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EXACT FORMULAS FOR THE NORMALIZING CONSTANTS OF
WISHART DISTRIBUTIONS FOR GRAPHICAL MODELS

BY CAROLINE UHLER1, ALEX LENKOSKI2 AND DONALD RICHARDS3

Massachusetts Institute of Technology, Norwegian Computing Center and
Penn State University

Gaussian graphical models have received considerable attention during
the past four decades from the statistical and machine learning communi-
ties. In Bayesian treatments of this model, the G-Wishart distribution serves
as the conjugate prior for inverse covariance matrices satisfying graphical
constraints. While it is straightforward to posit the unnormalized densities,
the normalizing constants of these distributions have been known only for
graphs that are chordal, or decomposable. Up until now, it was unknown
whether the normalizing constant for a general graph could be represented
explicitly, and a considerable body of computational literature emerged that
attempted to avoid this apparent intractability. We close this question by pro-
viding an explicit representation of the G-Wishart normalizing constant for
general graphs.

1. Introduction. Let G = (V ,E) be an undirected graph with vertex set V =
{1, . . . , p} and edge set E. Let Sp be the set of symmetric p × p matrices and S

p
�0

the cone of positive definite matrices in Sp . Let

(1.1) S
p
�0(G) = {

M = (Mij ) ∈ S
p
�0 | Mij = 0 for all (i, j) /∈ E

}
denote the cone in Sp of positive definite matrices with zeros in all entries not
corresponding to edges in the graph. Note that the positivity of all diagonal entries
Mii follows from the positive-definiteness of the matrices M .

A random vector X ∈ Rp is said to satisfy the Gaussian graphical model (GGM)
with graph G if X has a multivariate normal distribution with mean μ and covari-
ance matrix �, denoted X ∼ Np(μ,�), where �−1 ∈ S

p
�0(G). The inverse co-
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variance matrix �−1 is called the concentration matrix and, throughout this paper,
we denote �−1 by K .

Statistical inference for the concentration matrix K constrained to S
p
�0(G) goes

back to [6], who proposed an algorithm for determining the maximum likelihood
estimator (cf. [33]). A Bayesian framework for this problem was introduced by
[5], who proposed the Hyper-Inverse Wishart (HIW) prior distribution for chordal
(also known as decomposable or triangulated) graphs G.

Chordal graphs enjoy a rich set of properties that led the HIW distribution to
be particularly amenable to Bayesian analysis. Indeed, for nearly a decade after
the introduction of GGMs, focus on the Bayesian use of GGMs was placed pri-
marily on chordal graphs (see, e.g., [11]). This tractability stems from two causes:
the ability to sample directly from HIWs [30], and the ability to calculate their
normalizing constants.

Roverato [31] extended the HIW distribution to general G. Following [23, 24]
termed this distribution the G-Wishart distribution. Atay-Kayis and Massam [2]
developed a Monte Carlo method to compute numerically the normalizing constant
of this distribution. For D ∈ S

p
�0(G) and δ ∈ R, the G-Wishart density has the form

fG(K | δ,D) ∝ |K| 1
2 (δ−2) exp

(
−1

2
tr(KD)

)
1K∈Sp

�0(G).

This distribution is conjugate [31] and proper for δ > 1 [26].
Early work on the G-Wishart distribution was largely computational in nature

[2, 4, 7, 8, 18, 23, 26, 35, 36] and was predicated on two assumptions: first, that a
direct sampler was unavailable for this class of models and, second, that the nor-
malizing constant could not be calculated explicitly. Lenkoski [22], motivated by
the algorithm of [6], developed a direct sampler for G-Wishart variates and thereby
resolved the first open question. In this paper, we close the second question by de-
riving for general graphs G an explicit formula for the G-Wishart normalizing
constant

CG(δ,D) =
∫
S

p
�0(G)

|K| 1
2 (δ−2) exp

(
−1

2
tr(KD)

)
dK,

where

dK =
p∏

i=1

dkii · ∏
i<j,(i,j)∈E

dkij

denotes the product of differentials corresponding to all distinct nonzero entries
in K .

For notational simplicity, we will consider the integral

IG(δ,D) =
∫
S

p
�0(G)

|K|δ exp
(− tr(KD)

)
dK,
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which can be expressed in terms of CG(δ,D) as follows: Denote by |E| the cardi-
nality of the edge set E; by changing variables, K → 2K , one obtains

CG(δ,D) = 2
1
2 pδ+|E|IG

(
1

2
(δ − 2),D

)
.

The normalizing constant IG(δ,D) is well known for complete graphs, in which
every pair of vertices is connected by an edge. In such cases,

(1.2) Icomplete(δ,D) = |D|−(δ+ 1
2 (p+1))�p

(
δ + 1

2
(p + 1)

)
,

where

(1.3) �p(α) = πp(p−1)/4
p∏

i=1

�

(
α − 1

2
(i − 1)

)
,

Re(α) > 1
2(p−1) is the multivariate gamma function. The formula (1.2) has a long

history, dating back to [16, 37, 38], Hilfssatz 37 of [32], [25] and many derivations
of a statistical nature; see [29] and [10], page 224.

As noted above, IG(δ,D) is also known for chordal graphs. Let G be chordal,
and let (T1, . . . , Td) denote a perfect sequence of cliques (i.e., complete subgraphs)
of V . Further, let Si = (T1 ∪ · · · ∪ Ti) ∩ Ti+1, i = 1, . . . , d − 1; then S1, . . . , Sd−1
are called the separators of G. Note that the separators Si are cliques as well.
We denote the cardinalities by ti = |Ti | and si = |Si |. For S ⊆ {1, . . . , p}, let DSS

denote the submatrix of D corresponding to the rows and columns in S. Then

IG(δ,D) =
∏d

i=1 ITi
(δ,DTiTi

)∏d−1
j=1 ISj

(δ,DSjSj
)

=
∏d

i=1(|DTiTi
|−(δ+ 1

2 (ti+1))�ti (δ + 1
2(ti + 1)))∏d−1

j=1(|DSjSj
|−(δ+ 1

2 (sj+1))�sj (δ + 1
2(sj + 1)))

.

(1.4)

This result follows because, for a chordal graph G, the G-Wishart density function
can be factored into a product of density functions [5].

For nonchordal graphs, the problem of calculating IG(δ,D) has been open for
over 20 years, and much of the computational methodology mentioned above was
developed with the objective of either approximating IG(δ,D) or avoiding its cal-
culation. Our result shows that an explicit representation of this quantity is indeed
possible.

In deriving the explicit formula for the normalizing constant IG(δ), we utilize
methods that are familiar to researchers in this area. These methods include the
Cholesky decomposition or the Bartlett decomposition of a positive definite ma-
trix, Schur complements for factorizing determinants and the chordal cover of a
graph. Furthermore, we make crucial use of certain formulas from the theory of
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generalized hypergeometric functions of matrix argument [14, 17], and analytic
continuation of differential operators on the cone of positive definite matrices [9].

The article proceeds as follows. In Section 2, we treat the case in which D = Ip ,
the p × p identity matrix, deriving a closed-form product formula for the normal-
izing constant IG(δ, Ip) for various classes of nonchordal graphs. In Section 3, we
consider the case of general matrices D; in our main result in Theorem 3.3, we
derive an explicit representation of IG(δ,D) for general graphs as a closed-form
product formula involving differentials of principal minors of D. We end with a
brief discussion in Section 4.

2. Computing the normalizing constant IG(δ, Ip). In this section, we com-
pute IG(δ, Ip) for two classes of nonchordal graphs. We begin in Section 2.1 with
the class of complete bipartite graphs and use an approach based on Schur com-
plements to attain a closed-form formula. In Section 2.2, we introduce directed
Gaussian graphical models and show how these models relate to a Cholesky factor
approach to computing IG(δ, Ip). This leads to a formula for computing normaliz-
ing constants of graphs with minimum fill-in equal to 1, namely graphs that become
chordal after the addition of one edge. However, these approaches do not lead to
a general formula for the normalizing constant in the case D = Ip . To obtain a
formula for any graph G, we found it necessary to calculate the more general case
IG(δ,D) and then specialize D = Ip , as is done for moment generating functions
or Laplace transforms. This is explained in Section 3.

2.1. Bipartite graphs. A complete bipartite graph on m + n vertices, denoted
by Hm,n, is an undirected graph whose vertices can be divided into disjoint sets
U = {1, . . . ,m} and V = {m + 1, . . . ,m + n}, such that each vertex in U is con-
nected to every vertex in V , but there are no edges within U or V . For the graph
Hm,n, the corresponding matrix K is a block matrix,

K =
(
KAA KAB

KT
AB KBB

)
,

where KAA,KBB are diagonal matrices of sizes m × m and n × n, respectively,
and KAB is unconstrained, that is, no entry of KAB is constrained to be zero.

PROPOSITION 2.1. The integral IHm,n(δ, Im+n) converges absolutely for all
δ > −1, and

IHm,n(δ, Im+n) =
[
�

(
δ + 1

2
n + 1

)]m[
�

(
δ + 1

2
m + 1

)]n

× �m+n(δ + 1
2(m + n + 1))

�m(δ + 1
2(m + n + 1))�n(δ + 1

2(m + n + 1))
.

(2.1)
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PROOF. Applying the Schur complement determinant formula for block ma-
trices,

(2.2) |K| = |KAA|∣∣KBB − KT
AB(KAA)−1KAB

∣∣,
we obtain

IHm,n(δ, Im+n) =
∫
Sm+n

�0 (G)
|K|δ exp

(− tr(K)
)

dK

=
∫
Sm+n

�0 (G)
|KAA|δ∣∣KBB − KT

AB(KAA)−1KAB

∣∣δ
· exp

(− tr(KAA) − tr(KBB)
)

dKAA dKAB dKBB.

Since KAB is unconstrained, we can change variables by replacing KAB by
K

1/2
AAKABK

1/2
BB ; then the corresponding Jacobian is |KAA|n/2|KBB |m/2. Since∣∣KBB − K

1/2
BB KT

ABKABK
1/2
BB

∣∣= |KBB | · ∣∣In − KT
ABKAB

∣∣,
we obtain

IHm,n(δ, Im+n) =
∫
Sm+n

�0 (G)
|KAA|δ+ 1

2 n|KBB |δ+ 1
2 m
∣∣In − KT

ABKAB

∣∣δ
· exp

(− tr(KAA) − tr(KBB)
)

dKAA dKAB dKBB,

where the range of integration is such that each diagonal entry of KAA and KBB is
positive, KAB is unconstrained and In − KT

ABKAB is positive definite. Integrating
over each diagonal entry of KAA and KBB , we obtain

IHm,n(δ, Im+n) =
[
�

(
δ + 1

2
n + 1

)]m[
�

(
δ + 1

2
m + 1

)]n

×
∫
KAB

∣∣In − KT
ABKAB

∣∣δ dKAB.

Finally, since KAB is unconstrained, we deduce from (3.4) the value of the latter
integral. �

In this computation, we used the special structure of the graph to decompose
the inverse covariance matrix K into a special block matrix. In Section 3, we use
a similar approach to show how the normalizing constant changes when removing
a clique (i.e., a completely connected subgraph) from a graph. This leads to an
algorithm for computing the normalizing constant IG(δ,D) for any graph G. In
the remainder of this section, we show how an approach based on the Cholesky
factorization of K can be used to easily compute the normalizing constant for
graphs that have minimum fill-in equal to 1. This requires introducing directed
Gaussian graphical models.
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2.2. Directed Gaussian graphical models. Let G = (V ,E) be a directed
acyclic graph (DAG) consisting of vertices V = {1, . . . , p} and directed edges E .
We assume, without loss of generality, that the vertices in G are topologically or-
dered, meaning that i < j for all (i, j) ∈ E . We associate to G a strictly upper-
triangular matrix B of edge weights. So B = (bij ) with bij 
= 0 if and only if
(i, j) ∈ E . Then a directed Gaussian graphical model on G for a random variable
X ∈ Rp is defined by X ∼ Np(0,�) with � = [(I − B)D(I − B)T ]−1, where D

is a diagonal matrix.
To simplify notation, let aii = dii and aij = −bij

√
djj , and let A = (Aij ) with

Aii = √
aii and Aij = −aij for all i 
= j . Then �−1 = AAT , and aij 
= 0 for i 
= j

if and only if (i, j) ∈ E . Note that AAT is the upper Cholesky decomposition of
�−1. Such a decomposition exists for any positive definite matrix and is unique.

We will associate to a DAG, G = (V ,E), and its corresponding directed Gaus-
sian graphical model two undirected graphs. We denote by Gs = (V ,E s) the skele-
ton of G obtained by replacing all directed edges in G by undirected edges. We
denote by Gm = (V ,Em) the moral graph of G, which reflects the conditional in-
dependencies in Np(0,�), that is,

(i, j) /∈ Em if and only if Xi ⊥⊥ Xj | XV \{i,j}.

Since �−1 also encodes the conditional independence relations of the form Xi ⊥⊥
Xj | XV \{i,j}, this is equivalent to the criterion

(i, j) /∈ Em if and only if
(
�−1)

ij = 0.

So, the moral graph Gm reflects the zero pattern of �−1.
The moral graph of G can also be defined graph-theoretically. It is formed by

connecting all nodes i, j ∈ V that have a common child in G, that is, for which
there exists a node k ∈ V \ {i, j} such that (i, k), (j, k) ∈ E , and then making all
edges in the graph undirected. The name stems from the fact that the moral graph is
obtained by “marrying” the parents. For a review of basic graph-theoretic concepts
see, for example, [21], Chapter 2.

The moral graph is an important concept for our application. Let G = (V ,E)

be an undirected graph, with V = {1, . . . , p}, for which we want to compute
IG(δ, Ip). Let G0 = (V ,E0) with G0 = G. Given a labeling of the vertices V ,
we associate a DAG, G0 = (V ,E0), to G0 by orienting the edges in E0 according
to the topological ordering, that is, for all (i, j) ∈ E0 let (i, j) ∈ E0 if i < j . Note
that the skeleton of G0 is the original undirected graph G0. Let G1 = (V ,E1) be
the moral graph of G0, that is, G1 = Gm

0 , and let G1 = (V ,E1) be the corresponding
DAG obtained by orienting the edges in E1 according to the ordering of the ver-
tices V . So G0 is a subgraph of G1. We repeat this procedure until Gq+1 = Gq . This
results in a sequence of DAGs,

G0 � G1 � · · ·� Gq.
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In the following, we denote by G = (V ,E) the DAG associated to G = (V ,E)

obtained by orienting the edges in E according to the ordering of the vertices V .
We denote by Ḡ = (V , Ē) the DAG associated to G = (V ,E) obtained by repeat-
edly marrying parents in G, that is, Ḡ = Gq . We call Ḡ the moral DAG of G. Note
that Ḡs , the skeleton of Ḡ, is a chordal graph with G ⊂ Ḡs ([21], Chapter 2), so Ḡs

is a chordal cover of G. A chordal cover in general is not unique; however, Ḡs is
the unique chordal cover obtained by repeatedly marrying parents according to the
vertex labeling V . We call this chordal cover the moral chordal graph of G and
denote it by Ḡ = (V , Ē).

We now show how to deduce from the undirected graph G = (V ,E) the nor-
malizing constant IG(δ, Ip) as an integral in terms of the Cholesky factor A. Atay-
Kayis and Massam ([2], equation (39)) also give an integral formula for IG(δ,D)

in terms of the Cholesky factor of the precision matrix K . New in the following
result is the use of Ḡ for the parametrization, which is crucial in order to deter-
mine orderings of the vertices that lead to simpler integral formulas and ultimately
allow us to obtain a closed-form formula. Since the proof is the same for general
correlation matrices D ∈ S

p
�0, we give the result directly for IG(δ,D). In the fol-

lowing, we use the standard graph-theoretic notation indeg(i) for the indegree of
node i, representing the number of edges “arriving at” (or “pointing to”) node i in
a DAG G.

THEOREM 2.2. Let G = (V ,E) be an undirected graph with vertices V =
{1, . . . , p}. Let G = (V ,E) be the DAG associated to G = (V ,E) obtained by ori-
enting the edges in E according to the ordering of the vertices in V . Let Ḡ = (V , Ē)

denote the moral DAG of G and Ḡ = (V , Ē) its skeleton, the moral chordal graph
of G. Let A be an upper-triangular p ×p matrix with diagonal entries Aii = √

aii

and off-diagonal entries Aij = −aij for all i < j . Then

IG(δ,D) =
∫
A∗

( p∏
i=1

a
δ+ 1

2 indeg(i)

ii

)
exp

[
−

p∑
i=1

(
aii + ∑

j :(i,j)∈Ē
a2
ij

)]

· exp
[
−2

∑
(i,j)∈E

dij

(
−aij

√
ajj + ∑

l:(i,l),(j,l)∈Ē
ailajl

)]
dA∗,

where D ∈ S
p
�0 is a correlation matrix, A∗ = {aij : i = j or (i, j) ∈ E}, the range

of aii is (0,∞), the range of aij for (i, j) ∈ E is (−∞,∞), indeg(i) denotes the
indegree of node i in G, and for aij /∈ A∗,

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (i, j) /∈ Ē,
1√
ajj

∑
l∈V

(i,l),(j,l)∈Ē

ailajl if (i, j) ∈ Ē \ E .
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PROOF. Let K ∈ S
p
�0(G). Since G ⊂ Ḡ, then K ∈ S

p
�0(Ḡ) and we can view

K as an inverse covariance matrix of a directed Gaussian graphical model on Ḡ.
Let A denote the unique upper Cholesky factor of K as described at the beginning
of Section 2.2. Then one can verify that aij = 0 for all (i, j) /∈ Ē .

Let (i, j) be an edge that is present in the moral chordal graph Ḡ but not in G.
We can assume that i < j . Hence, (i, j) ∈ Ē \ E and, therefore,

0 = Kij = (
AAT )

ij = −aij
√

ajj + ∑
l>max(i,j)

ailajl.

Thus, for each edge (i, j) ∈ Ē \ E , we obtain an equation

aij = 1√
ajj

∑
l∈V

(i,l),(j,l)∈Ē

ailajl.

To complete the proof, we need to compute the Jacobian J of the change of
variables from K to A. We list the aij ’s column-wise, meaning that aij precedes
alm if j < m or if j = m and i < l, omitting aij for (i, j) /∈ E , corresponding to the
zeros in K . We list the kij ’s in the same ordering. Let the aij ’s correspond to the
columns of the Jacobian, while the kij ’s correspond to the rows. In order to form
J , we calculate the partial derivative of each kij with respect to each alm. Since
K = AAT and A is upper-triangular, then J also is upper-triangular; therefore,
|J | = |diag(J )|. Since

kii = aii + ∑
(i,j)∈Ē

a2
ij and kij = −aij

√
ajj + ∑

l∈V

(i,l),(j,l)∈Ē

ailajl,

for all (i, j) ∈ E , then

|J | =
p∏

i=1

a
indeg(i)/2
ii .

Collecting together these formulas completes the proof. �

The number of edges in Ē \ E depend on the ordering of the vertices. It is well
known (see, e.g., [21], Chapter 2) that one can find an ordering of the vertices
such that Ḡ = G if and only if G is chordal. Hence, when G is chordal we can
directly derive the normalizing constant of IG(δ, Ip) from Theorem 2.2 by evalu-
ating Gaussian and Gamma integrals. One could also prove the following corollary
using equation (1.4).

COROLLARY 2.3. Let G = (V ,E) be a chordal graph, where the vertices
V = {1, . . . , p} are labeled according to a perfect ordering. Then

IG(δ, Ip) = π |E|/2
p∏

i=1

�

(
δ + 1

2
indeg(i) + 1

)
,

where indeg(i) denotes the indegree of node i in the corresponding DAG G.
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FIG. 1. Undirected graph G5 (left) discussed in Example 2.4 and its moral DAG Ḡ5 (right).

EXAMPLE 2.4. We illustrate Theorem 2.2 by studying the nonchordal graph
G5, shown in Figure 1(left). We wish to calculate

(2.3) IG5(δ, I5) =
∫
K∈S5�0(G5)

|K|δ exp
(− tr(K)

)
dK

through the change of variables, K = AAT . The moral DAG of G5 is denoted
by Ḡ5 and depicted in Figure 1(right). Since the edges (2,4) and (2,5) are miss-
ing in Ḡ5, we immediately deduce that a24 = a25 = 0. In this example, we chose
an ordering where only one edge needed to be added in the process of marrying
parents, namely the edge (1,3). This results in one equation for a13, which can
be deduced from the colliders over the additional edge, that is, nodes l ∈ V with
(1, l), (3, l) ∈ Ḡ, and results in

a13 = 1√
a33

(a14a34 + a15a35).

Finally, the Jacobian can be deduced from the indegrees of the nodes in G5, which
corresponds to the moral DAG Ḡ5 after omitting the red edge. Therefore, the de-
terminant of the Jacobian is

a
0/2
11 a

1/2
22 a

1/2
33 a

2/2
44 a

3/2
55 ,

and we find that the integral (2.3) equals∫
A

aδ
11a

δ+1/2
22 a

δ+1/2
33 aδ+1

44 a
δ+3/2
55

× exp
[
−
(
a11 + a2

12 +
(

a14a34 + a15a35√
a33

)2
+ a2

14 + a2
15

+ a22 + a2
23 + a33 + a2

34 + a2
35 + a44 + a2

45 + a55

)]
dA,

where aii > 0; aij ∈ R, i < j ; and dA denotes the product of all differentials.
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As seen in Example 2.4, the equations corresponding to the additional edges
(i, j) ∈ Ē \ E complicate the integral significantly. Therefore, given a nonchordal
graph G, it is desirable to find an ordering such that |Ē \ E | is minimized. This
ordering is given by a perfect ordering of a minimal chordal cover of G, where
minimality is with respect to the number of edges that need to be added in order
to make G chordal. Using Corollary 2.3, we can compute the normalizing con-
stant corresponding to a minimal chordal cover of G. The question arises: Can
one compute the normalizing constant of G from the normalizing constant of a
minimal chordal cover of G? In the following theorem, we show how one can
compute the normalizing constant of a graph G that results from removing one
edge from a chordal graph. Such graphs are said to have minimum fill-in equal
to 1.

THEOREM 2.5. Let G = (V ,E) be an undirected graph with minimum fill-in
1 and with vertices V = {1, . . . , p}. Let Ge = (V ,Ee) denote the graph G with
one additional edge e, that is, Ee = E ∪ {e}, such that Ge is chordal. Let d de-
note the number of triangles formed by the edge e and two other edges in Ge.
Then

IG(δ, Ip) = π−1/2 �(δ + 1
2(d + 2))

�(δ + 1
2(d + 3))

IGe(δ, Ip).

PROOF. We begin by defining an ordering of the vertices in such a way that
one can directly integrate out the variables corresponding to the end points of e

and the variable corresponding to e itself.
Let one of the end points of e be labeled as “1,” the other end point as ‘d + 2’

and label the d vertices involved in triangles over the edge e by 2, . . . , d +1. Label
all remaining vertices by d + 3, . . . , p. Let Ḡe denote the moral DAG to Ge with
edge set Ēe. Then the chosen ordering of the vertices guarantees that Ēe = Ē ∪ {e},
and e /∈ Ē .

Also, since all vertices 2, . . . , d + 1 are connected to vertex d + 2, no added
edge in Ē \ E points to vertex d + 2, and hence ad+2,d+2 does not appear in any
equation for the edges in Ē \ E . Similar arguments hold for vertex 1, since due to
the ordering there can be no edge pointing to node 1.

Let A and Ae denote the Cholesky factors of G and Ge, respectively. Then

Aij =
{
Ae

ij for all (i, j) 
= (1, d + 2),

0 if (i, j) = (1, d + 2).

Let indeg denote the indegree with respect to G and indege the indegree with re-
spect to the DAG Ge. Let A∗ = ((aii)i /∈{1,d+2}, (aij )(i,j)∈E). Note that

(2.4) indege(1) = 0 = indeg(1), indege(d + 2) = d + 1 = indeg(d + 2) + 1.
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Then by Theorem 2.2,

IGe(δ, Ip) =
∫ ( p∏

i=1

a
δ+ 1

2 indege(i)

ii exp(−aii)

)

· exp
[
− ∑

(i,j)∈Ēe

a2
ij

]
da11 dad+2,d+2 da1,d+2 dA∗

=
∫ ∞
−∞

exp
(−a2

1,d+2
)

da1,d+2 ·
∫ ∞

0
a

δ+ 1
2 indege(1)

11 exp(−a11)da11

·
∫ ∞

0
a

δ+ 1
2 indege(d+2)

d+2,d+2 exp(−ad+2,d+2)dad+2,d+2

·
∫
A∗

[ ∏
i /∈{1,d+2}

a
δ+ 1

2 indege(i)

ii exp(−aii)

]
exp
[
− ∑

(i,j)∈Ē
a2
ij

]
dA∗.

The integral with respect to a1,d+2 is a Gaussian integral, with value
√

π . Also, by
(2.4), ∫ ∞

0
a

δ+ 1
2 indege(1)

11 exp(−a11)da11 =
∫ ∞

0
a

δ+ 1
2 indeg(1)

11 exp(−a11)da11.

Again by (2.4), we have∫ ∞
0

a
δ+ 1

2 indege(d+2)

d+2,d+2 exp(−ad+2,d+2)dad+2,d+2

= �(δ + 1
2(d + 1) + 1)

�(δ + 1
2d + 1)

∫ ∞
0

a
δ+ 1

2 indeg(d+2)

d+2,d+2 exp(−ad+2,d+2)dad+2,d+2.

Finally, since indege(i) = indeg(i) for all i /∈ {1, d + 2}, we obtain

IGe(δ, Ip) = √
π

�(δ + 1
2(d + 1) + 1)

�(δ + 1
2d + 1)

∫ ∞
0

a
δ+indeg(1)/2
11 exp(−a11)da11

·
∫ ∞

0
a

δ+ 1
2 indeg(d+2)

d+2,d+2 exp(−ad+2,d+2)dad+2,d+2

·
∫
A∗

( ∏
i /∈{1,d+2}

a
δ+ 1

2 indeg(i)

ii exp(−aii)

)
exp
[
− ∑

(i,j)∈Ē
a2
ij

]
dA∗

= √
π

�(δ + 1
2(d + 3))

�(δ + 1
2(d + 2))

IG(δ, Ip).

The proof now is complete. �

EXAMPLE 2.6. Since the graph G5 discussed in Example 2.4 has minimum
fill-in equal to 1, we can apply Theorem 2.5 to compute its normalizing constant.
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The skeleton of the graph shown in Figure 1(right) is a chordal cover of G5 and the
given vertex labeling is a perfect labeling. By applying Proposition 2.3, we deduce
the normalizing constant for the graph G5 with the additional edge e = (1,3):

IGe
5
(δ, Ip) = π4�(δ + 1)�

(
δ + 3

2

)[
�(δ + 2)

]2
�

(
δ + 5

2

)
.

Since the number of triangles over the red edge (1,3) is d = 3, we find by Theo-
rem 2.5 that

IG5(δ, Ip) = π−1/2 �(δ + 3
2 + 1)

�(δ + 4
2 + 1)

IGe
5
(δ, Ip)

= π7/2 �(δ + 5
2)

�(δ + 3)
�(δ + 1)�

(
δ + 3

2

)[
�(δ + 2)

]2
�

(
δ + 5

2

)
.

(2.5)

3. Computing IG(δ,D) for general nonchordal graphs. In this section, we
study IG(δ,D) for general D. In Theorem 3.3, we show how the normalizing
constant changes when removing not only an edge, but an entire clique (i.e., a
completely connected subgraph) from a graph. This leads to an algorithm for com-
puting the normalizing constant IG(δ,D) for any graph G, which can then be
specialized to the case in which D = Ip .

3.1. Some results on a generalized hypergeometric function of matrix argument.
We list in this subsection some results, involving a generalized hypergeometric
function of matrix argument, that we will apply repeatedly in this section.

For a ∈ C and k ∈ {0,1,2, . . .}, we denote the rising factorial by

(a)k = �(a + k)

�(a)
= a(a + 1)(a + 2) · · · (a + k − 1).

For t ∈ C and ρ /∈ {0,−1,−2, . . .}, the classical generalized hypergeometric func-
tion, 0F1(ρ, t), may be defined by the series expansion

(3.1) 0F1(ρ; t) =
∞∑
l=0

t l

l!(ρ)l
.

We refer to Andrews et al. [1] for many other properties of this function.
The generalized hypergeometric function of matrix argument, 0F1(ρ;Y), Y ∈

S
p
�0, is defined by the Laplace transform

1

�p(ρ)

∫
S

p
�0

|Y |ρ− 1
2 (p+1) exp

(− tr(YD)
)

0F1(ρ;Y)dY = |D|−ρ exp
(
tr
(
D−1)),

valid for Re(ρ) > 1
2(p − 1) and D ∈ S

p
�0. Herz [14] provided an extensive theory

of the analytic properties of the function 0F1. In particular, 0F1(ρ;Y) is simultane-
ously analytic in ρ for Re(ρ) > 1

2(p − 1) and entire in Y ; so, as a function of Y , its
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domain of definition extends to the set Sp and to the set of of complex symmetric
matrices. Other properties of the function 0F1, such as zonal polynomial expan-
sions which generalize (3.1), are given by James [17], Muirhead [28] and Gross
and Richards [12].

Herz ([14], page 497) proved that the function 0F1(ρ;Y) depends only on the
eigenvalues of Y , and moreover that if Re(ρ) > 1

2(p − 1), D ∈ S
p
�0, and C ∈ Sp ,

then there holds the Laplace transform formula∫
S

p
�0

|Y |ρ− 1
2 (p+1) exp

(− tr(YD)
)

0F1(ρ;YC)dY

= �p(ρ)|D|−ρ exp
(
tr
(
D−1C

))
,

(3.2)

where, by convention, 0F1(ρ;YC) is an abbreviation for 0F1(ρ;Y 1/2CY 1/2) and
Y 1/2 ∈ S

p
�0 is the unique square root of Y . Setting C = 0 (the zero matrix) in

(3.2), we deduce from the uniqueness of the Laplace transform and (1.2) that
0F1(ρ;0) = 1.

We will apply repeatedly a generalization of the Poisson integral to matrix
spaces (see [14], pages 495–496, and [17], equation (151)): If A is a k × p matrix
such that k ≤ p, and Re(ρ) > 1

2(k + p − 1), then∫
0<XXT <Ik

∣∣Ik − XXT
∣∣ρ− 1

2 (k+p+1) exp
(
tr
(
AXT ))dX

= πkp/2�k(ρ − 1
2p)

�k(ρ)
0F1

(
ρ; 1

4
AAT

)
,

(3.3)

where the region of integration is the set of all k × p matrices X such that XXT ∈
Sk�0 and I − XXT ∈ Sk�0. In particular, on setting A = 0 we obtain

(3.4)
∫

0<XXT <Ik

∣∣Ik − XXT
∣∣ρ− 1

2 (k+p+1) dX = πkp/2�k(ρ − 1
2p)

�k(ρ)
,

a result which was used in Proposition 2.1.
For the case in which Y is a 2 × 2 matrix, Muirhead [27] proved that

0F1(ρ;Y) =
∞∑

q=0

1

q!(ρ)2q(ρ − 1
2)q

|Y |q 0F1
(
ρ + 2q; tr(Y )

)
,(3.5)

where the 0F1 functions on the right-hand side are the classical generalized hyper-
geometric functions given in (3.1). In the special case in which Y is of rank 1, it
follows from Herz ([14], page 497) or directly from (3.5), that

(3.6) 0F1(ρ;Y) = 0F1
(
ρ; tr(Y )

)
.
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3.2. The normalizing constant for nonchordal graphs. We want to calculate

IG(δ,D) =
∫
S

p
�0(G)

|K|δ exp
(− tr(KD)

)
dK,

the normalizing constant for G, a general nonchordal graph. By making the change
of variables K → diag(D)−1/2K diag(D)−1/2, we can assume, without loss of
generality, that D has ones on the diagonal and, therefore, is a correlation matrix;
this assumption will be maintained explicitly for the remainder of the paper.

In the sequel, we will encounter a 2 × m matrix C = (Cij ), and then we use the
notation |C{1,2},{i,j}| for the minor corresponding to rows 1 and 2 and to columns
i and j , where i, j ∈ {1, . . . ,m}. We will need L = (Lij ), a 2 × m matrix of non-
negative integers such that

∑2
i=1
∑m

j=1 Lij = l, and we adopt the notation(
l

L

)
= l!∏2

i=1
∏m

j=1 Lij !
, Li+ =

m∑
j=1

Lij , and L+j =
2∑

i=1

Lij .

We will also have Q = (Qij )1≤i<j≤m, a matrix of nonnegative integers such that∑
1≤i<j≤m Qij = q , and we set(

q

Q

)
= q!∏

1≤i<j≤m Qij ! , Qi+ =
m∑

j=i+1

Qij , and Q+j =
j−1∑
i=1

Qij .

In the following result, we obtain the normalizing constant for H2,m, a complete
bipartite graph on 2 + m vertices.

PROPOSITION 3.1. The integral IH2,m
(δ,D) converges absolutely for all

δ > −1 and D ∈ S2+m
�0 . Let C = (Cij ) denote the 2 × m submatrix of D corre-

sponding to the edges in G; then IH2,m
(δ,D) equals

IH2,m
(δ, Im+2)

·
∞∑

q=0

(δ + 1
2(m + 2))q[(δ + 2)q]m

q!(δ + 1
2(m + 3))2q

∞∑
l=0

1

l!(δ + 2q + 1
2(m + 3))l

·∑
L

(
l

L

)( 2∏
i=1

m∏
j=1

C
Lij

ij

)( 2∏
i=1

(
δ + q + 1

2
(m + 2)

)
Li+

)(
m∏

j=1

(δ + 2)L+j

)

·∑
Q

(
q

Q

)( ∏
1≤i<jm

|C{1,2},{i,j}|2Qij

)( m∏
j=1

(δ + L+j + 2)Qj++Q+j

)
,

with

(3.7) IH2,m
(δ, Im+2) = πm�2(δ + 3

2)

�2(δ + 1
2(m + 3))

[
�(δ + 2)

]m
�

(
δ + 1

2
(m + 2)

)2
.
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PROOF. We order the vertices such that

K =
(
KAA KAB

KBA KBB

)
,

where KAA = diag(κ1, κ2), KBB = diag(k1, . . . , km), and KAB is unconstrained.
We partition D in a similar way:

D =
(
DAA DAB

DBA DBB

)
,

where diag(D) = (1, . . . ,1) and DAB = C. By applying the determinant formula
for block matrices, (2.2), and making a change-of-variables to replace KAB by
K

1/2
AAKABK

1/2
BB , we obtain similarly as in the proof of Proposition 2.1:

IH2,m
(δ,D) =

∫
S2+m

�0 (G)
|K|δ exp

(− tr(KD)
)

dK

=
∫
S2+m

�0 (G)
|KAA|δ+ 1

2 m|KBB |δ+1∣∣Im − KT
ABKAB

∣∣δ
· exp

(− tr(KAA) − tr(KBB)
)

· exp
[−2 tr

(
K

1/2
AAKABK

1/2
BB CT )]dKAA dKAB dKBB.

Applying (3.3) to integrate over KAB we obtain

IH2,m
(δ,D) = πm�2(δ + 3

2)

�2(δ + 1
2(m + 3))

∫
|KAA|δ+ 1

2 m|KBB |δ+1

· exp
(− tr(KAA) − tr(KBB)

)
· 0F1

(
δ + 1

2
(m + 3);KAACKBBCT

)
dKAA dKBB.

Applying (3.5) to expand this 0F1 function of matrix argument in terms of a clas-
sical 0F1 function of tr(KAACKBBCT ), and applying (3.1), we get

0F1

(
δ + 1

2
(m + 3);KAACKBBCT

)

=
∞∑

q=0

1

q!(δ + 1
2(m + 3))2q(δ + 1

2(m + 2))q

∣∣KAACKBBCT
∣∣q

· 0F1

(
δ + 2q + 1

2
(m + 3); tr

(
KAACKBBCT ))

=
∞∑

q=0

1

q!(δ + 1
2(m + 3))2q(δ + 1

2(m + 2))q

∣∣KAACKBBCT
∣∣q

·
∞∑
l=0

1

l!(δ + 2q + 1
2(m + 3))l

(
tr
(
KAACKBBCT ))l .
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By the Binet–Cauchy formula (see Karlin [19], page 1),∣∣KAACKBBCT
∣∣= |KAA| · ∣∣CKBBCT

∣∣
= |KAA| ∑

1≤i<j≤m

kikj |C{1,2},{i,j}|2.

Hence, by the multinomial theorem,∣∣KAACKBBCT
∣∣q

= |KAA|q∑
Q

(
q

Q

) ∏
1≤i<j≤m

(
kikj |C{1,2},{i,j}|2)Qij

= |KAA|q∑
Q

(
q

Q

)(
m∏

i=1

k
Qi++Q+i

i

)( ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij

)
,

where Q = (Qij )1≤i<j≤m is a matrix of nonnegative integers, as defined earlier.
Also,

tr
(
KAACKBBCT )= 2∑

i=1

m∑
j=1

κikjCij ,

and hence, by the multinomial theorem,

(
tr
(
KAACKBBCT ))l =

( 2∑
i=1

m∑
j=1

κikjCij

)l

=∑
L

(
l

L

) 2∏
i=1

m∏
j=1

(κikjCij )
Lij

=∑
L

(
l

L

)( 2∏
i=1

(κi)
Li+
)(

m∏
j=1

k
L+j

j

)( 2∏
i=1

m∏
j=1

(Cij )
Lij

)
,

where L = (Lij ) is a 2 × m nonnegative integer matrix defined earlier. Hence,

IH2,m
(δ,D) = πm�2(δ + 3

2)

�2(δ + 1
2(m + 3))

∞∑
q=0

1

q!(δ + 1
2(m + 3))2q(δ + 1

2(m + 2))q

·
∞∑
l=0

1

l!(δ + 2q + 1
2(m + 3))l

·∑
L

(
l

L

)( 2∏
i=1

m∏
j=1

Cij
Lij

)( 2∏
i=1

∫ ∞
0

κ
δ+q+Li++ 1

2 m

i e−κi dκi

)
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·∑
Q

(
q

Q

)( ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij

)

·
(

m∏
j=1

∫ ∞
0

k
δ+Qj++Q+j +L+j+1
j e−kj dkj

)
.

Evaluating each gamma integral and simplifying the outcomes, we obtain

IH2,m
(δ,D) = πm�2(δ + 3

2)

�2(δ + 1
2(m + 3))

[
�(δ + 2)

]m[
�

(
δ + 1

2
(m + 2)

)]2

·
∞∑

q=0

(δ + 1
2(m + 2))q((δ + 2)q)m

q!(δ + 1
2(m + 3))2q

∞∑
l=0

1

l!(δ + 2q + 1
2(m + 3))l

·∑
L

(
l

L

)( 2∏
i=1

m∏
j=1

(Cij )
Lij

)( 2∏
i=1

(
δ + q + 1

2
(m + 2)

)
Li+

)

·
(

m∏
j=1

(δ + 2)L+j

)

·∑
Q

(
q

Q

)( ∏
1≤i<j≤m

|C{1,2},{i,j}|2Qij

)

·
(

m∏
j=1

(δ + L+j + 2)Qj++Q+j

)
.

Finally, the value of IH2,m
(δ, Im+2) is obtained by applying Proposition 2.1 or The-

orem 2.5, so the proof now is complete. �

Note that if we set D = Im+2 in the proof of Proposition 3.1 then |C{1,2},{i,j}| =
Cij = 0. Hence, in the infinite series, the only nonzero terms are those for which
l = q = 0, so the series reduces identically to 1.

The special structure of K was crucial for the proof of Proposition 3.1. We now
combine Proposition 3.1 with the approach developed in Theorem 2.2, of repre-
senting K by its upper Cholesky decomposition, to describe how the normaliz-
ing constant changes when removing an edge from a chordal graph with maximal
clique size at most 3. Similarly, as in the proof of Theorem 2.5, the main difficulty
lies in defining a good ordering of the nodes. For simplifying notation, we denote
the quotient of the normalizing constants for general D and the identity matrix by
ĪG(δ,D), that is,

ĪG(δ,D) = IG(δ,D)

IG(δ, Ip)
.

As an example, note that ĪH2,m
(δ,D) is given in Proposition 3.1.
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COROLLARY 3.2. Let G = (V ,E) be an undirected graph of minimum fill-
in 1 with vertices V = {1, . . . , p} and maximal clique size at most 3. Let Ge =
(V ,Ee) denote the graph G with one additional edge e, that is, Ee = E ∪ {e},
such that Ge is chordal and its maximal clique size is also at most 3. Let d denote
the number of triangles formed by the edge e and two other edges in Ge. Then

IG(δ,D) = π−1/2 �(δ + 1
2(d + 2))

�(δ + 1
2(d + 3))

|D{1,d+2}|d−1∏d+1
j=2 |D{1,j,d+2}|

ĪH2,d
(δ,D)IGe(δ,D),

where D{i1,...,ik} denotes the principal submatrix of D corresponding to the rows
and columns i1, . . . , ik .

PROOF. We define an ordering of the vertices in such a way that the integral
for the normalizing constant IG(δ,D) decomposes into an integral over a bipartite
graph and an integral over the remaining variables. Similarly, as in the proof of
Theorem 2.5, label one of the end points of e as “1,” label the other end point as
“d + 2,” and label the d vertices involved in triangles over the edge e by 2, . . . ,

d + 1. Label all remaining vertices by d + 3, . . . , p. Let Ḡ denote the moral DAG
to G with edge set Ē and similarly for Ge.

By Theorem 2.2, the normalizing constant for G decomposes into an integral
over the variables A = {aij | (i, j) ∈ Ē, i, j ≤ d + 2} and an integral over the vari-
ables B = {aij | (i, j) ∈ Ē, aij /∈ A}. The equivalent statement holds for the graph
Ge with Ae = A∪ {e} and Be = B . Note that the integral over B is the same for G

as for Ge. The integral over A is the normalizing constant for the complete bipar-
tite graph H2,d with U = {1, d + 2} and V = {2, . . . , d + 1} where every vertex in
U is connected to all vertices in V , but there are no edges within U nor within V .
The integral over Ae = A ∪ {e} is the normalizing constant for the complete bi-
partite graph H2,d with one additional edge connecting the two nodes in U . We
denote this graph by He

2,d . So

IG(δ,D) = IGe(δ,D)
IH2,d

(δ,D)

IHe
2,d

(δ,D)

= IGe(δ,D)
IH2,d

(δ, Id+2)ĪH2,d
(δ,D)

IHe
2,d

(δ,D)
,

where ĪH2,d
(δ,D) is given by Proposition 3.1.

The additional edge e makes the graph He
2,m chordal, and hence the normalizing

constant is computed using (1.4):

IHe
2,d

(δ,D) = IHe
2,d

(δ, Id+2)

∏d+1
j=2 |D{1,j,d+2}|
|D{1,d+2}|d−1 .
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By Theorem 2.5,

IH2,d
(δ, Id+2)

IHe
2,d

(δ, Id+2)
= π−1/2 �(δ + 1

2(d + 2))

�(δ + 1
2(d + 3))

.

By collecting all terms we find

IG(δ,D) = IGe(δ,D)
IH2,d

(δ, Id+2)ĪH2,d
(δ,D)

IHe
2,d

(δ, Id+2)

|D1,d+2|d−1∏d+1
j=2 |D1,j,d+2|

= π−1/2 �(δ + 1
2(d + 2))

�(δ + 1
2(d + 3))

|D{1,d+2}|d−1∏d+1
j=2 |D{1,j,d+2}|

ĪH2,d
(δ,D)IGe(δ,D).

The proof now is complete. �

Corollary 3.2 can be generalized to graphs of minimum fill-in 1 and arbitrary
tree-width to obtain an extension of Theorem 2.5 to general D. This involves de-
composing the normalizing constant for G into a normalizing constant for the
chordal graph Ge and the quotient of the normalizing constants for the subgraph
induced by the triangles over the edge e. This technical result is given in Theo-
rem (S.3) in the supplementary material [34].

We now prove our main result which can be applied to compute the normalizing
constant for any graph. It involves showing how the normalizing constant changes
when removing a whole clique from a graph. However, for graphs of minimum
fill-in 1 it is advisable for computational reasons to use the specialized result given
in Theorem (S.3) in the supplementary material.

In the following, we denote by GA the subgraph of G induced by the vertices
A ⊂ V . In the following theorem, we will encounter a symmetric matrix TAA =
(Tij )i,j∈A. Denoting Kronecker’s delta by δij , we define the matrix of differential
operators,

∂

∂TAA

=
(

1

2
(1 + δij )

∂

∂Tij

)
i,j∈A

,

as in [9, 25]. The corresponding determinant, det(∂/∂TAA), and the (r, s)th cofac-
tor, Cofrs(∂/∂TAA), are defined in the usual way.

We will also make use of fractional powers of differential operators, a concept
which is widely used in some areas of probability theory and mathematical analy-
sis [3, 15], and which has also arisen in research on statistical inference for Wishart
distributions [13, 20]. In the simplest formulation of such fractional powers, sup-
pose that a function f : R → R is such that its nth derivative, (d/dx)nf (x), can
be analytically continued as a function of n to a domain in C; this allows us to
define the αth derivative, (d/dx)αf (x) where α belongs to the domain of analyt-
icity.
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Gårding [9] defined fractional powers, (det(∂/∂TAA))α , of the determinant
det(∂/∂TAA) by means of analytic continuation in α. We will apply Gårding’s
fractional powers of operators to calculate the normalizing constant IG(δ,D), and
we provide in Example 3.5 an explicit calculation for a case in which the fractional
power of the determinant det(∂/∂TAA) is −1/2.

The following theorem is the main result of the paper. In this result, we express
IG(δ,D) in terms of a series in which derivatives with respect to the UAA are
calculated, then the outcome is evaluated at UAA = TAA, then derivatives with
respect to the TAA are calculated, and then the resulting expression is evaluated at
TAA = DAA.

THEOREM 3.3. Let G = (V ,E) be an undirected graph and partition V =
A ∪ B such that the induced subgraph GB is a clique. Let I = {(i, j) ∈ A × B |
(i, j) ∈ E} denote the edges connecting A and B , and let I1 and I2 denote the
projection of I onto the first and second coordinate, respectively. Define

(3.8) ∂I1,I2(D,TAA) =
(
−DI2(r),I2(s) CofI1(r),I1(s)

(
∂

∂TAA

))|I |

r,s=1
,

a |I | × |I | matrix of differential operators. Then

IG(δ,D) = π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

· (det ∂I1,I2(D,TAA)
)−1/2

·∑ · · ·∑
0≤jrs<∞

1≤r≤s≤|I |

(
det ∂I1,I2(D,UAA)

)−j··

·
( ∏

1≤r≤s≤|I |

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)

· (Cofrs ∂I1,I2(D,UAA)
)jrs

)

· IGA

(
δ + 1

2
|I | + j··,UAA

)∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

.

As a corollary of this theorem, we obtain an analogous formula for the case in
which D = Ip .

COROLLARY 3.4. Let G = (V ,E) be an undirected graph with vertices V =
{1, . . . , p}. Let V be partitioned such that V = A ∪ B and the induced subgraph
GB is a clique. Let I = {(i, j) ∈ A×B | (i, j) ∈ E} denote the edges connecting A,
B and let I1 and I2 denote the projection of I onto the first and second coordinate,
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respectively. Then

IG(δ, Ip) = π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))

· ∂I1,I2(D,TAA)IGA

(
δ + |I |/2, TAA

)∣∣
TAA=I|A| .

Theorem 3.3 and Corollary 3.4 enable calculation of the normalizing constant
of the G-Wishart distribution for any graph by removing cliques sequentially until
the resulting graph is chordal, in which case the normalizing constant is known. In
the following example, we show how to apply Theorem 3.3 in order to compute
the normalizing constant for general D for the graph G5 given in Figure 1.

EXAMPLE 3.5. We wish to calculate

IG5(δ,D) =
∫
K∈S5�0(G5)

|K|δ exp
(− tr(KD)

)
dK.

We partition the matrix K into blocks,

K =
(
KAA KAB

KT
AB KBB

)
, where

KAA =
(
k11 k12
k12 k22

)
, KAB =

(
0 k14 k15

k23 0 0

)
,

KBB =
⎛
⎝k33 k34 k35

k34 k44 k45
k35 k45 k55

⎞
⎠ .

Noting that KBB is unconstrained, we now apply Theorem 3.3. In the following,
we provide all the ingredients of the calculation, namely,

I1 = (2,1,1), I2 = (3,4,5), vec
(
DI

AB

)=
⎛
⎝d23

d14
d15

⎞
⎠ .

Further, the matrix of differential operators is

∂I1,I2(D,TAA) =
(
−DI2(r),I2(s) CofI1(r),I1(s)

(
∂

∂TAA

))3

r,s=1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d33
∂

∂T11

1

2
d34

∂

∂T12

1

2
d35

∂

∂T12

1

2
d34

∂

∂T12
−d44

∂

∂T22
−1

2
d45

∂

∂T22

1

2
d35

∂

∂T12
−1

2
d45

∂

∂T22
−d55

∂

∂T22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and similarly for ∂I1,I2(D,UAA).
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Since KAA is unconstrained, the integral IGA
(δ,UAA) is a standard Wishart

normalizing constant, so we have

IGA
(δ,UAA) = �2

(
δ + 3

2

)
|UAA|−(δ+ 3

2 ).

Then from Theorem 3.3, we obtain

IG5(δ,D) = π3/2�3(δ + 2)|DBB |−(δ+2)(det ∂I1,I2(D,TAA)
)−1/2

·∑ · · ·∑
0≤jrs<∞
1≤r≤s≤3

�2(δ + 3 + j··)
(
det ∂I1,I2(D,UAA)

)−j··

·
( ∏

1≤r≤s≤3

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)

· (Cofrs ∂I1,I2(D,UAA)
)jrs

)

· |UAA|−(δ+3+j··)
∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

.

(3.9)

For the case in which D = I5, we have DI1(r),I2(r) = 0 for all r = 1,2,3 and
hence we deduce the result given in Corollary 3.4, namely,

IG5(δ, I5) = π3/2�3(δ + 2)�2(δ + 3)

· (det ∂I1,I2(D,TAA)
)−1/2|TAA|−(δ+3)

∣∣
TAA=I|A| .

By (3.8),(
det ∂I1,I2(D,TAA)

)n|TAA|−(δ+3)
∣∣
TAA=I|A|

= (−1)n
(

∂

∂T11

)n( ∂

∂T22

)2n

(T11T22)
−(δ+3)

∣∣∣∣
T11=T22=1

= (δ + 3)(δ + 4) · · · (δ + 2 + n)(δ + 3)(δ + 4) · · · (δ + 2 + 2n)

= �(δ + 3 + n)

�(δ + 3)

�(δ + 3 + 2n)

�(δ + 3)
.

The latter expression, considered as a function of a complex variable n, is ana-
lytic in the complex plane on a region containing the point n = −1

2 . Therefore, in
accordance with Gårding’s fractional calculus,(
det ∂I1,I2(D,TAA)

)−1/2|TAA|−(δ+3)
∣∣
TAA=I|A| = �(δ + 3 + n)

�(δ + 3)

�(δ + 3 + 2n)

�(δ + 3)

∣∣∣∣
n=− 1

2

= �(δ + 5
2)

�(δ + 3)

�(δ + 2)

�(δ + 3)
,

so we obtain the same result for IG5(δ, I5) as in (2.5).
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To complete this section, we now provide the proofs of Theorem 3.3 and Corol-
lary 3.4.

PROOF OF THEOREM 3.3. The matrix K is of the form

K =
(
KAA KAB

KT
AB KBB

)
∈ S

p
�0,

where KBB has no zero constraints. By applying the determinant formula for block
matrices, (2.2), making a change-of-variables, KBB → KBB +KT

AB(KAA)−1KAB ,
and applying (1.2) to compute the integral over KBB , we obtain

IG(δ,D) = �|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

·
∫

|KAA|δ exp
(− tr(KAADAA)

)

·
∫

exp
(−2 tr(KABDAB)

)
· exp

(− tr
(
DBBKT

AB(KAA)−1KAB

))
dKAB dKAA.

Denote by vec(KAB) the vectorized matrix KAB , written column-by-column.
We apply a formula for the Kronecker product of matrices (see Muirhead [28],
page 76) to obtain

tr
(
DBBKT

AB(KAA)−1KAB

)= (
vec(KAB)

)T (
DBB ⊗ (KAA)−1)vec(KAB).

Let I = {(i, j) ∈ A × B | (KAB)ij 
= 0} and let I1 denote the projection of I onto
the first index and I2 the projection of I onto the second index. Let vec(KI

AB) de-
note the column vector containing the nonzero entries of vec(KAB) and let 
−1

be a matrix containing the entries of DBB ⊗ (KAA)−1 corresponding to the com-
ponents of vec(KI

AB), that is,

(

−1)

rs = DI2(r),I2(s)

(
K−1

AA

)
I1(r),I1(s)

= DI2(r),I2(s)

1

|KAA| CofI1(r),I1(s)(KAA),
(3.10)

where Cofij (KAA) denotes the (i, j)th entry of the cofactor matrix of KAA. Then

tr(KABDAB) = vec
(
KI

AB

)T vec
(
DI

AB

)
,

tr
(
DBBKT

AB(KAA)−1KAB

)= vec
(
KI

AB

)T

−1 vec

(
KI

AB

)
,
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and hence we obtain the integral over KAB in the form of a Gaussian integral∫
exp
(−2 tr(KABDAB)

)
exp
(− tr

(
DBBKT

AB(KAA)−1KAB

))
dKAB

=
∫

exp
(−2 vec

(
KI

AB

)T vec
(
DI

AB

))
· exp

(−vec
(
KI

AB

)T

−1 vec

(
KI

AB

))
dKI

AB

= π |I |/2|
|1/2 exp
(
vec
(
DI

AB

)T

vec

(
DI

AB

))
.

Therefore,

IG(δ,D) =π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

·
∫

|KAA|δ+|I |/2 exp
(− tr(KAADAA)

)
· det

([
DI2(r),I2(s) CofI1(r),I1(s)(KAA)

]|I |
r,s=1

)−1/2

· exp
(
vec
(
DI

AB

)T

vec

(
DI

AB

))
dKAA.

Now note that

det
([

DI2(r),I2(s) CofI1(r),I1(s)(KAA)
]|I |
r,s=1

)
exp
(− tr(KAATAA)

)
= det

(
∂I1,I2(D,TAA)

)
exp
(− tr(KAATAA)

)
.

(3.11)

By analytic continuation [9], we obtain

IG(δ,D) = π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

· det
(
∂I1,I2(D,TAA)

)−1/2

·
∫

|KAA|δ+|I |/2 exp
(− tr(KAATAA)

)

· exp
(
vec
(
DI

AB

)T

vec

(
DI

AB

))
dKAA

∣∣∣∣
TAA=DAA

.

(3.12)

Now we write the exponential function as an infinite series and apply the cofac-
tor formula to express 
 in terms of the entries of 
−1:

exp
(
vec
(
DI

AB

)T

vec

(
DI

AB

))
=∑ · · ·∑

0≤jrs<∞

∏
1≤r≤s≤|I |

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)

jrs

rs

=∑ · · ·∑
0≤jrs<∞

∏
1≤r≤s≤|I |

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)
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· |KAA|jrs Cofrs
([

DI2(a),I2(b) CofI1(a),I1(b)(KAA)
]|I |
a,b=1

)jrs

· det
([

DI2(a),I2(b) CofI1(a),I1(b)(KAA)
]|I |
a,b=1

)−jrs .

Inserting the latter series expansion for exp(vec(DI
AB)T 
vec(DI

AB)) in the inte-
gral for the normalizing constant, interchanging the integral and the summation,
and denoting

∑∑
0≤r<s≤|I | jrs by j··, we obtain

IG(δ,D) = π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

· det
([

−DI2(r),I2(s) CofI1(r),I1(s)

(
∂

∂TAA

)]|I |

r,s=1

)−1/2

·∑ · · ·∑
0≤jrs<∞

∫
det
([

DI2(a),I2(b) CofI1(a),I1(b)(KAA)
]|I |
a,b=1

)−j··

·
( ∏

1≤r≤s≤|I |

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)

· Cofrs
([

DI2(a),I2(b) CofI1(a),I1(b)(KAA)
]|I |
a,b=1

)jrs

)

· |KAA|δ+|I |/2+j·· exp
(− tr(KAATAA)

)∣∣∣∣
TAA=DAA

.

To complete the proof, we introduce the differentials

∂

∂UAA

=
(

1

2
(1 + δij )

∂

∂Uij

)
i,j∈A

,

and define the operator ∂I1,I2(D,UAA) analogously to (3.8). Similar to (3.11),

Cofrs
(
∂I1,I2(D,UAA)

)
det
(
∂I1,I2(D,UAA)

)
exp
(− tr(KAAUAA)

)
= Cofrs

([
DI2(a),I2(b) CofI1(a),I1(b)(KAA)

]|I |
a,b=1

)
· det

([
DI2(a),I2(b) CofI1(a),I1(b)(KAA)

]|I |
a,b=1

)
exp
(− tr(KAAUAA)

)
.

Inserting this result in the latter expression for IG(δ,D), and applying the neces-
sary evaluations, we obtain

IG(δ,D) = π |I |/2�|B|
(
δ + 1

2

(|B| + 1
))|DBB |−(δ+ 1

2 (|B|+1))

· det
([

−DI2(r),I2(s) CofI1(r),I1(s)

(
∂

∂TAA

)]|I |

r,s=1

)−1/2
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·∑ · · ·∑
0≤jrs<∞

det
([

−DI2(a),I2(b) CofI1(a),I1(b)

(
∂

∂UAA

)]|I |

a,b=1

)−j··

·
( ∏

1≤r≤s≤|I |

(1 + δrs)
jrs

jrs ! D
jrs

I1(r),I2(r)
D

jrs

I1(s),I2(s)

· Cofrs

([
−DI2(a),I2(b) CofI1(a),I1(b)

(
∂

∂UAA

)]|I |

a,b=1

)jrs
)

· IGA

(
δ + |I |/2 + j··,UAA

)∣∣∣∣
UAA=TAA

∣∣∣∣
TAA=DAA

,

where, in the last line, we used the fact that

IGA
(δ,UAA) =

∫
|KAA|δ exp

(− tr(KAAUAA)
)

dKAA.

This completes the proof. �

PROOF OF COROLLARY 3.4. This follows from Theorem 3.3 by setting
D = Ip in (3.12). �

4. Discussion. In this paper, we provided an explicit representation of the G-
Wishart normalizing constant for general graphs. Theorem 3.3 is our main result
and it can be applied to compute the normalizing constant of any graph. However,
for particular classes of graphs one might be able to obtain simpler formulas using
a more specialized approach as can be seen by comparing the two formulas (3.9)
and (4.1) for G5. In Proposition 3.1, we provided a simpler formula for bipartite
graphs H2,m, and in Corollary 3.2 and in Theorem (S.3), which can be found in the
supplementary material, for graphs with minimum fill-in 1. Note that Corollary 3.2
and Theorem (S.3) can be applied to graphs of minimum fill-in 1 and also to graphs
which are clique sums of graphs of minimum fill-in 1.

Even in modest dimensions the size of the graph space necessitates iterative
methods to address model uncertainty, as exhaustive enumeration is infeasible.
Since the graphical model may be just one part of a larger hierarchy, Markov chain
Monte Carlo methods are naturally used to perform posterior inference. In such
scenarios, the chain moves between graphs in each scan of the parameter set and
the transition probability reduces to the evaluation of ratios of G-Wishart normal-
izing constants. Since direct evaluation of these constants has appeared infeasible,
previous work used computationally intensive sampling-based methods to approxi-
mate this ratio or sampled auxiliary parameters to avoid evaluating the normalizing
constant altogether [4, 22, 36].

Our paper shows that computing the exact normalizing constant of the G-
Wishart distribution is possible in principle. The various examples in this paper
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also make it clear that one can hope to find more computationally efficient pro-
cedures than Theorem 3.3 for computing the normalizing constant for particular
classes of graphs. Important future work is the development of specialized meth-
ods for computing the normalizing constants of different classes of graphs that
are important for applications, one example being grids, which are widely used in
spatial applications.

SUPPLEMENTARY MATERIAL

Supplement to “Exact formulas for the normalizing constants of Wishart
distributions for graphical models” (DOI: 10.1214/17-AOS1543SUPP; .pdf).
Exact formulas for the normalizing constants of Wishart distributions for graphical
models with minimum fill-in 1.
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