

)
B2

1 + 4σ 2B2
1 + Var

(
ε2

1
)
.

Under condition (C2) and tr2(�) ≤ p tr(�2), we have T
(2,2)
n,p = oP (

√
tr(�2)).

By Lemma 3, we have Var(Y i,j (Yi + Yj )) = 2
n−2E(Y 2

1 )2 = 2
n−2(σ 2 + B1)

2.

Then, by (A.10), we obtain that E|T (2,3)
n,p | ≤ [Var(XT

1 X1)Var(Y i,j (Yi +Yj ))]1/2 =
o(
√

tr(�2))). Thus, T
(2,3)
n,p = oP (

√
tr(�2)) follows under condition (C2). Since

(A.11)

Var
(
X

T

1,2X1,2
)= 2

( E(R4)
p(p+2)

+ (n − 3))

(n − 2)3 tr
(
�2)+ ( E(R4)

p(p+2)
− 1)

(n − 2)3 tr2(�),

Var
(
Y

2
1,2
)= 3

(n − 2)3

E(R4)

p(p + 2)
B2

1 + 4

(n − 2)2 σ 2B1

+ 1

(n − 2)3 Var
(
ε2

1
)+ (2n − 7)

(n − 2)3 B2
1 + 2(n − 3)

(n − 2)3 σ 4.

Combining (A.10), (A.11) and tr2(�) ≤ p tr(�2), T
(2,4)
n,p = oP (

√
tr(�2)) follows

under condition (C2).
The proof of T

(k,l)
n,p = oP (

√
tr(�2)), k = 3,4, l = 1,2 are quite similar to

that of T
(l,k)
n,p = oP (

√
tr(�2)), so we omitted. We here just need to prove

T
(k,l)
n,p = oP (

√
tr(�2)), (k, l) = (3,3), (3,4), (4,4). We denote T

(3,3)
n,p = n(1 −

2
n
)2(n

2

)−1∑
i>j X

T

i,j (Xi + Xj )Y
T

i,j (Yi + Yj ) =: (1 − 2
n
)2[T (3,3)

n,p (1) + T
(3,3)
n,p (2) +

T
(3,3)
n,p (3)], where

T (3,3)
n,p (1) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

nX
T

i,j (Xi + Xj )X
T

i,jβ(Yi + Yj ),

T (3,3)
n,p (2) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

nX
T

i,j (Xi + Xj )εi,j
(
XT

i β + XT
j β
)
,

T (3,3)
n,p (3) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

nX
T

i,j (Xi + Xj )εi,j (εi + εj )

=:
(
n

2

)−1 n∑
i=2

nQ
(3,3)
i (3).
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Then we have

E
∣∣T (3,3)

n,p (1)
∣∣≤ 2n

(n − 2)

√
tr
(
�2
)
B1
(
σ 2 + B1

)
,

E
∣∣T (3,3)

n,p (2)
∣∣≤ 2n

(n − 2)

√
σ 2B1 tr

(
�2
)
,

E
[
Q

(3,3)
i (2)Q

(3,3)
i (3)

]= (i − 1)(i + 2)

(n − 2)2 σ 4 tr
(
�2)

and

E
[
Q

(3,3)
i (4)Q

(3,3)
j (4)

]
=
{
(i − 1) ∧ (j − 1)

(n − 2)2

+ 4[(i − 1)(j − 1) − (i − 1) ∧ (j − 1)]
(n − 2)4

}
σ 4 tr

(
�2),

for i �= j . Thus, under condition (C2), we have T
(3,3)
n,p (k) = oP (

√
tr(�2)), k =

1,2,3. Let T
(3,4)
n,p =: −(1 − 2

n
)2T̃

(3,4)
n,p , where T̃

(3,4)
n,p = n

(n
2

)−1∑
i>j X

T

i,j (Xi +
Xj )(Y

2
i,j − E(Y

2
1,2)). Since

E
∣∣T̃ (3,4)

n,p

∣∣ ≤ n

√
E
[
X

T

i,j (Xi + Xj )(Xi + Xj )T Xi,j
] · E(Y 2

i,j − E
(
Y

2
1,2
))2

= n

√
2

(n − 2)
tr
(
�2
) · Var

(
Y

2
1,2
)
,

then by (A.11), we have T
(3,4)
n,p = oP (

√
tr(�2)).

For T
(4,4)
n,p = (1 − 2

n
)2T̃

(4,4)
n,p , where T̃

(4,4)
n,p = (n

2

)−1∑
i>j (X

T

i,jXi,j −
E(X

T

1,2X1,2))(Y i,jY i,j − E(Y 1,2Y 1,2)). Because E|T̃ (4,4)
n,p | ≤ [Var(X

T

1,2X1,2) ·
Var(Y

2
1,2)]1/2, then by (A.11), we get T

(4,4)
n,p = oP (

√
tr(�2)).

Combining (A.9) and Slutsky’s theorem, the proof is complete if we show that

T̃n,p√
Var(T̃n,p)

D−→ N(0,1),

where T̃n,p =: ∑n
i=2

∑i−1
j=1 εiεjX

T
i Xj/

√(n
2

)
and Var(T̃n,p) =: σ 2

√
tr(�2). Let

ξni =∑i−1
j=1 εiεjX

T
i Xj/

√(n
2

)
, vni = E(ξ2

ni | Fi−1), and Vn =∑n
i=2 vni for 2 ≤ i ≤

n, where Fi = σ {(X1
ε1

)
, . . . ,

(Xi
εi

)} denotes the σ -field generated by {(XT
j , εj ), j ≤

i}. It is easy to check that E(ξni | Fi−1) = 0 and {∑k
i=2 ξni,Fk : 2 ≤ k ≤ n} is a
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zero mean martingale. The martingale central limit theorem in [12] follows if we
prove

(A.12)
Vn

Var(T̃n,p)

P−→ 1,

and for any η > 0

(A.13)
n∑

i=2

σ−4 tr−1(�2)E{ξ2
niI
(|ξni | > ησ 2

√
tr
(
�2
)) | Fi−1

} P−→ 0.

Note that vni = (n
2

)−1σ 2{∑i−1
j=1 ε2

jX
T
j �Xj + 2

∑
1≤j<l<i εj εlX

T
j �Xl} and

Vn

Var(T̃n,p)
=
{

n−1∑
j=1

(n − j)ε2
jX

T
j �Xj

+ 2
∑

1≤j<l≤n

(n − l)εj εlX
T
j �Xl

}/(
n

2

)
tr
(
�2)σ 2

=: Cn1 + Cn2.

Observe the fact that E(Cn1) = 1 and

Var(Cn1) = 1(n
2

)2 tr2(�2)σ 4

n−1∑
j=1

j2E
[
ε4
j

(
XT

j �Xj
)2 − tr2(�2)σ 4],

which combined with the conditions (C1), (C2) and Lemma 4 will imply

Var(Cn1) −→ 0. Hence, Cn1
P−→ 1. Similar discussion could be performed on

the term Cn2. It is elemental to obtain that E(Cn2) = 0 and

Var(Cn2) = 4(n
2

)2 tr2(�2)σ 4

× ∑
j1<l1

∑
j2<l2

(n − l1)(n − l2)E
[
εj1εl1εj2εl2X

T
j1

�Xl1X
T
j2

�Xl2

]

= 4(n
2

)2 ∑
1≤j≤n

(j − 1)(n − j)2 tr(�4)

tr2(�2)
.

Note that tr(�4) = o(tr2(�2)). Markov’s inequality yields Cn2
P−→ 0. Thus,

(A.12) holds. Hence, it finally remains to show (A.13). Since E{ξ2
niI (|ξni | >

ησ 2
√

tr(�2)} ≤ E(ξ4
ni | Fi−1)/(η

2σ 4 tr(�2)), then by the law of large numbers,
it only needs to prove that

(A.14)
n∑

i=2

E
(
ξ4
ni

)= o
(
tr2(�2)).
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By simple calculation, we have

n∑
i=2

E
(
ξ4
ni

)= (
n

2

)−1[
E
(
ε4)]2[E(XT

1 X2
)4]

+ 3

(
n

2

)−2

E
(
ε4)σ 4

n∑
i=2

i(i − 1)E
[(

XT
1 X2

)2(
XT

1 X3
)2]

≤ O
(
n−1)E(XT

1 X2
)4

.

By Lemma 4, (A.14) follows. This completes the proof of Theorem 3.4. �

PROOF OF THEOREM 3.2. Write T
(k,l)
n,p = n

(n
2

)−1∑
i>j (RijkSij l −ERijkSij l),

where k, l = 1,2,3,4. Then, by (A.7)–(A.8), we have n(Tn,p − E(Tn,p)) =∑
k

∑
l T

(k,l)
n,p . First, we may rewrite

T (1,1)
n,p = n

(
1 − 1

n

)2
(
n

2

)−1 n∑
i=2

i−1∑
j=1

(
βT XiX

T
i XjXT

j β − βT �2β
)

+ (
εjβ

T XiX
T
i Xj + εiβ

T XjXT
j Xi

)+ (
εiεjX

T
i Xj

)
=: T (1,1)

n,p (1) + T (1,1)
n,p (2) + T (1,1)

n,p (3).

We shall prove

T
(1,1)
n,p − E(T

(1,1)
n,p )

σ 2
√

2 tr(�2)
= T

(1,1)
n,p (3)

σ 2
√

2 tr(�2)
+ oP (1).

Second, under conditions (C1) and (C2), we can prove T
(k,l)
n,p =: n

(n
2

)−1 ×∑
i>j RijkSij l = oP (

√
tr(�2)), where k, l = 1,2,3,4 and (k, l) �= (1,1) by cal-

culating their variance or the expectation of their absolute value. Finally, by the
martingale central limit theorem [12] and Slutsky’s theorem, we have the asymp-
totical normality of the statistic. �

PROOF OF THEOREM 3.5. We first deal with σ̂ 2
1 by decomposing (n2 −

|M̂1|)(σ̂ 2
1 − σ 2) as(

n2 − |M̂1|)(σ̂ 2
1 − σ 2)

= [
X(2)T β + ε(2)]T [In2 − PM̂1

(
X(2))][X(2)T β + ε(2)]

− (
n2 − |M̂1|)σ 2

= [
ε(2)T ε(2) − n2σ

2]− [
ε(2)T PM̂1

(
X(2))ε(2) − |M̂1|σ 2]
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+ βT X(2)[In2 − PM̂1

(
X(2))]X(2)T β

+ 2ε(2)T [In2 − PM̂1

(
X(2))]X(2)T β

=: T1 − T2 + T3 + 2T4.

Using central limit theorem we have T1 = OP (
√

n2) = OP (
√

n) since n2 = [(n +
1)/2]. By following the proof of Theorem 2 in [6], we can obtain that T2/

√
|M̂1| =

OP (1), which implies T2 = oP (
√

n), since |M̂1| = o(n) by the variable screening
procedure. To deal with T3, it is easy to show that

E
(|T3|)≤ E

[
βT X(2)X(2)T β

]
= n2β

T �β

= n2B1 = o(n).

Thus, by Markov inequality, T3 = oP (n). For the term T4, we have E(T4) = 0 and
Var(T4) = σ 2E(T3). Thus, we have T4 = oP (

√
n).

Hence, we obtain that (n2 − |M̂1|)(σ̂ 2
1 − σ 2) = OP (

√
n) + oP (

√
n) + oP (n) +

oP (
√

n) which implies that σ̂ 2
1 − σ 2 = oP (1). Similarly, we conclude that σ̂ 2

2 −
σ 2 = oP (1). Thus, we have σ̂ 2

RCV = σ 2 + oP (1), which completes the proof of the
consistency of σ̂ 2

RCV. �
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fitted cross-validation variance estimation” (DOI: 10.1214/17-AOS1573SUPP;
.pdf). This supplemental article contains the proof of Theorem 3.2 and additional
figures of empirical powers of different tests.
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