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PHASE TRANSITIONS IN THE ASEP AND STOCHASTIC
SIX-VERTEX MODEL

BY AMOL AGGARWAL1 AND ALEXEI BORODIN2
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In this paper, we consider two models in the Kardar–Parisi–Zhang (KPZ)
universality class, the asymmetric simple exclusion process (ASEP) and the
stochastic six-vertex model. We introduce a new class of initial data (which
we call shape generalized step Bernoulli initial data) for both of these models
that generalizes the step Bernoulli initial data studied in a number of recent
works on the ASEP. Under this class of initial data, we analyze the current
fluctuations of both the ASEP and stochastic six-vertex model and establish
the existence of a phase transition along a characteristic line, across which
the fluctuation exponent changes from 1/2 to 1/3. On the characteristic line,
the current fluctuations converge to the general (rank k) Baik–Ben–Arous–
Péché distribution for the law of the largest eigenvalue of a critically spiked
covariance matrix. For k = 1, this was established for the ASEP by Tracy and
Widom; for k > 1 (and also k = 1, for the stochastic six-vertex model), the
appearance of these distributions in both models is new.
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1. Introduction. In this paper, we study two interacting particle systems in
the Kardar–Parisi–Zhang (KPZ) universality class, the asymmetric simple exclu-
sion process (ASEP) and the stochastic six-vertex model. We begin in Section 1.1
by defining these two models and their associated observables. In Section 1.2, we
provide some context for our results, which will be more carefully stated in Sec-
tion 1.3.
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1.1. The ASEP and stochastic six-vertex model.

1.1.1. The asymmetric simple exclusion process. Introduced to the mathemat-
ics community by Spitzer [42] in 1970 (and also appearing two years earlier in the
biology work of Macdonald, Gibbs and Pipkin [34]), the asymmetric simple exclu-
sion process (ASEP) is a continuous time Markov process that can be described as
follows. Particles are initially (at time 0) placed on Z in such a way that at most
one particle occupies any site. Associated with each particle are two exponential
clocks, one of rate L and one of rate R; we assume that R > L ≥ 0 and that all
clocks are mutually independent. When some particle’s left clock rings, the parti-
cle attempts to jump one space to the left; similarly, when its right clock rings, it
attempts to jump one space to the right. If the destination of the jump is unoccu-
pied, the jump is performed; otherwise it is not. This is sometimes referred to as
the exclusion restriction.

Associated with the ASEP is an observable called the current. For the purpose
of this paper, the current [denoted Jt (x)] is the number of particles strictly to the
right of x at time t , for x ∈ R and t ∈ R≥0. In all instances, we encounter in this
paper, Jt (x) will be almost surely finite since we only consider asymmetric simple
exclusion processes in which no sites in Z>0 are initially occupied.

One of the purposes of this paper will be to understand the large-time current
fluctuations of the ASEP under a certain type of initial data; we postpone further
discussion on this to Section 1.2 and Section 1.3.

1.1.2. The stochastic six-vertex model. The stochastic six-vertex model was
first introduced to the mathematical physics community by Gwa and Spohn [27] in
1992 as a stochastic version of the more well-known six-vertex (ice) model studied
by Lieb [33] and Baxter [10]; it was also studied more recently in [16, 21, 22]. This
model can be defined in several equivalent ways, including as a ferromagnetic,
asymmetric six-vertex model on a long rectangle with specific vertex weights (see
[27] or Section 2.1 of [16]); as an interacting particle system with push dynamics
and an exclusion restriction (see [27] or Section 2.2 of [16]); or as a probability
measure on directed path ensembles (see Section 2 of [16] or Section 1 of [21]). In
this section we will define the model through path ensembles.

A six-vertex directed path ensemble is a family of up-right directed paths in
the nonnegative quadrant Z2

>0, such that each path emanates from either the x-
axis or y-axis, and such that no two paths share an edge (although they may share
vertices); see Figure 1. In particular, each vertex has six possible arrow config-
urations, which are listed in the top row of Figure 2. Initial data, or boundary
data, for such an ensemble is prescribed by dictating which vertices on the posi-
tive x-axis and positive y-axis are entrance sites for a directed path. One example
of initial data is step initial data, in which paths only enter through the y-axis, and
all vertices on the y-axis are entrance sites for paths; see Figure 1.
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FIG. 1. A sample of the stochastic six-vertex model with step boundary data is depicted above.

Now fix parameters δ1, δ2 ∈ [0,1] and some initial data. The stochastic six-
vertex model P = P(δ1, δ2) will be the infinite-volume limit of a family of prob-
ability measures Pn = Pn(δ1, δ2) defined on the set of six-vertex directed path
ensembles whose vertices are all contained in triangles of the form Tn = {(x, y) ∈
Z

2≥0 : x + y ≤ n}. The first such probability measure P1 is supported by the empty
ensemble.

For each positive integer n, we define Pn+1 from Pn through the following
Markovian update rules. Use Pn to sample a directed path ensemble En on Tn.
This gives arrow configurations (of the type shown in Figure 2) to all vertices in
the positive quadrant strictly below the diagonal Dn = {(x, y) ∈ Z

2
>0 : x + y = n}.

Each vertex on Dn is also given “half” of an arrow configuration, in the sense that
it is given the directions of all entering paths but no direction of any exiting path.

To extend En to a path ensemble on Tn+1, we must “complete” the configura-
tions (specify the exiting paths) at all vertices (x, y) ∈ Dn. Any half-configuration
can be completed in at most two ways; selecting between these completions is
done randomly, according to the probabilities given in the second row of Figure 2,
and independently among all vertices.

In this way, we obtain a random ensemble En+1 on Tn+1; the resulting proba-
bility measure on path ensembles with vertices in Tn+1 is denoted Pn+1. Now set
P = limn→∞Pn.

FIG. 2. The top row in the chart shows the six possible arrow configurations at vertices in the
stochastic six-vertex model; the bottom row shows the corresponding probabilities.
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As in the ASEP, there exists an observable of interest for stochastic six-vertex
model called the current. For our purposes, it will be defined as follows. Let
(X,Y ) ∈ R

2
>0. The current (or height function) H(X,Y ) of the stochastic six-

vertex model at (X,Y ) is the number of paths that intersect the line y = Y strictly
to the right of (X,Y ). Since in this paper we only consider stochastic six-vertex
models in which no vertices on the x-axis are entrance sites for paths, the quantity
H(X,Y ) is always finite.

We will again be interested in understanding the current fluctuations for the
stochastic six-vertex model under certain types of initial data; we will discuss this
further in the next two sections.

1.2. Context and background. The phenomenon that guides our results is
commonly termed KPZ universality. About thirty years ago in their seminal paper
[31], Kardar, Parisi and Zhang considered a family of random growth models that
exhibit ostensibly unusual (although now known to be quite ubiquitous) scaling
behavior. As part of this work, they predicted the scaling exponents for all one-
dimensional models in this family; specifically, after running such a model (with
certain deterministic initial data) for some large time T , they predicted fluctuations
of order T 1/3 and nontrivial spacial correlation on scales T 2/3. This (rather vaguely
defined) family of random growth models is now called the Kardar–Parisi–Zhang
(KPZ) universality class, and consists of many more models (including the ASEP
and stochastic six-vertex model) than those originally considered in [31]; we refer
to the surveys [24] and [40] for more information.

In addition to predicting these exponents, Kardar, Parisi and Zhang proposed a
stochastic differential equation that in a sense embodies all of the models in their
class; this equation, now known as the KPZ equation is

∂th = ∂2
xh + 1

2
(∂xh)2 + Ẇ,(1.1)

where Ẇ refers to space-time white noise.
Granting the well-posedness [12, 28, 29] of (1.1) [which by no means imme-

diate, due to the nonlinearity 1
2(∂xh)2], it is widely believed that the long-time

statistics of a stochastic model in the KPZ universality class should coincide with
the long-time statistics of (1.1), whose initial data should be somehow chosen to
“match” the initial data of the model, in a suitable way. In particular, distributions
appearing as asymptotic marginals of the KPZ equation should also appear as the
asymptotic one-point functions for models in the KPZ universality class.

For the ASEP and stochastic six-vertex model, these predictions have been ver-
ified in only a few contexts. The first such result was established by Johansson
[30] in 2000 for the totally asymmetric simple exclusion process (TASEP), which
is the L = 0 case of the ASEP. Specifically, in the case of step initial data (all
sites in Z≤0 are occupied and all other sites are unoccupied), he showed that, af-
ter T 1/3 scaling, the current fluctuations converge to the Tracy–Widom distribu-
tion for the limiting law of the largest eigenvalue of a large Gaussian Hermitian
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random (GUE) matrix [43]. This is in agreement with the result later established
by Amir–Corwin–Quastel [4], Calabrese–Le-Doussal–Rosso [23], Dotsenko [26]
and Sasamoto–Spohn [41], who showed that the long-time height fluctuations of
the KPZ equation under what is known as narrow wedge initial data also con-
verge to the Tracy–Widom distribution, after T 1/3 scaling; see the survey [24] for
a thorough discussion on the level of mathematical justification behind these de-
velopments.

The result of Johansson strongly relies on the free-fermionicity (complete de-
terminantal structure) that underlies the TASEP. This property is not believed to
hold for the more general ASEP, which had posed trouble for extending Johans-
son’s result to the ASEP with nonzero L for several years. This was eventually
overcome by Tracy and Widom in 2008 [44, 45]. Specifically, in the case of step
initial data, they showed that the current fluctuations of the ASEP converge to
the Tracy–Widom distribution after T 1/3 scaling [46], which again establishes the
KPZ universality conjecture for the ASEP with step initial data.

Due to its two-dimensional nature and also its more complex Markov update
rule, the stochastic six-vertex model has been less amenable to analysis. Only very
recently has the analogous result been established for that model; this was done
in the work [16] of Borodin, Corwin and Gorin. In that paper, the authors analyze
the stochastic six-vertex model with step initial data and show that the fluctuations
of the current are of order T 1/3 when (X,Y ) lies in a certain cone (called a rar-
efaction fan or liquid region) of the positive quadrant. After rescaling by T 1/3, they
show that the current fluctuations again converge to the Tracy–Widom distribution,
thereby establishing the KPZ universality conjecture for the stochastic six-vertex
model with step initial data.

One might ask whether this type of KPZ universality phenomenon can be
proven for the ASEP and stochastic six-vertex model under other classes of ini-
tial data or, equally interesting, what other types of distributions can appear as the
long-time current fluctuations for these two models. For the stochastic six-vertex
model, we know of no results in this direction.

For the general ASEP with L �= 0, we know of only one, which considers the
case of step Bernoulli initial data, in which sites in Z≤0 are independently occu-
pied with probability b ∈ (0,1] and no other sites are occupied (however, see the
works [32, 36, 37] for partial results for the ASEP with flat and half-flat initial
data; see also the works [7, 8] for partial results for the ASEP with stationary ini-
tial data, which are in fact completed to include the exact limiting statistics in the
work [2], which further develops on some of the ideas presented in this paper).
Under step Bernoulli initial data, Tracy and Widom [47] considered the fluctua-
tions of the current JT (ηT ) as T tends to ∞, for fixed η < 1, and established the
existence of a phase transition (already known in the case of the TASEP [5, 6, 11,
39]). Specifically, they showed the following:

1. If η ∈ (1 − 2b,1), then the fluctuations of JT (ηT ) are GUE Tracy–Widom
and of order T 1/3.
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2. If η = 1 − 2b, then the fluctuations of JT (ηT ) are F 2
1 and of order T 1/3,

where F1 is the limiting law of the largest eigenvalue for a large random Gaussian
real symmetric matrix.

3. If η < 1 − 2b, then the fluctuations of JT (ηT ) are Gaussian and of order
T 1/2.

In particular, across the line x = (1 − 2b)T , the fluctuation exponent of JT (x)

changes from 1/2 to 1/3 and, on this line, the fluctuations are of order T 1/3 and
are F 2

1 instead of GUE Tracy–Widom.
The corresponding initial data for the KPZ equation is half-Brownian initial

data; this was analyzed by Corwin and Quastel in [25], where it was shown that
the asymptotic height fluctuations of this KPZ equation are of order T 1/3 and scale
to the same F 2

1 distribution, in agreement with the second part of Tracy–Widom’s
result.

Similar to the Tracy–Widom distribution, the phase transition described above
was not first observed in the framework of interacting particle systems but rather
in the context of random matrices [6]. Specifically, they originally arose as the lim-
iting law of the largest eigenvalue λ1 of large N × N spiked covariance matrices;
these were studied at length by Baik, Ben Arous and Péché in the paper [6], which
we refer to for more information. They also appeared in the work of Péché [38], as
the limiting law of the largest eigenvalue of finite-rank perturbations of large GUE
matrices.

We will not state Péché’s result is precise detail, but informally it can be de-
scribed as follows. Fix an integer m ≥ 1 and consider a rank m perturbation of a
N × N GUE matrix.

1. If the perturbation is sufficiently small, then the fluctuations λ1 are of order
N−2/3 and Tracy–Widom.

2. If the perturbation is critical (in some appropriate sense), then the fluctua-
tions of λ1 are of order N−2/3 and scale to the distribution FBBP;0m , which is a
rank m Baik–Ben–Arous–Péché distribution (see Definition 1.3).

3. If the perturbation is sufficiently large, then the fluctuations of λ1 are of order
N−1/2 and Gm, where Gm denotes the law of the largest eigenvalue of an m × m

GUE matrix (see Definition 1.4).

The distribution G1 is a Gaussian distribution, and the distribution FBBP,0 is
also known [6] to coincide with F 2

1 . Thus, the results of Tracy–Widom [47] on the
ASEP with step Bernoulli initial data strongly resemble the random matrix phase
transitions described above in the case m = 1.

This stimulates two questions. The first is whether one can generalize the pre-
viously mentioned result of Corwin–Quastel [25] on the KPZ equation with half-
Brownian initial data, that is, whether it is possible to observe any higher rank
Baik–Ben–Arous–Péché distributions as marginals of the KPZ equation with some
(explicit) initial data. The second is whether one can generalize Tracy–Widom’s
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[47] to produce some explicit class of initial data (generalizing the step Bernoulli
initial data) for the ASEP (and stochastic six-vertex model) under which one ob-
serves a phase transition across a characteristic line and the higher rank Baik–Ben–
Arous–Péché distributions along the characteristic line.

The first question was addressed by Borodin, Corwin and Ferrari in the paper
[15]. In that work, the authors consider the KPZ equation with what they call m-
spiked initial data and establish that its height fluctuations (after T 1/3 scaling)
converge to rank m Baik–Ben–Arous–Péché distributions.

The purpose of the present paper is to affirmatively answer the second question,
thereby establishing KPZ universality of the ASEP and stochastic six-vertex model
under this type of m-spiked distribution. We state our results more precisely in the
next section.

1.3. Results. In this section we state our main results, which establish phase
transitions for the ASEP and stochastic six-vertex model under what we call gener-
alized step Bernoulli initial data; these are given by Theorem 1.6 and Theorem 1.7.

To state these results, we must define the relevant distributions, namely the GUE
Tracy–Widom distribution, the Baik–Ben–Arous–Péché distributions, and the fi-
nite GUE distributions Gm. To define the former two distributions, we require the
following kernels; each of these kernels will be normalized by a factor of 2π i in
order to simplify notation.

DEFINITION 1.1. Denoting by Ai(x) the Airy function, the (normalized) Airy
kernel KAi(x, y) is defined by

KAi(x, y) = 1

2π i

∮ ∮
exp

(
w3

3
− v3

3
− xv + yw

)
dw dv

w − v
,

where in the latter identity the contour for w is piecewise linear from ∞e−π i/3 to
0 to ∞eπ i/3, and the contour for v is piecewise linear from ∞e−2π i/3 to −1 to
∞e2π i/3; see Figure 9 in Section 6 below.

DEFINITION 1.2. Let m be a positive integer, and let c = (c1, c2, . . . , cm) ∈
R

m be a sequence of m real numbers. The (normalized) Baik–Ben–Arous–Péché
kernel KBBP;c(x, y) is defined by

KBBP;c(x, y) = 1

2π i

∮ ∮
exp

(
w3

3
− v3

3
− xv + yw

) m∏
j=1

v + cj

w + cj

dw dv

w − v
,

where the contour for w is piecewise linear from ∞e−π i/3 to −E to ∞eπ i/3, and
the contour for v is piecewise linear from ∞e−2π i/3 to −E − 1 to ∞e2π i/3. Here,
E ∈ R is chosen so that E > max1≤i≤m ci ; see Figure 11 in Section 7 below.
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Now we can define the GUE Tracy–Widom distribution FTW; the Baik–Ben–
Arous–Péché distributions FBBP;c; and the GUE distributions Gm. We refer to Ap-
pendix A of the Supplementary Material [3] for our conventions on Fredholm de-
terminants (in particular, there will sometimes be a normalization of 2π i).

DEFINITION 1.3. The GUE Tracy–Widom distribution FTW(s) is defined by

FTW(s) = det(Id−KAi)L2(s,∞),

for each real number s ∈ R.
Similarly, if m is a positive integer and c = (c1, c2, . . . , cm) ∈ R

m is a sequence
of m real numbers, the Baik–Ben–Arous–Péché distribution FBBP;c(s) is defined
by

FBBP;c(s) = det(Id−KBBP;c)L2(s,∞).

DEFINITION 1.4. For any positive integer m, define the distribution Gm(s)

through

Gm(s) = Z−1
m

∫ s

−∞

∫ s

−∞
· · ·

∫ s

−∞
∏

1≤j<k≤m

|xj − xk|2
m∏

j=1

e
−x2

j /2
dxj ,

for each real number s ∈ R; here, Zm is a normalization constant chosen so that
Gm(∞) = 1.

Having defined the above distributions, we can now proceed to state our re-
sults. They concern the ASEP and stochastic six-vertex model with generalized
(b1, b2, . . . , bm)-Bernoulli initial data. This initial data is not so quickly described;
in particular, it relies on the stochastic higher spin vertex models, to be defined in
Section 2. Thus, we reserve the definition of this initial data to Definition 3.3.

However, let us give a few properties of this initial data that might be of imme-
diate interest:

1. In the case of the ASEP, all sites in Z>0 are initially unoccupied; in the case
of the stochastic six-vertex model, no vertex on the x-axis is an entrance site for a
path.

2. When m = 1 and b1 = b ∈ (0,1), this degenerates to step-Bernoulli initial
data. For the ASEP, this means that particles in Z≤0 are initially occupied in-
dependently, with probability b. For the stochastic six-vertex model, this means
that vertices on the positive y-axis are entrance sites for paths independently, with
probability b.

3. Suppose m > 1 and b1 = b2 = · · · = bm = b ∈ (0,1). In the case of the
ASEP, one expects (with high probability) the density of particles to the left of
the origin to be approximately b (in the sense that one expects approximately b|I |
sites to initially be occupied in an interval I ⊂ Z<0). Similarly, in the case of the
stochastic six-vertex model, one expects the density of entrance sites on the posi-
tive y-axis to be approximately b.
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4. However, in the setting above (with m > 1 and all bj = b), the events that
different sites are occupied (for the ASEP) or different vertices are entrance sites
(for the stochastic six-vertex model) are highly correlated. For example, suppose
we restrict to the ASEP setting; the number of particles to the right of some neg-
ative site −N at time 0, given by the current J0(−N), has law of large numbers
bN but converges to the GUE Gm distribution after N1/2-scaling as N tends to ∞.
The fact that this is not a Gaussian distribution is due to the correlation between
site occupations.

5. In the case of the ASEP, denote q = L/R, and in the case of the stochastic
six-vertex model denote q = δ1/δ2 (q can be viewed as a measure of symmetry for
these two models). Generalized Bernoulli initial data depends on this parameter q .
If q = 0 (corresponding to the TASEP L = 0 setting), our initial data becomes
the random particle configuration formed after running m steps of the geometric
Push TASEP (with geometric rates b1, b2, . . . , bm) [19] on step initial data. This
is known [20] to have a much more direct relationship with the spectral distribu-
tion of the spiked GUE matrices considered by Péché [38], which provides some
explanation for the asymptotics stated in Theorem 1.6 below, when q = 0. In the
general case q �= 0, we know of no such explanation.

REMARK 1.5. The ASEP is known to converge to the KPZ equation under a
certain weakly asymmetric scaling limit [12] under which q = L/R tends to 1. It
seems plausible that, under this scaling limit, the generalized Bernoulli initial data
will converge to the m-spiked boundary condition studied in [15].

The first property is directly stipulated as part of Definition 3.3, and the second
property is explained in Remark 3.4. The third, fourth and fifth properties can also
be derived from Definition 3.3, but establishing them carefully does not seem so
relevant for the purposes of this paper. Thus, we omit their proofs.

Our results are as follows; Theorem 1.6 considers the ASEP with generalized
step Bernoulli initial data and Theorem 1.7 considers the stochastic six-vertex
model with this initial data.

THEOREM 1.6. Fix positive real numbers R > L, a real number b ∈ (0,1), an
integer m ≥ 1 and infinite families of real numbers {b1,T }T ∈R>0, {b2,T }T ∈R>0, . . . ,

{bm,T }T ∈R>0 ⊂ (0,1). Assume that R − L = 1 and that there exist real numbers
d1, d2, . . . , dm ∈ R such that limT →∞ T 1/3(bi,T − b) = di , for each i ∈ [1,m].

Let T be a positive real number. Consider the ASEP, run for time T , with left
jump rate L, right jump rate R and generalized (b1,T , b2,T , . . . , bm,T )-Bernoulli
initial data (given by Definition 3.3).

Then we have the following results, where in the below θ = 1 − 2b and χ =
b(1 − b):
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1. Assume that η ∈ (θ,1) is a real number. Set

mη =
(

1 − η

2

)2
; fη =

(
1 − η2

4

)2/3
.(1.2)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[
mηT − JT (ηT )

fηT 1/3 ≤ s

]
= FTW(s).

2. Assume that {ηT }T ≥0 is a sequence of real numbers such that limT →∞T 1/3×
(ηT −θ) = d , for some real number d . Set mη and fη as in (1.2), and for each index
j ∈ [1,m], define

cj = −fη(2dj + d)

2χ
; c = (c1, c2, . . . , cm).(1.3)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[
mηT

T − JT (ηT T )

fθT 1/3 ≤ s

]
= FBBP;c(s).

3. Assume that η ∈ (−b, θ) is a real number, and that bj = b for all indices
j ∈ [1,m]. Set

m′
η = χ − bη; f ′

η = χ1/2(θ − η)1/2.(1.4)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[
m′

ηT − JT (ηT )

f ′
ηT

1/2 ≤ s

]
= Gh(s).

THEOREM 1.7. Fix positive real numbers δ1 < δ2 < 1, a real number b ∈
(0,1), an integer m ≥ 1, and infinite families of real numbers {b1,T }T ∈Z>0,

{b2,T }T ∈Z>0, . . . , {bm,T }T ∈Z>0 ⊂ (0,1). Assume that there exist real numbers
d1, d2, . . . , dm ∈ R such that limT →∞ T 1/3(bi,T − b) = di , for each i ∈ [1,m].

Let T > 0 be a positive integer. Consider the stochastic six-vertex model, run for
time T , with left jump probability δ1, right jump probability δ2, and generalized
(b1,T , b2,T , . . . , bm,T )-Bernoulli initial data (given by Definition 3.3).

We have the following results, where in the below we set

χ = b(1 − b); κ = 1 − δ1

1 − δ2
;

 = b + κ(1 − b); θ = κ−12.

(1.5)
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1. Assume that x and y are positive real numbers such that x/y ∈ (θ, κ). Set

H(x, y) = (
√

(1 − δ1)y − √
(1 − δ2)x)2

δ1 − δ2
,

F(x, y) = κ1/6(
√

κx − √
y)2/3(

√
κy − √

x)2/3

(κ − 1)x1/6y1/6 .

(1.6)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[H(x, y)T −H(xT , yT )

F(x, y)T 1/3 ≤ s

]
= FTW(s).

2. Assume that {xT }T ∈Z>0 and {yT }T ∈Z>0 are sequences of positive real num-
bers such that ηT = xT /yT satisfies limT →∞ T 1/3(ηT − θ) = d , for some real
number d . Set H(x, y) and F(x, y) as in (1.2), and for each index j ∈ [1,m] de-
fine

cj = −fηdj

χ
− κfηd

2(κ − 1)χ
; c = (c1, c2, . . . , cm).(1.7)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[H(x, y)T −H(xT , yT )

F(x, y)T 1/3 ≤ s

]
= FBBP;c(s).

3. Assume that x and y are positive real numbers such that x ∈ (−1θy, θy),
and that bj = b for all indices j ∈ [1,m]. Set

H′(x, y) = by − −1bx; F ′(x, y) = χ1/2(
y − θ−1x

)1/2
.(1.8)

Then, for any real number s ∈ R, we have that

lim
T →∞P

[H′(x, y)T −H(xT , yT )

F ′(x, y)T 1/2 ≤ s

]
= Gm(s).

REMARK 1.8. We expect Theorem 1.6 to hold for all η < θ and Theorem 1.7
to hold for all x/y ∈ (0, θ) but will not pursue this potential improvement further.
However, in Appendix B of the Supplementary Material [3], we outline a different
method to establish asymptotics through a comparison with Schur measures [13,
35]. It seems likely that one can use this method to remove the limitation on η in
the Gaussian regime.

REMARK 1.9. The Gm fluctuations in the third parts of Theorem 1.6 and The-
orem 1.7 can be traced back to the initial data, due to property 4 mentioned above.

What enables the proofs of Theorem 1.6 and Theorem 1.7 is the integrability of
the inhomogeneous stochastic higher spin vertex models [21], which we will define
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in Section 2. These are a family of quite general vertex models in the positive
quadrant that exhibit remarkable integrability properties and degenerate to many
known models in the KPZ universality class; in particular, they degenerate to the
stochastic six-vertex model and the ASEP (both with generalized step Bernoulli
initial data), facts which will be discussed further in Section 3 and Section 4.1.1.

These inhomogeneous stochastic higher spin vertex models were studied at
length in the paper [21], in which multi-fold contour integral identities were ob-
tained for certain observables (q-moments) of these models. In particular, it will be
possible to directly degenerate these identities to the stochastic six-vertex model
and ASEP with generalized step Bernoulli initial data; this will be done in Sec-
tion 4.1.2. It is known [9, 14–16, 18] how to use such identities to produce Fred-
holm determinant identities that are directly amenable to asymptotic analysis,
which we will do in Section 4.2. We especially emphasize here the work [9] of
Barraquand, who used similar Fredholm determinant identities to derive Baik–
Ben–Arous–Péché phase transitions (of the type given in Theorem 1.6 and Theo-
rem 1.7) in the context of the q-TASEP with several slow particles.

In Section 5, we will begin the asymptotic analysis of these Fredholm determi-
nant identities and explain how they can be used for the proofs of Theorem 1.6
and Theorem 1.7. In Section 6, Section 7 and Section 8, we will complete this
analysis in the first, second and third regimes, respectively, of Theorem 1.6 and
Theorem 1.7.

2. Stochastic higher spin vertex models. Both the ASEP and stochastic six-
vertex model are degenerations of a larger class of vertex models called the inho-
mogeneous stochastic higher spin vertex models, which were recently introduced
by Borodin and Petrov in [21]. These models are in a sense the original source of
integrability for the ASEP, the stochastic six-vertex model, and in fact most models
proven to be in the Kardar–Parisi–Zhang (KPZ) universality class.

For that reason, we will begin our discussion by defining these vertex models.
Similar to the stochastic six-vertex model, these models will take place on directed
path ensembles. We will first carefully define what we mean by a directed path
ensemble in Section 2.1, and then we will define the stochastic higher spin vertex
model in Section 2.2. In Section 2.3, we will reinterpret these models as interacting
particle systems, which will provide a useful framework for discussing observables
in Section 4.

2.1. Directed path ensembles. For the purpose of this paper, a directed path is
a collection of vertices, which are lattice points in the nonnegative quadrant Z2≥0,
connected by directed edges (which we may also refer to as arrows). A directed
edge can connect a vertex (i, j) to either (i + 1, j) or (i, j + 1), if (i, j) ∈ Z

2
>0;

we also allow directed edges to connect (k,0) to (k,1) or (0, k) to (1, k), for any
positive integer k. Thus, directed edges connect adjacent vertices, always point
either up or to the right, and do not lie on the x-axis or y-axis.
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A directed path ensemble is a collection of paths with the following two prop-
erties:

• Each path must contain an edge connecting (0, k) to (1, k) or (k,0) to (k,1) for
some k > 0; stated alternatively, every path “emanates” from either the x-axis
or the y-axis.

• No two distinct paths can share a horizontal edge; however, in contrast with the
six-vertex case, they may share vertical edges.

An example of a directed path ensemble was previously shown in Figure 1. See
also Figure 5 in Section 3 below for more examples.

Associated with each (x, y) ∈ Z
2
>0 in a path ensemble is an arrow configuration,

which is a quadruple (i1, j1; i2, j2) = (i1, j1; i2, j2)(x,y) of nonnegative integers.
Here, i1 denotes the number of directed edges from (x, y − 1) to (x, y); equiva-
lently, i1 denotes the number of vertical incoming arrows at (x, y). Similarly, j1
denotes the number of horizontal incoming arrows; i2 denotes the number of ver-
tical outgoing arrows (i.e., the number of directed edges from (x, y) to (x, y + 1));
and j2 denotes the number of horizontal outgoing arrows. Thus j1, j2 ∈ {0,1} at
every vertex in a path ensemble, since no two paths share a horizontal edge. An
example of an arrow configuration (which cannot be a vertex in a directed path
ensemble, since j1, j2 /∈ {0,1}) is depicted in Figure 3.

Assigning values j1 to vertices on the line (1, y) and values i1 to vertices on the
line (x,1) can be viewed as imposing boundary conditions on the vertex model. If
j1 = 1 at (1, k) and i1 = 0 at (k,1) for each k > 0, then all paths enter through the
y-axis, and every vertex on the positive y-axis is an entrance site for some path.
We will refer to this particular assignment as step initial data; it was depicted in
Figure 1, and it is also depicted on the left-hand side of Figure 5. In general, we
will refer to any assignment of i1 to Z>0 × {1} and j1 to {1} ×Z>0 as initial data,
which can be deterministic (like step) or random.

Observe that, at any vertex in the positive quadrant, the total number of incom-
ing arrows is equal to the total number of outgoing arrows; that is, i1 +j1 = i2 +j2.
This is sometimes referred to as arrow conservation (or spin conservation). Any
arrow configuration to all vertices of Z2

>0 that satisfies arrow conservation corre-
sponds to a unique directed path ensemble, in which paths can share both vertical
and horizontal edges.

FIG. 3. Above is a vertex at which (i1, j1; i2, j2) = (4,3;2,5).
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2.2. Probability measures on path ensembles. The definition of the stochastic
higher spin vertex models will closely resemble the definition of the stochastic six-
vertex model given in Section 1.1.2. Specifically, we will first define probability
measures Pn on the set of directed path ensembles whose vertices are all contained
in triangles of the form Tn = {(x, y) ∈ Z

2≥0 : x + y ≤ n}, and then we will take a
limit as n tends to infinity to obtain the vertex models in infinite volume. The first
two measures P0 and P1 are both supported by the empty ensembles.

For each positive integer n ≥ 1, we will define Pn+1 from Pn through the fol-
lowing Markovian update rules. Use Pn to sample a directed path ensemble En

on Tn. This yields arrow configurations for all vertices in the triangle Tn−1. To
extend this to a path ensemble on Tn+1, we must prescribe arrow configura-
tions to all vertices (x, y) on the complement Tn \ Tn−1, which is the diagonal
Dn = {(x, y) ∈ Z

2
>0 : x + y = n}. Since any incoming arrow to Dn is an outgoing

arrow from Dn−1, En and the initial data prescribe the first two coordinates, i1 and
j1, of the arrow configuration to each (x, y) ∈ Dn. Thus, it remains to explain how
to assign the second two coordinates (i2 and j2) to any vertex on Dn, given the first
two coordinates.

This is done by producing (i2, j2)(x,y) from (i1, j1)(x,y) according to the transi-
tion probabilities

Pn

[
(i2, j2) = (k,0)

∣∣ (i1, j1) = (k,0)
] = 1 − qksxξxuy

1 − sxξxuy

,

Pn

[
(i2, j2) = (k − 1,1)

∣∣ (i1, j1) = (k,0)
] = (qk − 1)sxξxuy

1 − sxξxuy

,

Pn

[
(i2, j2) = (k + 1,0)

∣∣ (i1, j1) = (k,1)
] = 1 − qks2

x

1 − sxξxuy

,

Pn

[
(i2, j2) = (k,1)

∣∣ (i1, j1) = (k,1)
] = qks2

x − sxξxuy

1 − sxξxuy

,

(2.1)

for any nonnegative integer k. We also set Pn[(i2, j2) | (i1, j1)] = 0 for all
(i1, j1; i2, j2) not of the above form. In the above, q ∈ C is a complex number
and U = (u1, u2, . . .) ⊂ C, � = (ξ1, ξ2, . . .) ⊂ C, and S = (s1, s2, . . .) ⊂ C are in-
finite sets of complex numbers, chosen to ensure that all of the above probabilities
are nonnegative. This can be arranged for instance when q ∈ (0,1), U ⊂ (−∞,0],
and S,� ⊂ [0,1], although there are also other suitable choices.

Choosing (i2, j2) according to the above transition probabilities yields a random
directed path ensemble En+1, now defined on Tn+1; the probability distribution of
En+1 is then denoted by Pn+1. We define P = limn→∞Pn. Then, P is a probability
measure on the set of directed path ensembles that is dependent on the complex pa-
rameters q , U , �, and S. The variables U = (u1, u2, . . .) are occasionally referred
to as spectral parameters, the variables � = (ξ1, ξ2, . . .) as spacial inhomogeneity
parameters and the variables S = (s1, s2, . . .) as spin parameters.
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If there exists a positive integer I such that s2qI = 1 for all s ∈ S, then
P[(i2, j2) = (I + 1,0) | (i1, j1) = (I,1)] = 0; thus, the number of vertical incom-
ing or outgoing arrows at any vertex remains less than I +1. In this case, the vertex
model is said to have spin I/2; if no such I exists, then the spin of the model is
said to be infinite.

2.3. Vertex models and interacting particle systems. Let P(T ) denote the re-
striction of the random path ensemble with step initial data (given by the measure
P from the previous section) to the strip Z>0 × [0, T ]. Assume that all T paths
in this restriction almost surely exit the strip Z>0 × [0, T ] through its top bound-
ary; this will be the case, for instance, if Pn[(i2, j2) = (0, k) | (i1, j1) = (0, k)] is
uniformly bounded below 1 over all n and k.

We will use the probability measure P
(T ) to produce a discrete-time interacting

particle system on Z>0, defined up to time T − 1, as follows. Sample a line en-
semble E randomly under P(T ), and consider the arrow configuration it associates
with some vertex (p, t) ∈ Z>0 ×[1, T ]. We will place k particles at position p and
time t − 1 if and only if i1 = k at the vertex (p, t). Therefore, the paths in the path
ensemble E correspond to space-time trajectories of the particles; see Figure 4.

Let us introduce notation for particle positions. A nonnegative signature λ =
(λ1, λ2, . . . , λn) of length n is a nonincreasing sequence of n integers λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. We denote the set of nonnegative signatures of length n by Sign+

n ,
and the set of all nonnegative signatures by Sign+ = ⋃∞

N=0 Sign+
n . For any signa-

ture λ and integer j , let mj(λ) denote the number of indices i for which λi = j ;
that is, mj(λ) is the multiplicity of j in λ.

We can associate a configuration of n particles in Z≥0 with a signature of length
n as follows. A signature λ = (λ1, λ2, . . . , λn) is associated with the particle con-
figuration that has mj(λ) particles at position j , for each nonnegative integer j .
Stated alternatively, λ is the ordered set of positions in the particle configuration.
If E is a directed line ensemble on Z≥0 × [0, n], let pn(E) ∈ Sign+

n denote the
signature associated with the particle configuration produced from E at time n.

Then, P(n) induces a probability measure on Sign+
n , defined as follows.

DEFINITION 2.1. For any positive integer n, let Mn denote the measure on
Sign+

n (dependent on the parameters U , S, and �) defined by setting Mn(λ) =
P

(n)[pn(E) = λ], for each λ ∈ Sign+
n .

FIG. 4. Shown above and to the left is a path ensemble; shown above and to the right is the asso-
ciated interacting particle system.
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If a model has spin I/2, then it exhibits a type of weak exclusion principle,
which states that at most I particles can occupy a given location [or equivalently
that mj(p(E)) ≤ I for each j ∈ p(E)]. We will be interested in the case when
I = 1, which yields the stochastic six-vertex model.

3. The spin 1/2 vertex models. We will be particularly interested in the
stochastic higher spin vertex model in the spin 1/2 setting, when all of the sk
are equal to s = q−1/2. Under this degeneration, the model becomes the stochastic
six-vertex model. In Section 3.1, we will explain this degeneration in more de-
tail. Then, in Section 3.2, we will discuss the ASEP and state how the stochastic
six-vertex model degenerates to it.

3.1. The stochastic six-vertex model. The goal of this section is twofold. First,
we explain how the stochastic six-vertex model can be recovered directly from
a degeneration of the stochastic higher spin vertex model. Second, we formally
define and give examples of initial data for the stochastic six-vertex model.

3.1.1. The stochastic six-vertex model through higher spin vertex models. Let
us examine what happens to the probabilities (2.1) when uk = u, ξk = 1, and sk =
q−1/2 for all k ≥ 0. Since Pn[(i2, j2) = (2,0) | (i1, j1) = (1,1)] = (1 − qs2)/(1 −
su) = 0, we have that i1, i2 ∈ {0,1} at each vertex. Thus no two paths can share
a vertical edge, meaning that P is supported on the set of six-vertex directed path
ensembles defined in Section 1.1.2.

Now let us reparameterize. Let δ1, δ2 ∈ (0,1) satisfy δ1 < δ2, and define κ =
(1 − δ1)/(1 − δ2) > 1. Denote

q = δ1

δ2
< 1; u = κs = 1 − δ1

1 − δ2

√
δ2

δ1
> 1.

Substituting this specialization into the other probabilities in (2.1), we find that

Pn

[
(i2, j2) = (0,0)

∣∣ (i1, j1) = (0,0)
] = 1

= Pn

[
(i2, j2) = (1,1)

∣∣ (i1, j1) = (1,1)
]
,

Pn

[
(i2, j2) = (1,0)

∣∣ (i1, j1) = (1,0)
] = δ1;

Pn

[
(i2, j2) = (0,1)

∣∣ (i1, j1) = (1,0)
] = 1 − δ1,

Pn

[
(i2, j2) = (0,1)

∣∣ (i1, j1) = (0,1)
] = δ2;

Pn

[
(i2, j2) = (1,0)

∣∣ (i1, j1) = (0,1)
] = 1 − δ2.

(3.1)

Since the probabilities (3.1) coincide with the probabilities depicted in Figure 2, it
follows that the measure P of Section 2.2 (under the above specialization) is equal
to the stochastic six-vertex measure P(δ1, δ2) defined in Section 1.1.2.
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3.1.2. Initial data for the stochastic six-vertex model. We start with the fol-
lowing definition.

DEFINITION 3.1. Let ϕ = (ϕ(1), ϕ(2), . . .), where ϕ(k) = (ϕ
(x)
k , ϕ

(y)
k ) ∈

Z≥0 × {0,1} for each k, be a stochastic process. The stochastic higher spin vertex
model with initial data ϕ is the stochastic higher spin vertex model [as defined in
Section 2.2 that evolves according to the transition probabilities given by (2.1)]
whose boundary condition is defined by setting j1 = ϕ

(y)
k at (1, k) and i1 = ϕ

(x)
k at

(k,1), for each k.

EXAMPLE 3.2. Step Bernoulli initial data with parameter b arises when the
ϕ(i) are all mutually independent, ϕ

(x)
i ≡ 0, and the ϕ

(y)
i are independent 0 − 1

Bernoulli random variables with mean b.
Under this initial data, paths can only enter from the y-axis, and each vertex on

the positive y-axis is an entrance point for a path with probability b. The case of
step initial data is recovered when b = 1.

In the example above, the ϕ(i) are mutually independent, but they need not be in
general. For instance, this is the case for the following example, which introduces
a class of initial data that generalizes step Bernoulli initial data.

DEFINITION 3.3. If m is a positive integer and b1, b2, . . . , bm ∈ [0,1] are pos-
itive real numbers, then step (b1, b2, . . . , bm)-Bernoulli initial data is defined as
follows. First, we set ϕ

(x)
i ≡ 0, so that no paths enter through the x-axis.

Next, to define ϕ
(y)
i , consider the stochastic higher spin vertex model (with step

initial data), restricted to the strip [0,m + 1] × [0,∞), in which the transition
probabilities given by (2.1) are replaced with the probabilities

Pn

[
(i2, j2) = (k,0)

∣∣ (i1, j1) = (k,0)
] = 1 − (

1 − qk)bx,

Pn

[
(i2, j2) = (k − 1,1)

∣∣ (i1, j1) = (k,0)
] = (

1 − qk)bx,

Pn

[
(i2, j2) = (k + 1,0)

∣∣ (i1, j1) = (k,1)
] = 1 − bx,

Pn

[
(i2, j2) = (k,1)

∣∣ (i1, j1) = (k,1)
] = bx,

(3.2)

at the vertex (x, y) for all integers x ∈ [1,m] and y ∈ [1,∞). Then, define the
random variable ϕ

(y)
i to be the value of j2 at the vertex (m, i), for each positive

integer i.

REMARK 3.4. Observe that this coincides with step b1-Bernoulli initial data
when m = 1. Indeed, in that case, j1 = 1 deterministically at each vertex on the
positive y-axis due to the step initial data. Therefore, the top two probabilities in
(3.2) have no effect, and the latter two probabilities imply that j2 is a Bernoulli
0 − 1 random variable with mean b1 at each vertex on the positive y-axis.
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FIG. 5. Shown above and to the left is the stochastic higher spin vertex model specialized as in Def-
inition 3.3, with m = 2. Shown to the right is this model shifted to the left by 2, yielding a stochastic
six-vertex model with generalized step Bernoulli initial data.

REMARK 3.5. Running a stochastic six-vertex model with this initial data can
be viewed as running a stochastic higher spin vertex model with step initial data,
whose transition probabilities in the first m columns match those given by (3.2),
and whose probabilities in all other columns match those of (3.1). This is depicted
on the left-hand side of Figure 5 in the case m = 2.

On the right-hand side of Figure 5 is the same model “shifted” to the left by 2
with all arrows originally in the first two columns removed; this is how a stochastic
six-vertex model with generalized step Bernoulli initial data might look.

3.2. The ASEP. In this section we discuss the asymmetric simple exclusion
process (ASEP). Our goals are again twofold. First, we formally define initial data
for the ASEP; then, we explain a limit degeneration that maps the stochastic six-
vertex model to the ASEP. The latter point will be particularly useful to us later,
in Section 4.2, where it will allow us to produce identities for the ASEP from
identities for the stochastic six-vertex model.

3.2.1. Initial data for the ASEP. Recall from Section 1.1.1 that the ASEP is a
continuous time Markov process {ηt (i)}i∈Z,t∈R≥0 ⊂ {0,1}Z ×R≥0, whose dynam-
ics can be defined as follows.

For each pair of consecutive integers (i, i + 1) ∈ Z
2, the variables ηt (i) and

ηt (i + 1) are interchanged (meaning we set ηt (i) = ηt−(i + 1) and ηt (i + 1) =
ηt−(i), but leave all other ηt (j) fixed) at exponential rate L ≥ 0 if (ηt−(i), ηt−(i +
1)) = (0,1); similarly, the variables ηt (i) and ηt (i + 1) are interchanged at expo-
nential rate R ≥ 0 if (ηt−(i), ηt−(i + 1)) = (1,0). The exponential clocks corre-
sponding to each pair (i, i + 1) are mutually independent. Here, t− refers to the
time infinitesimally before time t .
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The random variables ηt (i) can be viewed as indicators for the event that a par-
ticle is at position i at time t . Therefore, the dynamics at ASEP are equivalent to
particles independently attempting to jump left at rate L and right at rate R, subject
to the exclusion restriction. Specifically, if the destination of the jump is unoccu-
pied, the jump is performed; otherwise, it is not. Throughout, we will assume that
R > L, so that particles drift to the right on average.

Now we can define initial data for the ASEP.

DEFINITION 3.6. Let ϕ = (ϕ(1), ϕ(2), . . .) be a stochastic process, where
ϕ(i) = (ϕ

(x)
i , ϕ

(y)
i ) ∈ {0,1} × {0,1}. Define the ASEP with initial data ϕ to be

the ASEP with η0(i) = ϕ
(x)
i if i is positive, and η0(i) = ϕ

(y)
1−i if i is nonpositive.

EXAMPLE 3.7. If b ∈ [0,1], then step b-Bernoulli initial data arises when
the ϕ(i) are mutually independent, ϕ

(x)
i ≡ 0, and the ϕ

(y)
i are independent 0 − 1

Bernoulli random variables with mean b, for each i. That is, particles are initially
placed at or to the left of 0 with probability b, and no particles are placed to the
right of 0; all placements are independent.

3.2.2. Degeneration of the stochastic six-vertex model to the ASEP. In this
section we explain a certain limit degeneration under which the stochastic six-
vertex model converges to the ASEP.

To briefly provide a heuristic as to why such a convergence should exist, con-
sider the stochastic six-vertex model P(δ1, δ2) in which δ1 = δ2 = 0 (see Sec-
tion 3.1.1 for definitions). In this case, all paths will almost surely alternate be-
tween turning one space up and one space right. In terms of the interacting particle
system interpretation discussed in Section 2.3, each particle almost surely jumps
one space to the right at each time step; thus, if we translate each particle t spaces
to the left at time t (we refer to this as offsetting by the diagonal), then the particle
system will not evolve over time.

Now assume that δ1 = εL and δ2 = εR, for some positive real numbers R,L >

0 and some very small number ε > 0. Then, paths will “usually” turn up and right;
thus, after offsetting by the diagonal, particles will usually not move. However,
very rarely, an offset particle will jump to the left (with probability εL) and to the
right (with probability εR), subject to the restriction that a particle cannot jump to
an occupied location. After rescaling time by ε−1, and taking the limit as ε tends
to 0, this coincides with the dynamics of the ASEP.

Thus, after offsetting by the diagonal, one expects that the stochastic six-vertex
model P(εL, εR) should converge to the ASEP. This heuristic was provided in
Section 2.2 of [16] (see also Section 6.5 of [21]) and later established in Theorem 1
and Corollary 2 of [1].

The following proposition, which appears as Corollary 2 of [1], states this
heuristic precisely in terms of convergence of currents. In what follows, we recall
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the definitions of the currents J of the ASEP and H of the stochastic six-vertex
model from Section 1.1.1 and Section 1.1.2.

PROPOSITION 3.8 ([1], Corollary 2). Fix real numbers R,L ≥ 0 and a
stochastic process ϕ = (ϕ(1), ϕ(2), . . .), with ϕ(i) = (ϕ

(x)
i , ϕ

(y)
i ) ∈ {0,1} × {0,1}.

Let ε > 0 be a real number, and denote δ1 = δ1;ε = εL and δ2 = δ2;ε = εR; assume
that δ1, δ2 ∈ (0,1). Also fix r ∈ R, t ∈ R>0 and x ∈ Z.

Let pε(x; r) = PV [H(x + �ε−1t, �ε−1t) ≥ r], where the probability PV is
under the stochastic six-vertex model P(δ1, δ2) with initial data ϕ. Furthermore,
let p(x; r) = PA[Jt (x) ≥ r], where the probability PA is under the ASEP with left
jump rate L, right jump rate R, and initial data ϕ.

Then, limε→0 pε(x; r) = p(x; r).

4. Observables for models with generalized step Bernoulli initial data. We
now turn to the analysis of the ASEP and stochastic six-vertex model with gener-
alized step Bernoulli initial data. Our results in this section are primarily algebraic;
our goal is to establish Theorem 4.10 and Theorem 4.11, which are Fredholm de-
terminant identities for the q-Laplace transform of the current of the stochastic
six-vertex model and ASEP, respectively, with generalized step Bernoulli initial
data. These identities will be amenable to asymptotic analysis and will therefore
enable the proofs of the phase transition results Theorem 1.6 and Theorem 1.7 later
in the paper.

The proofs of these Fredholm determinant identities rely on the integrability
of the stochastic six-vertex model under generalized step Bernoulli initial data. In
particular, we will first show how to degenerate the stochastic higher spin vertex
model with step initial data to the stochastic six-vertex model with generalized step
Bernoulli initial data. Using the results of [21], this then yields contour integral
identities for q-moments of the current of this model, which will give rise to the
Fredholm determinant identities Theorem 4.10 and Theorem 4.11.

4.1. Contour integral identities for q-moments of the current. Our goal in this
section is to establish Proposition 4.4, which is a multi-fold contour integral iden-
tity for q-moments of the current of the stochastic six-vertex model with step
Bernoulli initial data.

Obtaining such identities for the stochastic higher spin vertex models with step
initial data has been investigated at length in [21]; see, for example, Theorem 9.8
of that article. We will show that, under a certain specialization, the stochastic
higher spin vertex model with step initial data degenerates to the stochastic six-
vertex model with different initial data, namely, generalized step Bernoulli initial
data. Then it will be possible to degenerate the results of [21] to obtain the contour
integral identities relevant for the proofs of Theorem 4.10 and Theorem 4.11.
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4.1.1. A specialization of the stochastic higher spin vertex model. Consider
the stochastic higher spin vertex model as defined in Section 2.2, with the fol-
lowing specialization of parameters. Let m ≥ 1 be some positive integer and
b1, b2, . . . , bm ∈ (0,1) be positive real numbers. Let δ1 < δ2 be positive real num-
bers in the interval (0,1), and let

q = δ1

δ2
< 1; κ = 1 − δ1

1 − δ2
> 1;

s = q−1/2; u = κs; βi = bi

1 − bi

,

(4.1)

for each i ∈ [1,m], as in Section 3.1. Now set uj = u for each j ≥ 1; sj = s and
ξj = 1 for each j ≥ m + 1; si = ai for each i ∈ [1,m]; and ξi = −βi/aiu for each
i ∈ [1,m].

For x > m, the probabilities in (2.1) match with those of the stochastic six-
vertex model given by (3.1). If x ∈ [1,m], then the probabilities become

Pn

[
(i2, j2) = (k,0)

∣∣ (i1, j1) = (k,0)
] = 1 + qkβx

1 + βx

,

Pn

[
(i2, j2) = (k − 1,1)

∣∣ (i1, j1) = (k,0)
] = (1 − qk)βx

1 + βx

,

Pn

[
(i2, j2) = (k + 1,0)

∣∣ (i1, j1) = (k,1)
] = 1 − qka2

x

1 + βx

,

Pn

[
(i2, j2) = (k,1)

∣∣ (i1, j1) = (k,1)
] = qka2

x + βx

1 + βx

.

(4.2)

Taking the limit as ai tends to 0 for each i ∈ [1,m] and recalling that βi = bi/(1 −
bi) for each i yields the probabilities in (3.2).

In particular, let us define ϕ
(y)
1 , ϕ

(y)
2 , . . . by setting ϕ

(y)
k = 1 if j2 = 1 at the

vertex (k,m) and ϕ
(y)
k = 0 otherwise; equivalently, ϕ

(y)
k is the indicator that there

exists some path containing an arrow from (m, k) to (m + 1, k). Then the initial
data defined by ϕ = (ϕ(1), ϕ(2), . . .), where ϕ(i) = (ϕ

(x)
i , ϕ

(y)
i ) = (0, ϕ

(y)
i ), coin-

cides with the step (b1, b2, . . . , bm)-Bernoulli initial data given by Definition 3.3.
Thus, if we translate the vertex model to the left by m (so that the line y = m

is shifted onto the y-axis) and then ignore all arrows to the left of the y-axis, we
obtain the stochastic six-vertex model with step (b1, b2, . . . , bm)-Bernoulli initial
data; see Remark 3.5 and Figure 5.

4.1.2. Observables for the stochastic six-vertex model. In this section we will
establish contour integral identities for q-moments of the current of the stochastic
six-vertex model with generalized step Bernoulli initial data. We will begin with
Proposition 4.3, which gives an identity for q-moments of the height function of
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the stochastic higher spin vertex model in a reasonably general setting. However,
we first require some notation.

In what follows, n will be a positive integer; q ∈ (0,1) will be a positive real
number; U = (u1, u2, . . . , un) ⊂ C will be a finite set of nonzero complex num-
bers; and � = (ξ1, ξ2, . . .) ⊂ C and S = (s1, s2, . . .) ⊂ C will be infinite sets of
nonzero complex numbers.

The following definition is a restriction on our parameters so that the contours
we consider exist.

DEFINITION 4.1. We call the triple (U ;�,S) suitably spaced if the following
two conditions are satisfied:

• The elements of U are real and sufficiently close together so that they all have
the same sign and q max1≤i≤n |ui | < min1≤i≤n |ui |.

• No number of the form siξi is contained in the interval (min1≤i≤n u−1
i ,

max1≤i≤n u−1
i ).

The following defines the contours we will use in this section.

DEFINITION 4.2. Suppose that (U ;�,S) is suitably spaced. Let us define the
set of k positively oriented contours γ1(U ;�,S), γ2(U ;�,S), . . . , γk(U ;�,S) as
follows. Each contour γi = γi(U ;�,S) will be the disjoint union of two positively
oriented circles c

(1)
i and c

(2)
i .

Here, c(1) = c
(1)
1 = c

(1)
2 = · · · = c

(1)
k are all the same circle that contain each of

the u−1
i and leave outside ξ1s1, ξ2s2, . . . . We also assume that c(1) is sufficiently

small so that its interior is disjoint with the image of its interior under multiplica-
tion by q .

The circles c
(2)
1 , c

(2)
2 , . . . , c

(2)
k will be centered at 0 and sufficiently small such

that the following two properties hold:

• The circles are “nested” in the sense that, for each integer i ∈ [1, k − 1], the
circle c

(2)
i+1 strictly contains q−1c

(2)
i (defined to be the image of c

(2)
i under mul-

tiplication by q−1).
• All circles are sufficiently small so that the interior of c

(2)
k is disjoint with the

interior of qc(1) and so that the interior of c
(2)
k does not contain s1ξ1, s2ξ2, . . . .

The fact that (U ;�,S) is suitably spaced ensures the existence of such contours.
See Figure 6 for an example.

Now we can state Proposition 9.5 of [21]. In what follows, hλ(x) denotes the
number of indices i for which λi ≥ x, for any λ ∈ Sign+.

PROPOSITION 4.3 ([21], Proposition 9.5). Let k, x and t be positive integers;
q ∈ (0,1) be a positive real number; U = (u1, u2, . . . , ut ) be a set of t positive
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FIG. 6. Shown above in solid is an example of possible contours γ1(U ;�,S), γ2(U ;�,S) and
γ3(U ;�,S). The dashed curves are the images of the solid curves under multiplication by q .

real numbers; and S = (s0, s1, s2, . . .) and � = (ξ0, ξ1, . . .) ∈ (0,∞) be infinite
sets of real numbers, such that (U ;�,S) is suitably spaced and |sj ξjui − s2

j | <

|1 − sj ξjui | for each i, j .
Under the measure M = Mt given by Definition 2.1, with spectral parame-

ters U , spin parameters S = (s1, s2, . . .) and spectral inhomogeneity parameters
� = (ξ1, ξ2, . . .), we have that

EM
[
qkhλ(x)] = q(k

2)

(2π i)k

∮
· · ·

∮ ∏
1≤i<j≤k

wi − wj

wi − qwj

×
k∏

i=1

(
x−1∏
j=1

sj ξj − s2
j wi

sj ξj − wi

t∏
j=1

1 − qujwi

1 − ujwi

)
dwi

wi

,

(4.3)

where each wi is integrated along the contour γi = γi(U ;�,S) of Definition 4.2.

In fact, as stated above, Proposition 4.3 does not precisely coincide with Propo-
sition 9.5 of [21]; the latter was originally stated with more stringent analytic con-
straints on the parameters U , S and �. However, Lemma 9.1 of [21] states that
the left-hand side of (4.3) is a rational function in all of these parameters. Thus,
Proposition 4.3 above follows from Proposition 9.5 of [21] and a standard (see,
e.g., Section 10 of [21]) analytic continuation argument, which we will not detail
further.

Using Proposition 4.3, we can obtain q-moments of the current for the stochas-
tic six-vertex model with generalized step Bernoulli initial data; recall Defini-
tion 3.3 for a description of this initial data. In what follows, for any (x, t) ∈ Z

2≥0,
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ht (x) denotes the height function of a stochastic higher spin vertex model, that is,
the number of integers k ≥ x such that j2 = 1 at (k, t); stated alternatively, ht (x)

denotes the number of paths that are strictly to the right of x − 1 at time t . Observe
that ht (x) ≤ t and is thus finite.

PROPOSITION 4.4. Fix m, t ∈ Z>0; δ1, δ2 ∈ (0,1); and b1, b2, . . . , bm ∈
(0,1). Consider the stochastic six-vertex model with left jump probability δ1, right
jump probability δ2, and step (b1, b2, . . . , bm)-Bernoulli initial data. Denoting q ,
u, κ , s, and βi as in (4.1), we have that

E
[
qkht (x)] = q(k

2)

(2π i)k

∮
· · ·

∮ ∏
1≤i<j≤k

yi − yj

yi − qyj

×
k∏

i=1

(
1 + yi

1 + q−1yi

)t(1 + q−1κ−1yi

1 + κ−1yi

)x−1

×
k∏

i=1

(
m∏

j=1

1

1 − q−1β−1
j yi

)
dyi

yi

,

(4.4)

where each yi is integrated along the contour γi(Û ; �̂, Ŝ) of Definition 4.2. Here,
we have denoted Û = (−q−1,−q−1, . . .), Ŝ = (1,1, . . .) and �̂ = (qβ1, qβ2, . . . ,

qβm,−κ,−κ, . . .).

PROOF. We will apply Proposition 4.3 to the stochastic higher spin vertex
model, specialized as in Section 4.1.1, run for t discrete time steps. That is, set
ui = u for each i ∈ [1, t]; ξi = 1 and si = s if i > m; si = ai ∈ (−1,0) to be some
small negative real number if i ∈ [1,m]; and ξi = −βi/aiu if i ∈ [1,m]. Also set
ξ0 = 1 and s0 = s.

Now, applying Proposition 4.3, we obtain

EM
[
qkhλ(x+m)] = q(k

2)

(2π i)k

∮
· · ·

∮ ∏
1≤i<j≤k

wi − wj

wi − qwj

×
k∏

i=1

(
1 − quwi

1 − uwi

)t(s − s2wi

s − wi

)x−1

×
k∏

i=1

(
m∏

j=1

βj + a2
j uwi

βj + uwi

)
dwi

wi

,

where each wi is integrated along the contour γi = γ (U ;�,S). Let us take the
limit as each aj tends to 0 (as in Section 4.1.1) and perform the change of variables
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sending wi to −yi/qu = −syi/κ . We obtain

EM
[
qkhλ(x+m)] = q(k

2)

(2π i)k

∮
· · ·

∮ ∏
1≤i<j≤k

yi − yj

yi − qyj

×
k∏

i=1

(
1 + yi

1 + q−1yi

)t(1 + q−1κ−1yi

1 + κ−1yi

)x−1

×
k∏

i=1

(
m∏

j=1

1

1 − q−1β−1
j yi

)
dyi

yi

,

(4.5)

where each yi is integrated along the contour γi(Û ; �̂, Ŝ)

In the above, M refers to the measure on particle configurations induced by
the stochastic higher spin vertex model with spectral parameters (u,u, . . . , u), in-
homogeneity parameters (−β1/a1u,−β2/a2u, . . . ,−βm/amu,1,1, . . .), and spin
parameters (a1, a2, . . . , am, s, s, . . .), where the first m spins a1, a2, . . . , am all
tend to 0. Recall from the explanation in Section 4.1.1 that this stochastic higher
spin vertex model in fact coincides with the stochastic six-vertex model with
step (b1, b2, . . . , bm)-Bernoulli initial data, shifted to the right m spaces. Hence,
E[qkht (x)] = EM[qkhλ(x+m)], where the former expectation is with respect to the
stochastic six-vertex model with step (b1, b2, . . . , bm)-Bernoulli initial data. Thus,
(4.4) follows from (4.5). �

REMARK 4.5. After having defined generalized Bernoulli initial data as in
Definition 3.3, it might also be possible to establish Proposition 4.4 through the
spectral theory introduced in [17]. However, we are not aware of an alternative
way to guess the integrability of generalized Bernoulli initial data without using
the stochastic higher spin vertex model as in Section 3.1.

4.2. Fredholm determinants for models with generalized step Bernoulli initial
data. The goal of this section is to establish Fredholm determinant identities for
the q-Laplace transform of the current of the stochastic six-vertex model (The-
orem 4.10) and the ASEP (Theorem 4.11), both with generalized step Bernoulli
initial data; we refer to Appendix A of [3] for the definition and properties of
Fredholm determinants. Given Proposition 4.4, the derivation of these two theo-
rems will largely follow Section 5 of [18].

4.2.1. A general Fredholm determinant identity. The goal of this section is to
state Lemma 4.9, which produces Fredholm determinant identities from q-moment
identities of the type given in Proposition 4.4; this lemma is similar to Proposi-
tion 3.6 of [18], and it can be proven analogously.
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DEFINITION 4.6 ([18], Definition 5.1). Let a ∈ C be a nonzero complex num-
ber and q ∈ (0,1) be a positive real number. Let f be a meromorphic function that
has a pole at a, but no other poles in a neighborhood of the segment joining 0
and a. Define m0 = 1 and, for each positive integer k, define

mk = mk,f = q(k
2)

(2π i)k

∮
· · ·

∮ ∏
1≤i<j≤k

zi − zj

zi − qzj

k∏
i=1

f (zi)z
−1
i dzi,

where each zi is integrated along a positively oriented contour Ci that satisfies the
following two properties. First, each contour contains 0 and a, but does not contain
any other poles of f . Second, for all integers i < j ∈ [1, k], the interior of Ci does
not intersect the contour qCj .

REMARK 4.7. The equality (4.4) gives an example for mk if we set mk =
E[qkht (x)] and a = −q .

We also require the following types of contours; they appeared previously in
[18] as Definition 3.5 (in the case δ = 1/2).

DEFINITION 4.8. Let R,d, δ > 0 be positive real numbers with d, δ < 1 and
R > 1. Let DR,d,δ ⊂ C denote the contour in the complex plane, with nondecreas-
ing imaginary part, formed by taking the union of intervals

(R − i∞,R − id) ∪ [R − id, δ − id]
∪ [δ − id, δ + id]
∪ [δ + id,R + id]
∪ (R + id,R + i∞).

Furthermore, let k > R be a positive integer. Let z ∈ C be the complex number
satisfying �z = R, �z > 0 and |z − δ| = k. Let I denote the minor arc of the
circle in the complex half-plane, centered at δ, with radius k, connecting z to its
conjugate z. Then let DR,d,δ;k ⊂ C denote the negatively oriented contour in the
complex plane, formed by the union

(z,R − id) ∪ [R − id, δ − id]
∪ [δ − id, δ + id]
∪ [δ + id,R + id] ∪ (R + id, z) ∪ I.

Observe that the contour DR,d,δ;k approximates the contour DR,d,δ as k tends
to ∞. Examples of these contours are given in Figure 7.

The following proposition, which is similar to Proposition 3.6 of [18], states
that one has a Fredholm determinant identity for a certain generating series of the
sequence {m0,m1, . . .}.
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FIG. 7. An example of DR,r,δ is shown to the left, and an example of DR,r,δ;k is shown to the right;
the circles depict the locations of positive integers.

LEMMA 4.9. Let a ∈ C be a complex number, and let f be a meromorphic
function satisfying the properties of Definition 4.6. Assume that f is of the form
f (z) = g(z)/g(qz), for some function g. Let C ⊂ C be a compact contour con-
taining 0 and a in its interior, but no other pole of f ; moreover, assume that the
interior of qC is contained inside C.

Suppose that there exists some constant B > 0 such that f (qnw) < B and
|qnw − w′| > B−1 for all w,w′ ∈ C and integers n ≥ 1. Also assume that there
exist positive real numbers d, δ ∈ (0,1) and R > 1 such that

inf
w,w′∈C

k∈(2R,∞)∩Z
s∈DR,d,δ;k

∣∣qsw − w′∣∣ > 0; sup
w∈C

k∈(2R,∞)∩Z
s∈DR,d,δ;k

g(w)

g(qsw)
< ∞.(4.6)

Then, for any complex number ζ ∈ C \ R≥0 satisfying |ζ | < B−1(1 − q)−1, we
have that

∞∑
k=0

mkζ
k

(q;q)k
= det(Id+Kζ )L2(C),(4.7)

where the kernel K is defined through

Kζ

(
w,w′) = 1

2i

∫
DR,d,δ

g(w)

g(qrw)

(−ζ )r dr

sin(πr)(qrw − w′)
.

Furthermore, the right-hand side of (4.7) is analytic in ζ ∈C \R≥0.

The proof of this lemma is very similar to that of Proposition 3.6 of [18] and is
thus omitted.
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4.2.2. Fredholm determinants for the stochastic six-vertex model and ASEP.
In this section we will establish the Fredholm determinant identities Theorem 4.10
and Theorem 4.11. As stated previously, these two identities will follow from
Proposition 4.4 and Lemma 4.9.

THEOREM 4.10. Let m be a nonnegative integer and t be a positive integer.
Fix 0 < δ1 < δ2 < 1 and b1, b2, . . . , bm ∈ (0,1). Denoting q , u, κ , s and βi as in
(4.1), let

gV (z;x, t) = (κ−1z + q)x−1

(z + q)t

m∏
j=1

1

(q−1β−1
j z;q)∞

.(4.8)

Let CV be a positively oriented circle in the complex plane, centered at some non-
positive real number, containing −q and 0, but leaving outside −1 and qβj for
each integer j ∈ [1,m].

Then, there exist a sufficiently large real number R > 1, a real number δ ∈ (0,1)

sufficiently close to 1 and a sufficiently small real number d ∈ (0,1) such that

qR < min
w,w′∈CV

∣∣w−1w′∣∣; q1−δ > max
w∈CV

{∣∣κ−1w
∣∣, |qw|};

∣∣�qid
∣∣ < max

w,w′∈CV

�w−1w′≥0
|w−1w′|≤qδ

∣∣�w−1w′∣∣.(4.9)

Consider the stochastic six-vertex model with jump probabilities δ1 and δ2, and
with (b1, b2, . . . , bm)-step Bernoulli initial data (as defined in Section 3.1). For
any ζ ∈C \R≥0, we have that

E

[
1

(ζqht (x);q)∞

]
= det(Id+Vζ )L2(CV ),(4.10)

where Vζ is defined by

Vζ

(
w,w′) = 1

2i

∫
DR,d,δ

gV (w;x, t)

gV (qrw;x, t)

(−ζ )r dr

sin(πr)(qrw − w′)
.

PROOF. Let us begin with the first statement. The existence of R follows from
the compactness of CV and the fact that 0 does not lie on the contour CV . The
existence of δ follows from the compactness CV and the fact that CV and does
not intersect the circle centered at 0 with radius κ or radius q−1. The existence of
d follows from the compactness of CV and the fact that �w−1w′ �= 0 whenever
�w−1w′ ≥ 0 and |w−1w′| < qδ . Thus, R, δ and d satisfying (4.9) exist.

To establish the Fredholm determinant identity (4.10), we will apply
Lemma 4.9, with mk = E[qkht (x)] and a = −q; Proposition 4.4 shows that mk
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has the form given by Definition 4.6, with

f (z) = gV (z)

gV (qz)
=

(
1 + z

1 + q−1z

)t(1 + q−1κ−1z

1 + κ−1z

)x−1 m∏
j=1

1

1 − q−1β−1
j z

.

To apply Lemma 4.9, we must verify several conditions on the contours CV and
DR,d,δ .

First, we require that CV contains 0, −q , and its image under multiplication by
q , but no other pole of f ; these statements all quickly follow from the definition
of CV .

Second, we require the existence of some positive real number B > 0 such that
|qnw − w′| > B−1 and f (qnw) < B for all integers n ≥ 1 and all w,w′ ∈ CV . By
compactness of CV , the existence of such a B would follow if |qnw − w′| > 0 and
f (qnw) < ∞ for all w,w′ ∈ C and n ≥ 1. The first inequality holds by convexity
of CV . To establish the second inequality, recall that the only poles of f are at −q ,
κ and the qβj . The qβj and κ are outside the contour CV , so no element of the
form qnw, with w ∈ CV , is equal to some qβj . Furthermore, since no nonpositive
power of q lies on CV , we have that qnw �= q−1 for any w ∈ CV . Thus, the second
inequality holds since qnw is not a pole of f for any w ∈ CV .

Third, we require that

inf
w,w′∈CV

k∈(2R,∞)∩Z
s∈DR,d,δ;k

∣∣qsw − w′∣∣ > 0; sup
w∈CV

k∈(2R,∞)∩Z
s∈DR,d,δ;k

gV (w)

gV (qsw)
< ∞.

(4.11)

To see that the first inequality in (4.11) holds, observe that if s ∈ DR,d,δ;k then
either �s ≥ R, �s = δ and �s ∈ (−d, d), or �s = d and �s ∈ (δ,R). The first
inequality in (4.9) implies that qs �= w−1w′ in the first case. Furthermore, the third
inequality in (4.9) implies that qs �= w−1w′ in either the second or third case.
Therefore, qs �= w−1w′, for any w,w′ ∈ CV and s ∈ DR,d,δ;k with k > 2R; thus,
the first inequality in (4.11) follows from compactness of CV .

Now let us establish the second inequality in (4.11). Again, since CV is compact,
it suffices to show that no pole of gV is on CV , and that no element of the form
qsw (with w ∈ CV and s ∈ DR,d,δ;k) is a zero of gV . The first statement holds by
the definition of CV . To establish the second statement, observe that gV can equal
zero only at −qκ . If qsw = −qκ , then we must have that |w| = κ|q1−s | ≤ q1−δκ ,
which cannot hold due to the second inequality in (4.9). Thus, the second statement
also holds.

Hence, the contours CV and DR,d,δ satisfy the conditions of Lemma 4.9. Ap-
plying this lemma to mk = E[qkht (x)], we deduce that

∞∑
k=0

ζ k
E[qkht (x)]
(q;q)k

= det(Id+Vζ )L2(CV ),(4.12)
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for any ζ ∈ C \ R≥0 satisfying |ζ | < (1 − q)−1B−1. Since q ∈ (0,1), we have
that E[qkht (x)] < 1. Hence, if |ζ | < 1, then the left-hand side of (4.12) converges
absolutely, meaning that we can commute the sum with the expectation. Therefore,
if |ζ | < 1, we have that

∞∑
k=0

ζ k
E[qkht (x)]
(q;q)k

= E

[ ∞∑
k=0

(ζqht (x))k

(q;q)k

]
= E

[
1

(ζqht (x);q)∞

]
,

where we have used the q-binomial identity in the second equality. Substituting
this into (4.12) yields

E

[
1

(ζqht (x);q)∞

]
= det(Id+Vζ )L2(CV ),(4.13)

for any ζ ∈C \R≥0 such that |ζ | < min{1, (1 − q)−1B−1}.
Finally, for any real number z ≥ 0, the function (zζ ;q)−1∞ is analytic in ζ in

the domain C \R≥0. Since the left-hand side of (4.13) is a locally uniformly con-
vergent sum of such expressions, we deduce that the left-hand side of (4.13) is
analytic in ζ in the domain C \ R≥0. Furthermore, Proposition 4.9 states that the
right-hand side of (4.13) is also analytic in ζ in the domain C \ R≥0. Uniqueness
of analytic continuation concludes the proof. �

Degenerating the stochastic six-vertex model to the ASEP as explained in Sec-
tion 3.2.2 yields the following Fredholm determinant identity for the ASEP with
generalized step Bernoulli initial data.

THEOREM 4.11. Let m be a nonnegative integer and t be a positive real
number. Fix 0 < L < R and b1, b2, . . . , bm ∈ (0,1). Denote q = L/R < 1 and
βi = bi/(1 − bi) for each integer i ∈ [1,m]. Define

gA(z;x,T ) = (z + q)x−1 exp
(

qT (R − L)

z + q

) m∏
j=1

1

(q−1β−1
j z;q)∞

.(4.14)

Let CA be a positively oriented circle in the complex plane, centered at a nonpos-
itive real number, containing −q and 0, but leaving outside −1 and qβj for each
integer j ∈ [1,m]. There exist a sufficiently large real number R > 1, a real num-
ber δ ∈ (0,1) sufficiently close to 1, and a sufficiently small real number d ∈ (0,1)

such that

qR < min
w,w′∈CA

∣∣w−1w′∣∣; q1−δ > max
w∈CA

|w|;
∣∣�qid

∣∣ < max
w,w′∈CA

�w−1w′≥0
|w−1w′|≤qδ

∣∣�w−1w′∣∣.(4.15)
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Consider the ASEP with left jump rate L and right jump rate R, with step
(b1, b2, . . . , bm)-Bernoulli initial data (as defined in Section 3.1.2). For any ζ ∈
C \R≥0, we have that

E

[
1

(ζqht (x);q)∞

]
= det(Id+Aζ )L2(CA),(4.16)

where ht (x) = Jt (x − 1), and Aζ is defined by

Aζ

(
w,w′) = 1

2i

∫
DR,d,δ

gA(w;x,T )

gA(qrw;x,T )

(−ζ )r dr

sin(πr)(qrw − w′)
.

PROOF. The proof of the first statement is similar to that of the first statement
in Theorem 4.10 (in fact, it is the κ = 1 degeneration of that statement), and is thus
omitted.

For the proof of the second part of the theorem, we apply the degeneration of the
stochastic six-vertex model to the ASEP explained in Section 3.2.2. Specifically,
set δ1 = εL, δ2 = εR, t = ε−1T , and let ε tend to 0. Then the distribution of
ht (x + t) = H(x + t − 1, t) under the stochastic six-vertex model with jump rates
δ1 and δ2 (as defined in Section 3.1) converges to the distribution of Jt (x) under
the ASEP with left jump rate L and right jump rate R, due to Proposition 3.8.

Therefore, EV [(ζqht (x+t);q)−1∞ ] converges to EA[(ζqht (x);q)−1∞ ], since both
(ζqht (x+t);q)−1∞ and (ζqht (x);q)−1∞ are uniformly bounded; here, the first expec-
tation is with respect to the stochastic six-vertex model and the second expectation
is with respect to the ASEP. Thus, the left-hand side of (4.10) (with x replaced by
x + t) converges to the left-hand side of (4.16).

Moreover, it is quickly verified that

lim
ε→0

gV (z;x + t, t) = eT (L−R)gA(z;x,T ).

Hence, Vζ (w,w′) tends to Aζ (w,w′) as ε tends to 0, for all w,w′ ∈ CA.
Now, as ε tends to 0, κ tends to 1. Therefore, if ε is sufficiently small (in com-

parison to R, δ and d), the estimates (4.9) are implied by the estimates (4.15).
Hence, we may take the contour CV from Theorem 4.10 to be the contour CA.

Since CA is compact, the fact that limε→0 Vζ (w,w′) = Aζ (w,w′) implies that
the right-hand side of (4.10) converges to the right-hand side of (4.16) as ε tends
to 0 (for instance, by Corollary A.5 of [3]).

Therefore, (4.16) is a limit degeneration of (4.10), and the proof is complete.
�

REMARK 4.12. Taking the weakly asymmetric limit [12] of Theorem 4.11
might provide an alternative proof of Theorem 1.10 of [15], which is a Fredholm
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determinant identity for the Laplace transform of the free energy of the continuum
directed random polymer with an m-spiked perturbation (see Remark 1.5).

5. Preliminary remarks for the asymptotic analysis. In this section we be-
gin the analysis of the Fredholm determinant identities given by Theorem 4.10 and
Theorem 4.11. Our goal is twofold. First, in Section 5.1, we will rewrite the ker-
nels Vζ and Aζ (defined in Theorem 4.10 and Theorem 4.11, resp.) in a way that
will be useful for asymptotic analysis later. Then, in Section 5.2, we will state the
asymptotics (see Proposition 5.2 and Proposition 5.3) for the corresponding Fred-
holm determinants and also show how these asymptotics imply Theorem 1.7 and
Theorem 1.6. The proofs of Proposition 5.2 and Proposition 5.3 will be the topics
of later sections of the paper.

5.1. Reformulations of Theorem 4.10 and Theorem 4.11. Theorem 4.10 and
Theorem 4.11 are of a similar form. Specifically, they both state that

EK

[
1

(ζqhT (x);q)∞

]
= det(Id+Kζ )L2(CK),(5.1)

where hT (x) = H(x − 1, T ) in the case of the stochastic six-vertex model, and
hT (x) = JT (x − 1) in the case of the ASEP. In (5.1), the notation K either stands
for V (for the stochastic six-vertex model) or A (for the ASEP); the kernels Vζ and
Aζ are defined in Theorem 4.10 and Theorem 4.11, respectively. If K = V , then
the expectation on the left-hand side of (5.1) is with respect to the stochastic six-
vertex model with step (b1, b2, . . . , bm)-Bernoulli initial data, run to some integer
time T . If K = A, then the expectation on the left-hand side of (5.1) is with respect
to the ASEP with step (b1, b2, . . . , bm)-Bernoulli initial data, run up to some real
time T .

Recall from Theorem 4.10 and Theorem 4.11 that

Kζ

(
w,w′) = 1

2i

∫
DR,d,δ

gK(w;x,T )

gK(qrw;x, t)

(−ζ )r dr

sin(πr)(qrw − w′)
,

for any w,w′ ∈ CK ; the functions gV and gA are given by (4.8) and (4.14), respec-
tively.

Let us set ζ = −qp , for some real number p, and change variables from r

to v = qrw. To understand how this affects the above identity for Kζ , we must
analyze the contour for v.

To that end, first observe that if d is sufficiently small (which we will always
assume to be the case), the contour DR,d,δ can be written as the union DR,d,δ =
I ′ ∪ ⋃

k∈Z\{−1} Ik . Here, Ik is defined to be the interval

Ik = [
R + i

(
d + 2π | logq|−1k

)
,R + i

(
d + 2π | logq|−1(k + 1)

)]
,
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for each integer k, and I ′ is defined to be the piecewise linear curve

I ′ = [
R + i

(
d − 2π | logq|−1)

,R − id
]

∪ [R − id, δ − id] ∪ [δ − id, δ + id] ∪ [δ + id,R + id].
Now, for each integer k, the map from r to qrw is a bijection from Ik to

−Q
(1)
R,d,δ;w , where the negative refers to reversal of orientation and the contour

Q
(1)
R,d,δ;w is a positively oriented circle of radius qR , centered at 0; here, the nega-

tive orientation is due to the fact that logq < 0.
Furthermore, the map from r to qrw is a bijection from I ′ to the contour

−QR,d,δ;w , where QR,d,δ;w is defined to be the union of four curves J1 ∪ J2 ∪
J3 ∪ J4, which are defined are as follows. The curve J1 is the major arc of the
circle centered at 0, with radius qR|w|, connecting qR−idw to qR+idw. The curve
J2 is the line segment in the complex plane connecting qR+idw to qδ+idw; the
curve J3 is the minor arc of the circle centered at 0, with radius qδ|w|, connect-
ing qδ+idw to qδ−idw; and the curve J4 is the line segment in the complex plane
connecting qδ−idw to qR−idw. We refer to Figure 8 for an example of the contour
QR,d,δ;w .

Thus, since dv = v logqdr and (−ζ )r = vpw−p , we obtain that

Kζ

(
w,w′)
= − 1

2i logq

× ∑
j �=0

∮
Q

(1)
R,d,δ;w

gK(w;x,T )

gK(v;x, t)

vp−1w−p

sin( π
logq

(logv − logw + 2π ij))

dv

v − w′

− 1

2i logq

∮
QR,d,δ;w

gK(w;x,T )

gK(v;x,T )

vp−1w−p

sin( π
logq

(logv − logw))

dv

v − w′ ,

where we have taken the principal branch of the logarithm.

FIG. 8. Shown to the left is the contour QR,d,δ;w . Shown to the right is the contour Q
(2)
R,d,δ;w .
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We can rewrite Kζ = Kζ (w,w′) as

Kζ = − 1

2i logq

×
∞∑

j=−∞

∮
QR,d,δ;w

gK(w;x,T )

gK(v;x, t)

vp−1w−p

sin( π
logq

(logv − logw + 2π ij))

dv

v − w′

− 1

2i logq

× ∑
j �=0

∮
Q

(2)
R,d,δ;w

gK(w;x,T )

gK(v;x,T )

vp−1w−p

sin( π
logq

(logv − logw + 2π ij))

dv

v − w′ ,

(5.2)

where the contour Q
(2)
R,d,δ;w = Q

(1)
R,d,δ;w − QR,d,δ;w is the union of four curves

C1 ∪ C2 ∪ C3 ∪ C4, which are defined as follows. The curve C1 is the line segment
in the complex plane connecting qR−idw to qδ−idw. The curve C2 is the minor
arc of the circle centered at 0, with radius qδ|w|, connecting qδ−idw to qδ+idw.
The curve C3 is the line segment connecting qδ+idw to qR+idw. The curve C4 is
the minor arc of the circle centered at 0, with radius qR|w|, connecting qR+idw to
qR−idw. We refer to Figure 8 for an example of the contour Q

(2)
R,d,δ;w .

We claim that each summand of the second sum on the right-hand side of (5.2)
is equal to 0. To verify this, we analyze the poles of the corresponding integrands.
When K = V , these poles are at v ∈ {0,w′,−qκ} and, when K = A, these poles
are at v ∈ {0,w′,−q}. Observe that there is no pole at v = w (or at v ∈ wqZ) since
j is nonzero in each summand.

The pole 0 is not contained inside Q
(2)
R,d,δ;w . Furthermore, in the case K = V ,

the inequalities (4.9) imply that the poles at v ∈ {w′,−qκ} are not contained inside
Q

(2)
R,d,δ;w; similarly, in the case K = A, the inequalities (4.15) imply that the poles

at v ∈ {w′,−q} are not contained inside Q
(2)
R,d,δ;w . Thus, no poles of the integrand

of the second sum on the right-hand side of (5.2) are contained in the interior of
Q

(2)
R,d,δ;w , from which we deduce that the corresponding integrals are equal to 0.
Next we would like to deform the contour QR,d,δ;w on the right-hand side of

(5.2) to one (to be chosen later) that will be better suited for asymptotic analysis.
To that end, recall that a contour γ ⊂ C is called star-shaped (with respect to the
origin) if, for each real number a ∈ R, there exists exactly one complex number
za ∈ γ such that za/|za| = eia .

The following proposition is a reformulation of Theorem 4.10 and Theo-
rem 4.11, specialized to the case ζ = −qp , but with more general, star-shaped
contours. As above, the notation K ∈ {V,A} will be used to discuss the stochastic
six-vertex model and ASEP simultaneously.
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PROPOSITION 5.1. Fix δ1, δ2 ∈ (0,1); R > L > 0; m ∈ Z≥1; b1, b2, . . . , bm ∈
(0,1); x ∈ Z; and p ∈ R. Denote βj = bj/(1 − bj ) for each j ∈ [1,m].

Let �V ⊂ C be a positively oriented, star-shaped contour in the complex plane
containing 0, but leaving outside −qκ and all qβj . Let CV ⊂ C be a positively
oriented, star-shaped contour contained inside q−1�V ; that contains 0, −q , and
�V ; but that leaves outside all qβj . Let �A ⊂ C be a positively oriented, star-
shaped contour containing 0, but leaving outside −q and all qβj . Furthermore,
let CA ⊂ C be a positively oriented, star-shaped contour contained inside q−1�A;
that contains 0, −q , and �A; but that leaves outside all qβj .

Let EV denote the expectation with respect to the stochastic six-vertex model
with left jump probability δ1, right jump probability δ2 and step (b1, b2, . . . , bm)-
Bernoulli initial data. Similarly, let EA denote the expectation with respect to the
ASEP with left jump rate L, right jump rate R and step (b1, b2, . . . , bm)-Bernoulli
initial data.

Then, for each K ∈ {V,A}, we have that

EK

[
1

(−qhT (x)+p;q)∞

]
= det

(
Id+K(p))

L2(CK),(5.3)

where

K(p)(w,w′)
= 1

2i logq

×
∞∑

j=−∞

∮
�K

gK(w;x,T )

gK(v;x, t)

vp−1w−p

sin( π
logq

(logv − logw + 2π ij))

dv

w′ − v
,

(5.4)

and gV and gA are defined in (4.8) and (4.14), respectively.

PROOF. In view of (5.2) and the fact that the second sum on the right-hand
side of this identity is equal to 0, there are two differences between (5.1) and (5.3).
The first is that the contour along which the Fredholm determinants are taken is
different; in the former it is CK and in the latter it is CK . The second is that the
contour of integration for v in (5.2) is different from that in (5.4); in the former
it is QR,d,δ;w and in the latter it is �K . Thus, it suffices (see, e.g., Remark A.3 of
[3]) to show that we can continuously and simultaneously deform QR,d,δ;w and
CK to �K and CK , respectively, without crossing any poles of any integrand on the
right-hand side of (5.4).

We will only do this in the case K = V ; the case K = A is entirely anal-
ogous. To that end, observe that the poles for v of the integrands in the first
sum on the right-hand side of (5.2) are at v ∈ {0,w′,−qκ} ∪ {qjw}j∈Z; of
these, the poles at v ∈ {0, qw,q2w, . . .} are contained inside the contour QR,d,δ;w
and the others are left outside. The poles for w of the same integrands are at
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w ∈ {−q,0, qβ1, qβ2, . . . , qβm}; of these, the poles at w ∈ {0,−q} are contained
inside the contour CV and the others are left outside.

Now recall that CV contains 0, −q , and �V , but leaves outside all qβj ; similarly,
�V contains 0 and qCV , but leaves outside −qκ . Thus, CV and CV contain and
leave outside the same poles of K(p); similarly, QR,d,δ;w and �V contain and leave
outside the same poles of the integrand on the right-hand side of (5.4). Therefore,
since CV and �V are star-shaped, it follows by moving along rays through the
origin that QR,d,δ;w and CV can be continuously and simultaneously deformed
to �V and CV , respectively, without crossing any poles of any integrand on the
right-hand side of (5.4). Thus, (5.3) follows from (5.1) and (5.2). �

Observe that (−qhT (x)+p;q)−1∞ from (5.3) tends to 0 when p is much less than
than −hT (x), and that it tends to 1 when p is much greater than than −hT (x).
Therefore, one might expect the left-hand side of (5.3) to approximate the quantity
EPK [1hT (x)≥−p] = P

K [hT (x) ≥ −p]. Hence, in order to analyze this probability,
one requires asymptotics of the determinant on the right-hand side of (5.3).

In the next section, we will clarify this heuristic and explain how to reduce
Theorem 1.6 and Theorem 1.7 to an asymptotic analysis of Fredholm determinants
of the type given on the right-hand side of (5.3).

5.2. Applications of Proposition 5.1. The following two results provide the
large T asymptotics for the determinant on the right-hand side of (5.3). Proposi-
tion 5.2 addresses the case K = A (ASEP), and Proposition 5.3 addresses the case
K = V (stochastic six-vertex model). In what follows, we recall that the integer
x appears in the definition of the function gK [of (4.8) and (4.14)] that is used to
define the kernel K(p) [of (5.4)].

PROPOSITION 5.2. Adopt the notation of Theorem 1.6 and Proposition 5.1:

1. Let η ∈ (θ,1). For each positive real number T , let x = x(T ) = �ηT  + 1
and pT = sfηT

1/3 − mηT . We have that

lim
T →∞ det

(
Id+A

(pT )
ζ

)
L2(CA) = FTW(s).

2. Assume that {η = ηT }T ∈Z>0 is a sequence of real numbers such that
limT →∞ T 1/3(ηT − θ) = d . For each positive real number T , let x = x(T ) =
�ηT  + 1 and pT = sfηT

1/3 − mηT . We have that

lim
T →∞ det

(
Id+A

(pT )
ζ

)
L2(CA) = FBBP;c(s).

3. Let η ∈ (−b, θ), and assume that bj = b for all indices j ∈ [1,m]. For each
positive real number T , let x = x(T ) = �ηT  + 1 and pT = sf ′

ηT
1/3 − m′

ηT . We
have that

lim
T →∞ det

(
Id+A

(pT )
ζ

)
L2(CA) = Gm(s).
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PROPOSITION 5.3. Recall the definitions of χ , κ , , and θ given in (1.5),
and also the definition of c = (c1, c2, . . . , cm) given in (1.7). Adopt the notation of
Proposition 5.1, and further define

mη = (
√

κ − √
η)2

κ − 1
; fη = (

√
κη − 1)2/3(κ − √

κη)2/3

(κ − 1)κ1/6η1/6(5.5)

and

m′
η = b − −1bη; f ′

η = χ1/2(
1 − θ−1η

)1/2
.(5.6)

1. Let η ∈ (θ, κ). For each positive integer T , let x = x(T ) = �ηT  + 1 and
pT = sfηT

1/3 − mηT . We have that

lim
T →∞ det

(
Id+V

(pT )
ζ

)
L2(CV ) = FTW(s).

2. Assume that {η = ηT }T ∈Z>0 is a sequence of real numbers such that
limT →∞ T 1/3(ηT − θ) = d . For each positive integer T , let x = x(T ) = �ηT  + 1
and pT = sfηT

1/3 − mηT . We have that

lim
T →∞ det

(
Id+V

(pT )
ζ

)
L2(CV ) = FBBP;c(s).

3. Let η ∈ (−1θ, θ), and assume that bj = b for all indices j ∈ [1,m]. For
each positive integer T , let x = x(T ) = �ηT  + 1 and pT = sf ′

ηT
1/3 − m′

ηT . We
have that

lim
T →∞ det

(
Id+V

(pT )
ζ

)
L2(CV ) = Gm(s).

Now let us explain how to deduce Theorem 1.6 and Theorem 1.7 from Proposi-
tion 5.2 and Proposition 5.3, respectively. Both of these reductions use the follow-
ing lemma, which is Lemma 4.1.39 of [14].

LEMMA 5.4 ([14], Lemma 4.1.39). Let g1, g2, . . . : R → [0,1] be decreasing
functions, such that limx→−∞ gj (x) = 1 and limx→∞ gj (x) = 0 for each posi-
tive integer j . Assume moreover that, for each ε > 0, the {gj (x)}j∈Z>0 converge
uniformly to 1x≤0 on x ∈R \ [−ε, ε], as j tends to ∞.

Suppose that F is a continuous probability distribution and that X1,X2, . . . are
random variables such that limn→∞E[gn(Xn − s)] = F(s) for each real number
s ∈ R. Then limn→∞P[Xn ≤ s] = F(s) for each s ∈ R.

Using Lemma 5.4, we can establish Theorem 1.6 from Proposition 5.2.
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PROOF OF THEOREM 1.6 ASSUMING PROPOSITION 5.2. Let gN(x) =
(−q−N1/3fηx;q)−1∞ , for each N > 0, and suppose that η ∈ (θ,1). From Proposi-
tion 5.1 and the first part of Proposition 5.2, it follows that

lim
T →∞E

[
gT

(
T −1/3f −1

η

(
mηT − ht

(�ηT  + 1
)) − s

)]
= lim

T →∞ det
(
Id+A

(pT )
ζ

)
= FTW(s).

(5.7)

Now observe that the sequence of functions {gN }N≥0 satisfies the conditions of
Lemma 5.4. Applying this lemma with XT = T −1/3f −1

η (mηT − ht (�ηT  + 1))

and using (5.7), we find that

lim
T →∞P

[
mηT − ht

(�ηT  + 1
) ≤ sfηT

1/3] = FTW(s).

From this, we deduce the first part of Theorem 1.6, since hT (�ηT  + 1) =
JT (�ηT ) = JT (ηT ).

The second and third parts follow similarly. �

We omit the verification of Theorem 1.7 from Proposition 5.3 since it follows
in a very similar way, after setting η = x/y and observing that the height func-
tion H(xT , yT ) from Theorem 1.7 satisfies H(xT , yT ) = hyT (xT − 1) in Propo-
sition 5.3.

In the remaining sections, we establish Proposition 5.2 and Proposition 5.3.

6. Tracy–Widom fluctuations. In this section we establish the first parts of
Proposition 5.2 and Proposition 5.3 through a saddle point analysis of the Fred-
holm determinant det(Id+K

(pT )
ζ )L2(CK), defined in Proposition 5.1. Similar anal-

yses have been performed in several previous papers; in particular, we will largely
follow the reasoning presented in Section 5 of [16], although we will be more
detailed here.

To implement this analysis we will first select the contours CK and �K from
Proposition 5.1 in a specific way, so as to ensure that the kernel K

(pT )
ζ (w,w′)

decays exponentially (in T ) for all w,w′ ∈ CK away from a certain point ψ ∈ CK ;
this choice of contours will be made in Section 6.1. Once the contours have been
fixed, we will be able to proceed with the asymptotic analysis through the Laplace
method; this will be done in Section 6.2.

6.1. Choosing the contours CK and �K . In this section we exhibit one choice
of contours CK and �K that will later lead to proofs of the first parts of Proposi-
tion 5.2 and Proposition 5.3. The choice of these contours will depend on whether
K = A or K = V . In Section 6.1.2, we consider the case K = V , and in Sec-
tion 6.1.3 we consider the case K = A. In both cases our definitions are based on
the same observation, which we now describe.
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6.1.1. An exponential form for the kernel K
(pT )
ζ . For notational convenience,

we set x(T ) = ηT + 1, as opposed to x(T ) = �ηT  + 1 (which is what was stated
in Proposition 5.2 and Proposition 5.3); this will not affect the asymptotics.

Now let us rewrite the kernel K(w,w′) = K(pT )(w,w′) given in (5.4) through
the identity

K
(
w,w′) = 1

2i logq

× ∑
j∈Z

∮
�V

exp(T (GK(w) − GK(v)))

sin(π(logq)−1(2π ij + logv − logw))

×
m∏

k=1

(q−1β−1
k v;q)∞

(q−1β−1
k w;q)∞

×
(

v

w

)sfη;KT 1/3
dv

v(w′ − v)
,

(6.1)

where GK(z) and fη;K depend on K . Explicitly, when K = A,

GA(z) = q

z + q
+ η log(z + q) + mη;A log z;

fη;A =
(

1 − η2

4

)2/3
,

(6.2)

and when K = V ,

GV (z) = η log
(
κ−1z + q

) − log(z + q) + mη;V log z;

fη;V = (
√

κη − 1)2/3(κ − √
κη)2/3

(κ − 1)κ1/6η1/6 .
(6.3)

Here,

mη;A =
(

1 − η

2

)2
; mη;V = (

√
κ − √

η)2

κ − 1
.(6.4)

Let us now locate the critical points of GK ; these will again depend on whether
K = A or K = V . We find that

G′
A(z) =

(
η + 1

2

)2 (z − ψA)2

z(z + q)2 with ψA = q(1 − η)

1 + η
;(6.5)

G′
V (z) = (

√
κη − 1)2

κ − 1

(z − ψV )2

z(z + qκ)(z + q)
with ψV = q(κ − √

κη)√
κη − 1

.(6.6)
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Thus, in both cases K ∈ {V,A}, ψK is a critical point of GK . Furthermore,
G′′

K(ψK) = 0 and

G′′′
A(ψK)

2
= (η + 1)5

16q3(1 − η)
=

(
fη;A
ψK

)3
;

G′′′
V (ψK)

2
= (

√
κη − 1)5

q3(κ − 1)3(κ − √
κη)

√
κη

=
(

fη;V
ψK

)3
.

Thus, for both K ∈ {V,A}, we have that G′′′
K(ψK) = (ψ−1

K fη;K)3, which implies
from a Taylor expansion that

GK(z) − GK(ψK)

= 1

3

(
fη;K(z − ψK)

ψK

)3
+ RK

(
fη;K(z − ψK)

ψK

)

= 1

3

(
fη;K(z − ψK)

ψK

)3
+O

(|z − ψK |4)
as |z − ψK | → 0.

(6.7)

where

RK

(
fη;K(z − ψK)

ψK

)

= GK(z) − GK(ψK) − 1

3

(
fη;K(z − ψK)

ψK

)3
.

(6.8)

We would now like to select contours CK and �K such that �(GK(w) −
GK(v)) < 0, for all w ∈ CK and v ∈ �K away from ψK , subject to the restric-
tions stated in Proposition 5.1. If we are able to do this, then the integrand on the
right-hand side of (6.1) will decay exponentially away from ψK . This will allow
us to localize the integral around the critical point ψK and use the estimate (6.7)
to simplify the asymptotics.

6.1.2. Choice of contours CV and �V . In this section we show how to
choose contours CV and �V satisfying the conditions of Proposition 5.1 such that
�(GV (w) − GV (v)) < 0 for w ∈ CV and v ∈ �V both away from ψV . In what
follows, we omit the subscript V to simplify notation.

Our choice for C and � will be similar to the contours selected in Section 5 of
[16], in which C and � are chosen to follow level lines of the equation �G(z) =
G(ψ).

That work required some properties of these level lines that are summarized in
the following proposition; see Section 5.1 of [16] and Figure 9.

PROPOSITION 6.1 ([16], Section 5.1). There exist three simple, closed curves,
L1 = L1;V , L2 = L2;V , and L3 = L3;V , that all pass through ψ and satisfy the
following properties:
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FIG. 9. Above and to the left, the three level lines L1, L2 and L3 are depicted as dashed curves;
the contours �V and CV are depicted as solid curves and are labeled. Above and to the right are the
two contours W0,∞ and V−1,∞.

1. Any z ∈ C satisfying �G(z) = G(ψ) lies on Lj for some j ∈ {1,2,3}.
2. Any complex number z ∈ L1 ∪L2 ∪L3 satisfies �G(z) = G(ψ).
3. The level lines L1, L2 and L3 are all star-shaped.
4. We have that L1 ∩ L2 = L2 ∩ L3 = L1 ∩ L3 = {ψ}. Furthermore, L1 \ {ψ}

is contained in the interior of L2, and L2 \ {ψ} is contained in the interior of L3.
5. The interior of L1 contains 0, but not −q; the interior of L2 contains 0 and

−q , but not −qκ ; and the interior of L3 contains 0, −q and −qκ .
6. The level line L1 meets the positive real axis (at ψ) at angles 5π/6 and

−5π/6; the level line L2 meets the positive real axis (at ψ) at angles π/2 and
−π/2; and the level line L3 meets the positive real axis (at ψ) at angles π/6
and −π/6.

7. For all z in the interior of L2 but strictly outside of L1, we have that
�(G(z) − G(ψ)) > 0.

8. For all z in the interior of L3 but strictly outside of L2, we have that
�(G(z) − G(ψ)) < 0.

Now let us explain how to select the contours C and �. They will each be the
union of two contours, a “small piecewise linear part” near ψ , and a “large curved
part” that closely follows the level line L2.

Let us be more specific. The contours given by the following definition will be
the linear parts of C and �.
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DEFINITION 6.2. For a real number r ∈ R and a positive real number ε > 0
(possibly infinite), let Wr,ε denote the piecewise linear curve in the complex plane
that connects r +εe−π i/3 to r to r +εeπ i/3. Similarly, let Vr,ε denote the piecewise
linear curve in the complex plane that connects r + εe−2π i/3 to r to r + ε2π i/3.

Examples of these contours are given in Figure 9. Now let us make the follow-
ing definitions; Definition 6.3 and Definition 6.4 define the piecewise linear and
curved parts of the contours C and �, respectively. Then Definition 6.5 defines the
contours C and �.

DEFINITION 6.3. Let C(1) = Wψ,ε and �(1) = V
ψ−ψf −1

η T −1/3,ε
, where ε is

chosen to be sufficiently small (independent of T ) so that the following four prop-
erties hold:

1. For all sufficiently large T , the two conjugate endpoints of C(1) are strictly
between the level lines L2 and L3, so that their distance from L2 and L3 is bounded
away from 0, independent of T .

2. For all sufficiently large T , the two conjugate endpoints of �(1) are strictly
between L1 and L2, so that their distance from L1 and L2 is bounded away from
0, independent of T .

3. We have that |R(ψ−1fη(z−ψ))| < |fη(z−ψ)/2ψ |3, for all z ∈ C(1) ∪�(1),
where R was given in (6.8).

4. We have that |v/w| ∈ (q1/2,1) for all v ∈ �(1) and w ∈ C(1).

Such a positive real number ε is guaranteed to exist by part 6 of Proposition 6.1
and the estimate (6.7).

DEFINITION 6.4. Let C(2) denote a positively oriented contour from the top
endpoint ψ + εeπ i/3 of C(1) to the bottom endpoint ψ + εe−π i/3 of C(1), and let
�(2) denote a positively oriented contour from the top endpoint ψ −ψf −1

η T −1/3 +
εe2π i/3 of �(1) to the bottom endpoint ψ + ψf −1

η T −1/3 + εe−2π i/3 of �(1), satis-
fying the following five properties:

1. The contour C(2) remains strictly between the level lines L2 and L3, so that
the distance from C(2) to L2 and L3 remains bounded away from 0, independent
of T .

2. The contour �(2) remains strictly between the level lines L1 and L2, so that
the distance from C(2) to L1 and L2 remains bounded away from 0, independent
of T .

3. The contour C(1) ∪ C(2) is star-shaped.
4. The contour �(1) ∪ �(2) is star-shaped and does not contain −qκ .
5. The contours C(2) and �(2) are both sufficiently close to L2 so that the interior

of �(1) ∪ �(2) contains the image of C(1) ∪ C(2) under multiplication by q1/2.
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Such contours C(2) and �(2) are guaranteed to exist by part 3 and part 5 of Propo-
sition 6.1.

DEFINITION 6.5. Set C = C(1) ∪ C(2) and � = �(1) ∪ �(2).

Examples of the contours C and � are depicted in Figure 9.

LEMMA 6.6. The contour � is positively oriented and star-shaped; it contains
0, but leaves outside −qκ and qβj for each j ∈ [1,m]. Furthermore, C is a pos-
itively oriented, star-shaped contour that is contained inside q−1�; that contains
0, −q and �; but that leaves outside qβj for each j ∈ [1,m].

We omit the proof of this lemma, since it can be quickly deduced from the
definitions of C and � and the fact that qβj > ψ ; the latter fact can be verified
using the definition (6.6) of ψK and the fact that η > θ (recall that θ was defined
by (1.5)).

In the next section, we choose the contours �K and CK in the case K = A.

6.1.3. Choice of contours CA and �A. Similar to in Section 6.1.2, our goal in
this section is to choose contours CA and �A satisfying the conditions of Proposi-
tion 5.1 such that �(GA(w)−GA(v)) < 0 for w ∈ CA and v ∈ �A both away from
ψA. In what follows, we omit the subscript A to simplify notation.

As in Section 6.1.2, we will take the contours � and C to follow level lines
of the equation �G(z) = G(ψ). Again, we require some properties of these level
lines that are summarized in the following proposition. Unlike Proposition 6.1, this
proposition does not seem to have appeared previously; we will establish it later,
in Section 6.1.4.

PROPOSITION 6.7. There exist three simple, closed curves, L1 = L1;A, L2 =
L2;A and L3 = L3;A, that all pass through ψ and satisfy properties 1, 3, 4, 6, 7
and 8 of Proposition 6.1, with properties 2 and 5, respectively, replaced by the
following:

2. Any complex number z ∈ L1 ∪ L2 ∪ L3, not equal to q , satisfies �G(z) =
G(ψ).

5. The interior of L1 contains 0, but not −q; the interior of L2 contains 0; and
the interior of L3 contains 0 and −q . Furthermore, −q lies on the curve L2.

Thus, these contours are very similar to those depicted in Figure 9, except that
now −q lies on L2 instead of in its interior (and −qκ does not exist).

Given Proposition 6.7, the selection of the contours C and � will proceed as
in Section 6.1.2. Again, these contours will each be the union of two contours, a
small piecewise linear part near ψ and a large curved part that closely follows the
level line L2.
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Specifically, define C(1) and �(1) as in Definition 6.3, where now ψV is replaced
with ψA, fη;V is replaced with fη;A, RV is replaced by RA, and Lj ;V is replaced
with Lj ;A for each j ∈ {1,2,3}. Similarly, define C(2) and �(2), under the same
replacements (and ignoring the requirement that �(1) ∪�(2) must avoid −qκ , since
the parameter κ does not exist for the ASEP). As in Section 6.1.2, the existence of
these contours is guaranteed by Proposition 6.7 and the estimate (6.7).

Then, as in Definition 6.5, define C = C(1) ∪ C(2) and � = �(1) ∪ �(2). The
following lemma states that C and � satisfy their required conditions; we omit its
proof.

LEMMA 6.8. The contour � is positively oriented and star-shaped; it contains
0, but leaves outside −q and qβj for each j ∈ [1,m]. Furthermore, C is a positively
oriented, star-shaped contour that is contained inside q−1�; that contains 0, −q

and �; but that leaves outside qβj for each j ∈ [1,m].
6.1.4. Proof of Proposition 6.7. The goal of this section is to establish Propo-

sition 6.7, whose proof will be similar to that of Proposition 6.1 given in Section 5
of [16]. To do this, we require the following two lemmas, which provide some pre-
liminary properties of the level lines of �GA(z) = GA(ψA). As in Section 6.1.3,
we assume that K = A throughout, and thus omit the subscript A from notation.

LEMMA 6.9. The set of z ∈ C for which �G(z) = G(ψ) is bounded.

PROOF. Observe that

�G(z) = �
(

q

z + q

)
+ η log |z + q| + mη log |z|

=
(

1 + η

2

)2
log |z| +O

(|z|−1)
,

(6.9)

where we have used the definition of mη = mη;A given in (6.4) to establish the
estimate above. This implies that |�G(z)| tends to ∞ as |z| tends to ∞, so the set
of z satisfying �G(z) = G(ψ) is bounded. �

LEMMA 6.10. Let � ⊂ C be any line through 0. There exist at most 6 complex
numbers z ∈ � such that �G(z) = G(ψ). Moreover, if � is the real axis, then there
exist only three such z; one is z = ψ , one is in the interval (−q,0), and one is in
the interval (−∞,−q).

PROOF. Let us establish the second statement first, so suppose that � is the
real axis. Then, from (6.5), we deduce that G′(z) > 0 for z > 0, and that G′(z) < 0
for z < 0. Due to the singularity of G(z) at z = −q , this implies that there are at
most three real numbers z for which �G(z) = G(ψ), and that at most one of them
is positive; the one positive value of z is z = ψ .
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Furthermore, observe that G(z) tends to ∞ when z tends to −∞ (see (6.9)) or
when z tends to −q from the right. Moreover, G(z) tends to −∞ when z tends
to 0 or when z tends to −q from the left. By the continuity of G on (−∞,−q) ∪
(−q,0), it follows that there exists one value of z = z1 ∈ (−q,0) and one value
of z = z2 ∈ (−∞,−q) such that �G(z1) = G(ψ) = �G(z2). This establishes the
lemma in the case when � = R.

Now assume that � �= R, and let z0 ∈ � be a nonzero complex number on �.
It suffices to show that there exist at most six real numbers ω ∈ R such that
�G(ωz0) = G(ψ). To that end, we differentiate �G(ωz0) with respect to ω to
find that

∂

∂ω

(�G(ωz0) − G(ψ)
)

= �
(

∂

∂ω

(
q

ωz0 + q
+ η log(ωz0 + q) + mη log(ωz0)

))

=
(

(η + 1)2

4ω|ω + qz−1
0 |4

)
�(

ω − z−1
0 ψ

)2(
ω + qz−1

0

)2
.

(6.10)

Fixing z0 ∈ �, the right-hand side of (6.10) is a rational function in ω whose nu-
merator is a polynomial of degree four; in particular, it can be zero for at most four
distinct values of ω.

Furthermore, (6.10) shows that the only real value of ω for which the derivative
of �(G(ωz0)−G(ψ)) is singular is ω = 0; this is due to the fact that ω+qz−1

0 �= 0,
which holds since � �= R. Thus, there are at most five real numbers ω, at which the
derivative ∂(�(G(ωz0) − G(ψ)))/∂ω can change sign. It follows that there exist
at most six real numbers ω for which �G(ωz0) = G(ψ). �

Now we can establish Proposition 6.7.

PROOF OF PROPOSITION 6.7. Let S = C \ {ψ,−q}. Then �G(z) and
�(G′(z)) are smooth on S \ {0}. Furthermore, from the explicit form (6.5) of
G′(z), we deduce that G′(z) is nonzero on S \ {0}, which implies that �G(z) has
no critical points on S \ {0}. Thus, the implicit function theorem shows that the
set of z ∈ S satisfying �G(z) = G(ψ) is a one-dimensional submanifold of S.
In particular, it is a disjoint union of connected components that are each either
homeomorphic to a line or a circle.

By Lemma 6.9, all of these connected components are bounded. Therefore, the
closure M (in C) of any such component M is either homeomorphic to a circle
or has endpoints −q and ψ and is homeomorphic to a compact interval. If M
is homeomorphic to a circle, then the maximum principle for harmonic functions
shows that one of the singularities 0 or −q of �G(z) must lie on or in the interior
of M [since �G(z) is harmonic for z ∈ C \ {−q,0}].
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FIG. 10. Shown above are the curves M1, M2, M′
2 and M3 from the proof of Proposition 6.7.

Now, due to (6.7), six (not necessarily distinct) connected components exit from
ψ , at angles π/6, π/2, 5π/6, −5π/6, −π/2 and −π/6. Furthermore, due to the
explicit form (6.2) of G, we deduce that two components also exit from −q at
angles π/2 and −π/2. Lemma 6.10 also shows that there exist z1 ∈ (−q,0) and
z2 ∈ (−∞,−q) such that �G(z1) = G(ψ) = �G(z2); this implies that one of the
components passes through z1 and one of the components passes through z2. By
the second part of Lemma 6.10, we also find that there are no other real numbers
z /∈ {z1, z2,ψ} such that �G(z) = G(ψ).

These facts imply that there are four disjoint connected components M1,M2,
M′

2,M3 ⊂ S (see Figure 10) such that the set of z ∈ S satisfying �G(z) = G(ψ)

is equal to the union M1 ∪M2 ∪M′
2 ∪M3; these components can be described as

follows. First, we have that ψ ∈ M1,M2,M′
2,M3. Furthermore, z1 ∈ M1, and

M1 is homeomorphic to a circle; similarly, z2 ∈ M3, and M3 is homeomorphic
to a circle.

Moreover, M2 and M′
2 are both homeomorphic to compact intervals; we also

have that −q ∈ M2 ∩M′
2, that M2 is in the upper half plane, and that M′

2 is in the
lower half plane. We can describe the intersections M1 ∩R= {z1,ψ}, M2 ∩R=
{−q,ψ} =M′

2 ∩R and M3 ∩R = {z2,ψ}.
Now set L1 = M1, L2 = M2 ∪ M′

2 and L3 = M3. Then, L1, L2 and L3 are
all simple, closed curves passing through ψ . Parts 1 and 2 of Proposition 6.7 are
satisfied by these curves since M1 ∪M2 ∪M′

2 ∪M3 ∪ {ψ} = L1 ∪L2 ∪L3.
Furthermore, only one positive real number and only one negative real number

lie on each of the closures M1, M2, M′
2 and M′

3. This implies that 0 is in the
interior of L1, L2 and L3.

Now property 3 holds from Lemma 6.10; indeed, this lemma implies that any
line � ⊂ C can only intersect L1 ∪ L2 ∪ L3 in at most six places. Since each Lj

is a closed curve containing 0 in its interior, � intersects each Lj at least, and thus
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only, twice; furthermore, 0 is between these two intersection points. This implies
that for each angle a ∈ R and each index j ∈ {1,2,3}, there is only one complex
number za ∈ Lj such that za/|za| = eia . This verifies property 3.

To see property 4, observe that Li and Lj can only intersect at critical points of
G(z), for any distinct i, j ∈ {1,2,3}. These critical points are ψ and −q . Further-
more, only L2 contains −q; this implies that Li ∩Lj = {ψ}, for any i, j ∈ {1,2,3}.
Now the containment follows from the fact that L1 intersects the negative real axis
only once at z1, that L2 intersects the negative real axis only once at −q , that L3

intersects the negative real axis only once at z2, and that z2 < −q < z1.
Property 5 follows from the fact that z2 < −q < z1, and property 6 follows from

the containment property 4 and the estimate (6.7).
Furthermore, observe that �G(z) can only change sign across some Lj ; thus,

property 7 and property 8 follow from the facts that limε→0+ �G(ε − q) = ∞ and
limε→0− �G(ε − q) = −∞, respectively. �

6.2. Proof of part 1 of Proposition 5.2 and Proposition 5.3. The goal of this
section is to establish the first parts of Proposition 5.2 and Proposition 5.3. Since
both proofs are similar, we will do them simultaneously. Thus, recall the notation
K ∈ {V,A} that corresponds to the stochastic six-vertex model when K = V and
the ASEP when K = A.

If accordance with the statements of Proposition 5.2 and Proposition 5.3, we
assume that η ∈ (θ,1) when K = A and that η ∈ (θ, κ) when K = V . In either
case, set x = x(T ) = �ηT  + 1, and let pT = fηsT

1/3 − mηT , where we recall
that mη = mη;K is defined through (6.4) and fη = fη;K are defined through (6.2)
and (6.3) in the cases K = A and K = V , respectively.

As in Section 6.1.1, we replace x(T ) with ηT + 1 for notational convenience;
this will not affect the asymptotics. We also simplify notation by omitting the
subscript K .

Now, in order to establish Proposition 5.2 and Proposition 5.3, we must asymp-
totically analyze the kernel K(pT ) given by (6.1). To that end, we will follow a
Laplace method similar to what was outlined in Section 5 of [16]. Specifically, in
Section 6.2.1, we will analyze the contribution to the integral on the right-hand side
of (6.1) when v is integrated in a small neighborhood of ψ ; this will yield a kernel
resembling the Airy kernel, which will lead to the FTW asymptotics. Then, in Sec-
tion 6.2.2, we will show that the contribution to the integral decays exponentially
when v is integrated outside a neighborhood of ψ ; we will then be able to ignore
this contribution, which will lead to the proofs of the first parts of Proposition 5.2
and Proposition 5.3.

6.2.1. Contribution near ψ . In this section we analyze the contribution to the
right-hand side of (6.1) when w ∈ C(1) and v ∈ �(1), that is, when both w and v



PHASE TRANSITIONS 661

are near ψ . To that end, define

K̃
(
w,w′) = 1

2i logq

∞∑
j=−∞

∫
�(1)

exp(T (G(w) − G(v)))

sin( π
logq

(2π ij + logv − logw))

×
m∏

k=1

(q−1β−1
k v;q)∞

(q−1β−1
k w;q)∞

(6.11)

×
(

v

w

)sfηT 1/3
dv

v(w′ − v)
,

for any w,w′ ∈ C. Observe that the integral in (6.11) is similar to the integral in
(6.1); the difference is that the former integral is along �(1), and the latter integral
is along �.

Now let us change variables, a procedure that will in effect “zoom into” the
region around ψ . Denote σ = ψf −1

η T −1/3, and set

w = ψ + σŵ; w′ = ψ + σŵ′;
v = ψ + σ v̂; K̂

(
ŵ, ŵ′) = σK̃

(
w,w′).(6.12)

Also, for any contour D, set D̂ = σ−1(D − ψ), where σ−1(D − ψ) denotes all
numbers of the form σ−1(z − ψ) with z ∈ D. In particular, from Definition 6.2
and Definition 6.3, we find that Ĉ(1) = W0,ε/σ and �̂(1) = V−1,ε/σ .

Our goal in this section is to establish the following lemma.

LEMMA 6.11. There exist constants c,C > 0 such that∣∣K̂(
ŵ, ŵ′)∣∣ ≤ C

1 + |ŵ′| exp
(−c|ŵ|3)

,(6.13)

for each ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ.
Furthermore, if we define the kernel Ls(ŵ, ŵ′) by

Ls

(
ŵ, ŵ′) = 1

2π i

∫
V−1,∞

1

(v̂ − ŵ)(ŵ′ − v̂)

× exp
(

ŵ3

3
− v̂3

3
+ s(v̂ − ŵ)

)
dv̂,

(6.14)

then we have that

lim
T →∞ K̂

(
ŵ, ŵ′) = Ls

(
ŵ, ŵ′),(6.15)

for each fixed ŵ, ŵ′ ∈ W0,∞.
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To establish this lemma, we first rewrite the kernel K̂ . By (6.12) and the fact
that σ = ψf −1

η T −1/3, we deduce that

K̂
(
ŵ, ŵ′) = 1

2π i

∫
�̂(1)

I
(
ŵ, ŵ′; v̂)

dv̂,(6.16)

where

I
(
ŵ, ŵ′; v̂) = 1

(1 + ψ−1σ v̂)(ŵ′ − v̂)

× exp
(

ŵ3 − v̂3

3
+ T

(
R

(
T −1/3ŵ

) − R
(
T −1/3v̂

)))

×
(

1 + ψ−1σ v̂

1 + ψ−1σŵ

)ψσ−1s m∏
k=1

(q−1β−1
k (ψ + σ v̂);q)∞

(q−1β−1
k (ψ + σŵ);q)∞

× πψ−1σ

logq

×
∞∑

j=−∞

1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
.

(6.17)

Lemma 6.11 will follow from the large T asymptotics of (and a uniform esti-
mate on) I , given by the following lemma.

LEMMA 6.12. There exist constants c,C > 0 such that∣∣I (
ŵ, ŵ′; v̂)∣∣ ≤ C

1 + |ŵ′| exp
(−c

(|ŵ|3 + |v̂|3))
,(6.18)

for all ŵ ∈W0,ε/σ , ŵ′ ∈ Ĉ, and v̂ ∈ V−1,ε/σ .
Furthermore,

lim
T →∞ I

(
ŵ, ŵ′; v̂) = 1

(v̂ − ŵ)(ŵ′ − v̂)
exp

(
ŵ3

3
− v̂3

3
+ s(ŵ − v̂)

)
,(6.19)

for each fixed ŵ, ŵ′, v̂ ∈ C.

PROOF. Let us first establish the uniform estimate (6.18). To that end, observe
that there exists a constant C1 > 0 such that the six inequalities∣∣∣∣ 1

1 + ψ−1σ v̂

∣∣∣∣ < C1; 1

v̂ − ŵ′ <
C1

1 + |ŵ′| ;∣∣∣∣ 1 + ψ−1σ v̂

1 + ψ−1σŵ

∣∣∣∣ψσ−1s

≤ C1 exp
(
C1

(|ŵ| + |v̂|));(6.20)



PHASE TRANSITIONS 663

πψ−1σ

| logq|
∑
j �=0

∣∣∣∣ 1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))

∣∣∣∣≤C1T
−1/3;

∣∣∣∣(πψ−1σ

logq

)
1

sin( π
logq

(log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))

∣∣∣∣ < C1;
∣∣∣∣∣

m∏
k=1

(q−1β−1
k (ψ + σ v̂);q)∞

(q−1β−1
k (ψ + σŵ);q)∞

∣∣∣∣∣ < C1 exp
(
C1

(|ŵ| + |v̂|)),
all hold for each ŵ ∈W0,ε/σ , ŵ′ ∈ Ĉ, and v̂ ∈V−1,ε/σ .

Indeed, the first inequality holds since v = ψ(1 + ψ−1σ v̂) is bounded away
from 0 for v ∈ �. The second inequality holds since |ŵ′ − v̂| ≥ 1 for ŵ′ ∈ Ĉ and
v̂ ∈ V−1,ε/σ . The third inequality holds since 1 + ψ−1σŵ is bounded away from
0 for ŵ ∈ Ĉ.

The fourth inequality holds since σ = O(T −1/3), since sin( π
logq

(2π ij + log(1+
ψ−1σ v̂) − log(1 + ψ−1σŵ))) increases exponentially in |j |, and since that
term is also bounded away from 0. The latter statement is true since j is
nonzero.

The fifth inequality follows from a Taylor expansion, the fact that v/w is always
bounded away from any integral power of q , and the fact that |v̂ − ŵ|−1 < C1 for
sufficiently large C1 > 0. The sixth inequality is true since its left-hand side grows
polynomially in |ŵ| and |v̂|, while its right-hand side grows exponentially in these
two quantities.

The estimates (6.20) address all terms on the right-hand side of (6.17), except
for the exponential term. To analyze this term, first recall |R(z)| < |z|3/8, for all
z ∈ Ĉ(1) ∪ �̂(1); this was stipulated as the third part of Definition 6.3. Thus, increas-
ing C1 if necessary, we find that∣∣∣∣exp

(
ŵ3

3
− v̂3

3
+ T

(
R

(
T −1/3ŵ

) − R
(
T −1/3v̂

)))∣∣∣∣
= exp

(
ŵ3

3
− v̂3

3
+ |v̂|3

8
+ |ŵ|3

8

)
< C1 exp

(
−1

5

(|ŵ|3 + |v̂|3))
.

(6.21)

In (6.21), the last estimate follows from the fact that ŵ3 − v̂3 < 0, for sufficiently
large ŵ ∈ Ĉ(1) and v̂ ∈ �̂(1), and that it decreases cubically in |ŵ| and |v̂| as they
tend to ∞.

Now the estimate (6.18) follows from the definition (6.17) of I , the six estimates
(6.20), and the exponential estimate (6.21).
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In order to establish the limiting statement (6.19), we observe that

lim
T →∞

1

1 + ψ−1σ v̂
= 1;

lim
T →∞

(
1 + ψ−1σ v̂

1 + ψ−1σŵ

)ψσ−1s

= exp
(
s(v̂ − ŵ)

);
lim

T →∞ exp
(

ŵ3 − v̂3

3
+ T

(
R

(
T −1/3ŵ

) − R
(
T −1/3v̂

)))

= exp
(

ŵ3

3
− v̂3

3

)
;(6.22)

lim
T →∞

πψ−1σ

logq

∑
j �=0

1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
= 0;

lim
T →∞

(
πψ−1σ

logq

)
1

sin( π
logq

(log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
= 1

v̂ − ŵ
;

and

lim
T →∞

m∏
k=1

(q−1β−1
k (ψ + σ v̂);q)∞

(q−1β−1
k (ψ + σŵ);q)∞

= 1,(6.23)

for each ŵ, ŵ′, v̂ ∈ C. Indeed, the first limit in (6.22) and the limit (6.23) follow
from the fact that σ tends to 0 as T tends to ∞ and, in the latter limit, the fact
that q−1β−1

k ψ is uniformly bounded away from any nonpositive power of q . The
second and fifth limits in (6.22) follow from a Taylor expansion and the fact that
σ tends to 0 as T tends to ∞. The fourth limit in (6.22) follows from the fourth
estimate in (6.20). Furthermore, the third limit in (6.22) follows from the fact that
|R(z)| = O(|z|4); see (6.7). Thus, (6.19) follows from multiplying the results of
(6.22) and (6.23). �

Now we can establish Lemma 6.11.

PROOF OF LEMMA 6.11. The uniform estimate (6.13) follows from integrat-
ing the estimate (6.18) over v̂ ∈ V−1,ε/σ . By (6.16), (6.18), (6.19) the dominated
convergence theorem, and the fact that �̂(1) = V−1,ε/σ , we deduce that

lim
T →∞ K̂

(
ŵ, ŵ′)

= lim
T →∞

1

2π i

∫
V−1,ε/σ

1

(v̂ − ŵ)(ŵ′ − v̂)
exp

(
ŵ3

3
− v̂3

3
+ s(v̂ − ŵ)

)
dv̂,

(6.24)
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for each fixed ŵ ∈W0,∞ and ŵ′ ∈W0,∞.
Hence, the limit (6.15) follows from (6.24), the fact that σ tends to 0 as T tends

to ∞, and the exponential decay in |v̂|3 of the integrand defining the kernel Ls

(see (6.14)). �

6.2.2. Exponential decay of K on C(2) and �(2). In this section we analyze
the integral (6.1) defining K(w,w′) when either w or v is not close to ψ , that is,
when either w ∈ C(2) or v ∈ �(2). In this case, will show that the integral decays
exponentially in T , which will allow us to ignore this contribution and apply the
results of the previous section.

We begin with the following lemma, which estimates the exponential term in
the integrand on the right-hand side of (6.1).

LEMMA 6.13. There exists some positive real number c1 > 0, independent
of T , such that

max
{

sup
w∈C

v∈�(2)

�(
G(w) − G(v)

)
, sup
w∈C(2)

v∈�

�(
G(w) − G(v)

)}
< −c1.

PROOF. From part 7 and part 8 of Proposition 6.1, we find that �(G(w) −
G(v)) < 0 for all w ∈ C and v ∈ �(2), and that �(G(w) − G(v)) < 0 for all w ∈
C(2) and v ∈ � (uniformly in T ). Thus, the existence of the claimed constant c1
follows from the compactness of the contours C and �. �

Now recall the definitions of σ = ψf −1
η T −1/3; ŵ, ŵ′, and v̂ from (6.12); and I

from (6.17). Define

K
(
ŵ, ŵ′) = σK

(
w,w′) = 1

2π i

∫
�̂

I
(
ŵ, ŵ′; v̂)

dv̂,(6.25)

for each ŵ, ŵ′ ∈ Ĉ. From the change of variables (6.12), we have that

det(Id+K)L2(C) = det(Id+K)L2(Ĉ).(6.26)

Lemma 6.13 implies the following result.

COROLLARY 6.14. There exist constants c,C > 0 such that∣∣K(
ŵ, ŵ′) − K̂

(
ŵ, ŵ′)∣∣ < C exp

(−c
(
T + |ŵ|3))

,(6.27)

for all ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ ∪W0,∞, and such that∣∣K(
ŵ, ŵ′)∣∣ < C exp

(−c
(
T + |ŵ|3))

,(6.28)

for all ŵ ∈ Ĉ(2) and ŵ′ ∈ Ĉ ∪W0,∞.
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PROOF. Let us begin with the proof of (6.27). Defining the constant c1 > 0 as
in Lemma 6.13, we have that∣∣K(

ŵ, ŵ′) − K̂
(
ŵ, ŵ′)∣∣

≤ σ

2

∫
�(2)

∞∑
j=−∞

∣∣∣∣∣ exp(T (G(w) − G(v)))

v(w′ − v) sin( π
logq

(2π ij + logv − logw))

(
v

w

)sfηT 1/3

×
m∏

k=1

(q−1β−1
k v;q)∞

(q−1β−1
k w;q)∞

∣∣∣∣∣dv

= O
(
e−c1T

)
.

(6.29)

The first estimate in (6.29) follows from the facts that K̂ = σK̃ , that K = σK

and that the definition for K given in (6.1) and the definition for K̃ given in (6.11)
coincide except that the former integral is over �, and the latter integral is over
�(1).

The second estimate in (6.29) follows from the following four facts. First, by
Lemma 6.13 �(G(w) − G(v)) < c1, for w ∈ C and v ∈ �(2); this gives rise to the
O(e−c1T ) in (6.29). Second, the denominator of the integrand is bounded away
from 0 (independently of T ) if ŵ ∈ Ĉ, ŵ′ ∈ Ĉ ∪W0,∞, and v̂ ∈ �̂(2). Third, the de-
nominator of the integrand increases exponentially in |j |; this verifies convergence
of the sum in the integrand. Fourth, the contour � is compact; this verifies that the
integral is bounded by a constant multiple of the supremum of its integrand.

Thus, the estimate (6.27) follows from (6.29) and the fact that |ŵ| = O(T 1/3)

for ŵ ∈ Ĉ.
Now let us establish the estimate (6.28). We have that

∣∣K(
ŵ, ŵ′)∣∣ ≤ σ

2

∞∑
j=−∞

∮
�

∣∣∣∣∣ exp(T (G(w) − G(v)))

v(w′ − v) sin( π
logq

(2π ij + logv − logw))

×
(

v

w

)sfηT 1/3 m∏
k=1

(q−1β−1
k v;q)∞

(q−1β−1
k w;q)∞

∣∣∣∣∣dv

= O
(
e−c1T

)
,

(6.30)

for all ŵ ∈ Ĉ(2). The first estimate is due to the definitions (6.1) and K = σK .
The second estimate in (6.30) follows from the estimate on �(G(w) − G(v)), for
w ∈ C(2) and v ∈ �, given by Lemma 6.13; the compactness of the contour �; and
the fact that the denominator of the integrand is bounded below by σ if w′ ∈ C
and v ∈ � (since the factor |w′ − v| is bounded below by σ ), and also increases
exponentially in |j |.

Thus, the estimate (6.28) follows from (6.30) and the fact that |ŵ| = O(T 1/3)

for ŵ ∈ Ĉ. �
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Now we can use Corollary A.5 of [3], Lemma 6.11, and Corollary 6.14 to es-
tablish the first parts of Proposition 5.2 and Proposition 5.3.

PROOF OF PART 1 OF PROPOSITION 5.2 AND PROPOSITION 5.3. The proof
will follow from an application of Corollary A.5 of [3] to the sequence of ker-
nels {K(ŵ, ŵ′)}, the sequence of contours {W0,∞ ∪ Ĉ(2)} (recall that these kernels
and contours depend on, and are hence indexed by, the time T ), and the kernel
Ls(ŵ, ŵ′) [given by (6.14)].

Let us verify that the conditions of that corollary hold. First, we require the ex-
istence of a dominating function K satisfying the three conditions of this corollary.
In fact, we may take K(z) to be of the form C exp(−c|z|3), for some sufficiently
small constant c > 0 and some sufficiently large constant C > 0; such a K satisfies
the second and third conditions of Corollary A.5 of [3]. That such a K satisfies
the first condition (for sufficiently small c and sufficiently large C) follows from
(6.13) and (6.27) in the case z ∈ Ĉ(1), and from (6.28) in the case z ∈ Ĉ(2).

Second, we require the limit condition, which states that for any ŵ, ŵ′ ∈
Ĉ∪W0,∞ we have that limN→∞ 1ŵ,ŵ′∈ĈK(ŵ, ŵ′) = 1ŵ,ŵ′∈W0,∞Ls(ŵ, ŵ′). When

ŵ ∈ Ĉ(1) and ŵ′ ∈ W0,∞, this follows from (6.15) and (6.27). When ŵ′ ∈ Ĉ(2) =
Ĉ(2)

T , this follows from the fact that both K(ŵ, ŵ′) and Ls(ŵ, ŵ′) tend to 0 as
T tends to ∞; this can be deduced from (6.13) and (6.14), respectively. When
ŵ ∈ Ĉ(2), this follows from (6.28) and the fact that Ls(ŵ, ŵ′) decays exponentially
in |ŵ|3. Furthermore, when ŵ ∈ W0,∞ \ Ĉ(1) = W0,∞ \W0,ε/σ , this again follows
from the fact that Ls(ŵ, ŵ′) exhibits exponential decay in |ŵ|3. This verifies the
limit condition.

Thus, Corollary A.5 of [3] applies, and we obtain that

lim
T →∞ det(Id+K)L2(C) = lim

T →∞ det(Id+K)L2(Ĉ) = det(Id+Ls)L2(W0,∞),

(6.31)

where we have used (6.26) to deduce the first identity.
Now it is known (see, e.g., Lemma 8.6 of [15]) that det(Id+Ls)W0,∞ = FTW(s).

Thus, we deduce from (6.31) that

lim
T →∞ det(Id+K)L2(C) = FTW(s).(6.32)

Applying (6.32) in the case K = A yields the first part of Proposition 5.2, and
applying (6.32) in the case K = V yields the first part of Proposition 5.3. �

7. Baik–Ben–Arous–Péché phase transitions. Our goal in this section is to
establish the second parts of Proposition 5.2 and Proposition 5.3, which examine
the case when η is “near” the phase transition θ . This will be similar to what was
explained in Section 6.2, but there will be two main differences. Both are based
on the fact that the critical point ψK (defined in (6.5) and (6.6) when K = A and
K = V , resp.) is now close to qβ when η is close to θ .
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The first difference is that we cannot take exactly the same contours as in Sec-
tion 6.1. Indeed, these contours will intersect the positive real line near ψ = qβ ,
meaning that they might pass through some pole qβj of the integrand in (6.1); this
is not permitted by the statement of Proposition 5.1. The second difference is that
the approximation (6.23), which was based on the assumption that 1 − q−1β−1ψ

is bounded away from 0 (independently of T ), no longer holds.
To remedy the first issue, we perturb the contours by translating them to the

left by some sufficiently large multiple of T −1/3, so that they avoid the poles qβj .
To remedy the second issue, we Taylor expand the left-hand side of (6.23), taking
into account the new location of ψ . Both of these will be done in Section 7.1.
Then, in Section 7.2, we will establish the second parts of Proposition 5.2 and
Proposition 5.3; this will be similar to what was done in Section 6.2.

7.1. Modifying the approximation and contours. The goal of this section is
twofold. First, we modify the contours CK and �K to ensure that they still satisfy
the requirements of Proposition 5.1. Second, we modify the approximation (6.23)
so that it holds when ψK is close to qβ . Let us begin with the contours; in what
follows, we recall the notation of Theorem 1.6 and Theorem 1.7, and that σ =
σK = ψKf −1

η;KT −1/3.
We would like to shift the contours CK and �K to the left so that they both

avoid each of the qβj . To that end, recall that |bj,T − b| = O(T −1/3) for each
j ∈ [1,m], and |η − θK | = O(T −1/3). The first estimate implies that |qβT,j −
qβ| = O(T −1/3), for each j [a more precise approximation for the error is given
by (7.1)], and the second estimate implies that |ψK − qβ| = O(T −1/3) [again, a
more precise approximation for the error is given by (7.2) and (7.3), in the cases
K = A and K = V , resp.].

Thus, there exists some finite positive real number E = EK (independent of T )
so that ψ − σE < min1≤j≤m qβj ; in fact, one can verify using (7.1), (7.2) and
(7.3) that it suffices to take E > maxj∈[1,k] cj , where c1, c2, . . . , cm are given by
(1.3) and (1.7) in the cases K = A and K = V , respectively. The quantity EK

will signify the translation of the contours CK and �K . Specifically, we make the
following definitions, which are analogous to Definition 6.3, Definition 6.4 and
Definition 6.5. In what follows, we recall the level lines L1;K , L2;K and L3;K
defined in Section 6.1.

DEFINITION 7.1. Let C(1)
K = Wψ−σE,ε and �

(1)
K = Vψ−σE−σ,ε , where ε is

chosen to be sufficiently small (independent of T ) such that the four properties
listed in Definition 6.3 all hold.

Such a positive real number ε is guaranteed to exist by part 6 of Proposition 6.1
(in the case K = V ), part 6 of Proposition 6.7 (in the case K = A), and the estimate
(6.7).

See Figure 11 for (rescaled) examples of these contours.
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FIG. 11. Shown above are the contours W−E,∞ and V−E−1,∞.

DEFINITION 7.2. Let C(2)
K denote a positively oriented contour from the top

endpoint ψ − σE + εeπ i/3 of C(1)
K to the bottom endpoint ψ − σE + εe−π i/3

of C(1), and let �
(2)
K denote a positively oriented contour from the top endpoint

ψ − σE − σ + εe2π i/3 of �
(1)
K to the bottom endpoint ψ − σE − σ + εe−2π i/3 of

�(1), satisfying the five properties listed in Definition 6.4 (if K = A, then ignore
that part of the fourth condition stating that �

(1)
K ∪ �

(2)
K does not contain −qκ).

Such contours C(2)
K and �

(2)
K are guaranteed to exist by part 3 and part 5 of

Proposition 6.1 (when K = V ) and by part 3 and part 5 of Proposition 6.7 (in the
case K = A).

DEFINITION 7.3. Set CK = C(1)
K ∪ C(2)

K and �K = �
(1)
K ∪ �

(2)
K .

The following lemma states that CK and �K satisfy their required properties,
for sufficiently large T . We omit its proof, but let us mention that the reason as to
why CK and �K avoid the poles {qβj }1≤j≤m is that they both intersect the positive
real axis to the left of any qβj (since ψ − σE < min1≤j≤m qβj ).

LEMMA 7.4. If K = A and T is sufficiently large, then �K is a positively
oriented, star-shaped curve that contains 0, but leaves outside −q and qβj for
each j ∈ [1,m]. Furthermore, CK is a positively oriented, star-shaped contour that
is contained inside q−1�K ; that contains 0, −q and �K ; but that leaves outside
qβj for each j ∈ [1,m].

If K = V and T is sufficiently large, then �K is a positively oriented, star-
shaped curve that contains 0, but leaves outside −qκ and qβj for each j ∈ [1,m].
Furthermore, CK is a positively oriented, star-shaped contour that is contained
inside q−1�K ; that contains 0, −q and �K ; but that leaves outside qβj for each
j ∈ [1,m].
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Having defined the contours CK and �K , we now turn to the approximation
(6.23).

Observe that the left-hand side of (6.23) is a product of terms involving qβj

and ψ . When η is close to θ and all of the bj are close to b, the qβj , ψA and ψV

are all close to qβ; in particular, this implies that the numerator and denominator
of (6.23) both tend to 0 as T tends to ∞. Thus, to analyze (6.23) further, we must
obtain a more refined estimate on the error in approximating these quantities by qβ .

Let us begin with qβj . To that end, we recall from the second part of Theo-
rem 1.6 (or Theorem 1.7) that the {bj,T }T ∈Z>0 satisfy limT →∞ T 1/3(bj,T − b) =
dj . Thus, since βj,T = bj,T /(1 − bj,T ), Taylor expanding yields

qβT,j = qbT,j

1 − bT,j

= q

(
b + djT

−1/3 + o(T −1/3)

1 − b − djT −1/3 + o(T −1/3)

)

= qβ

(
1 + djT

−1/3

b(1 − b)

)
+ o

(
T −1/3)

.

(7.1)

Next we analyze the error in approximating ψK . This depends on whether K =
A or K = V .

First, assume that K = A. Recall that ψA is defined in (6.5) and that {ηT }T ∈Z>0

satisfies limT →∞ T 1/3(ηT − θA) = d . Thus, Taylor expanding ψA and using the
fact that θA = 1 − 2b, we find that

ψA = q

(
1 − θA − dT −1/3 + o(T −1/3)

1 + θA + dT −1/3 + o(T −1/3)

)

= qβ

(
1 − dT −1/3

2b(1 − b)

)
+ o

(
T −1/3)

.

(7.2)

Next, assume that K = V . Recalling that ψV is defined in (6.6), Taylor expand-
ing ψV and recalling the facts that  = b + κ(1 − b) and θV = κ−12 (see (1.5)),
we find that

ψV = q(κ − √
κη)√

κη − 1

= q(κ − (1 + dT −1/3

θV
+ o(T −1/3))1/2√κθV )

(1 + dT −1/3

θV
+ o(T −1/3))1/2

√
κθV − 1

= qβ

(
1 − d(b + κ(1 − b))T −1/3

2θV (κ − 1)b(1 − b)
+ o

(
T −1/3))

= qβ

(
1 − dκT −1/3

2(κ − 1)b(1 − b)

)
+ o

(
T −1/3)

.

(7.3)
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Using (7.1), (7.2) and (7.3), we can establish the following lemma.

LEMMA 7.5. Recall that the cj = cj ;K were defined in the second part of
Theorem 1.6 (in the case K = A) and in the second part of Theorem 1.7 (in the
case K = V ). For any fixed ŵ, v̂ ∈ C (with ŵ not equal to any −cj ), we have that

lim
T →∞

m∏
k=1

(q−1β−1
k (ψK + σ v̂);q)∞

(q−1β−1
k (ψK + σŵ);q)∞

=
m∏

j=1

v̂ + cj

ŵ + cj

.

PROOF. Observe that

m∏
k=1

(q−1β−1
k (ψ + σ v̂);q)∞

(q−1β−1
k (ψ + σŵ);q)∞

=
m∏

k=1

1 − q−1β−1
k (ψ + σ v̂)

1 − q−1β−1
k (ψ + σŵ)

m∏
k=1

(β−1
k (ψ + σ v̂);q)∞

(β−1
k (ψ + σŵ);q)∞

.

(7.4)

Using the fact that limT →∞ βk = β and limT →∞(ψ + σ v̂) = qβ = limT →∞(ψ +
σŵ), we deduce that limT →∞(β−1

k (ψ + σ v̂);q)∞ = (q;q)∞ = limT →∞(β−1
k ×

(ψ + σŵ);q)∞.
Thus, (7.4) implies that

lim
T →∞

m∏
k=1

(q−1β−1
k (ψ + σ v̂);q)∞

(q−1β−1
k (ψ + σŵ);q)∞

= lim
T →∞

m∏
k=1

1 − q−1β−1
k (ψ + σ v̂)

1 − q−1β−1
k (ψ + σ v̂)

= lim
T →∞

m∏
k=1

ψq−1β−1
k v̂ + T 1/3fη;K(q−1β−1

k ψ − 1)

ψq−1β−1
k ŵ + T 1/3fη;K(q−1β−1

k ψ − 1)
,

(7.5)

where in the second identity we used the fact that σ = ψf −1
η T −1/3. Thus, it

suffices to analyze the limit on the right-hand side of (7.5); this will depend on
whether K = A or K = V .

In the case K = A, we apply (7.1) and (7.2) to find that

lim
T →∞

m∏
k=1

ψq−1β−1
k v̂ + T 1/3fη;A(q−1β−1

k ψ − 1)

ψq−1β−1
k ŵ + T 1/3fη;A(q−1β−1

k ψ − 1)

=
m∏

j=1

v̂ − fη;Adj

b(1−b)
− fη;Ad

2b(1−b)

ŵ − fη;Adj

b(1−b)
− fη;Ad

2b(1−b)

.

(7.6)
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In the case K = V , we apply (7.1) and (7.3) to find that

lim
T →∞

m∏
k=1

ψq−1β−1
k v̂ + T 1/3fη;V (q−1β−1

k ψ − 1)

ψq−1β−1
k ŵ + T 1/3fη;V (q−1β−1

k ψ − 1)

=
m∏

j=1

v̂ − fη;V dj

b(1−b)
− fη;V dκ

2(κ−1)b(1−b)

ŵ − fη;V dj

b(1−b)
− fη;V dκ

2(κ−1)b(1−b)

.

(7.7)

Now, in the case K = A, the lemma follows from (7.5), (7.6) and the definition
of cj ;A (given in the statement of Theorem 1.6). Similarly, in the case K = V , the
lemma follows from (7.5), (7.7) and the definition of cj ;V (given in the statement
of Theorem 1.7). �

7.2. Recovery of the Baik–Ben–Arous–Péché asymptotics. In what follows,
we omit the subscript K from our notation.

The goal of this section is to establish the second parts of Theorem 1.6 and
Theorem 1.7. This will be similar to what was done in Section 6.2. In particular,
we first analyze the kernel K (defined in (6.1)) when w ∈ C(1) and v ∈ �(1), that is,
when both w and v are near ψ . Then we analyze the kernel when either w ∈ C(2)

or v ∈ C(2).
Let us perform the former task first. To that end, recall the change of variables

(6.12), which also defined the kernel K̂ . Furthermore, recall that, for any contour
D ⊂ C, we set D̂ = σ−1(D − ψ). In particular, from Definition 7.1, we find that
C(1) = W−E,ε/σ and �(1) = V−E−1,ε/σ ; see Figure 11 for an example of these
contours in the case m = 3.

Now we would like to establish the following lemma about the asymptotics of
the kernel K̂ .

LEMMA 7.6. There exist constants c,C > 0 such that∣∣K̂(
ŵ, ŵ′)∣∣ ≤ C

1 + |ŵ′| exp
(
cŵ3)

,(7.8)

for each ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ.
Furthermore, if we define the kernel Ls;c(ŵ, ŵ′) by

Ls;c
(
ŵ, ŵ′) = 1

2π i

∫
V−1,∞

1

(v̂ − ŵ)(ŵ′ − v̂)

× exp
(

ŵ3

3
− v̂3

3
+ s(ŵ − v̂)

)

×
m∏

j=1

v̂ + cj

ŵ + cj

dv̂,

(7.9)
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then we have that

lim
T →∞ K̂

(
ŵ, ŵ′) = Ls

(
ŵ, ŵ′),(7.10)

for each fixed ŵ ∈ W−E,∞ and ŵ′ ∈ W−E,∞.

To establish this lemma, we recall from (6.16) that K̂ can be written as an inte-
gral of the function I defined by (6.17). Lemma 7.6 will follow from the large T

asymptotics of (and uniform estimate on) I given by the following lemma.

LEMMA 7.7. There exist constants c,C > 0 such that∣∣I (
ŵ, ŵ′; v̂)∣∣ ≤ C

1 + |ŵ′| exp
(
c
(
ŵ3 − v̂3))

(7.11)

for all ŵ ∈ W−E,ε/σ , ŵ′ ∈ Ĉ, and v̂ ∈ V−E−1,ε/σ .
Furthermore,

lim
T →∞ I

(
ŵ, ŵ′; v̂)

= 1

(v̂ − ŵ)(ŵ′ − v̂)
exp

(
ŵ3

3
− v̂3

3
+ s(ŵ − v̂)

) m∏
j=1

v̂ + cj

ŵ + cj

,
(7.12)

for each fixed ŵ, ŵ′, v̂ ∈ C.

PROOF. The derivation of (7.11) is very similar to that of (6.18) and is thus
omitted.

Now let us establish the limiting statement (7.12); this will also be similar to
the proof of (6.19). Indeed, the five limit identities listed in (6.22) still hold for all
ŵ, v̂ ∈ C. However, (6.23) no longer holds and must be replaced by Lemma 7.5.
Multiplying the five limits in (6.22) and the statement of Lemma 7.5 yields (7.12).

�

Now we can establish Lemma 7.6.

PROOF OF LEMMA 7.6. The uniform estimate (7.8) follows from integrating
the estimate (7.11) over v̂ ∈V−E−1,ε/σ . Then, the limit (7.10) follows from (7.12),
(7.11), the fact that �̂(1) is contained in and converges to V−E−1,∞ as T tends to
∞, the exponential decay of the kernel Ls;c(ŵ, ŵ′) in |ŵ|3, and the dominated
convergence theorem. �

Next we analyze the integral (6.1) defining K(w,w′) when either w or v is not
close to ψ , that is, when either w ∈ C(2) or v ∈ �(2).

Recalling the rescaled kernel K defined in (6.25), we obtain the following result,
which is the analog of Corollary 6.14.
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COROLLARY 7.8. There exist constants c,C > 0 such that∣∣K(
ŵ, ŵ′) − K̂

(
ŵ, ŵ′)∣∣ < C exp

(
c|ŵ|3 − cT

)
,(7.13)

for all ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ ∪W−E,∞, and such that∣∣K(
ŵ, ŵ′)∣∣ < C exp

(
c|ŵ|3 − cT

)
,(7.14)

for all ŵ ∈ Ĉ(2) and ŵ′ ∈ Ĉ ∪W−E,∞.

The proof of this corollary is very similar to that of Corollary 6.14 and is thus
omitted.

Now we can use Corollary A.5 of [3], Lemma 7.6, and Corollary 7.8 to establish
the second parts of Proposition 5.2 and Proposition 5.3.

PROOF OF PART 2 OF PROPOSITION 5.2 AND PROPOSITION 5.3. This will be
similar to the proof of the first parts of Proposition 5.2 and Proposition 5.3, given
in Section 6.2.2. In particular, it will follow from an application of Corollary A.5
of [3] to the sequence of kernels {K(ŵ, ŵ′)}, the sequence of contours {W−E,∞ ∪
Ĉ(2)} and the kernel Ls;c(ŵ, ŵ′) [given by (6.14)].

The verification of the conditions of that corollary in this setting is similar to the
verification provided in the proof of the first parts of Proposition 5.2 and Propo-
sition 5.3 in Section 6.2.2. Indeed, the existence of the dominating function K
(satisfying the three conditions of Corollary A.5 of [3]) follows from the uniform
estimates (7.8), (7.13) and (7.14).

Furthermore, the convergence limN→∞ 1ŵ,ŵ′∈ĈK(ŵ, ŵ′) = 1ŵ,ŵ′∈W−E,∞ ×
Ls;c(ŵ, ŵ′), for each ŵ, ŵ′ ∈ Ĉ ∪ W−E,∞ follows from (6.15) and (6.27) (when
ŵ ∈ Ĉ(1)), and from (6.28) and the exponential decay of Ls;c(ŵ, ŵ′) in |ŵ|3 (when
ŵ ∈ Ĉ(2) or ŵ ∈ W−E,∞ \ Ĉ(1)).

Now applying Corollary A.5 of [3] yields that

lim
T →∞ det(Id+K)L2(C) = lim

T →∞ det(Id+K)L2(Ĉ)

= det(Id+Ls;c)L2(W−E,∞),
(7.15)

where we have used (6.26) to deduce the first identity.
Now it is known (see, e.g., Lemma 8.7 of [15]) that det(Id+Ls;c)W−E,∞ =

FBBP;c(s). Thus, we deduce from (7.15) that

lim
T →∞ det(Id+K)L2(C) = FBBP;c(s).(7.16)

Applying (7.16) in the case K = A yields the second part of Proposition 5.2 and
applying (7.16) in the case K = V yields the second part of Proposition 5.3. �
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8. Gaussian fluctuations. We now turn to the third parts of Proposition 5.2
and Proposition 5.3, whose proofs will be partly similar to those of the first two
parts discussed previously. In Section 8.1, we select contours CK and �K that
will be suitable for saddle point analysis. In Section 8.2, we use these contours
to implement this analysis, which will conclude the proofs of Proposition 5.2 and
Proposition 5.3.

8.1. The contours CK and �K for T 1/2 fluctuations. Observe that mη;K and
fη;K from the first and second parts of Proposition 5.2 and Proposition 5.3 have
now changed to m′

η;K and f ′
η;K , respectively. Thus, the function GK(z) (defined

by (6.2) and (6.3) in the cases K = A and K = V , resp.) changes, so we will
change the contours CK and �K as well.

The goal of this section is to explain how to do this, which we will discuss
further in Section 8.1.2. However, before describing these contours, let us see how
the identities in Section 6.1.1 change with our new m′

η;K and f ′
η;K .

8.1.1. A new exponential form for the kernel K
(pT )
ζ . As in Section 6.1, we

rewrite the kernel K(w,w′) = K(pT )(w,w′) given in (5.4) through the identity

K
(
w,w′) = 1

2i logq

× ∑
j∈Z

∮
�V

exp(T (GK(w) − GK(v)))

sin(π(logq)−1(2π ij + logv − logw))

× (q−1β−1v;q)m∞
(q−1β−1w;q)m∞

×
(

v

w

)sf ′
η;KT 1/2

dv

v(w′ − v)
,

(8.1)

where we have used the fact that all bj are equal to b in the third parts of Proposi-
tion 5.2 and Proposition 5.3. In (8.1), GK(z) and f ′

η;K depend on K . Explicitly,

GA(z) = q

z + q
+ η log(z + q) + m′

η;A log z;
(8.2)

f ′
η;A = χ1/2(θ − η)1/2;

GV (z) = η log
(
κ−1z + q

) − log(z + q) + m′
η;V log z;

(8.3)
f ′

η;V = χ1/2(
1 − θ−1η

)1/2
.
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In (8.2) and (8.3),

m′
η;A = b(1 − b) − bη = χ − bη;

m′
η;V = b − bη

b + κ(1 − b)
= b − b−1η,

(8.4)

where we recall the definition of  from (1.5). As in Section 6.1.1, we require the
critical points of GK . We find that

G′
A(z) =

(
(1 − b)(b + η)

z(z + q)2

)
(z − ψ)(z − ϑA);(8.5)

G′
V (z) = 1 − b

z(z + q)(z + qκ)

(
−1κη − 1

)
(z − ψ)(z − ϑV ),(8.6)

where ψ = ψA = ψV = qβ and

ϑA = q

(
1 − b − η

b + η

)
; ϑV = qκ

(
 − η

κη − 

)
.(8.7)

In both cases, ψ = qβ is a critical point of GK . Furthermore, observe that

G′′
A(ψ) = (1 − b)3(2b − 1 + η)

q2b
= −f ′2

η;A
ψ2 ;

G′′
V (ψ) = (1 − b)3

q2b2

(
κη − 2) = −f ′2

η;V
ψ2 .

Thus, G′′
K(ψ) = −ψ−2f 2

η;K for K ∈ {V,A}, which implies by a Taylor expansion
that

GK(z) − GK(ψ)

= −1

2

(
fη;K(z − ψ)

ψ

)2
+ RK(z)

= −1

2

(
fη;K(z − ψ)

ψ

)2
+O

(|z − ψ |3)
as |z − ψ | → 0.

(8.8)

Here RK(z) = GK(z) − GK(ψ) + (ψ−1fη;K(z − ψ))2/2.

8.1.2. New choice of contours CK and �K . The goal of this section is to ex-
hibit contours CK and �K satisfying the conditions of Proposition 5.1 and such
that �(GK(w) − GK(v)) < 0 for w ∈ CK and v ∈ �K both away from ψ . When
K = A, we will only be able to do this when η ≥ −b; when K = V , we will only
be able to do this when η ≥ κ−1 = −1θ .

Throughout, we denote

αA = −b; αV = κ−1b + 1 − b = κ−1,(8.9)
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FIG. 12. Above and to the left, the three level lines L1, L2 and L3 are depicted as dashed curves;
the contours C and � are depicted as solid curves and are labeled. Shown above and to the right are
the contours U−1,∞ and X−2,∞.

as the values of η at which ϑA and ϑV are infinite. According to our restriction
on η, we have that η > αK ; this implies that ϑK > qβ , for each K ∈ {V,A}. In
what follows, we will simplify notation by omitting the subscript K .

As in Section 6.1, we will take C and � to follow level lines of the equation
�G(z) = G(ψ). However, since the function G is different from the one used in
Section 6.1, we must perform a new analysis of these level lines; see Figure 12.

Specifically, we require the following proposition, which we will establish in
Section 8.1.3.

PROPOSITION 8.1. Assume that η > α. Then there exist three simple, closed
curves, L1 = L1;K , L2 = L2;K and L3 = L3;K satisfying properties 1, 2, 3, 5, 7
and 8 of Proposition 6.1 (in the case K = V ) and Proposition 6.7 (in the case
K = A), with properties 4 and 6, respectively, replaced by the following:

4. We have that L1 ∩ L2 = {ψ}, that L2 and L3 are disjoint and that L1 and
L3 are disjoint. Furthermore, L1 \ {ψ} is contained in the interior of L2, which is
contained in the interior of L3.

6. The level line L1 meets the positive real axis (at ψ) at angles 3π/4 and
−3π/4, and the level line L2 meets the positive real axis (at ψ) at angles π/4 and
−π/4.

REMARK 8.2. When η = α or η is slightly smaller than α, the level line L3
from Proposition 8.1 does not exist; this alone does not pose an issue for asymp-
totic analysis, since we will chose the contours C and � to be very close to L2,
instead of L3 (see Figure 12). More troublesome for us is that the contour L2 does
not remain star-shaped, and also that it can contain −qκ (in the case K = V ), for
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η sufficiently small. Then we cannot choose C and � to closely follow L2 without
violating the restrictions imposed by Proposition 5.1.

Assuming this proposition, let us define the contours C and �. As in Section 6.1,
they will each be the union of two contours, a small piecewise linear part near ψ

and a large curved part that closely follows the level line L2.
Let us be more specific. In view of the fact that the level lines Lj now pass

through qβ at angles π/4, 3π/4, −3π/4 and −π/4, we must select different lin-
ear contours from those given by Definition 6.2. Instead, we use the following
contours; see Figure 12.

DEFINITION 8.3. For a real number r ∈ R and a positive real number ε >

0, let Ur,ε denote the piecewise linear curve in the complex plane that connects
r + εe−π i/8 to r to r + εeπ i/8. Similarly, let Xr,ε denote the linear curve in the
complex plane that connects r − iε to r + iε.

Now let us make the following definitions: Definition 6.3 and Definition 6.4
define the piecewise linear and curved parts of the contours C and �, respectively.
Then Definition 6.5 defines the contours C and �.

DEFINITION 8.4. Let C(1) = U
ψ−ψf ′−1

η T −1/2,ε
and �(1) = X

ψ−2ψf ′−1
η T −1/2,ε

,
where ε is chosen to be sufficiently small (independent of T ) so that the first, sec-
ond and fourth properties listed in Definition 6.3 all hold for sufficiently large T .
The third is replaced by the following:

• We have that |R(ψ−1fη(z − ψ))| < |fη(z − ψ)/3ψ |2, for all z ∈ C(1) ∪ �(1),
where we recall the definition of R from (8.8).

Such a positive real number ε is guaranteed to exist by part 6 of Proposition 8.1,
and also by the estimate (8.8).

DEFINITION 8.5. Let C(2) denote a positively oriented contour starting from
the top endpoint ψ − ψf ′−1

η T −1/2 + εeπ i/8 of C(1) to the bottom endpoint
ψ − ψf ′−1

η T −1/2 + εe−π i/8 of C(1), and let �(2) denote a positively oriented con-
tour starting from the top endpoint ψ − 2ψf ′−1

η T −1/2 + iε of �(1) to the bottom
endpoint ψ − 2ψf ′−1

η T −1/2 − iε of �(1), satisfying the five properties listed in
Definition 6.4.

Such contours C(2) and �(2) are guaranteed to exist by part 3 and part 5 of
Proposition 8.1.

DEFINITION 8.6. Set C = C(1) ∪ C(2) and � = �(1) ∪ �(2).
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Examples of the contours C and � are depicted in Figure 12. It can be quickly
verified that Lemma 7.4 again holds with the contours C and � defined above,
meaning that we can use them for the proof of Proposition 5.2 and Proposition 5.3
in Section 8.2.

8.1.3. Proof of Proposition 8.1. The goal of this section is to establish Propo-
sition 8.1. The proof of this proposition will be similar to that of Proposition 6.7.

To that end, we have the following two lemmas, which are the analogs of
Lemma 6.9 and Lemma 6.10. In what follows, we omit the subscript K from no-
tation.

LEMMA 8.7. For all η ∈ (α, θ), we have that limz→∞ |�G(z)| = ∞. In par-
ticular, the set of z ∈C for which �G(z) = G(ψ) is bounded.

PROOF. To establish this lemma, one Taylor expands �GK(z) in each case
K = V and K = A. Here, we assume that K = V , for the case K = A is entirely
analogous. Then we obtain

�G(z) = η log |z + qκ| − log |z + q| + m′
η log |z|

= (
η + m′

η − 1
)

log |z| +O
(|z|−1)

.

Thus, |�G(z)| tends to ∞ as |z| tends to ∞; this implies the first, and hence also
the second, statement of the lemma. �

LEMMA 8.8. Let � ⊂ C be any line through 0. There exist at most 6 complex
numbers z ∈ � such that �G(z) = G(ψ).

Moreover, if K = A and � is the real axis, then there exist only four such z; one
is z = ψ , one is in (ϑ,∞), one is in (−q,0) and one is in (−∞,−q).

Similarly, if K = V and � is the real axis, then there exist only five such z; one
is z = ψ , one is in (ϑ,∞), one is in (−q,0), one is in (−qκ,−q) and one is in
(−∞,−qκ).

The proof of this lemma is very similar to that of Lemma 8.8 and is thus omitted.
Now we can establish Proposition 8.1.

PROOF OF PROPOSITION 8.1. We only consider the case K = V , since the
proof is entirely analogous in the case K = A (see also the proof of Proposition 6.7
in Section 6.1.4 for the types of modifications necessary for the case K = A). In
what follows, we omit the subscript V to simplify notation.

Let S = C\{ψ}. Then �G(z) and �(G′(z)) are smooth on S \{−qκ,−q,0, ϑ}.
Furthermore, from (8.5), we deduce that G′(z) is nonzero on S \ {−qκ,−q,0, ϑ},
which implies that �G(z) has no critical points on S \ {−qκ,−q,0, ϑ}. Thus, the
implicit function theorem shows that the set of z ∈ S satisfying �G(z) = G(ψ) is



680 A. AGGARWAL AND A. BORODIN

a one-dimensional sub-manifold of S; here, we used the fact that �G(z) �= �G(ψ)

for any z ∈ {−qκ,−q,0, ϑ} [where the fact that G(ϑ) �= G(ψ) follows from the
fact that G′(z) < 0 for all z ∈ (ψ,ϑ)]. In particular, the set of such z is a union of
connected components, each of which is homeomorphic to a line or circle.

By Lemma 8.7, all of these connected components are bounded. Therefore, the
closure M (in C) of any such component M is homeomorphic to a circle. In par-
ticular, by the maximum principle for harmonic functions, one of the singularities
−qκ , −q , or 0 of �G(z) must lie on or in the interior of any closure M [since
�G(z) harmonic for z ∈ C \ {−qκ,−q,0}].

Now, due to (8.8), four (not necessarily distinct) components exit from ψ , at
angles π/4, 3π/4, −3π/4 and −π/4. Lemma 8.8 also shows that there exist z1 ∈
(ϑ,∞), z2 ∈ (−q,0), z3 ∈ (−qκ,−q), and z4 ∈ (−∞,−qκ) such that �G(z1) =
�G(z2) = �G(z3) = �G(z4) = G(ψ); this implies that one of the components
passes through each of the points z1, z2, z3 and z4. The second part of Lemma 8.8
states that there are no other real numbers z /∈ {z1, z2, z3, z4,ψ} such that �G(z) =
G(ψ).

These facts imply that there are three one-dimensional components M1,M2,
M3 ⊂ S such that the set of z ∈ S satisfying �G(z) = G(ψ) is equal to the union
M1 ∪M2 ∪M3; these components can be described as follows. First, we have that
ψ ∈ M1,M2 and z1 ∈ M3. Furthermore, z2 ∈ M1, z3 ∈ M2 and z4 ∈ M3. We
can describe the intersections M1 ∩ R = {z2,ψ}, M2 ∩ R = {z3,ψ}, and M3 ∩
R= {z1, z4}.

Now set L1 = M1, L2 = M2, and L3 = M3. Then L1, L2 and L3 are all
simple, closed curves. Parts 1 and 2 of Proposition 8.1 are satisfied by these curves
since M1 ∪M2 ∪M3 ∪ {ψ} = L1 ∪L2 ∪L3.

Furthermore, only one positive real number and only one negative real number
lie on each of the curves M1, M2 and M3. This implies that 0 is in the interior of
L1, L2 and L3.

Now property 3 holds from Lemma 8.8; indeed, this lemma implies that any
line � ⊂ C can only intersect L1 ∪ L2 ∪ L3 in at most six places. Since each Lj

is a closed curve containing 0 in its interior, � intersects each Lj at least, and thus
only, twice; furthermore, 0 is between these two intersection points. This implies
that for each angle a ∈ R and each index j ∈ {1,2,3}, there is only one complex
number za ∈ Lj such that za/|za| = eia . This verifies property 3.

To see property 4, observe that Li and Lj can only intersect at critical points
of G(z), for any distinct i, j ∈ {1,2,3}. These critical points are ψ , ϑ , 0, −q and
−qκ , but none of the Lj pass through ϑ , 0, −q , or −qκ . Now the containment
follows from the fact that L1 intersects the negative real axis only once at z2, that
L2 intersects the negative real axis only once at z3, that L3 intersects the negative
real axis only once at z4, and that z4 < z3 < z2.

Property 5 follows from the fact that z4 < −κq < z3 < −q < z2, and property
6 follows from the containment property 4 and the estimate (8.8).
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Furthermore, observe that �G(z) can only change sign across some Lj ; thus,
property 7 and property 8 follow since limz→−q �G(z) = ∞ and limz→0 �G(z) =
−∞. �

8.2. Proof of part 3 of Proposition 5.2 and Proposition 5.3. The goal of this
section is to establish the third parts of Proposition 5.2 and Proposition 5.3, which
exhibit Gaussian-type asymptotic fluctuations in the case η ∈ (α, θ). As in Sec-
tion 6.2 and Section 7.2, the proofs of both statements are similar, so we will do
them simultaneously. Thus, recall the notation K ∈ {V,A} that corresponds to the
stochastic six-vertex model when K = V , and to the ASEP when K = A. In what
follows, we simplify notation by omitting the subscript K , and we always assume
that η ∈ (α, θ).

In either case K ∈ {V,A}, let x = ηT + 1; as in Section 6.2, the replacement
of �ηT  + 1 (which was in the statement of Proposition 5.2 and Proposition 5.3)
by ηT + 1 will not affect the asymptotics. Furthermore, let pT = f ′

ηsT
1/2 − m′

ηT ,
where we recall that m′

η is defined through (8.4) and f ′
η are defined through (8.2)

and (8.3) in the cases K = A and K = V , respectively.
The proofs of the third parts of Proposition 5.2 and Proposition 5.3 will be very

similar the proofs of the first parts given in Section 6.2 in the case η > θ . Specifi-
cally, we will analyze the contribution to the integral on the right-hand side of (8.1)
when v is integrated in a small neighborhood of ψ ; this will yield a Gaussian-type
kernel. Then, in Section 8.2.2, we will show that the contribution to the integral
decays exponentially when v is integrated outside a neighborhood of ψ ; we will
then be able to ignore this contribution, which will lead to the proofs of the third
parts of Proposition 5.2 and Proposition 5.3.

8.2.1. Contribution near ψ . In this section we analyze the contribution to the
kernel K(w,w′), when w ∈ C(1) and when v is integrated along �(1). This will be
similar to what was done in Section 6.2.1.

Similar to (6.11), define

K̃
(
w,w′) = 1

2i logq

×
∞∑

j=−∞

∫
�(1)

exp(T (G(w) − G(v)))

sin( π
logq

(2π ij + logv − logw))

× (q−1β−1v;q)m∞
(q−1β−1w;q)m∞

×
(

v

w

)sf ′
ηT 1/2

dv

v(w′ − v)
,

(8.10)

for any w,w′ ∈ C.
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Now let us change variables. Denote σ = ψf ′−1
η T −1/2, and set

w = ψ + σŵ; w′ = ψ + σŵ′;
v = ψ + σ v̂; K̂

(
ŵ, ŵ′) = σK̃

(
w,w′).(8.11)

Also, for any contour D, set D̂ = σ−1(D − ψ).
The following lemma provides the asymptotics for the kernel K̂ .

LEMMA 8.9. There exist constants c,C > 0 such that∣∣K̂(
ŵ, ŵ′)∣∣ ≤ C

1 + |ŵ′| exp
(−c|ŵ|2)

,(8.12)

for each ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ.
Furthermore, if we define the kernel Ls;m(ŵ, ŵ′) by

Ls;m
(
ŵ, ŵ′) = 1

2π i

∫
X−2,∞

1

(v̂ − ŵ)(ŵ′ − v̂)

× exp
(

v̂2

2
− ŵ2

2
+ s(v̂ − ŵ)

)(
v̂

ŵ

)m

dv̂,

(8.13)

then we have that

lim
T →∞ K̂

(
ŵ, ŵ′) = Ls;m

(
ŵ, ŵ′),(8.14)

for each fixed ŵ, ŵ′ ∈ U−1,∞.

To establish this lemma, we first rewrite the kernel K̂ . Analogously to (6.16)
and (6.17), we have that

K̂
(
ŵ, ŵ′) = 1

2π i

∫
�̂(1)

I
(
ŵ, ŵ′; v̂)

dv̂,(8.15)

where

I
(
ŵ, ŵ′; v̂)

= 1

(1 + ψ−1σ v̂)(ŵ′ − v̂)

× exp
(

v̂2 − ŵ2

2
+ T

(
R

(
T −1/2ŵ

) − R
(
T −1/2v̂

)))

×
(

1 + ψ−1σ v̂

1 + ψ−1σŵ

)ψσ−1s (q−1β−1(ψ + σ v̂);q)m∞
(q−1β−1(ψ + σŵ);q)m∞

πψ−1σ

logq

(8.16)

×
∞∑

j=−∞

1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
.



PHASE TRANSITIONS 683

Lemma 8.9 will follow from the large T asymptotics of (and uniform estimate
on) I , given by the following lemma.

LEMMA 8.10. There exist constants c,C > 0 such that∣∣I (
ŵ, ŵ′; v̂)∣∣ ≤ C

1 + |ŵ′| exp
(−c

(|v̂|2 + |ŵ|2))
(8.17)

for all ŵ ∈ U−1,ε/σ , ŵ′ ∈ Ĉ ∪ U−1,∞, and v̂ ∈ X−2,ε/σ .
Furthermore,

lim
T →∞ I

(
ŵ, ŵ′; v̂)

= 1

(v̂ − ŵ)(ŵ′ − v̂)
exp

(
v̂2

2
− ŵ2

2
+ s(ŵ − v̂)

)(
v̂

ŵ

)m

,

(8.18)

for each fixed ŵ, ŵ′, v̂ ∈ C.

PROOF. The proof of this lemma will be similar to that of Lemma 6.12.
Let us first establish the uniform estimate (6.18). To that end, observe that there

exists a constant C1 > 0 such that the inequalities∣∣∣∣ 1

1 + ψ−1σ v̂

∣∣∣∣ < C1; 1

v̂ − ŵ′ <
C1

1 + |ŵ′| ;∣∣∣∣ 1 + ψ−1σ v̂

1 + ψ−1σŵ

∣∣∣∣ψσ−1s

≤ C1 exp
(
C1

(|ŵ| + |v̂|));
πψ−1σ

| logq|
∑
j �=0

∣∣∣∣ 1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))

∣∣∣∣
≤ C1T

−1/2;(8.19) ∣∣∣∣(πψ−1σ

logq

)
1

sin( π
logq

(log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))

∣∣∣∣
< C1 exp

(
C1

(|ŵ| + |v̂|));∣∣∣∣ (q−1β−1(ψ + σ v̂);q)m∞
(q−1β−1(ψ + σŵ);q)m∞

∣∣∣∣
< C1 exp

(
C1

(|ŵ| + |v̂|)),
all hold for each ŵ ∈ U−1,ε/σ , ŵ′ ∈ Ĉ, and v̂ ∈ X−2,ε/σ . The verification of these
estimates is entirely analogous to the verification of (6.20) and is thus omitted.

The estimates (8.19) address all terms on the right-hand side of (8.16), except
for the exponential term. To analyze this term, first recall |R(z)| < |z|2/9, for all
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z ∈ Ĉ(1) ∪ �̂(1); this was stipulated in Definition 8.4. Thus, increasing C1 if neces-
sary, we obtain that∣∣∣∣exp

(
v̂2

2
− ŵ2

2
+ T

(
R

(
T −1/2ŵ

) − R
(
T −1/2v̂

)))∣∣∣∣
= exp

(
v̂2

2
− ŵ2

2
+ |ŵ|2

9
+ |v̂|2

9

)

< C1 exp
( |v̂|2

9
− |ŵ|2

9

)
.

(8.20)

In (8.20), the last estimate follows from the facts that there exist constants C2 and
C3 such that v̂2 < C2 −|v̂|2/4 and ŵ2 > C2 +|ŵ|2/4, for all ŵ ∈ Ĉ(1) and v̂ ∈ �̂(1).

Now the estimate (8.17) follows from the definition (8.16) of I , the six estimates
(8.19) and the exponential estimate (8.20).

In order to establish the limiting statement (8.18), we observe that

lim
T →∞

1

1 + ψ−1σ v̂
= 1;

lim
T →∞

(
1 + ψ−1σ v̂

1 + ψ−1σŵ

)ψσ−1s

= exp
(
s(v̂ − ŵ)

);
lim

T →∞ exp
(

v̂2 − ŵ2

2
+ T

(
R

(
T −1/2ŵ

) − R
(
T −1/2v̂

)))

= exp
(

v̂2

2
− ŵ2

2

)
;(8.21)

lim
T →∞

πψ−1σ

logq

× ∑
j �=0

1

sin( π
logq

(2π ij + log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
= 0;

lim
T →∞

(
πψ−1σ

logq

)
1

sin( π
logq

(log(1 + ψ−1σ v̂) − log(1 + ψ−1σŵ)))
= 1

v̂ − ŵ
;

and

lim
T →∞

(q−1β−1(ψ + σ v̂);q)m∞
(q−1β−1(ψ + σŵ);q)m∞

=
(

v̂

ŵ

)m

,(8.22)

for each ŵ, ŵ′, v̂ ∈ C. The verification of the five identities (8.21) is very similar
to that of (6.22) and is thus omitted. The limit (8.22) follows from the fact that
ψ = qβ and that σ tends to 0 as T tends to ∞.
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Now (8.18) follows from multiplying the results of (8.21) and (8.22). �

We can now establish Lemma 8.9.

PROOF OF LEMMA 8.9. The uniform estimate (8.12) follows from integrating
the estimate (8.17) over v̂ ∈ X−2,ε/σ . Then the limit (8.14) follows from (8.18),
(8.17), the fact that �̂(1) is contained in and converges to X−2,∞ as T tends to ∞,
the exponential decay of the kernel Ls;m in |v̂|2 and the dominated convergence
theorem. �

8.2.2. Exponential decay of K on C(2) and �(2). In this section we analyze
the integral (8.1) defining K(w,w′) when either w ∈ C(2) or v ∈ �(2). In this case,
we show that the integral decays exponentially in T , which will allow us to ignore
this contribution and apply the results of Section 8.2.1.

We begin with the following lemma, which is the analog of Lemma 6.13 and
estimates the exponential term in the integrand on the right-hand side of (8.1).

LEMMA 8.11. There exists some positive real number c1 > 0, independent of
T , such that

max
{

sup
w∈C

v∈�(2)

�(
G(w) − G(v)

)
, sup
w∈C(2)

v∈�

�(
G(w) − G(v)

)}
< −c1.

PROOF. From Proposition 8.1, we find that �(G(w)−G(v)) < 0 for all w ∈ C
and v ∈ �(2) and that �(G(w) − G(v)) < 0 for all w ∈ C(2) and v ∈ �, where both
estimates are uniform in T . Thus, the existence of the claimed constant c1 follows
from the compactness of the contours C and �. �

Now recall the definitions of σ = ψf ′−1
η T −1/2; ŵ, ŵ′ and v̂ from (8.11); and I

from (8.16). Define

K
(
ŵ, ŵ′) = σK

(
w,w′) = 1

2π i

∫
�̂

I
(
ŵ, ŵ′; v̂)

dv̂,(8.23)

for each ŵ, ŵ′ ∈ C. From the change of variables (8.11), we have that

det(Id+K)L2(C) = det(Id+K)L2(Ĉ).(8.24)

Given Lemma 8.11, the proof of the following result is entirely analogous to that
of Corollary 6.14 and Corollary 7.8 and is thus omitted.

COROLLARY 8.12. There exist constants c,C > 0 such that∣∣K(
ŵ, ŵ′) − K̂

(
ŵ, ŵ′)∣∣ < C exp

(−c
(
T + |ŵ|2))

,(8.25)
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for all ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ, and such that∣∣K(
ŵ, ŵ′)∣∣ < C exp

(−c
(
T + |ŵ|2))

,(8.26)

for all ŵ ∈ Ĉ(2) and ŵ′ ∈ Ĉ.

Now we can use Corollary A.5 of [3], Lemma 8.9 and Corollary 8.12 to establish
the third parts of Proposition 5.2 and Proposition 5.3.

PROOF OF PART 3 OF PROPOSITION 5.2 AND PROPOSITION 5.3. This will
be very similar to the proof of the first (and second) parts of Proposition 5.2 and
Proposition 5.3, given in Section 6.2.2 (and Section 7.2). In particular, it will follow
from an application of Corollary A.5 of [3] to the sequence of kernels {K(ŵ, ŵ′)},
the sequence of contours {U−1,∞ ∪ Ĉ(2)} and the kernel Ls;m(ŵ, ŵ′) [given by
(8.13)].

The verification of the conditions of that corollary in this setting is very similar
to the verification provided in the proofs of the first (in Section 6.2.2) and second
(in Section 7.2) parts of Proposition 5.2 and Proposition 5.3, and is thus omitted.
Applying Corollary A.5 of [3], we obtain that

lim
T →∞ det(Id+K)L2(C) = lim

T →∞ det(Id+K)L2(Ĉ)

= det(Id+Ls;m)L2(U−1,∞),
(8.27)

where we have used (8.24) to deduce the first identity.
Now it is known (see, e.g., Proposition 5 of [9]) that det(Id+Ls;m)U−1,∞ =

Gm(s). Thus, we deduce from (6.31) that

lim
T →∞ det(Id+K)L2(C) = Gm(s).(8.28)

Applying (6.32) in the case K = A yields the third part of Proposition 5.2 and
applying (6.32) in the case K = V yields the third part of Proposition 5.3. �
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SUPPLEMENTARY MATERIAL

Supplement to “Phase transitions in the ASEP and stochastic six-vertex
model.” (DOI: 10.1214/17-AOP1253SUPP; .pdf). This supplement serves as the
Appendix for the present paper. In Appendix A, we provide some results about
Fredholm determinants that are used in the asymptotic analysis above, and in Ap-
pendix B we outline an alternative way to establish Theorem 1.7 through a com-
parison with Schur measures.

https://doi.org/10.1214/17-AOP1253SUPP
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