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We prove that the Minimal Spanning Tree and the Invasion Percolation
Tree on a version of the triangular lattice in the complex plane have unique
scaling limits, which are invariant under rotations, scalings, and, in the case
of the MST, also under translations. However, they are not expected to be con-
formally invariant. We also prove some geometric properties of the limiting
MST. The topology of convergence is the space of spanning trees introduced
by Aizenman et al. [Random Structures Algorithms 15 (1999) 319–365], and
the proof relies on the existence and conformal covariance of the scaling limit
of the near-critical percolation ensemble, established in our earlier works.
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The MST in a box, and InvPerc started from the midpoint of the left boundary
of the box until reaching the right boundary, on Z

2.

1. Introduction. The Minimal Spanning Tree of weighted graphs is a classi-
cal combinatorial object [14, 30, 38], and is also very interesting from the view-
point of probability theory and statistical physics: when the weights on the edges
of a graph are chosen at random, using i.i.d. variables, then the resulting random
tree turns out to be closely related to the near-critical regime of Bernoulli bond
percolation on that graph.

In Bernoulli bond percolation at density p ∈ [0,1], each edge of the graph is
kept open with probability p or becomes closed with probability 1 − p, inde-
pendently, and then one looks at the connected open components, called clusters.
In site percolation, the vertices are chosen to be open or closed instead of the
edges. These are among the most important spatial stochastic processes, due to
their simultaneous simplicity and richness [15, 31, 35]. The main interest is in the
phase transition near the critical density pc, below which all clusters are small,
above which a cluster (sometimes clusters) of positive density emerge. The theory
of critical percolation in the plane has seen a lot of progress lately, starting with
Smirnov’s proof of conformal invariance of crossing probabilities for site perco-
lation on the triangular lattice [50], and with the introduction of the Stochastic
Loewner Evolution [47] that describes the conformally invariant curves that are the
scaling limits of interfaces between open and closed clusters. These SLE curves
can be used to understand critical percolation in depth [57], including the compu-
tation of critical exponents that had been predicted by physicists using nonrigorous
conformal field theory techniques.
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Beyond the static critical system, it is natural to consider dynamical versions:
first, to slowly change p near pc and observe how the phase transition exactly takes
place—called near-critical percolation; second, to apply a stationary dynamics and
observe how the critical system is changing in time—called dynamical percolation.
Indeed, by “perturbing” critical percolation, the static results of the previous para-
graph have also given way to an exhaustive study of dynamical and near-critical
percolation [25, 27, 28, 33, 49]; see also the surveys [29, 52]. In particular, in [27,
28] we have proved the existence and conformal covariance of the scaling limit
of the near-critical percolation ensemble, w.r.t. the quad-crossing topology intro-
duced in [48]. Very roughly, this near-critical scaling limit is constructed from the
critical scaling limit, plus independent randomness that governs how macroscopic
clusters merge as we raise p.

It turns out that the macroscopic structure of the Minimal Spanning Tree (MST)
and the Invasion Percolation Tree (InvPerc) can also be described based on this
merging process. Thus, building on [27, 28], in the present paper we prove the ex-
istence and some conformal properties of the scaling limits of MST and InvPerc on
the triangular lattice, in the space of essential spanning forests introduced in [4]. In
that paper, tightness results were proved, implying that subsequential scaling lim-
its of the Minimal and Uniform Spanning Trees in the plane exist. Our proof of the
uniqueness of the scaling limit has the important implication that the conjectural
universality of critical percolation implies universality for many processes related
to the near-critical ensemble, including MST and InvPerc. That this program of
describing near-critical objects from the critical scaling limit may have a chance
to work was suggested in [17]. Another motivation for our work is that it leads to
interesting new objects: these two scaling limits are invariant under rotations and
scalings, but conjecturally, not under general conformal maps. Furthermore, the
methods developed to establish these scaling limits also give information about
the large-scale geometry of the discrete trees.

1.1. The Minimal Spanning Tree MST. For each edge of a finite graph, e ∈
E(G), let U(e) be an independent Unif[0,1] label. The Minimal Spanning Tree,
denoted by MST, is the spanning tree T for which

∑
e∈T U(e) is minimal. This

is well known to be the same as the union of lowest level paths between all pairs
of vertices (i.e., the path between the two points for which the maximum label on
the path is minimal). One can also use the so-called reversed Kruskal algorithm
to construct MST: delete from each cycle the edge with the highest label U . This
algorithm also shows that MST depends only on the ordering of the labels, not on
the values themselves. Moreover, this algorithm also makes sense on any infinite
graph, and produces what in general is called the Free Minimal Spanning Forest
(FMSF) of the infinite graph. The Wired Minimal Spanning Forest (WMSF) is the
one when we also remove the edge with the highest label (if such edge exists)
from each cycle that “goes through infinity”, that is, which is the union of two dis-
joint infinite simple paths starting from a vertex. For the case of Euclidean planar
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lattices, these two measures on spanning forests are known to be the same, again
denoted by MST, and it almost surely consists of a single tree [7]. This measure
can also be obtained as a thermodynamical limit: take any exhaustion by finite
subgraphs Gn(Vn,En), introduce a boundary condition by identifying some of the
vertices on the boundary of Gn (i.e., elements of Vn that have neighbours in G

outside of Vn), and then take the weak limit. On a general infinite graph, when no
identifications are made in the boundary, one gets the FMSF, and when all vertices
are glued into a single vertex, one gets the WMSF. Studying these measures has a
rich history on Z

d , on point processes in R
d , and on general transitive graphs; see

[5, 6, 19, 41–43, 46, 54, 55, 60] and the references therein.
One can use the same Unif[0,1] labels that defined the MST to obtain a coupling

of percolation for all densities p ∈ [0,1]: an edge is “open at level p” if U(e) ≤ p.
This way we get a coupling between the MST and the percolation ensemble. More-
over, as we explain in the next paragraph, the macroscopic structure of the MST is
basically determined by the labels in the near-critical regime of percolation, and
hence one may hope that the scaling limit of the MST is determined by the scaling
limit of the near-critical ensemble.

Consider the p-clusters (i.e., open components at level p) in the percolation
ensemble on some large finite graph. Contract each component into a single ver-
tex, keeping the edges (together with their labels) between the clusters, resulting
in the “cluster graph”. It is easy to verify that making these contractions on the
MST we get exactly the MST on the cluster graph. We denote this cluster tree by
MSTp; see Figure 1. Now assume that p1 is small enough so that even the largest
p1-clusters are of small macroscopic size—then the tree MSTp1 will tell us the
macroscopic structure of MST. On the other hand, if p2 > p1 is large enough, then
most sites are in just one giant p2-cluster. Note that, for any p > p1, we get the
tree MSTp from MSTp1 by contracting the edges with labels in (p1,p]. Thus, if
we have the collection of all the p-clusters for all p ∈ (p1,p2), then by following
how they merge as we are raising p, we can reconstruct the tree MSTp1 . Now, one
may hope that in order to tell the macroscopic structure of MSTp1 , it is enough to

FIG. 1. The MST connects the percolation p-clusters without creating cycles, yielding the clus-
ter-tree MSTp .
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know only the macroscopic p-clusters for all p ∈ (p1,p2) and follow how those
merge. The near-critical window of percolation is exactly the window (p1,p2) in
which the above phase transition of the cluster sizes takes place, and the scaling
limit of the near-critical ensemble is exactly the object that describes the macro-
scopic p-clusters in this window. Therefore, the above hope has the interpretation
that the scaling limit of the near-critical ensemble should describe the scaling limit
of the MST. This, of course, raises several questions: May the dust of microscopic
p-clusters condensate into a new macroscopic p′-cluster at some p′ > p, ruining
the strategy of “following how macroscopic clusters merge”? Could MSTp1 go
through microscopic p1-clusters in a way that significantly influences its macro-
scopic structure?

Our work addresses these questions in the case of planar lattices. The near-
critical window for Bernoulli(p) percolation on the triangular lattice ηT or the
square lattice ηZ2 with mesh η > 0 is given by

(1.1) p = 1/2 + λr(η) with λ ∈ (−∞,∞) fixed and η → 0,

where r(η) = η2/α4(η,1), with α4(η,1) being the alternating 4-arm probability of
critical percolation [57]. It was proved on ηT using SLE6 computations [51] that
r(η) = η3/4+o(1). As shown in [37], for λ � −1 we are at the subcritical end of the
near-critical window, for λ 	 1 we are at the supercritical end, and for any fixed
λ ∈ R, box-crossing probabilities are comparable to the critical case (just they are
close to 0 for λ � −1, and close to 1 for λ 	 1). That is, (1.1) is indeed the near-
critical window. Then it was proved in [27, 28] that for any λ ∈ R there is a unique
scaling limit as η → 0; moreover, the entire coupled percolation ensemble, viewed
near the critical point via the parametrization (1.1), where all the macroscopic
changes happen, has a scaling limit as a Markov process in λ ∈ R. It is important
to keep in mind that even for any given λ 
= 0, this scaling limit is an interesting
new object, known to be different from the critical scaling limit: the interfaces are
singular w.r.t. SLE6 [45]. (See also [10] and [28], Theorem 13.4, for the much
simpler result that the full scaling limits are singular.)

Since we have a proof of the existence and properties of the scaling limit of the
near-critical ensemble only for site percolation on the triangular lattice T, if we
want to use that to build the MST scaling limit, we will need a version of the MST
that uses Unif[0,1] vertex labels {V (x)} on T. So, assign to each edge e = (x, y)

the vector label

(1.2) U(e) := (
V (x) ∨ V (y),V (x) ∧ V (y)

)
,

and consider the lexicographic ordering on these vectors to determine the MST; see
Figure 2. With a slight abuse of terminology, this is what we will call the MST on
the lattice T. Our strongest results will apply to this model, but some of them will
also hold for subsequential limits of the usual MST on Z

2, known to exist by [4].
Let us make an important remark here. The use of the lexicographic ordering

for the vector labels (1.2) is somewhat arbitrary, and starting from the same vertex
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FIG. 2. The minimal spanning tree associated to vertex labels of the triangular lattice T, with a
periodic boundary condition.

labels, using a different way to get edge labels or using a different natural ordering,
one could a priori get a MST with a very different global structure. In fact, this
does happen if the vertex labels are assigned maliciously. Nevertheless, with the
Unif[0,1] labels, for any rule to construct the MST on T that ensures that any
two p-clusters are connected by a unique path of this MST (which is exactly how
our definition works), our approximation of the macroscopic structure of the MST
using the near-critical ensemble will work with large probability, and hence the
scaling limit will be the same.

We can now state our main theorem.

THEOREM 1.1 (Limit of MSTη in C). As η → 0, the spanning tree MSTη on
ηT converges in distribution, in the metric d� of Definition 2.2 below, to a unique
scaling limit MST∞ that is invariant under translations, scalings and rotations.

The strategy of the proof will be described in Section 1.4. As a key step, we
also prove convergence in any fixed torus T2

M ; see Theorem 5.1. We work in tori to
avoid the technicalities related to boundary issues, but with not too much additional
work the extension to finite domains with free or wired boundary conditions would
be certainly doable.

In Section 6, strengthening the results of [4], we study the geometry of the
limiting tree MST∞. The degree of a vertex in a tree graph has the usual meaning,
but the degree of a point in a spanning forest of the plane needs to be defined
carefully, which we will do in Section 6.1. To give an example, a pinching point
on a MST∞ path should not be called a branching point, but it still gives rise to a
degree 4 point. Consequently, stating the results on the geometry of the limiting
tree also needs some care, to be done precisely only in Theorem 6.2. Nevertheless,
here are some of the earlier results and our new ones in rough terms. It was proved
in [4] that there is an unspecified absolute bound k0 such that almost surely all
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degrees in any subsequential limit of MSTη are at most k0. Furthermore, the set of
branching points was shown to be almost surely countable. Here, we will prove that
there are almost surely no pinching points, all degrees are bounded by 4, and the
set of points with degree 4 is at most countable. We will also prove, in Section 6.2,
that the Hausdorff dimension of the trunk is strictly below 7/4. However, we do
not have a guess for the exact dimension; the situation is similar to the somewhat
related problem of finding the percolation chemical distance exponent [22].

To conclude this subsection, let us note that the recent works [1, 2] follow a strat-
egy similar to ours, but in a very different setting: namely, in the mean-field case. It
is well known that there is a phase transition at p = 1/n for the Erdős–Rényi ran-
dom graphs G(n,p). Similar to the above case of planar percolation, it is a natural
problem to study the geometry of these random graphs near the transition pc =
1/n. It turns out in this case that the nontrivial rescaling is to work with p = 1/n+
λ/n4/3, λ ∈ R. If Rn(λ) = (C1

n(λ),C2
n(λ), . . .) denotes the sequence of clusters at

p = 1/n + λ/n4/3, ordered in decreasing order of size, say, then it is proved in [1]
that as n → ∞, the normalized sequence n−1/3Rn(λ) converges in law to a limiting
object R∞(λ) for a certain topology on sequences of compact spaces which relies
on the Gromov–Hausdorff distance. This near-critical ensemble {R∞(λ)}λ∈R has
then been used in [2] to obtain a scaling limit as n → ∞ (in the Gromov–Hausdorff
sense) of the MST on the complete graph with n vertices. One could say that [28]
is the Euclidean (d = 2) analogue of the mean-field case [1], and our present paper
is the analogue of [2]. However, an important difference is that in the mean-field
case one is interested in the intrinsic metric properties (and hence works with the
Gromov–Hausdorff distance between metric spaces), while in the Euclidean case
one is first of all interested in how the graph is embedded in the plane.

1.2. The Invasion Percolation Tree InvPerc. The connection between WMSF
and critical percolation on infinite graphs can also be seen through invasion per-
colation. For a vertex x in an infinite graph G(V,E), and the labels {U(e)}, let
T0 = {x}, then, inductively, given Tn, let Tn+1 = Tn ∪ {en+1}, where en+1 is the
edge between Tn and V \ Tn that has the smallest label U . The Invasion Percola-
tion Tree of x is then InvPerc(x) := ⋃

n≥0 Tn. It is easy to see that, even determin-
istically, if U : E(G) −→ R is an injective labelling of a locally finite graph, then
WMSF = ⋃

x∈V (G) InvPerc(x).
Once the invasion tree enters an infinite p-cluster C, it will not use edges out-

side it. Furthermore, it is not surprising (though nontrivial to prove, see [32]) that
for any transitive graph G and any p > pc(G), the invasion tree eventually enters
an infinite p-cluster. Therefore, lim sup{U(e) : e ∈ InvPerc(x)} = pc(G) for any
x ∈ V (G). This way, invasion percolation can be considered as a “self-organized
criticality” version of critical percolation; finer results for the planar case are given
in [20, 23, 24]. Moreover, InvPerc can be used to study Bernoulli percolation itself:
for example, for the well-behavedness of the supercritical phase on Z

d , d > 2 [21],
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and for uniqueness monotonicity on nonamenable graphs [32]. Invasion percola-
tion can be analyzed very well on regular trees [8], with a scaling limit that can be
described using diffusion processes [9].

For planar lattices, since InvPercη is so intimately related to MSTη, it will be
quite easy to modify the proof of Theorem 1.1 for the case of InvPerc; see Sec-
tion 7.

1.3. The scaling limit of the near-critical ensemble. We need to recall how
the scaling limit of the near-critical ensemble is constructed in [27, 28], because
the present paper is heavily built on this. To start with, we slightly change the
near-critical parametrization given in (1.1).

DEFINITION 1.2. The near-critical ensemble (ωλ
η)λ∈R will denote the follow-

ing process:

(i) Sample ωλ=0
η according to Pη, the law of critical percolation on ηT. We

will sometimes represent this as a black-and-white coloring of the faces of the
dual hexagonal lattice, with white hexagons standing for closed (empty) sites.

(ii) As λ increases, closed sites (white hexagons) switch to open (black) at an
exponential rate r(η), as given after (1.1).

(iii) As λ decreases, black hexagons switch to white at rate r(η).

Note that, for any λ ∈ R, the near-critical percolation ωλ
η corresponds exactly to a

percolation configuration on ηT with parameter{
p = pc + (1 − pc)

(
1 − e−λr(η)) if λ ≥ 0,

p = pce
−|λ|r(η) if λ < 0.

For any site x, the value λ(x) ∈ R where x switches from closed to open will be
called the near-critical percolation label of x.

The same definitions can be made on ηZ2.

It is easy to understand intuitively why r(η) is the right time rescaling to obtain
the near-critical window. Assume that in the unit square there is no left-right cross-
ing in ωλ=0

η . Then the expected number of those sites that are closed at λ = 0 but
are pivotal for the left-right crossing (i.e., opening any of them would establish the
crossing) and which actually become open in ωλ

η is known to be of order λ. There-
fore, for λ > 0 small, it is unlikely that a left–right crossing has been established
if it was not already there, hence the system must have stayed very close to criti-
cal; on the other hand, one may expect that for λ 	 1 a crossing is already quite
likely, hence the system should already be quite supercritical. This was rigorously
proved in [37]. Then, if one wants to describe the scaling limit of ωλ

η as η → 0,
a natural idea that was detailed in [17] is that this should be possible by following
which of those points get opened (for λ > 0) or get closed (for λ < 0) that were
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pivotal at λ = 0 for at least some small macroscopic distance ε > 0. To this end,
one should look at the counting measure on ε-pivotal points at criticality, normal-
ized such that the measure stays non-trivial as η → 0, and hope that these ε-pivotal
measures have limits that are measurable w.r.t. the scaling limit of critical perco-
lation itself. This is the main result of [27] (with a slight change of what ε-pivotal
means). Then the scaling limit of the near-critical ensemble may be described by
taking Poisson point processes of switch times, with intensity measures being these
ε-pivotal measures, and by updating the crossings of all the quads (certain gener-
alized rectangles) according to these pivotal switches. This is done in [28]. Here,
there are roughly two main issues: first, it is not immediately clear how one can
update the crossings of all the quads by pivotal switches that are happening at all
spatial and time scales. For this, one should code the percolation configuration in
a suitable manner that is minimal enough so that the updates can be done, but rich
enough so that it contains all the relevant information. This coding and updating
takes up a large part of [28], done through the so-called ε-networks that we will
actually recall in Section 3. The second main issue is that one needs to prove that
despite all the switches that take place as λ increases, following the switches of all
the initially ε-pivotal sites gives a good idea about the ε-pivotal switches at later
times. For this, the key discrete result from [24, 28] is the following proposition,
which we will often use also in the present paper.

PROPOSITION 1.3 (Near-critical stability). For any fixed −∞ < λ < λ′ < ∞,
in the near-critical ensemble on ηT, let Aλ,λ′

k (r,R) denote the following near-
critical polychromatic k-arm event: there exist k ≥ 2 disjoint paths in the lattice
that connect the boundary pieces of the annulus BR(0) \ Br(0), each called either
“primal” or “dual”, and all the percolation ensemble labels along all the primal
arms are at most λ′, while all the labels along the dual arms are at least λ. Note
that λ = λ′ gives back the usual notion of primal and dual arms in the percolation
configuration ωλ

η . Then

P
[
Aλ,λ′

k (r,R)
] ≤ Cλ,λ′αk(r,R),

where αk(r,R) = α
η
k (r,R) is the polychromatic k-arm probability in critical per-

colation on the same lattice. Similarly, for the monochromatic k-arm events, k ≥ 1,
where all arms are primal,

P
[
Aλ′

k (r,R)
] ≤ C′

λ′α′
k(r,R),

where α′
k(r,R) = α′η

k(r,R) is the monochromatic k-arm probability at criticality.
For α′

1(·, ·), we will just use α1(·, ·).
The same statements hold for bond percolation on ηZ2, just with dual arms

being paths in the dual lattice, in the usual manner.
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REMARK 1.4. For fixed radii 0 < r < R < ∞, the discrete multi-arm prob-
abilities α

η
k (r,R) and α′η

k(r,R) converge, as η → 0, to their SLE6 counterparts
(see [57]). In the present paper, we will be interested in these quantities only up to
constant factors, not in the details of their convergence; hence their dependence on
η is not important and will be omitted from the notation. Formulas like αk(η,1)

will also be understood on the discrete lattice, always with mesh η. We will also
use the quasi-multiplicativity of multi-arm probabilities (both for the discrete and
continuum versions): for any k ≥ 1, there exists ck > 0 such that

ckαk(r1, r2)αk(r2, r3) ≤ αk(r1, r3) ≤ αk(r1, r2)αk(r2, r3)

for all 0 < r1 < r2 < r3 < ∞. Similarly for α′
k , see, for example, [44], Section 4.5.

The proof of Proposition 1.3 for the alternating 4-arm event is given in [24],
Lemma 6.3, or follows directly from [28], Lemma 8.4, which is more general in
that it does not assume that the dynamics is monotone in λ. For general k, the case
of λ = λ′ is known as Kesten’s near-critical stability [37]. And just as in Kesten’s
approach, the proof for general k and general λ < λ′ is a simple modification of the
proof for the alternating 4-arm event: the key point is that the pivotality of a site for
a general k-event still depends on an alternating 4-arm event around that site, and
hence the near-critical stability of the alternating 4-arm probability, proved using
a recursion in [28], easily implies the stability of the general k-arm event, as well.
We omit the details.

The above sketch of the contents of [27, 28] should make it clear that the scaling
limit of the near-critical ensemble is constructed entirely from the critical scaling
limit, plus independent randomness of the pivotal switch times. Moreover, all the
proofs in [27, 28] are universal in the sense that they use lattice-independent dis-
crete percolation technology that have been available since [37]. Altogether, once
one proves Cardy’s formula for critical percolation on ηZ2, which would imply the
same scaling limit as on ηT, we would also immediately get that the scaling limit
for the entire near-critical ensemble is the same. This universal aspect remains true
for the present paper.

1.4. Strategy of the proof and organization of the paper. First of all, in Sec-
tion 2.1, we describe the topological space in which the convergence of our ran-
dom trees will take place: the space of essential spanning forests in C, introduced
in [4]. There are possible alternatives to using this topology, such as the quad-
crossing topology of [48] (suggested to us for this purpose by Nicolas Broutin)
or the topology introduced in [47] for the scaling limit of the Uniform Spanning
Tree. Especially the quad-crossing topology (recalled in Section 2.2) would seem
natural, since the scaling limit of near-critical percolation is taken in this space.
Nevertheless, we chose the topology of [4] for several reasons: that was the first
paper dealing with subsequential scaling limits of MSTη, proving results that we
are sharpening here; using this topology to describe paths in the spanning trees
is not harder than using quad-crossings, while it also gives a natural way to glue
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the paths into more complicated trees; there is a simple explicit metric generating
this topology. However, we will unfortunately need more topological preparations
than just recalling these definitions, because the minimalist structure, based on
just the pivotal measures of [27], which was enough to describe the scaling limit
of the near-critical ensemble in [28], will not be enough for the tree structures of
the present paper. In particular, in Proposition 2.6, we will prove that that set of
colored pivotals also has a limit as η → 0.

In Section 3, we first recall the definition of the networks Nλ̄,ε
η and Nλ̄,ε∞ intro-

duced in [28], where λ̄ = (λ,λ′) is a pair of near-critical parameters with λ < λ′.
These are graphs with vertex sets X given by those ε-pivotals in the configura-
tion ωλ on a torus T2

M that experience a switch between level λ and λ′, and edges
given roughly by the primal and dual connections in ωλ \ X. Then we need to add
a bit more structure to these networks, creating the so-called enhanced networks:
roughly, we will need to know which of these pivotals are connected together by an
open cluster of ωλ \X, and will need to know the colors of these pivotals in ωλ. For
this, we will use Proposition 2.6 mentioned in the previous paragraph and Propo-
sition 3.6 saying that clusters of large diameter also have large volume (which
excludes certain pathological geometric behaviour that would ruin the construc-
tion). From these enhanced networks, we will obtain finite labelled graphs whose
vertices will basically be open λ-clusters that have ε-pivotals switching in the time
interval (λ,λ′), with edges labelled by the times of the pivotal switches, showing
how the λ-clusters merge. We will define the MST on this finite labelled graph,
denoted by MSTλ̄,ε

η in the discrete and MSTλ̄,ε∞ in the continuum case—these are
basically the macroscopic approximations to the cluster trees that we discussed
in Section 1.1. To be more precise, in Section 3 we define only some Minimal
Spanning Forests, and we need a bit more work until in Lemma 4.4 we can ac-
tually define the trees. The fact that these approximating cut-off trees MSTλ̄,ε

η and

MSTλ̄,ε∞ are close to each other if the underlying near-critical ensembles ω[λ,λ′]
η and

ω
[λ,λ′]∞ are close follows easily from [28].
In Section 4, we prove that the cut-off trees MSTλ̄,ε

η are close to the true MSTη

if λ � −1, λ′ 	 1, and ε > 0 is small. Here, the key technique is near-critical
stability, Proposition 1.3.

Summarizing, we get that MSTη is close to MSTλ̄,ε∞ . Since the latter does not
depend on η, while the former does not depend on λ̄ and ε, they both need to be
close to an object that does not depend on any of these parameters: this will be the
scaling limit MST∞. To give a succinct pictorial summary of this strategy:

MSTη MSTλ̄,ε
η MSTλ̄,ε∞

MST∞
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This conclusion will be materialized in Section 5, together with the extension from
the case of the tori T2

M to the full plane, and with the proof of the claimed invari-
ance properties.

As already advertised in Sections 1.1 and 1.2, the results on the geometry of
MST∞ are discussed in Section 6, while Section 7 establishes the existence and in-
variance properties of InvPerc∞. We conclude the paper with some open problems
in Section 8.

2. Topological and measurability preliminaries.

2.1. The space of essential spanning forests. The following topological setup
for discrete and continuum spanning trees was introduced in [4]. We are summa-
rizing here the definitions and the notation, with small modifications; the main dif-
ference is roughly that � will also contain spanning trees of subsets of the complex
plane, to accommodate the invasion percolation tree InvPerc and our approximat-
ing trees MSTλ̄,ε .

We will work in a one-point compactification of C = R
2, denoted by Ĉ = C ∪

{∞}, with the Riemannian metric

(2.1)
4

(1 + x2 + y2)2

(
dx2 + dy2);

by stereographic projection, Ĉ is isometric with the unit sphere. Note that this met-
ric is equivalent to the Euclidean metric in bounded domains, while the distance
between any two points outside the square of radius M around the origin in C is at
most O(1/M). This will imply that convergence of spanning trees in Ĉ is the same
as convergence within bounded subsets of C. This is necessary, since convergence
of random spanning trees cannot be uniform in C: on ηZ2, inside the infinitely
many pieces [i, i + 1) × [j, j + 1), i, j ∈ Z, one can find arbitrary topological
behavior (e.g., macroscopically vanishing areas with arbitrarily large numbers of
macroscopic branches emanating from them) that will be very far from the almost
sure behavior of the continuum tree.

Spanning trees on infinite graphs are usually defined and studied as weak limits
of spanning trees in finite subgraphs exhausting the infinite graph. For these finite
graphs, one may consider different boundary conditions: most importantly, free or
wired. As mentioned in the Introduction, for the MST on Euclidean planar lattices,
all such boundary conditions give the same limit measure, and we will work in the
tori T2

M of side-length 2M , which can be realized as the subdomains [−M,M)2 of
C, or even as subgraphs of ηT for suitable values of M , with a periodic boundary
condition (which is sandwiched between the free and the wired conditions); see
Figure 2 in the Introduction.

DEFINITION 2.1. A reference tree τ is a tree with a finite set of leaves (or
external vertices), denoted by ξ(τ ), with each edge considered to be a unit interval.
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FIG. 3. A reference tree τ with four leaves, with one immersion into Z
2 and another into C. The

image in C is not a tree, but this is allowed. In the scaling limit of any discrete random tree in Ĉ, one
cannot see such self-intersections, but could see touch-points, and self-intersections might happen in
scaling limits in higher dimensions.

A reparametrization is a continuous map φ : τ −→ τ that fixes all the vertices and
is monotone on the edges. An immersed tree indexed by τ is an equivalence class of
continuous maps f : τ −→ Ĉ, where f1 and f2 are considered equivalent if there
exist reparametrizations φ1, φ2 with f1 ◦φ1 = f2 ◦φ2. The collection of immersed
trees indexed by τ is denoted by Sτ , and we set

(2.2) S(�) := ⋃
τ :|ξ(τ )|=�

Sτ ,

the set of immersed trees with � leaves. A tree with leaves x1, . . . , x� ∈ Ĉ will often
be denoted by T (x1, . . . , x�) ∈ S(�).

We will also consider trees immersed into the torus T2
M with the flat Euclidean

metric; the corresponding collection of immersed trees with � leaves is denoted by
S(�)

M .
One may consider trees immersed not just into Ĉ or T

2
M , but into a graph

G(V,E) that is embedded into Ĉ or T
2
M , and then the image of τ is required

to be a subtree of G(V,E), with its vertices mapped into V and any of its edges
mapped to a union of edges from E. See Figure 3.

Note that if a reference tree τ ′ is given by contracting some edges of some
τ , denoted by τ ′ ≺ τ , then Sτ ′ is naturally a subset of Sτ , represented by maps
f : τ −→ Ĉ that are constants on the contracted edges. By contractions in two
nonisomorphic trees, τ1 and τ2, we may reach the same tree τ ′ ≺ τi , hence S(�)

may be viewed as covered by patches Sτ that are sewn together along “smaller
dimensional” patches Sτ ′ , similar to a simplicial complex. [In particular, after these
identifications, (2.2) stops being a disjoint union.]

We now equip each Sτ with a very natural metric, extending the notion
of uniform closeness up to reparametrization of curves: for two immersed
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trees f1, f2 : τ −→ Ĉ,

(2.3) distτ (f1, f2) = inf
φ1,φ2

sup
t∈τ

dist
Ĉ

(
f1 ◦ φ1(t), f2 ◦ φ2(t)

)
,

where the φi ’s run over all reparametrizations of τ . This can be easily ex-
tended to immersed trees indexed by different reference trees: by the above re-
mark about patches, for any pair of reference trees τ, τ ′ there exist sequences
τ = τ0, τ1, . . . , τm = τ ′ such that τi ≺ τi+1 or τi � τi+1 for all i = 0, . . . ,m − 1,
and then for any f : τ −→ Ĉ and f ′ : τ ′ −→ Ĉ we can take

dist
(
f,f ′) = inf

{
m−1∑
i=0

distτi�τi+1(fi, fi+1) :

f0 = f,fm = f ′, τi
fi−→ Ĉ for i = 1, . . . ,m − 1

}
,

where, with a rather obvious notation, τi � τj = τi if τi � τj . Note that for any
τ, τ ′ there exists a τ ′′ with τ, τ ′ ≺ τ ′′ and |ξ(τ ′′)| ≤ |ξ(τ )| + |ξ(τ ′)| − 2, hence
distances between immersed trees in S(�) can be measured inside S(2�−2), and
dist(f, f ′) ≤ distτ ′′(f, f ′) < ∞.

With this metric, S(�) is clearly a complete separable metric space, called the
space of �-trees. Of course, a Cauchy sequence of trees contained fully in C might
have a limit that has an edge going through ∞. Similarly, S(�)

M is complete and sep-
arable with the analogous metric, just using the Euclidean metric on T

2
M in (2.3).

Now that we have a definition for the space of finite trees immersed in Ĉ or T2
M ,

we can start defining what a spanning tree of Ĉ or T2
M should be: a set of finite

trees that satisfy certain compatibility conditions.
The set of nonempty closed subsets of S(�) in the above metric, equipped with

the Hausdorff metric, is denoted by �(�). We will consider graded sets

F = (
F (�))

�≥1 ∈ �× := X
�≥1

�(�),

with the product topology. Clearly, �× is again complete, separable and metriz-
able; in one word, it is a Polish metric space.

Extending the map τ �→ ξ(τ ) giving the external vertices of an index tree, for
any F ∈ �× we can define

ξ(F) := ⋃{
f

(
ξ(τ )

) : τ f−→ Ĉ ∈ F (�), � ≥ 1
} ⊂ Ĉ,

which gives the set of external vertices occurring in F . It is clearly a Borel mea-
surable function, since for any open U ⊂ Ĉ, the preimage ξ−1(U) is a countable
intersection (over � ≥ 1) of open sets.

Let SB1,...,B�
be the set of immersed trees with endpoints xi ∈ Bi , where each

Bi is a closed subset of Ĉ. Note that this is a closed subset of S(�), hence the map

�× −→ �B1,...,B�
⊆ �(�), F �→F (�) ∩ SB1,...,B�
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is measurable. In words, extracting the subtrees of F with leaves in prescribed
closed sets (e.g., the branches of F connecting two given points) is a measurable
map.

DEFINITION 2.2. A graded set F = (F (�))�≥1 ∈ �× is called an essential
spanning forest on its external vertices ξ(F) if it satisfies the following properties:

(i) for each � ∈ N
+ and any �-tuple {x1, . . . , x�} of vertices in ξ(F), there

exists at least one immersed tree T (x1, . . . , x�) ∈F (�) with those leaves;
(ii) for any immersed tree T ∈ F (�), any subtree T ′ ⊂ T (given by restricting

the immersion to a combinatorial subtree of the index tree τ ) is again in some
F (�′);

(iii) for any two trees Ti ∈ F (�i), i = 1,2, there is a tree in some F (�) that
contains both Ti’s as subtrees and has no leaves beyond those of the Ti ’s.

Note that (ii) implies that ξ(F) contains all the vertices of all the embedded
trees.

An essential spanning forest F is called a spanning tree if ξ(F) ⊂ C and every
path T (x, y) ∈ F (2) stays within a bounded region of C. A spanning tree is called
quasi-local if for any bounded � ⊂ C there exists a bounded domain �̄(F,�) ⊂ C

such that every tree of F with leaves in � is contained in �̄.
The set of essential spanning forests in Ĉ [with an arbitrary set of vertices ξ(F)]

will be denoted by �. It is easy to check that � is a closed subset of the Polish
space �×, hence itself is Polish. A simple explicit metric, denoted by d�, is given
by the restriction from �× to � of the sum over � of the Hausdorff distance on
S(�) multiplied by the weight 2−�.

For the tori T2
M , the spaces �

(�)
M , �×

M , �M are defined analogously, with the
only difference being that any essential spanning forest here is a single tree. The
metric d�M

is defined the same way as d�.

The only way in which two vertices may be disconnected in an essential span-
ning forest F in Ĉ is that all the paths between them go through ∞; therefore,
either F is a spanning tree, or no component of it is contained in a bounded do-
main of C. This is the property that the adjective “essential” for these spanning
forests refers to. (In the setting of discrete infinite graphs, this reduces to saying
that all components of the forest are infinite trees.) Also, note that the above def-
inition allows for having more than one path between two vertices, which will in
fact happen in the scaling limit of the MST.

2.2. The quad-crossing topology. Let us quickly recall the notation and the ba-
sic results for the quad-crossing topology of percolation configurations, introduced
in [48] and studied further in [27, 28].

Let D ⊂ Ĉ = C ∪ {∞} be open, or be equal to the torus T
2
M . A quad in the

domain D can be considered as a homeomorphism Q from [0,1]2 into D. The
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space of all quads in D, denoted by QD , can be equipped with the following
metric: dQ(Q1,Q2) := infφ supz∈∂[0,1]2 |Q1(z) − Q2(φ(z))|, where the infimum
is over all homeomorphisms φ : [0,1]2 −→ [0,1]2 which preserve the 4 corners
of the square. A crossing of a quad Q is a connected closed subset of [Q] :=
Q([0,1]2) that intersects both ∂1Q = Q({0} × [0,1]) and ∂3Q = Q({1} × [0,1]).
We say that Q has a dual crossing between ∂1Q and ∂3Q by some closed sub-
set S ⊆ [Q] if there is no crossing in S between ∂2Q = Q([0,1] × {0}) and
∂4Q = Q([0,1] × {1}).

From the point of view of crossings, there is a natural partial order on QD : we
write Q1 ≤ Q2 if any crossing of Q2 contains a crossing of Q1. Furthermore, we
write Q1 < Q2 if there are open neighbourhoods Ni of Qi (in the uniform metric)
such that N1 ≤ N2 holds for any Ni ∈ Ni . A subset S ⊂ QD is called hereditary
if whenever Q ∈ S and Q′ ∈ QD satisfies Q′ < Q, we also have Q′ ∈ S. The
collection of all closed hereditary subsets of QD will be denoted by HD . Any
discrete percolation configuration ωη of mesh η > 0, considered as a union of the
topologically closed percolation-wise open hexagons in the plane, naturally defines
an element S(ωη) of HD : the set of all quads for which ωη contains a crossing.
In particular, near-critical percolation at level λ ∈ R, as defined in Definition 1.2,
induces a probability measure on HD , which will be denoted by Pλ

η.
By introducing a natural topology, HD can be made into a compact metric

space. Indeed, let

�Q := {S ∈ HD : Q ∈ S} for any Q ∈ QD,

and let

�U := {S ∈ HD : S ∩ U = ∅} for any open U ⊂ QD.

Then define TD to be the minimal topology that contains every �c
Q and �c

U as
open sets. It is proved in [48], Theorem 3.10, that for any nonempty open D, the
topological space (HD,TD) is compact, Hausdorff and metrizable. Furthermore,
for any dense Q0 ⊂ QD , the events {�Q : Q ∈ Q0} generate the Borel σ -field of
HD . An arbitrary metric generating the topology TD will be denoted by dH . Now,
since Borel probability measures on a compact metric space are always tight, we
have subsequential scaling limits of Pλ

η on HD , as η = ηk → 0. Moreover, the
following convergence of probabilities holds. For critical percolation, λ = 0, it is
Corollary 5.2 of [48]; for general λ, the exact same proof works, using that the
RSW estimates hold in near-critical percolation.

LEMMA 2.3. For any λ ∈ R, any subsequential scaling limit Pλ
ηk

→ Pλ∞, and

any quad Q ∈ QD , one has Pλ∞[∂�Q] = 0. Therefore, by the weak convergence of
Pλ

ηk
to Pλ∞,

Pλ
ηk

[�Q] → Pλ∞[�Q].
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For the case of site percolation on ηT, we know much more than just the exis-
tence of subsequential limits. As explained in [27], Section 2.3, the existence of a
unique quad-crossing scaling limit for λ = 0 follows from the loop scaling limit
result of [18, 50]. The case of general λ is Theorem 1.4 of [28].

THEOREM 2.4 (Near-critical scaling limit). For any λ ∈ R, there is a unique
measure Pλ∞ for percolation configurations ωλ∞ in (HD,TD) such that the weak

convergence ωλ
η

d−→ ωλ∞ holds.

We have shown in [27] that the arm events between the boundary pieces of an
annulus are measurable w.r.t. the quad-crossing topology, and the convergence of
probabilities (analogous to Lemma 2.3) holds. Namely, for any topological annulus
A ⊂ D with piecewise smooth inner and outer boundary pieces ∂1A and ∂2A (and
for the case of D = T

2
M , we also require A to be null-homotopic), we define the

alternating 4-arm event in A as A4 = ⋃
δ>0 Aδ

4, where Aδ
4 is the existence of quads

Qi ⊂ D, i = 1,2,3,4, with the following properties (see the left-hand side of
Figure 4):

(i) Q1 and Q3 are disjoint and are at distance at least δ from each other; the
same for Q2 and Q4;

(ii) for i ∈ {1,3}, the sides ∂1Qi = Qi({0} × [0,1]) lie inside ∂1A and the
sides ∂3Qi = Qi({1} × [0,1]) lie outside ∂2A; for i ∈ {2,4}, the sides ∂2Qi =
Qi([0,1] × {0}) lie inside ∂1A and the sides ∂4Qi = Qi([0,1] × {1}) lie outside
∂2A; all these sides are at distance at least δ from the annulus A and from the other
Qj ’s;

(iii) the four quads are ordered cyclically around A according to their indices;
(iv) For i ∈ {1,3}, we have ω ∈ �Qi

, while for i ∈ {2,4}, we have ω ∈ �c
Qi

.
In plain words, the quads Q1,Q3 are crossed, while the quads Q2,Q4 are dual
crossed between the boundary pieces of A, with a margin δ of safety.

FIG. 4. Defining the alternating 4-arm event (in Section 2.2) and the color of a pivotal point (in
Section 2.3) using quad-crossings. Quads with a primal crossing are in solid red, quads with a dual
crossing are in dashed blue.
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The definitions of general (mono- or polychromatic) k-arm events in A are of
course analogous: for arms of the same color we require the corresponding quads
to be completely disjoint, and we still require all the boundary pieces lying outside
the annulus A to be disjoint.

The next lemma is proved for critical percolation in [27], Lemma 2.9. For near-
critical percolation, the same proofs work, using the stability of multi-arm prob-
abilities (see [28], Lemma 8.4, Proposition 11.6, or [37]), together with the exis-
tence of the near-critical scaling limit [28], Theorem 1.4.

LEMMA 2.5. Let A ⊂ D be a piecewise smooth topological annulus (with
finitely many nonsmooth boundary points). Then the 1-arm, the alternating 4-arm
and any polychromatic 6-arm event in A, denoted by A1, A4 and A6, respectively,
are measurable w.r.t. the scaling limit of critical percolation in D, and one has

lim
η→0

Pλ
η[Ai] = Pλ∞[Ai].

Moreover, in any coupling of the measures {Pλ
η} and Pλ∞ on (HD,TD) in which

ωλ
η → ωλ∞ a.s. as η → 0, we have

P
[{

ωλ
η ∈ Ai

}�{
ωλ∞ ∈ Ai

}] → 0 (as η → 0).(2.4)

2.3. Pivotals and pivotal measures. In [28], we managed to describe the
changes of macroscopic connectivities in a percolation configuration under the sta-
tionary or the asymmetric near-critical dynamics using just the pivotal measures
of [27], without making explicit use of notions like clusters or the set of pivotal
sites in continuum percolation. Unfortunately, the situation is slightly more com-
plicated for the models in the present paper, hence we need some foundational
work in addition to what was done in [27], Section 2.4.

Let x be a point surrounded (with a positive distance) by a piecewise smooth
Jordan curve γ ⊂ D, where “surrounded” means that D \ γ has two connected
components, with the one containing x being homeomorphic to a disk. For any
ε > 0, fix a lattice εZ2 in D, and let Bε(x) be the ε-square [i, i+1)ε×[j, j +1)ε in
the lattice that contains x. We say that x is pivotal for γ in ωλ∞ if, for any ε > 0 such
that B2ε(x) is surrounded by γ , the alternating 4-arm event occurs in the annulus
with boundary pieces ∂B2ε(x) and γ , as defined in Section 2.2. We let Pγ denote
the set of pivotal points for γ in D. Furthermore, we can identify the color of a
pivotal point x ∈ Pγ as open (black) versus closed (white, empty), as follows. We
let Pγ,ε

open denote the set of points x for which γ surrounds x without intersecting
or touching B2ε(x), and there exist quads Qε,i , i = 1,2,3,4, exhibiting the 4-
arm event from ∂B2ε(x) to γ such that the quad Uε , given by taking the union of
Uε := Qε,1 ∪ Qε,3 ∪ B2ε(x) and the bounded components of C \ Uε , is crossed
between the boundary pieces Qε,1({1} × [0,1]) and Qε,3({1} × [0,1]); see the
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right-hand side of Figure 4 in the previous subsection. Then we let the set of open
pivotals for γ be

Pγ
open := {

x ∈ D : x ∈Pγ,ε
open for all ε > 0 s.t. B2ε(x) is surrounded by γ

}
.

Clearly, the event x ∈ Pγ
open is measurable w.r.t. the quad-crossing topology. We

will use the notation x ∈Pγ,ε,δ
open for the event that all the crossing events in Pγ,ε

open are
satisfied even with a δ margin of safety. Finally, we set x ∈Pγ

closed if the analogous
dual crossing holds in the quad given by Qε,2 ∪ Qε,4 ∪ B2ε(x), for each small
enough ε > 0.

For a discrete percolation configuration ωλ
η , the above definitions do not work:

instead of taking all small enough ε > 0, we just need to take the annulus between
γ and the hexagon of the point x ∈ D. In particular, the previous definition would
render every η-hexagon that intersects γ to be pivotal automatically, something
that we will not do. Also, here it is clear what the sets Pγ

open(ω
λ
η) and Pγ

closed(ω
λ
η)

are: their disjoint union is the set of pivotal hexagons Pγ (ωλ
η), and the color is

determined by the color of the hexagon itself. We will nevertheless use notation
like x ∈ Pγ,ε

open(ω
λ
η): it has the meaning given above, using quad-crossings, and of

course it cannot hold unless η is small enough, say ε > η, so that ∂B2ε(x) already
intersects at least four η-hexagons.

PROPOSITION 2.6 (The set of pivotals, with colors). In any coupling of the
measures {Pλ

η} and Pλ∞ on (HD,TD) in which ωλ
η

a.s.−→ ωλ∞ as η → 0, for any
piecewise smooth null-homotopic Jordan curve γ ⊂ D we have the following state-
ments:

(i) Pγ
open(ω

λ
η) converges in probability to Pγ

open(ω
λ∞) in the Hausdorff metric

of closed sets; same for Pγ
closed and Pγ .

(ii) Almost surely, Pγ
open(ω

λ∞) ∪Pγ
closed(ω

λ∞) = Pγ (ωλ∞), a disjoint union.
(iii) Almost surely, whenever x ∈ Pγ (ωλ∞) for some γ , the color of x is the

same for all such γ .

In (i), it is not obvious that the sets Pγ
open(ω

λ∞), Pγ
closed(ω

λ∞), Pγ (ωλ∞) are topo-
logically closed, but this will follow from the proof. Note also that (ii) is not a
tautology (neither that the two colored sets are disjoint, nor that their union is the
set of all the pivotals), since in ωλ∞ we did not define the set of closed pivotals as
the complement of open pivotals.

The main difficulty in proving (i) is that the event x ∈ Pγ
open is not an open set

in the quad-crossing topology (HD,TD): perturbing a configuration even by an
arbitrary small amount may destroy a pivotal for γ , making the 4-arm event happen
only from a strictly positive distance ε > 0 to γ . In terms of discrete percolation
configurations, if there is an open pivotal connecting two halves of a cluster, then
making the connection between the two halves a bit thicker is a small change
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w.r.t. the quad-crossing topology, but it kills the pivotal. In particular, the harder
direction in (i) will be to prove that there are “enough” pivotals in ωλ∞, since this
requires controlling all scales simultaneously.

PROOF OF PROPOSITION 2.6. For (i), we need to prove that for any ε > 0, if
η > 0 is small enough, then with probability at least 1−ε, for every xη ∈Pγ

open(ω
λ
η)

there exists some x ∈ Pγ
open(ω

λ∞) within distance ε from xη, and vice versa, for
every x ∈ Pγ

open(ω
λ∞) there exists xη ∈ Pγ

open(ω
λ
η).

There will be three key ingredients. First, we have the following relationship
between the discrete and the quad-crossing definitions of open pivotality: for every
α > 0 if ε > 0 is small enough, then for all η > 0 small enough,

(2.5) P
[
Pγ,ε

open
(
ωλ

η

) ⊇ Pγ
open

(
ωλ

η

)]
> 1 − α.

To see this, note that, since γ is piecewise smooth, the 3-arm half-plane exponent
being 2 (larger than 1) implies that with high probability there are no pivotals
close to γ . (See, e.g., the end of the proof of Theorem 1.1 in [27], Section 4.6.)
That is, for ε small enough, B2ε(x) is surrounded by γ for every x ∈ Pγ

open(ω
λ
η). It

is also easy to check that the condition x ∈ Pγ
open(ω

λ
η) implies the existence of the

necessary quads Qε,1 and Qε,3 in the definition of Pγ,ε
open(ω

λ
η): taking either open

arm from x to γ , and the arc on ∂B2ε(x) between its first and last exit from B2ε(x),
the quad Qε,i should contain this arc.

Second, for any small α, ε > 0 there exists δ, η̄ > 0 such that for all 0 < η < η̄,

(2.6) P
[
Pγ,ε

open
(
ωλ

η

) = Pγ,ε,δ
open

(
ωλ

η

)]
> 1 − α.

The existence of a δ that still depends on x ∈ Pγ,ε
open(ω

λ
η), or rather on its lattice

square B2ε(x), is just a special case of [27], Corollary 2.10. Then, taking the prob-
ability α of the error much smaller than ε2, we can find a δ > 0 that, with large
probability, works for all points in Pγ,ε

open(ω
λ
η) simultaneously, proving (2.6).

The point of introducing the δ margin of safety is that now (2.6) immediately
implies that there exists some monotone function f = fα,ε : [0,∞) −→ [0,∞)

that could be described using the dyadic uniformity structures of [27], Lemma 2.5,
and [28], Proposition 3.9) such that

P
[∀x ∈ Pγ,ε

open
(
ωλ

η

)
and ∀ω̃ ∈ HD with dH

(
ω̃,ωλ

η

)
< f (δ),

we have x ∈ Pγ,ε,δ/2
open (ω̃)

]
> 1 − α

(2.7)

for some δ > 0 and any 0 < η < η̄, as given by (2.6).
The third key ingredient is that for any small α,β > 0, if ε, η̂ > 0 are small

enough, then

(2.8) P
[∀x ∈ Pγ,ε

open
(
ωλ

η

) ∃x̃ ∈ Pγ
open

(
ωλ

η

)
with d(x̃, x) < β

]
> 1 − α

for all 0 < η < η̂. Before proving this, let us see how (2.5), (2.7) and (2.8) imply
item (i). We start with the first direction.
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Fix α,β > 0 small. Corresponding to them, (2.8) gives some ε0, η̂0 > 0. We
also make sure that they are small enough for (2.5) to hold. Now, corresponding to
α and this ε0, there are δ0, η̄0 > 0 given by (2.7). Take 0 < η0 < η̄0 ∧ η̂0 so small
that

(2.9) P
[
dH

(
ωλ

η,ωλ∞
)
< f (δ0)/2 holds for all η ≤ η0

]
> 1 − α

in the coupling ωλ
η

a.s.−→ ωλ∞ that we have. If the event of (2.9) holds, then we also
have dH (ωλ

η,ωλ
η0

) < f (δ0), and hence, together with (2.7) and (2.8), we get that,
for all η ≤ η0,

P
[∀x ∈ Pγ,ε0

open
(
ωλ

η0

) ∃x̃ ∈Pγ
open

(
ωλ

η

)
with d(x̃, x) < β

]
> 1 − 3α.

Similarly, for k ≥ 1, corresponding to α/2k and β/2k , there are εk, η̂k > 0 given
by (2.8); we can make sure that εk < εk−1/2. Then, corresponding to α/2k and
εk , there are δk, η̄k > 0 given by (2.7). Take 0 < ηk < ηk−1/2 ∧ η̄k ∧ η̂k so small
that dH (ωλ

η,ωλ∞) < f (δk)/2 is satisfied for all η ≤ ηk with probability at least
1 − α/2k . Then, for all η < ηk , (2.7) and (2.8) together give that

P
[∀x ∈ Pγ,εk

open
(
ωλ

ηk

) ∃x̃ ∈Pγ
open

(
ωλ

η

)
with d(x̃, x) < β/2k] > 1 − 3α/2k.

Iterating this procedure, we get that there exist sequences ηk → 0 and εk → 0
such that with probability at least 1 − 3α

∑
k≥0 2−k = 1 − 6α, for any x0 ∈

Pγ,ε0
open(ω

λ
η0

) there exist

(2.10) xk ∈ Pγ,εk
open

(
ωλ

ηk

)
for k = 0,1,2, . . . , satisfying d(xk+1, xk) < β/2k.

These points have a limit xk → x̃0, which satisfies d(x0, x̃0) < 2β . Unsurprisingly,
we claim that x̃0 ∈ Pγ

open(ω
λ∞). Indeed, otherwise there would exist some ε̃ > 0

such that x̃0 /∈Pγ,ε̃
open(ω

λ∞), but for some small enough ε, this would clearly contra-
dict the existence of an ωλ

ηk
satisfying dH (ωλ

ηk
,ωλ∞) < ε and having an almost-

pivotal xk ∈ Pγ,ε
open(ω

λ
ηk

) at distance d(xk, x̃0) < ε, which we have from (2.10).
Since we can take α and β arbitrarily small, this argument and (2.5) together com-
plete the proof of the first direction of item (i).

For the other direction, if x ∈ Pγ
open(ω

λ∞), then, by definition, for all ε > 0 with

B2ε(x) surrounded by γ , there is some δ > 0 such that x ∈ Pγ,ε,δ
open (ωλ∞). Now, if

ωλ
η is close enough to ωλ∞ (again quantifiable in the sense of dyadic uniformity

structures), then x ∈ Pγ,ε,δ/2
open (ωλ

η) also occurs. By (2.8), if ε > 0 is small enough,
this means with large probability that there is an actual pivotal of ωλ

η close to x, as
required.

We still owe the proof of (2.8). Assume that x ∈ Pγ,ε
open(ω

λ
η) but there are no

open pivotal sites in Bβ(x). This implies that there is a 6-arm event from ∂B2ε(x)

to ∂Bβ(x): the interfaces between the open and closed arms cannot touch each
other within Bβ(x), hence their open sides form two disjoint open paths, creating
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FIG. 5. Left: an open ε-almost pivotal event without actual pivotals in the β-square implies a
6-arm event (four open and two closed arms) between radii ε and β . Right: having both an open and
a closed γ -pivotal in an ε-square implies a 6-arm event from 2ε to γ .

four open arms besides the two closed ones; see the left-hand side of Figure 5.
Since the 6-arm exponent is strictly larger than 2 at any fixed near-critical level λ

(see [49], Corollary A.8, for λ = 0, and [28], Proposition 11.6, or Proposition 1.3
in the present paper for general λ), we can take β := εζ with ζ > 0 small enough
for the polychromatic 6-arm probability satisfy α6(2ε,β) = o(ε2), and then the
probability that such a 6-arm event occurs anywhere in the domain tends to zero
as ε → 0, and we are done.

For Pγ
closed, the proof is of course identical. For Pγ , the harder direction [that

there exist points of Pγ (ωλ∞) close to the points of Pγ (ωλ
η)] is automatic from

the same results for Pγ
open and Pγ

closed, since in the discrete configuration ωη every
pivotal has a color. For the easier direction, the proof we gave for Pγ

open via (2.8)
did not in fact use that the point in Pγ (ωλ∞) had a definite color, only the 4-arm
events on all scales, hence it also applies here.

In item (ii), the fact that the union of the two colored sets gives all the pivotals
follows immediately from the discrete analogue and item (i). To prove the disjoint-
ness claim, by part (i) it is enough to prove that the probability of having a closed
and an open pivotal for γ within distance ε from each other goes to 0 as ε → 0.
But this event implies the existence of 6 disjoint arms from ε to γ (see the right-
hand side of Figure 5), and hence, as usual, the 6-arm exponent being larger than
2 implies the claim.

For item (iii), if γ1 and γ2 both surround x, with x ∈ Pγ1
open(ω

λ∞) ∩Pγ2
closed(ω

λ∞),
then we would also have x ∈ Pγ

open(ω
λ∞) ∩ Pγ

closed(ω
λ∞), where γ is the part of

γ1 ∪ γ2 that is visible from x. However, this is impossible by item (ii). �

Beyond the set of pivotals, we are also interested in the normalized counting
measure on them. In [28], Section 2.6, for any fixed ε > 0, we defined the set of
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ε-important points Pε(ωη) of any discrete percolation configuration in a bounded
domain D ⊂ Ĉ, relative to the (ε,3ε)-annuli given by a fixed lattice εZ2. Namely,
for x ∈ D, we let Bε(x) be the lattice square as before, let B̃ε(x) be the 3ε-square
centered at Bε(x) and let x ∈ Pε iff x ∈ P∂B̃ε(x). Then we considered the nor-
malized counting measure με(ωη) on this set Pε . Of course, the same discrete
definition works for near-critical percolation configurations ωλ

η . Then the main re-
sult of [27] is the following convergence of με for λ = 0, extended to general λ ∈ R

by [28], Theorem 11.5.

THEOREM 2.7. For any ε > 0, there exists a measurable map με : HD −→
MD , into the space of finite Borel measures on D, such that, for λ ∈ R, as η → 0,(

ωλ
η,με(ωλ

η

)) d−→ (
ωλ∞,με(ωλ∞

))
in the quad-crossing topology (HD,TD) in the first coordinate and in the Lévy–
Prokhorov distance of measures in the second one. Furthermore, the above Propo-
sition 2.6 implies immediately the convergence(

Pε
open

(
ωλ

η

)
,Pε

closed
(
ωλ

η

)) d−→ (
Pε

open
(
ωλ∞

)
,Pε

closed
(
ωλ∞

))
in the Hausdorff metric of closed sets.

3. Enhanced networks and cut-off forests built from the near-critical en-
semble. The pivotal measures of [27] that we recalled in Theorem 2.7 were used
in [28] as the intensity measures for the Poisson point processes of pivotal sites
that switch as the near-critical parameter λ ∈R changes. Here is the exact notation
that we will use.

DEFINITION 3.1. Let λ̄ = (λ,λ′) ∈ R
2 be any pair of near-critical parameters

with λ < λ′, and let ε > 0 be fixed. Let ωλ be a near-critical configuration ωλ
η or

ωλ∞ in T
2
M . We will denote by PPPε

λ̄
= PPPλ̄(μ

ε(ωλ)) the Poisson point process

PPPε
λ̄

= {
(xi, ti),1 ≤ i ≤ p

} ⊂ Pε(ωλ) × [
λ,λ′]

of intensity measure με(ωλ)(dx) × 1[λ,λ′](t) dt . The set {x1, . . . , xp} of pivotals
will usually be denoted by X. For the case of ωλ

η , the process PPPε
λ̄

can clearly

be constructed measurably from ω[λ,λ′]
η , and we will always work in this natural

coupling.

In Section 6 and Section 11.2 of [28], for any quad Q ⊂ C, any ε > 0, any
discrete or continuum near-critical percolation configuration ωλ and the asso-
ciated Poisson point process PPPε

λ̄
(ωλ), we constructed an edge-colored graph

NQ(ωλ,PPPε
λ̄
), called an ε-network, whose vertex set was the Poisson point set
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X = {x1, . . . , xp} of pivotals together with the four boundary arcs of Q, and whose
edge set was given by the primal and dual connections in ωλ between the vertices.
Since in this paper we are primarily interested in spanning trees, not in quad-
crossings, it will be useful to change the boundary conditions in the definition
slightly (but still using the quad-crossing topology). We will also need to add a bit
more structure to these networks: roughly, we will need to know which pivotals
in X are connected together by an open cluster of ωλ \ X, and will need to know
the colors of these pivotals in ωλ. The resulting structures will be called enhanced
networks. Just as in [28], we start with the following simple definition.

DEFINITION 3.2 (A nested family of dyadic coverings). For any b > 0 in
2−N = {2−k : k = 0,1,2, . . . }, let Gb be a disjoint covering of T2

M using the lat-
tice b-squares {[k, k + 1)b × [�, � + 1)b : (k, �) ∈ Z

2}. Now, for any r ∈ 2−N and
any finite subset X = {x1, . . . , xp} ⊂ T

2
M , one can associate uniquely r-squares

Br
x1

, . . . ,Br
xp

in the following manner: for all 1 ≤ i ≤ p, there is a unique square

B̃xi
∈ Gr/2 which contains xi and we define Br

xi
to be the r-square in the grid

rZ2 − (r/4, r/4) centered around the r/2-square B̃xi
. We will denote by Br(X)

this family of r-squares. This family has the following two properties:

(i) Each point xi is at distance at least r/4 from ∂Br
xi

.
(ii) For any set X, {Br(X)}r∈2−N forms a nested family of squares in the sense

that for any r1 < r2 in 2−N, and any x ∈ X, we have B
r1
x ⊂ B

r2
x .

For a finite set of points X ⊂ T
2
M , let r∗(X) > 0 denote one-tenth of the smallest

distance between any pair xi 
= xj ∈ X. With minor changes from the case of a
domain with a boundary to the case of a torus, it is proved in [28], Proposition 5.2,
that for X being the pivotals in PPPε

λ̄
, the random variable r∗(PPPε

λ̄
) is almost

surely positive (with a small abuse of notation, since PPPε
λ̄

is a subset of T2
M ×

[λ,λ′]).
DEFINITION 3.3. For 0 < r < r∗(PPPε

λ̄
), the r-mesoscopic ε-network

Nr-meso
M (ωλ,PPPε

λ̄
) associated to a near-critical percolation configuration ωλ in

the torus T
2
M and the Poisson point process PPPε

λ̄
of Definition 3.1 is the graph

with vertex set {x1, . . . , xp} and two types of edges, labelled primal or dual, with
a primal edge connecting xi and xj if there exists a quad R such that ∂1R and ∂3R

remain strictly inside Br
xi

and Br
xj

, and R remains strictly away from the squares

Br
xk

, k /∈ {i, j}, and for which ωλ ∈ �R . Dual edges are defined analogously (still
w.r.t. ωλ).

We consider two r-mesoscopic networks to be the same if the r-squares for
the vertices (as embedded in T

2
M ) and the labelled graph structures coincide. For

r1 < r2, we can compare an r1-mesoscopic network with a r2-mesoscopic network
by considering the unique r2-squares containing the r1-squares of the first network.
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We will now take r → 0, get a network NM(ωλ,PPPε
λ̄
) and then compare

these networks for ωλ
η and ωλ∞. The following results were proved in [28], Theo-

rem++ 6.14, and [28], Section 7.4, for λ = 0, extended to general λ in [28], Sec-
tion 11.2, for networks defined using slightly different boundary conditions than
here, but with the same proofs working fine.

PROPOSITION 3.4 (r-stabilization and η-convergence of networks). (i) There
exists a measurable rM = rM(ωλ∞,PPPε

λ̄
) < r∗(PPPε

λ̄
(ωλ∞)) > 0 such that for all

r ∈ (0, rM) we get the same r-mesoscopic ε-network Nr-meso
M (ωλ∞,PPPε

λ̄
). This sta-

bilized network will be called the ε-network Nλ̄,ε∞ = NM(ωλ∞,PPPε
λ̄
). For discrete

percolation configurations, the definition of Nλ̄,ε
η = NM(ωλ

η,PPPε
λ̄
) is the obvious

one.
(ii) For any α > 0, there is a scale rα = rα(M, λ̄, ε) such that in any coupling

with ωλ
η

a.s.−→ ωλ∞ in T
2
M , for all sufficiently small η > 0 there is a coupling of

PPPε
λ̄
(ωλ

η) and PPPε
λ̄
(ωλ∞) such that with probability at least 1 − α the following

holds: rα is less than both rM(ωλ∞,PPPε
λ̄
) < r∗(PPPε

λ̄
(ωλ∞)) and r∗(PPPε

λ̄
(ωλ

η)),
and for all r < rα we have

Nr-meso
M

(
ωλ

η,PPPε
λ̄

(
ωλ

η

)) = Nr-meso
M

(
ωλ∞,PPPε

λ̄

(
ωλ∞

));
that is, Nλ̄,ε

η = NM(ωλ
η,PPPε

λ̄
) coincides with Nλ̄,ε∞ = NM(ωλ∞,PPPε

λ̄
) in this sense.

[Only in this sense, not exactly, since the vertex sets PPPε
λ̄
(ωλ∞) and PPPε

λ̄
(ωλ

η) are
only close to each other, but do not coincide.]

Note that a network in itself may completely fail to describe the structure of
clusters; see Figure 6. This is a bit of a problem for the purposes of the present
paper, hence we are going to add some extra structure to our networks that will
be measurable w.r.t. the quad-crossing topology (in particular, it makes sense for
ωλ∞), while it describes how the pivotals of PPPε

λ̄
are connected to each other in

ωλ.

DEFINITION 3.5 (Mesoscopic sub-routers). Fix 0 < r < ρ < ∞. Utilizing the
notation introduced in Definition 3.2, let Br(T2

M) be the finite covering of T
2
M

FIG. 6. The same graph structure in a network (the middle picture) may correspond to very different
cluster structures (on the two sides).
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by overlapping r-squares. Given a subset Y of the set X = {x1, . . . , xp} of the
pivotals in PPPε

λ̄
, with |Y | ≥ 2, an (r, ρ)-mesoscopic sub-router for Y is an r-

square B ∈ Br(T2
M) with the following properties:

• it is at distance at least 2ρ from each xi ∈ X;
• there is an open circuit (i.e., no dual arm) in the square annulus with inner

face B and outer radius ρ; the largest s-square with some s ∈ 2−N that is concentric
with B , contains it, and is surrounded by the open circuit will be denoted by B̂;

• for each xi ∈ Y , there exists a quad R with ∂1R contained in B̂ , ∂3R contained
in Br

xi
, remaining strictly away from all the squares Br

xk
with xk ∈ X \ {xi}, and for

which ωλ ∈ �R .

Let RY (B) denote the event that an r-square B is an (r, ρ)-mesoscopic sub-
router for some Y ⊆ X. This is measurable w.r.t. ωλ, and using Lemmas 2.3
and 2.5, in the coupling of Proposition 3.4(ii), the set of r-squares B for which
RY (B) holds in ωλ

η is the same with probability tending to 1 (as η → 0) as in ωλ∞.
Furthermore, by choosing (r, ρ) appropriately, this set will turn out to be nonempty
with high probability, for all possible Y . For this, a key proposition, interesting in
its own right, is the following.

PROPOSITION 3.6 (The volume of clusters). For any λ ∈ R, M > ρ > 0 and
ζ > 0 fixed, for percolation ωλ

η in T
2
M , with probability tending to 1 as η → 0,

all clusters with diameter of at least ρ have at least (ρ/η)91/48−ζ sites. (Note that
91/48 equals 2 minus the one-arm exponent 5/48 [39].)

Similarly, with probability tending to 1 as r → 0, uniformly in the mesh η, all
these clusters have a “large r-volume” in the following sense: the number of r-
squares in Br(T2

M) that intersect the cluster is at least (ρ/r)91/48−ζ .

After the first version of this paper was posted, Rob van den Berg pointed out
that this proposition follows from (3.15) of [34]. However, since the proof there
is hard to read, we decided to keep our proof for the sake of completeness. Ear-
lier, similar but weaker results were proved in [36], Lemma 3.20, and [13], The-
orem 3.3. Finally, [56], Lemma 2.7, gives a bit more elegant version of our argu-
ment, but proving a little less; in particular, it is not proved there that all the radial
crossings of a (ρ/3, ρ)-annulus are everywhere well separated from each other
(see our proof below).

PROOF OF PROPOSITION 3.6. The proof will rely only on multi-arm expo-
nents; hence, in view of Proposition 1.3, the reader may just think of λ = 0. We
will do the case of the standard volume (number of sites in the η-mesh); the proof
works the same way for the case of the r-volume.

Take the lattice (ρ/3)Z2, and centered around each ρ/3-square, consider the
square of side-length ρ and the annulus between these two square boundaries. It is
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easy to check that any cluster of diameter at least ρ produces a radial crossing of
such a (ρ/3, ρ)-annulus. The number of such annuli is � (M/ρ)2.

Whether a given (ρ/3, ρ)-annulus Aρ is radially crossed can be decided using
the radial exploration process started at any point along the boundary at radius ρ/3,
with open hexagons on the right-hand side, closed hexagons on the left, stopped
when reaching the boundary at radius ρ. (See around Figure 2.6 of [27] or [57],
Section 4.3, for the definition of this exploration process.) If the annulus is crossed,
there are two cases: either (a) there is also an open circuit, or (b) there is also at
least one radial dual crossing.

(a) Condition on having an open circuit; this is slightly more general than the
first of the two above cases, since we do not condition on having also a radial
crossing. Condition on the smallest open circuit, �. The radial exploration process
finds it from inside; hence the configuration in the annulus between � and ∂2Aρ ,
denoted by A� , is undisturbed percolation. Moreover, by the half-plane 3-arm ex-
ponent being 2, the probability that the distance between � and ∂2Aρ is smaller
than δρ is O(δ). Let this distance be the random variable δ�ρ, take any 0 < δ < δ�

and take the set of points of A� whose distance from � is less than δρ. It is clear
that this set, denoted by Ã�,δ , contains a collection of K = K(δ) ≥ c/δ disjoint
balls of diameter δρ, denoted by Ãi , i = 1, . . . ,K , such that all their pairwise dis-
tances are at least δρ; for instance, take a family of vertical parallel lines with mesh
δρ, and in every other slab, take the uppermost ball of diameter δρ that touches �;
see the first picture in Figure 7. We will still fine-tune the value of δ later.

If a site in some Ãi has an open arm to distance at least cδρ, then with a uni-
formly positive probability it is connected to �, within the δρ/2-neighbourhood of
Ãi that will be denoted by B̃i . Vice versa, most sites in Ãi need to have an arm
of length cδρ in order to be connected to �. Thus, letting Xi(δ) be the number of
sites in Ãi that are connected to � within B̃i , and using quasi-multiplicativity of

FIG. 7. If the annulus Aρ has an open circuit or is crossed radially, then the radial exploration
process gives an open path � that has macroscopically wide unexplored space on one side, collecting
large enough volume connected to � with high probability.
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the one-arm probability α1(·, ·) (see Remark 1.4), we have

Eλ
η

[
Xi(δ)

] � (δρ/η)2α1(η, δρ) = (δρ/η)91/48+o(1).

It is a standard argument using quasi-multiplicativity and a summation over dyadic
scales that the second moment of Xi is comparable to the square of the first mo-
ment (see, e.g., [25], Lemma 3.1, for the second moment of the number of piv-
otals). Thus, by the Paley–Zygmund second moment inequality (a simple conse-
quence of Cauchy–Schwarz; see, e.g., [41], Section 5.5), there exists a uniform
constant c = cλ > 0 such that

Pλ
η

[
Xi(δ) > cEλ

ηXi(δ)
]
> c.

Using the independence of the variables Xi (conditionally on �) that follows from
the disjointness of the neighbourhoods B̃i , we get that

(3.1)

Pλ
η

[
cluster of � has volume ≤ cEλ

η

[
Xi(δ)

]|�]
≤ Pλ

η

[
Xi < cEλ

η

[
Xi(δ)

]
for all i = 1, . . . ,K(δ)|�]

≤ (1 − c)K(δ) = exp
(−c′/δ

)
.

Now we want to choose δ so that the bound cEλ
η[Xi(δ)] = (δρ/η)91/48+o(1) on

the cluster size becomes at least (ρ/η)91/48−ζ . This means that δ should be at least
(ρ/η)−48ζ/91+o(1), but this choice is allowed only if this value is less than δ� . As
mentioned above, this fails with probability (ρ/η)−48ζ/91+o(1), which, for η small
enough, is much smaller than (ρ/M)2. Therefore, with probability tending to 1
as η → 0, in all the at most O((M/ρ)2) annuli where case (a) occurs, δ� is large
enough and the event of (3.1) fails to hold, hence the cluster of � has volume at
least (ρ/η)91/48−ζ .

(b) Condition on the second case, and let � be the clockwise-most radial open
crossing that the exploration process has found. We claim that, similar to case
(a), there is a random variable δ� , uniformly positive in η, such that no hexagons
have been explored in the clockwise δ�ρ-neighbourhood of �. Indeed, this was
already used in [27], Lemma 2.9, in the proof of the quad-measurability of the 1-
arm event, and the reason is simply that this maximal distance δ� can be less than
some δ > 0 only if the radial exploration path comes to distance δρ to itself without
touching, which would imply a full plane 6-arm event from distance δρ to distance
of order ρ (or a half-plane 3-arm event, if it happens close to one of the boundary
components of Aρ ). See the second and third pictures in Figure 7. Now, we can
repeat the rest of the proof of case (a) within this unexplored space of width δ�ρ,
and we are almost done: we have just proved that, with very high probability as
η → 0, the cluster found by the radial exploration process started at some arbitrary
(say, uniform random) point at radius ρ/3 has large volume. However, we want
this for all clusters that cross Aρ , while the above procedure finds larger clusters
with larger probability.
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FIG. 8. Consecutive radial exploration processes.

To this end, once we have found one crossing cluster, we start a new radial
exploration from radius ρ/3, at the first point on ∂Bρ/3 to the right of the last
boundary touching point of the first exploration path that has an open site on the
right and a closed site on the left-hand side. We stop the process either when it
reaches an open site explored by the previous exploration path, and hence turns
inside, towards ∂Bρ/3, or when it reaches ∂Bρ (which we may call a “success”).
See Figure 8. Then we take the next point on ∂Bρ/3 that has an open site on the
right and a closed site on the left-hand side, and so on, until the entire boundary
∂Bρ/3 has been explored, and hence all radially crossing clusters have been found.
Now, before each success, the right boundary of what has been built by the se-
quence of unsuccessful explorations is an open arm from ∂Bρ/3 to ∂Bρ , and from
each point of this open arm, there is also a closed arm to ∂Bρ/3. Therefore, if the
next successful exploration path comes δρ-close to this right boundary, then it cre-
ates a full plane 6-arm or a half-plane 3-arm event (the third picture of Figure 7
applies locally), which do not happen anywhere in Aρ if δ is small enough. There-
fore, all these right boundaries have the open unexplored space to their right that
is required for our argument to work. Since each radially crossing cluster has, as
a subset, such a right boundary (not necessarily the right boundary of the entire
cluster), the proof of Proposition 3.6 is complete. �

We can now prove that the (r, ρ)-mesoscopic sub-routers of Definition 3.5 exist.

LEMMA 3.7. With probability tending to 1 as η → 0 and then r → 0, for any
0 < ρ < r∗(X), for all Y ⊆ X with |Y | ≥ 2 whose points are connected together
by a single open cluster of ωλ

η \ X (more precisely, there is a cluster of ωλ
η \ X that
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FIG. 9. Connections from possible sub-routers B can avoid other r-squares Br
xk

unless a 6-arm
event happens.

neighbours each hexagon in Y ), the set of (r, ρ)-mesoscopic sub-routers for Y is
nonempty.

PROOF. Assume that in a configuration ωλ
η , some Y ⊆ X satisfies the above

conditions. Let ρ be less than r∗(X), take r � ρ, and consider any r-square B that
intersects the cluster and whose distance from Br(X) is at least ρ. By the definition
of r∗(X) and by |Y | ≥ 2, such a B certainly exists. We are going to examine when
such a B could be a mesoscopic sub-router. Simply aiming at B̂ = B , the required
quad connecting B with an xi ∈ Y can fail to exist only if all the connections from
B to Br

xi
are r-close to some xk ∈ X \ {xi}; however, this would imply a 6-arm

event from radius r to ρ ∧ ε (see Figure 9), which does not occur anywhere in T
2
M

if r is small enough.
We still need to show that, among the r-squares B as above, there is at least one

that also has the open circuit in the (r, ρ)-annulus around it.
If ρ < r∗(X), then any cluster C connecting the points of Y has a connected

subset C′ of diameter at least ρ that has a distance at least ρ from all points of X.
[We used here the definition of r∗(X) and that |Y | ≥ 2.] For the maximal such C′,
the proof of Proposition 3.6 clearly applies, and for r � ρ, the number of r-squares
in Br(T2

M) intersected by C′ is at least (ρ/r)91/48−ζ with probability tending to 1
as r → 0. On the other hand, any of these r-squares fails to be an (r, ρ)-mesoscopic
sub-router only if there is no open circuit in the (r, ρ)-annulus around B . In such a
case, we have both a primal and a dual arm in the (r, ρ)-annulus, which event has
probability (r/ρ)1/4+o(1), uniformly in η > 0, by the 2-arm exponent [51]. Thus
the number of such r-squares is (ρ/r)7/4+o(1) in expectation, and by Markov’s
inequality, it is unlikely to be much larger, for any of the possible subsets Y ⊆ X

(whose number is independent of r). Since (ρ/r)7/4+o(1) is negligible compared
to the r-volume (ρ/r)91/48−ζ if ζ > 0 is small enough, with probability going to 1
as r → 0, we do have (r, ρ) sub-routers in every cluster spanned by some Y ⊆ X.

�
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If B1, B2 are (r, ρ) sub-routers for Y1, Y2 ⊆ X, respectively, we will call them
connected if there exists a quad R with ∂1R contained in B̂1, ∂3R contained in
B̂2, remaining strictly away from all the squares Br

X , and for which ωλ ∈ �R . As
before, in the coupling of Proposition 3.4(ii), for ρ < rM , the relation of being
connected converges in probability as ωη → ω∞, which also implies that it is an
equivalence relation even in ω∞. If Bi is an (r, ρ) sub-router for Yi ⊆ X, i = 1,2,
and B1 and B2 are connected, then both Bi’s are (r, ρ) sub-routers for Y1 ∪ Y2,
since we can glue the path between B1 and B2, the circuit around B2, and the path
from B2 to any of the r-squares B ∈ Br(Y2) to get a path from B1 to B . There-
fore, for each equivalence class of (r, ρ) sub-routers there exists a maximal subset
Y ⊆ X for which all elements of the equivalence class are sub-routers. Such a max-
imal subset Y will sometimes be called a cluster of pivotals, and a corresponding
equivalence class is said to be spanned by Y . For instance, in Figure 6, the left
configuration has two clusters, spanned by the same three pivotals, while the right
configuration has three clusters, each with a maximal Y of two elements.

In each equivalence class of sub-routers, we want to single out one of them.
In order to do this in a way that is typically continuous w.r.t. ωλ, we need to re-
strict ourselves to the case when every open cluster of ωλ in T

2
M has diameter less

than M/3; this will turn out to be typically the case when λ is very negative. (For
continuum percolation configurations, the diameter is the lim supr→0 of distances
between r-boxes that are connected in the usual sense that there is a crossed quad
with its opposite sides contained in the r-boxes. It is clear from Lemma 2.3 that,
in any coupling with ωλ

η

a.s.−→ ωλ∞, the event that this diameter is at most M/3 con-
verges almost surely.) Then, for r < M/10, the set of (r, ρ) sub-routers for any
Y has an isometric embedding into [−M/2,M/2)2 ⊂ C. The leftmost sub-router
of the lowermost ones in such an embedding will be the same in any of these
embeddings; moreover, its location in T

2
M can change only a little if we move

each sub-router a little, to at most distance M/10. The set of these “leftmost of
lowermost” sub-routers will be the (r, ρ)-mesoscopic routers of X, or after fixing
ρ = rM/2 (from Proposition 3.4), the set of r-mesoscopic routers. Note that by
restricting ourselves to subsets |Y | ≥ 2, clusters containing only one pivotal from
X will not have routers.

Although we will not really need them, for the sake of symmetry in our presen-
tation, analogously to the above routers that used primal (open) connections, we
also define dual clusters of pivotals and dual r-mesoscopic routers.

We can now define the enhanced networks we promised.

DEFINITION 3.8. Assuming that the diameter of every cluster in ωλ is at most
M/3, the r-mesoscopic enhanced ε-network ENr-meso

M (ωλ,PPPε
λ̄
) is the following

vertex- and edge-labeled bipartite graph. One part of the vertex set is the set X

of the pivotals of PPPε
λ̄
, the other part is the r-mesoscopic routers of X (both the

primal and dual ones). The vertices in PPPε
λ̄

are colored open or closed, according
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FIG. 10. A schematic picture of a percolation configuration ωλ
η with the pivotals of PPPε

λ̄
on a

torus, and the corresponding enhanced network. Pivotals are represented by circles, routers are
represented by squares. Primal connections are shown using red solid lines, dual connections are
shown using blue dashed lines.

to the definitions before Proposition 2.6; the routers are colored in the obvious way.
The edge set consists of the connections between the routers and the elements of
their maximal Y ⊂ X, labelled primal or dual according to the color of the router.
The edges are drawn on the torus so that they are homotopic (with fixed endpoints)
to the connections they represent; clearly, one can also achieve that they do not
intersect each other; see Figure 10.

If the assumption on the diameters is not satisfied, let ENr-meso
M (ωλ,PPPε

λ̄
) be

empty.

Note that the networks of Definition 3.3 are measurable functions of these en-
hanced networks in a very simple way: there exists a primal (or dual) router with
edges to xi, xj ∈ X in ENr-meso

M (ωλ,PPPε
λ̄
) if and only if there is a primal (dual,

resp.) edge between xi and xj in Nr-meso
M (ωλ,PPPε

λ̄
). Moreover, the same proof as

for Proposition 3.4, together with Theorem 2.7, implies the following.

PROPOSITION 3.9 (r-stabilization and η-convergence of enhanced networks).
(i) There is a measurable scale r̃M = r̃M(ωλ∞,PPPε

λ̄
) ∈ (0, r∗) such that for all r ∈

(0, r̃M) we get the same r-mesoscopic enhanced ε-network ENr-meso
M (ωλ∞,PPPε

λ̄
)

in the sense that the networks are the same, plus the colors in X and the collec-
tions of primal and dual clusters of pivotals are also the same. [The corresponding
routers do not exactly stabilize, since for a smaller r new (r, rM/2) sub-routers can
appear; but they cannot disappear, and hence each router does converge to a point
in T

2
M as r → 0.] This stabilized network will be called the enhanced ε-network

ENλ̄,ε∞ = ENM(ωλ∞,PPPε
λ̄
). For discrete percolation configurations, the definition

of ENλ̄,ε
η = ENM(ωλ

η,PPPε
λ̄
) is the obvious one.
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(ii) In any coupling with ωλ
η

a.s.−→ ωλ∞ in T
2
M , there is a coupling of PPPε

λ̄
(ωλ

η)

and PPPε
λ̄
(ωλ∞) such that with probability tending to 1 as η → 0, ENλ̄,ε

η =
ENM(ωλ

η,PPPε
λ̄
) is the same as ENλ̄,ε∞ = ENM(ωλ∞,PPPε

λ̄
) in the sense that the

vertex sets for η and ∞ (consisting of the pivotals in PPPε
λ̄

and the routers) are
arbitrarily close to each other, and the labelled graph structures coincide.

REMARK 3.10. These enhanced networks are very useful planar (more pre-
cisely, toroidal) representations of the discrete and continuous percolation config-
urations, which was not a priori obvious how to achieve, since the quad-crossing
space allows for nonplanar configurations, and hence is not ideal to express pla-
narity.

Using the enhanced networks, we are now going to define a spanning forest
MSFλ̄,ε with vertices being the primal routers in ENλ̄,ε . We will show in Section 4
that, for λ < 0 very negative, λ′ > 0 very large, and ε > 0 small, this forest has a
unique giant tree component, which will be the cut-off tree MSTλ̄,ε that approxi-
mates well the macroscopic structure of MST in T

2
M . This forest MSFλ̄,ε may have

edges that intersect each other besides their endpoints; nevertheless, it consists of
trees immersed into the torus T2

M in the sense of Section 2.1, and the fact it turns
out to approximate MSTη implies in particular that these possible intersections
vanish in the limit.

DEFINITION 3.11 (Constructing the cut-off spanning forest MSFλ̄,ε on T
2
M ).

1. The vertices are the primal routers in ENλ̄,ε . Connect two routers by an edge
if they are both connected in ENλ̄,ε to the same open pivotal of ωλ. The resulting
graph usually has several components (e.g., six of them on the left-hand picture of
Figure 11), which more-or-less represent the λ-clusters in ωλ (this will be made
more precise in the next section).

2. In each component of this graph, choose a spanning tree in an arbitrary de-
terministic way, and label each edge of this tree by λ.

3. For each pivotal xi of PPPε
λ̄

that is closed in ωλ, add an edge between the
corresponding routers, and label it by its ti ∈ (λ,λ′) value. Note that these edges
may be loops, as the one labelled by −5 on the left-hand picture of Figure 11, for
instance.

4. As in the so-called reversed Kruskal algorithm, from each cycle delete the
edge with the largest label, and get a minimal spanning tree in each component of
the above graph.

5. Draw all the edges of the thus constructed forest as straight line segments,
respecting the torus topology [i.e., choosing the line segment on the torus that is
homotopic to the concatenation of the embedded edges of ENr-meso

M (ωλ,PPPε
λ̄
)

that gave rise to this edge of the forest]. See the right-hand picture of Figure 11.



3534 C. GARBAN, G. PETE AND O. SCHRAMM

FIG. 11. Building the cut-off forest MSFλ̄,ε from the enhanced network of Figure 10. On level λ,
there was a cycle that had to be broken. The numbers from −6 to 6 on the closed pivotals of ωλ

η

represent their levels ti ∈ (λ,λ′) in PPPε
λ̄

at which they become open. The resulting spanning forest
has two components.

Note that the edges may intersect each other besides their endpoints (even if this
does not happen on this particular picture).

4. Approximation of MSTη by the cut-off trees MSTλ̄,ε
η .

4.1. Preparatory lemmas and the definition of MSTλ̄,ε
η . Our first lemma is a

RSW-type result that is interesting even in the critical case. Nevertheless, the sim-
plest proof we have found uses our dynamical and near-critical stability results
from [28], Section 8.

LEMMA 4.1 (Local ring lemma). There exists δ > 0 such that for any λ ≤ 0
and any radius R < |λ|−4/3, for all small enough mesh 0 < η < η0(λ,R), one has

Pη[AR,λ,δ] > 1 − 1

100
,

where AR,λ,δ stands for the event that there exist λ-clusters for the restriction
of ωλ

η to the annulus AR,2R : C1, . . . ,CN,CN+1 = C1 which satisfy the following
conditions:

1. for each i ∈ [1,N], diam(Ci ) ≥ δR; in particular, the clusters of the per-
colation configuration nonrestricted to AR,2R that contain these Ci ’s also have
diameter ≥ δR;

2. for each i ∈ [1,N], there exists at least one closed site yi neighbouring both
Ci and Ci+1;

3. the circuit {C1, . . . ,CN } disconnects the annulus AR,2R in the sense that the
two boundaries of the annulus are not connected in the graph AR,2R \ ⋃N

i=1(Ci ∪
{yi}).
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Moreover, we can choose the clusters Ci and the points yi such that all the yi ’s
are elements of the Poisson point set PPPε

λ̄
, with ε = δR and λ′ large enough

(depending on R).

PROOF. Consider the near-critical coupling (ωt
η)t∈R. For λ′ ≥ λ large enough

(on the order of R−3/4), there is a probability at least 995/1000 that ωλ′
η has an

open circuit even in the smaller annulus A5R/4,7R/4; this follows from known re-
sults on the correlation length, for example, [28], Theorem 10.7. Now sample ωλ

η ,

consider some small ε > 0 to be fixed in a second, and let ω̃λ′
η be the configuration

where we open only those vertices in the coupling while getting from λ to λ′ that
are given in PPPε

λ̄
. The assumption R < |λ|−4/3, below the correlation length given

by [28], Theorem 10.7, implies that we can choose η > 0 small enough compared
to R so that ωλ

η has 4-arm probabilities inside the domain AR,2R that are compara-
ble to the critical ones. Therefore, the critical case computations of [28], Section 8,
apply uniformly in λ ≤ 0 and R < |λ|−4/3, and by a straightforward modification
of [28], Proposition 8.6, from quad-crossings to annulus circuits, for ε = δR > 0
with δ > 0 small enough (uniformly in λ and R), the probability that ωλ′

η has an

open circuit in A5R/4,7R/4 but ω̃λ′
η does not have one in AR,2R is less than 5/1000.

Altogether, the probability that ω̃λ′
η has an open circuit in AR,2R is at least 99/100.

But such a circuit must be composed of λ-clusters and ε-important points that have
become open, which implies that all these λ-clusters must have diameter at least
ε, and the lemma is proved. �

LEMMA 4.2 (Global ring lemma). Fix δ > 0 as in Lemma 4.1. For any λ ≤ 0
and α > 0, there is a radius r = r(λ,α) < δ

2 |λ|−4/3 such that, for any small enough
η, with probability at least 1−α, one can find around all points x ∈ T

2
M an annulus

AR,2R surrounding x with r̄ = r/δ ≤ R ≤ |λ|−4/3 that satisfies the event AR,λ,δ .
(The choice r̄ = r/δ is made so that the clusters we find are at least of diameter r .)

PROOF. Consider the covering of T2
M by the squares given by r̄Z2, and around

each such r̄-square, consider the dyadic annuli up to scale |λ|−4/3. By Lemma 4.1,
the probability that there is an r̄-square for which all the dyadic annuli fail to have
the required ring of clusters is at most

O(1)(M/r̄)2(1/100)log2
|λ|−4/3

r̄ = O
(
M2)|λ|4/3 log2 100r̄−2+log2 100,

which can be made arbitrarily small as r̄ → 0. �

Part (ii) of the next lemma again has a RSW feeling to it, and is again proved
using [28], Section 8.

LEMMA 4.3 (Subcritical lakes joining the supercritical ocean). Consider per-
colation ωλ

η on T
2
M with λ < −1, and fix an arbitrarily small α > 0:
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(i) For any s > 0, if λ < −1 is small enough, then for all η > 0 small enough,
with probability at least 1 − α, all clusters in ωλ

η have diameter less than s.
(ii) Using part (i), take λ < −1 small enough so that with probability more than

1 −α/3, all clusters in ωλ
η have diameter less than M/3. Then, for any r > 0 there

is a λ′
0(λ, r, α) > 0 and an ε0(λ, r, α) > 0 such that for all λ′ ≥ λ′

0 and ε ≤ ε0,
for all small enough η > 0, with probability at least 1 − α, all the clusters in ωλ

η

of diameter at least r are connected via primal paths in the enhanced network
ENλ̄,ε

η = ENM(ωλ
η,PPPε

λ̄
) with λ̄ = (λ,λ′), defined in Proposition 3.9, in the sense

that each such cluster contains a primal router and these routers are all connected
by primal edges (through closed or open pivotals, as in Definition 3.11) in the
enhanced network.

PROOF. It is proved in [28], Theorem 10.7, that, for any fixed s > 0, as
λ′ → ∞, the probability of having an open circuit in a given annulus As/3,s in
ωλ′

η converges to 1. Consider a tiling of T2
M by s/3-squares, and the annuli of side-

length s centered around them. By a union bound, the probability of having open
circuits in all of them converges to 1. When all these circuits are present, their
union is a single component, and any subset of T2

M of diameter at least s intersects
this cluster.

Running the above argument for dual circuits in ωλ
η with λ → −∞ gives that,

with probability tending to 1, the diameter of the largest open cluster must be less
than s, which proves item (i).

For item (ii), we will use the first paragraph with s = r/10. Note that any clus-
ter C of ωλ

η with diameter at least r will radially cross two such (s/3, s)-annuli at
distance at least r/2 from each other, A1 and A2. Moreover, assuming that C has
diameter at most M/3 (which is satisfied for all clusters C with probability more
than 1−α/3), we can choose A1 and A2 with the additional property that, for each
of them, not all of the eight neighbouring inner squares are intersected by C. On
the other hand, the first paragraph says that if λ′ ≥ λ′

0 is large enough, then with
probability more than 1−α/3, all the (s/3, s)-annuli will have open circuits in ωλ′

η .

Now we use [28], Proposition 8.1, which implies that in the configuration ω̃λ′
η that

we get by starting from the configuration ωλ
η and opening only the pivotal points of

PPPε
λ̄
, with λ̄0 = (λ,λ′), all these open circuits in the (s/3, s)-annuli will already

be there with probability more than 1 − 2α/3, provided that 0 < ε ≤ ε0(λ
′, r, α)

is small enough. This can happen in our two above annuli A1,A2 only if C
neighbours points of PPPε

λ̄
in both annuli that are closed in ωλ

η but open in ω̃λ′
η .

These ε-pivotal points appear in the enhanced network ENλ̄,ε
η = ENM(ωλ

η,PPPε
λ̄
),

and C has a primal router connecting these pivotals with high probability
(as η → 0).

Furthermore, the open circuits of ω̃λ′
η in the (s/3, s)-annuli must be com-

posed of clusters of ωλ
η with diameter at least min{s/3, ε}, joined by ε-pivotals.

The expected number of disjoint such clusters is bounded from above by some
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K = K(M,λ, r, ε) < ∞, uniformly in η (as follows from [3]), hence in all of them
we have primal routers with probability tending to 1, as η → 0. That is, altogether,
with probability at least 1 − α, all the λ-clusters of diameter at least r have diame-
ter at most M/3, and they are all connected in the enhanced network ENλ̄,ε

η , for λ′
chosen large enough, then ε(λ′, r, α) and then η chosen small enough. �

Using the above lemmas, we can now see why there is typically a unique giant
component in the cut-off forests MSFλ̄,ε

η and MSFλ̄,ε∞ of Definition 3.11.

LEMMA 4.4 (Defining the cut-off trees MSTλ̄,ε
η and MSTλ̄,ε∞ ). For any M > 0,

any small s > 0 and α > 0, if λ < −1 is very negative, ε > 0 is small, and λ′ > 1
is large enough, then with probability at least 1 − α for any small enough mesh
η > 0, there is a unique giant component in the cut-off forest MSFλ̄,ε

η (and hence,

by Proposition 3.9, in MSFλ̄,ε∞ ), with the properties that it comes to distance at most

s from any point of T2
M , while all other components of MSFλ̄,ε

η have diameter at
most s. This giant tree component will be our approximating cut-off tree, denoted
by MSTλ̄,ε

η and MSTλ̄,ε∞ ; whenever the above large probability event fails to occur,

we set MSTλ̄,ε to be a single point in T
2
M , and call this tree degenerate.

PROOF. Take λ < −1 such that 2|λ|−4/3 < s holds and the diameter bound of
Lemma 4.3(i) applies. By Lemma 4.2, with probability at least 1−α/2, every point
of T2

M has in its s-neighbourhood a ring of λ-clusters of diameter at least r(λ,α)

each (possibly a single cluster, but still of diameter in T
2
M less than s). Now, if we

take ε > 0 small and λ′ > 0 large, then Lemma 4.3(ii) says that with probability
at least 1 − α/2 all λ-clusters of diameter at least r(λ,α) get connected in the en-
hanced network ENλ̄,ε

η . Therefore, with probability altogether at least 1 − α, there
is a component of the graph of Definition 3.11 that has distance at most s from any
point of T2

M , while all other components have diameter at most r(λ,α) ≤ s. The
spanning trees of these components inherit these properties, hence we are done.

�

So, we have finally defined the trees MSTλ̄,ε
η and MSTλ̄,ε∞ . Naturally, they are

also immersed spanning trees in the sense of Definition 2.2. Now, using Propo-
sition 3.9, we can easily show that they are close to each other in the space of
essential spanning forests, introduced in that definition.

COROLLARY 4.5. For any M > 0 and s, α > 0, if λ < −1 is very negative,
ε > 0 is small, and λ′ > 1 is large enough, then, in the coupling of Proposi-
tion 3.9(ii) between (ωλ

η,PPPε
λ̄
) and (ωλ∞,PPPε

λ̄
), we have

P
[
d�M

(
MSTλ̄,ε

η ,MSTλ̄,ε∞
)
< s

]
> 1 − α

for all η > 0 small enough.
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PROOF. The parameters λ,λ′, ε can be set so, by Lemma 4.4, that both MSTλ̄,ε
η

and MSTλ̄,ε∞ are nondegenerate with probability at least 1 − α/2, for any η > 0
small enough. Now, by Proposition 3.9(ii), we can take η > 0 so small that, with
probability at least 1 − α/2, the enhanced networks ENλ̄,ε

η and ENλ̄,ε∞ agree as
graphs and the Hausdorff distance between their vertex sets is less than s. On the
event that both trees exist, the networks agree, and the vertex sets are closer than
s to each other, which occurs with probability at least 1 − α, the uniform distance
between the corresponding �-trees is always less than s, and hence the sum with
the weights 2−� is also less than s, and we are done. �

4.2. Approximation as ε → 0 and (λ,λ′) → (−∞,∞). After these prepara-
tions, we can turn to approximating MSTη on the lattice ηT ∩ T

2
M by the cut-off

trees MSTλ̄,ε
η . First of all, note that if two vertices of ηT ∩ T

2
M are in the same

λ-cluster, then the path in MSTη that connects them remains in that λ-cluster. This
also means that for any two λ-clusters of ηT ∩T

2
M , there is a unique path in MSTη

that connects them.
The next lemma is a key step in approximating MSTη by cut-off trees.

LEMMA 4.6 (Paths through macroscopic clusters). Fix any α > 0. If λ < −1
is small enough, ρ > 0 is arbitrary, ε > 0 is small and λ′ > 0 is large enough, then,
for any η > 0 small enough, with probability at least 1 − α, for any two clusters
of diameter at least ρ in ωλ

η , there is a unique path in MSFλ̄,ε
η that connects the

two clusters, and the unique path in MSTη doing the same goes through the same
closed pivotals of PPPε

λ̄
, and hence the distance of these two paths in the uniform

metric is at most the maximal diameter of all λ-clusters.

PROOF. Choose λ < −1 then ε1 > 0 and λ′
1 > 1 so that the event of

Lemma 4.3(ii), with r := ρ there, occurs with probability at least 1 − α/3. Condi-
tion on this event, set λ̄1 = (λ,λ′

1), and consider the path in MSFλ̄1,ε1
η that connects

two of the clusters. There is a corresponding path in ηT, going through the same
finitely many ε1-important points of ωλ

η and some λ-clusters, using labels at most
λ′

1. Therefore, the true path in MSTη also uses labels at most λ′
1. Assume now that

this path goes through some λ-cluster C of diameter at most r � ρ. This path must
go through a vertex x of ηT, neighbouring C, with the following properties (see
Figure 12):

• it is closed in ωλ
η but open in ω

λ′
1

η ;
• it has two λ-closed arms emanating from it, which together separate the two

clusters of diameter at least ρ that we started with;
• on the side of these two closed arms that contains C, there is a λ-open arm

from x only to distance at most r . (Note here that x might be neighbouring λ-
clusters of diameter more than r , but we can choose the closed arms so that they
separate those clusters from C.)
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FIG. 12. The path in MSTη connecting two large λ-clusters does not go through very small
λ-clusters, basically because of the near-critical stability of 4-arm probabilities.

If x had the alternating 4-arm event to a distance more than r in ωλ
η , that could

happen only if the two open arms out of these four were on the side of the two long
closed arms that does not contain C. This would altogether yield a 5-arm event to
distance r , of type closed-open-closed-open-closed, where the extra closed arm in
the middle is needed to get an alternating 4-arm event. Moreover, since the labels
along the path in MSTη are all at most λ′

1, we would get a (λ,λ′
1)-near-critical six-

arm event from x to distance r , as defined in Proposition 1.3 (the sixth arm is of
length at least ρ/2, because of being λ′

1-connected to the λ-cluster of diameter at
least ρ). By that proposition and by the 6-arm exponent being larger than two (see
[49], Corollary A.8), this happens with very small probability if η is small enough.
So, we can basically assume that x is not r-pivotal in ωλ

η . On the other hand, if
we now change all the labels above λ along the path in MSTη to λ, then, in the
new configuration, x will have the alternating 4-arm event to distance at least ε1.
Since the labels we have changed are all in [λ,λ′

1], we can apply another version
of near-critical stability, Lemma 8.5 of [28], saying that the probability that the
importance of a given vertex x can be changed from r to ε1 by such label changes
is at most

Oλ,λ′
1
(1)r2α4(η, r)α4(ε1,1)−1.

Additionally, the probability that the status of this vertex x is different in ω
λ′

1
η

than in ωλ
η is Oλ,λ′

1
(1)η2/α4(η,1), independently of everything. The number of

possible vertices x ∈ T
2
M is OM(η−2). Altogether, the expected number of vertices

x satisfying this scenario is

OM,λ,λ′
1
(1)r2α4(r,1)−1α4(ε1,1)−1.

This is arbitrarily small if r is small, hence the probability that this scenario hap-
pens is also small. Summarizing, there exists r > 0 depending on M,α,λ and ρ,
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such that for all small enough η > 0, with probability at least 1 − α/3, the path
in MSTη connecting any two λ-clusters of diameter at least ρ does not go through
λ-clusters smaller than r .

Now choosing ε > 0 small and λ′ > 1 large, again by Lemma 4.3(ii), the en-
hanced network ENλ̄,ε

η will connect all the λ-clusters of diameter at least r with
probability at least 1 − α/3. Altogether, with probability at least 1 − α, for any
two λ-clusters of diameter at least ρ, the unique paths in MSTη and MSFλ̄,ε

η both
go through the same λ-clusters, connected by λ-closed pivotals of importance at
least r . The last half sentence of the lemma follows immediately from the way
Definition 3.11 is done. �

We can now easily prove the main result of this section.

PROPOSITION 4.7. For any M > 0 and s, α > 0, if λ < −1 is very negative,
ε > 0 is small, and λ′ > 1 is large enough, then we have

P
[
d�M

(
MSTη,MSTλ̄,ε

η

)
< s

]
> 1 − α

for all η > 0 small enough.

PROOF. As in the proof of Lemma 4.4, take λ < −1 such that with probability
at least 1 − α/2, all λ-clusters in T

2
M have diameter less than s, and every point

of T
2
M has in its s/2-neighbourhood a ring of λ-clusters of diameter at least r

each, for some 0 < r < s/2, uniformly in η, as provided by Lemma 4.2. Now, if
we take ε > 0 small and λ′ > 0 large, then, with probability at least 1 − α/2, all
λ-clusters of diameter at least r are connected in MSTλ̄,ε

η , and, by Lemma 4.6, the
paths connecting them are at a uniform distance at most s from the corresponding
paths of MSTη. We will assume that both events of probability at least 1 − α/2
hold.

Consider any path γ of MSTη connecting some x, y ∈ T
2
M . Both x and y have

the above mentioned ring of macroscopic λ-clusters around them, and γ must
intersect at least one member of each ring; see Figure 13. But then, the part of
γ connecting the intersected members closest to x and y, denoted by Cx and Cy ,

respectively, by the previous paragraph, is uniformly s-close to a path in MSTλ̄,ε
η ,

denoted by γ λ̄,ε . And this γ λ̄,ε is of course s-close to the entire γ , since the parts
of γ going from x to Cx and from y to Cy are contained in the s-neighbourhoods
of Cx and Cy .

In the other direction, consider any path γ λ̄,ε in MSTλ̄,ε
η , connecting two routers.

The clusters of pivotals corresponding to these routers have diameter at most s,
but could be rather small. Nevertheless, fixing one point in each cluster, there is a
ring of macroscopic λ-clusters around each, which certainly contains a cluster of
pivotals that γ λ̄,ε goes through. The rest of the proof is just as above.

Now that we have good approximations for paths in the two trees connecting
any two vertices, the extension to trees with � > 2 leaves is straightforward. �
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FIG. 13. Paths in MSTη can be approximated by paths through macroscopic λ-clusters.

5. Proof of the main result.

5.1. Putting the pieces together for MST on tori T2
M . In this subsection, we

prove convergence in any fixed torus T2
M .

THEOREM 5.1 (Limit of MSTη and MSTλ̄,ε∞ in T
2
M ). In the metric space �M

of spanning trees in the torus T
2
M , as defined in Definition 2.2, the spanning tree

MSTη on the lattice ηT ∩ T
2
M converges in law to a translation invariant MST∞,

which is also the distributional limit of the cut-off trees MSTλ̄,ε∞ , as λ̄ → (−∞,∞)

and ε → 0.

PROOF. Using the results of the previous section, the proof is classical, for
example, the exact same strategy was used in [28], Section 9. By Proposition 4.7,
for any k ∈ N there exists λ̄k = (λk, λ

′
k) and εk > 0, such that, for all 0 < η < ηk

sufficiently small,

(5.1) P
[
d�M

(
MSTη,MSTλ̄k,εk

η

)
< 2−k] > 1 − 2−k.

Now, by Corollary 4.5, there is a coupling between (ωλ
η,PPPε

λ̄
) and (ωλ∞,PPPε

λ̄
),

and by the same token, between ω[λ,λ′]
η and (ωλ∞,PPPε

λ̄
), such that, for all 0 < η <

η′
k sufficiently small,

(5.2) P
[
d�M

(
MSTλ̄k,εk

η ,MSTλ̄k,εk∞
)
< 2−k] > 1 − 2−k.

Combining (5.1) and (5.2) using the triangle inequality, in the same coupling,

P
[
d�M

(
MSTη,MSTλ̄k,εk∞

)
< 2−k+1]

> 1 − 2−k+1.
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We can now couple all the trees MSTλ̄k,εk∞ to MSTη one-by-one, and given MSTη,
conditionally independently to each other, such that, again using the triangle in-
equality,

(5.3) P
[
d�M

(
MSTλ̄k,εk∞ ,MSTλ̄�,ε�∞

)
< 2−k+2 for all � ≥ k

]
> 1 − 2−k+2.

Using the Borel–Cantelli lemma for the events appearing on the left-hand side of

(5.3) shows that the sequence MSTλ̄k,εk∞ is almost surely a Cauchy sequence in �M .
The space is complete, hence there is an almost sure limit MST∞. Of course, this
limit may a priori depend on the sequences {λ̄k}, {εk} and on the coupling. How-

ever, using the triangle inequality again, going through MSTλ̄k,εk∞ , we have that for
any δ > 0, if η > 0 small enough, then

P
[
d�M

(MSTη,MST∞) < δ
]
> 1 − δ.

Therefore, in this coupling, MSTη converges in probability, and hence in law, to
MST∞, in the metric space �M . Since MSTη and the metric d�M

are translation
invariant, the limit MST∞ is also invariant.

To prove the convergence of MSTλ̄,ε∞ , note that the bounds (5.1) and (5.2) hold
not just for λ̄k and εk , but for all ε < εk and λ < λk and λ′ > λ′

k , thus we have that

MSTλ̄,ε∞ is close in distribution in the d�M
-metric to MSTη, and hence to MST∞.

�

5.2. Extension to the full plane; invariance under translations, scalings and
rotations. We are now ready to prove the main result of this paper.

PROOF OF THEOREM 1.1. We will use the notation MSTM
η and MSTM∞ for

MSTη and its scaling limit on the torus T
2
M . We will also use the approximations

MSTλ̄,ε,M .
It was proved in [4], equation (8.1), that MSTη is uniformly quasi-local in the

sense that for any δ > 0 and compact � ⊂ C there exists a �̄δ ⊂ C such that for
any small enough η > 0, with probability at least 1 − δ, all trees with leaves in �

are contained in �̄δ . Since this event is measurable w.r.t. the percolation ensemble
inside �̄δ , by taking δ > 0 small and M > 0 so large that �̄δ ⊂ [−M,M]2, we get
that the law of MSTη restricted to � is close in total variation distance to the law
of MSTM

η restricted to �. By the (λ̄, ε)-approximation result Proposition 4.7, the

same holds for MSTλ̄,ε,M
η , and by the uniformity in η > 0, also for MSTλ̄,ε,M∞ . In

the proof of Theorem 5.1, we have constructed MSTM∞ as a limit of MSTλ̄,ε,M∞ , thus
we also have that the law of MSTM∞ restricted to � converges as M → ∞, in the
metric d�M

that is based on the flat Euclidean metric on T
2
M .

Now we take � = [−L,L]2, with L → ∞. As pointed out at the beginning of
Section 2.1, the metric defined in (2.1) for Ĉ is equivalent to the Euclidean metric
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in bounded domains, while the distance between any two points in Ĉ \ [−L,L]2

is at most O(1/L). Thus the uniform distance between any two trees embedded in
Ĉ \ [−L,L]2 is at most O(1/L), and if two essential spanning forests are δ-close
in the metric d�M

restricted to [−L,L]2, then their distance in d� is OL(δ) +
O(1/L). Therefore, the convergence in d�M

for any given � ⊂ C, established in
the previous paragraph, implies convergence in d�.

Translation invariance of the limit measure MST∞ follows from a standard trick:

for any compact � ⊂ C, quasi-locality implies that the limit of MST[−M,M]2

∞ re-

stricted to �, as M → ∞, is the same as the limit of MST[−M+x,M+x]2

∞ restricted
to the same �, for any x ∈ R, and hence MST∞ restricted to � has the same dis-
tribution as restricted to � − x.

To prove scale-invariance, consider the scaling fα(z) := αz. The conformal co-
variance of the pivotal measures, proved in [27], Theorem 6.1, says that

(5.4) (fα)∗
(
με(ωλ∞

)) = α−3/4μαε(fα

(
ωλ∞

))
.

Also, by the conformal covariance of ωλ∞, proved in [28], Theorem 10.3, we have

(5.5) fα

(
ωλ∞

) d= ωα−3/4λ∞ .

Scaling the spatial intensity measure of a Poisson point process by α−3/4 as in (5.4)
is the same as scaling the time duration by the same factor, in the sense that there
is a natural coupling in which the spatial coordinates of the arrivals are the same,
and there is a simple scaling between the time coordinates. Thus, combining (5.4)
and (5.5), and denoting the notion of “same” in the previous sentence by ≈, we
have

(5.6) fα

(
PPPε

λ̄

(
ωλ∞

)) d≈ PPPαε
α−3/4λ̄

(
ωα−3/4λ∞

)
.

Our constructions of MSFλ̄,ε∞ and MSTλ̄,ε∞ in Definition 3.11 and Lemma 4.4 are
equivariant under spatial and time scalings, hence the identities (5.5) and (5.6)
imply that

fα

(
MSTλ̄,ε,M∞

) d= MSTα−3/4λ̄,αε,αM∞ .

Since we obtained MST∞ as a limit of MSTλ̄,ε,M∞ with λ̄ → (−∞,∞), ε → 0,

M → ∞, the last identity gives that fα(MST∞)
d= MST∞.

Next, let fθ : C −→ C be the rotation by angle θ . Now [27], Theorem 6.1, and
[28], Theorem 10.3, give for full plane configurations that

(5.7) fθ

(
ωλ∞,PPPε

λ̄

(
ωλ∞

)) d= (
ωλ∞,PPPε,θ

λ̄

(
ωλ∞

))
,

where PPPε,θ

λ̄
is constructed using a rotated grid to define ε-importance. (As

pointed out in [27], Remark 6.3, this rotational equivariance of the ε-importance
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measure, and hence the Poisson point process is not a tautology, since the normal-
ization factor in the definition of the measure is not changed with the rotation.)
Now, if we want to consider MSTλ̄,ε on the torus T

2
M , the rotated ε- and r-grids

cannot be exactly defined; nevertheless, we can consider the squares in the grid
fully contained in fθ ([−M,M]2), and make some arbitrary definition close to the
boundary—due to quasi-locality, this will not matter. Hence, from (5.7) we get that
for large M > 0, the distribution of fθ (MSTλ̄,ε,M∞ ) restricted to some fixed domain
�, which is close to fθ (MST∞) restricted to �, is close to MSTλ̄,ε,M,θ∞ restricted
to �. On the other hand, Corollary 4.5 and Proposition 4.7 work fine with the ro-
tated grids, giving that MSTλ̄,ε,M,θ∞ is close to MSTλ̄,ε,M,θ

η , and the latter is close to
MSTη. Finally, since MSTη is close to MST∞, after taking all the limits we get that
fθ (MST∞) agrees with MST∞ in distribution. �

6. Geometry of the limit tree MST∞.

6.1. Degree types and pinching. The degree of a point x ∈ Ĉ in an immersed
tree f : τ −→ Ĉ, where we assume that f is locally injective from each edge of τ ,
is

(6.1) degf (x) := ∑
f (v)=x

degτ (v),

where the sum is over all points v of τ , meaning a vertex in V (τ) or a point on
an edge in E(τ), and degτ (v) is the combinatorial degree in the first case, while
equals 2 in the second case. (Note that for any immersed tree f : τ −→ Ĉ there
exists a minimal τ ∗ ≺ τ on which f can be defined, and here f is equivalent to a
locally injective immersion f ∗ : τ ∗ −→ Ĉ. Hence the local injectivity assumption
is not a real restriction.) For an essential spanning forest F ,

(6.2) degF (x) := sup
�≥1

sup
f ∈F (�)

degf (x).

The degree type of a point x in an immersed tree f : τ −→ Ĉ is the vector of
summands in (6.1), ordered in decreasing order, and the degree type in an essential
spanning forest F is the supremum as in (6.2), now w.r.t. a natural partial order
on the vectors of degree types: after padding vectors with zeros at the end, use the
lexicographic ordering. The supremum in this partial order exists because of con-
dition (iii) of Definition 2.2. [This supremum vector may start with a few ∞ entries
if degF (x) = ∞, but this is fine.] See Figure 14 for a few examples (ignoring at
this point the dual trees on the pictures).

For instance, saying that x ∈C is a pinching point for F if F (2) includes a path
which passes through x twice without terminating there can be expressed as saying
that x has degree type at least (2,2). If one of the two branches terminates at x, the
other does not, that is, degree type at least (2,1), then we talk about a figure of 6,
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FIG. 14. Degree type (5) and two examples of (2,1,1,1) in a spanning tree of the plane, giving
degree types (1,1,1,1,1), (4,1) and (3,2) in a dual spanning tree.

while degree type at least (1,1) is called a point of nonuniqueness, or a loop at x.
Points of degree type at least (2) constitute the trunk of F : the union of curves
in F (2) excluding the endpoints. A branching point is a point with degree type at
least (3).

LEMMA 6.1 (Dual spanning tree). There is a spanning tree MST†∞ of C cou-
pled with MST∞ that is dual in the sense that none of its paths cross any of the
paths of MST∞, and whose distribution is again that of MST∞.

Note that we are not claiming that MST†∞ is measurable w.r.t. MST∞, nor that
there is a unique such spanning tree. These claims should be possible to prove,
but we will not need them. For all subsequential scaling limits of the Uniform
Spanning Tree on Z

2, they were proved in [47] via first establishing that the trunk
is a topological tree that is everywhere dense in C, and then defining the dual tree
in the complement of the trunk.

PROOF OF LEMMA 6.1. The planar dual of the triangular lattice T is the
hexagonal lattice T∗, and, as usual, MSTM

η on ηT ∩ T
2
M has a dual graph on

ηT∗ ∩T
2
M , denoted by MSTM

η

†
. Because of the torus geometry, this dual has some

cycles, but it is easy to check that for any null-homotopic cycle in ηT∗ ∩ T
2
M , the

edge whose dual in ηT ∩ T
2
M has the minimal weight must be present in MSTM

η ,

hence must be missing from MSTM
η

†
, and thus we are almost talking about the

Maximal Spanning Tree on ηT∗ ∩ T
2
M , denoted by MaxSTM

η

∗
, which is defined

from the Unif[0,1] vertex labels {V (x)} on T analogously to MSTM
η : each edge

e∗ ∈ E(ηT∗ ∩T
2
M) is the dual edge to some e = (x, y) ∈ E(ηT ∩T

2
M), then we let

U
(
e∗) := (

V (x) ∨ V (y),V (x) ∧ V (y)
)
,

and get MSTM
η

∗
(or MaxSTM

η

∗
) by removing the maximal (or minimal) edge from

each cycle of E(ηT∗ ∩T
2
M) w.r.t. the lexicographic ordering; see Figure 15.

To make the connection between MSTM
η

†
and MaxSTM

η

∗
stronger, note that the

two edges in which they differ form a translation invariant random finite subset
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FIG. 15. (a) MSTM
η and its dual almost-tree MSTM

η
†
. (b) The tree MaxSTM

η
∗

associated with the

same vertex labels, which is just MSTM
η

†
minus two edges. (c) The tree MSTM

η
∗

.

in the torus; hence, as M → ∞, the probability that this set intersects any given
finite set of edges in Z

2 goes to 0. Therefore, inside any bounded window, the

distributions of MSTM
η

†
and MaxSTM

η

∗
are very close to each other, for large M .

On the other hand, MaxSTM
η

∗
has the same distribution as MSTM

η

∗
on ηT∗ ∩ T

2
M ;

hence, if we can understand the geometry of MSTM
η

∗
, and prove, for instance,

uniform quasi-locality, then we can use that, just as in Section 5.2, to understand

the geometry of MSTM
η

†
.

Now, we claim that, in the spirit of the remark after Figure 2, the macroscopic
structure of MSTM

η

∗
on ηT∗ ∩T

2
M can be described using the near-critical ensemble

on ηT. Indeed, if x∗ and y∗ are vertices in ηT∗ ∩ T
2
M such that the triangular

faces they represent have vertices x and y in the same percolation p-cluster of
ηT ∩ T

2
M , then it is immediate to see that the path in MSTM

η

∗
between x∗ and y∗

cannot cross any cycle of ηT ∩T
2
M whose vertices all have labels above p. In this

sense, the path does not leave the p-cluster. It follows that two distinct p-clusters
cannot be connected by two different paths of MSTM

η

∗
(we would otherwise get a

cycle in MSTM
η

∗
), and hence our entire paper applies to this version of the Minimal

Spanning Tree. Thus we get that MSTM
η

∗
and MSTM

η

†
have the same unique scaling

limit as η → 0 then M → ∞, denoted by MST†∞, with the same distribution as
MST∞.

The fact that the paths of MST†∞ do not cross the paths of MST∞ is clear from
obtaining them as scaling limits of discrete dual graphs. �

It was proved in [4] that any subsequential limit of MSTη in Ĉ is a spanning
tree of Ĉ, and hence, using Lemma 6.1, it has one end (a single route to infinity).
Furthermore, regularity properties of MST paths proved in that paper implied that
the degrees in MST∞ are almost surely bounded from above by some absolute
deterministic constant k0 ∈ N, and that the set of points with loops has Hausdorff
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dimension strictly between 1 and 2. It was also shown, using a Burton–Keane-type
argument with trifurcation points and the amenability of the graph Z

2 (see [16]
or [41], Section 7.3) that the set of branching points is at most countable. It was
conjectured in [4] that there are no branching points of degree 4 or larger, and that
there are no pinching points. We are now able to establish the latter conjecture, and
get close to the former.

THEOREM 6.2 (Degree types in MST). Almost surely in MST∞ on C:

(i) there are no points of degree type at least (2,2); in other words, for any
two points x, y ∈ C, none of the paths connecting the two vertices has a pinching
point;

(ii) there are no points of degree at least 5 (with any degree type);
(iii) the set of points of degree 4 (with any degree type) is at most countable.

These hold not only for the scaling limit on ηT but also for any subsequential limit
on ηZ2.

PROOF. (i) We want to show that, in any given unit square in C and for any
0 < ρ < 1, the probability of MST∞ having a point of degree type (2,2) with the
four strands not being connected within the radius ρ ball of the pinching point is
zero. [Note that if there was no positive radius in which the four strands are not
connected, then this would in fact be a point of degree type at least 4, not (2,2). On
the other hand, the strands must be connected somewhere in MST∞, hence we can
just assume that they are parts of one path connecting two vertices, which explains
the second part of the statement.] For this, it is enough to show that for any M > 1,
the probability in MSTη = MSTM

η that there is an r-square B ∈ Br([0,1]2) (as in
Definition 3.2, with r < ρ) such that there is a path γ with two disjoint subpaths,
γ1 and γ2, that both enter B but are not connected to each other in MSTη within
the ρ-neighbourhood of B tends to 0 as r → 0, uniformly in η > 0.

Fix α > 0 arbitrarily small. As in the proof of Proposition 4.7, we can take
λ < −1, ε > 0, and λ′ > 0 such that with probability at least 1 − α/2, all λ-
clusters in T

2
M have diameter less than ρ/10, every point of T

2
M has in its

ρ/20-neighbourhood a ring of λ-clusters of diameter at least δ each, for some
0 < δ < ρ/20 (uniformly in η), and all λ-clusters of diameter at least δ are con-
nected in MSTλ̄,ε

η , with these paths going through the same closed pivotals of PPPε
λ̄

as the corresponding paths of MSTη. We will assume that this event of probability
at least 1 − α/2 holds, and also that the above r-square B exists, with some r � ρ

to be determined later.
Any path in MSTη that connects two points in the same λ-cluster must stay in

that cluster. Thus, the paths γ1 and γ2 that are connected in MSTη but not inside
the ρ-neighbourhood of B (denoted by Bρ ), must go through disjoint λ-clusters
inside Bρ . These λ-clusters all have diameter at most ρ/10, connected by λ-closed
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FIG. 16. Pinching would imply a near-critical 6-arm event.

pivotals. Close to each end of each γi , there is such a λ-closed pivotal, at distance
at least ρ − ρ/5 from B . Thus there must exist two λ-closed paths, separating the
λ-clusters of γ1 from those of γ2, going through B , of radius at least 4ρ/5. See
Figure 16.

We would like to bound now the labels from above on the MSTη paths. To this
end, let xi be the point where γi leaves the ρ-neighbourhood of B , at the end of
γi that is opposite from γ3−i along γ , for i = 1,2. Around each xi , there is a ring
of macroscopic λ-clusters, the MSTη path from x1 to x2 must intersect at least
one λ-cluster from each ring, and the part of the path connecting the two rings
must go through λ-clusters connected by pivotals with labels at most λ′. Thus,
besides the two λ-closed arms between radii r and 4ρ/5 we also have four λ′-open
arms between the same radii. By the near-critical stability of 6-arm probabilities,
Proposition 1.3, the probability of this happening anywhere in T

2
M is smaller than

α/2 if r/ρ is chosen small enough. Therefore, the probability of the existence of
B is less than α if r > 0 is chosen small enough, uniformly in the mesh η > 0, and
we are done.

(ii) It is proved in [12] that the critical monochromatic 5-arm exponent is strictly
larger than the polychromatic one, which is 2 (see [49], Corollary A.8). There-
fore, near-critical stability for the monochromatic 5-arm exponent (again, Propo-
sition 1.3) tells us that no near-critical monochromatic 5-arm event between radii
r and ρ happens anywhere in [0,1]2 if r/ρ is small enough. Based on this, as be-
fore, we will exclude the existence of an r-square B ∈ Br([0,1]2) with degree 5
to distance at least ρ.



THE SCALING LIMITS OF MST AND INVASION PERCOLATION 3549

FIG. 17. Degree 5 would imply a near-critical monochromatic 5-arm or a polychromatic 6-arm
event.

We look at the λ-clusters traversed by the five branches, for some small λ < −1.
As in part (i), the branches contributed by components at least 2 in the vector of
the degree type traverse macroscopic λ-clusters, and hence the labels of their λ-
closed pivotals are all at most some uniform λ′. That is, a degree component k ≥ 2
implies k λ′-open arms from r to ρ (e.g., the open arms labelled 1 to 4 on the
left-hand side of Figure 17) and if there are more than one such components, we
also have λ-closed arms separating them (e.g., the closed arms labelled 6 to 9 on
the right-hand side of Figure 17). On the other hand, if we have � ≥ 1 branches
contributed by components of size 1 in the vector of the degree type, they are
necessarily separated from the other branches by λ-closed paths. Thus, they

• either contribute � + 1 closed arms to the existing 4 open arms,
• or if we have at least two degree components with at least 2 branches, then

they raise the number of closed arms by �,
• or if we do not have any degree components with at least 2 branches, then

� ≥ 5, the degree type is all 1’s, and we again get � closed arms.

Altogether, we either have at least 5 λ′-open arms, or at least 5 λ-closed arms,
or a (λ,λ′) near-critical polychromatic event with at least 6 arms. None of these
happens if r/ρ is small enough, and we are done.

(iii) Degree 4 points can have five different degree types: (4), (3,1), (2,2),
(2,1,1), (1,1,1,1). The countability of the first two types follows from the count-
ability of branching points proved in [4]. Points of the third type do not exist,
by part (i) above. At a point of the fourth type, the dual MST∞ tree defined in
Lemma 6.1 would either have a branching of degree 3, for which we already know
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countability, or a degree type (2,2), which does not exist by part (i). (See Figure 14
for examples of dual degree types.) Finally, if a point has degree type (1,1,1,1),
then the dual tree has a branching point of degree 4 there, so we have countability
again.

Since the well-known 5- and 6-arm bounds and Proposition 1.3 hold also for
Z

2, all the above arguments work fine for subsequential limits of MSTη on ηZ2, as
well. �

It is tempting to try and argue that a figure of 6 should imply 5 arms with labels
bounded suitably by λ and λ′, and hence by the near-critical stability of the 5-arm
exponent (which is 2), the set of points with degree type (2,1) should be at most
countable, but we did not manage to make this argument work.

6.2. A dimension bound for the trunk. Our present techniques reveal very lit-
tle about the dimension of different subsets of interest in MST∞. It was proved
in [4] that all the curves connecting any two points almost surely have Hausdorff
dimension at least some unspecified deterministic dmin > 1 and at most another
constant dmax < 2. Note that, having a countable number of branching points, the
trunk is a countable union of such curves; hence we can equivalently talk about
the dimension of the trunk. We will now slightly improve the upper bound to
dmax = 2 − α′

2 < 7/4, where α′
2 is the monochromatic two-arm (or backbone)

exponent of critical percolation, shown to be strictly larger than the polychro-
matic two-arm exponent α2 = 1/4 in [12]. According to simulations, the true value
of the Hausdorff dimension is close to 1.22− [53, 58], while 2 − α′

2 is close to
79/48 = 1.646− [11].

THEOREM 6.3. The Hausdorff dimension of the trunk of MST∞ is almost
surely at most 2 − α′

2 < 7/4, where α′
2 is the monochromatic two-arm exponent of

critical percolation.

PROOF. For any ρ > 0, let Trunkρ
η (resp., Trunkρ∞) be the set of points in

[0,1]2 that have a path of MSTη (resp., MST∞) passing through them, going to
distance at least ρ in both directions. Since the trunk of MST∞ is a countable
union of sets of the form Trunkρ∞, it is enough to prove the dimension bound
on each Trunkρ∞. Consider our usual grid Br([0,1]2) of r-squares, with r � ρ.
The subset of those r-squares that are intersected by Trunkρ

η (resp., Trunkρ∞) will
be denoted by Trunkρ,r

η (resp., Trunkρ,r∞ ), and it is clear that in any coupling
where MSTη converges to MST∞ almost surely, for small enough η > 0 we have
|Trunkρ,r

η |/9 ≤ |Trunkρ,r∞ | ≤ 9|Trunkρ,r
η | with probability close to 1, where the fac-

tors of 9 accommodate the possibility of the points of Trunkρ moving across the
boundaries of r-squares. Therefore, it suffices to prove that for any β > 0 there is
a sequence rk → 0 such that

(6.3) P
[∣∣Trunkρ,rk

η

∣∣ > r
−2+α′

2−β

k

]
< 2−k
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for all small enough η = ηk > 0, because then Borel–Cantelli gives that the Haus-
dorff (even the lower Minkowski) dimension of Trunkρ∞ is almost surely at most
2 − α′

2 + β .
To prove (6.3), take λ̄k and εk such that with probability at least 1 − 3−k all

λk-clusters have diameter at most ρ/10, all points have a ring of λk-clusters of di-
ameter at least δ > 0 in their ρ/20-neighbourhood, and all λk-clusters of diameter
at least δ are connected in MSTλ̄k,εk

η . Condition on this event, denoted by Gk . Then,
just as in the proof of Theorem 6.2, every element of Trunkρ,r

η has a λ̄k-near-critical
monochromatic 2-arm event from radius r to δ/2. From near-critical stability, we
know that, for any B ∈ Br([0,1]2), denoting this 2-arm event by A′

2(B, r, δ/2, λ̄k),
we have

P
[
A′

2(B, r, δ/2, λ̄k)
]
< Cδ,kr

α′
2 .

Since 1/(1 − 3−k) < 2, the previous line gives

P
[
A′

2(B, r, δ/2, λ̄k) | Gk

]
< 2Cδ,kr

α′
2,

and, summing up over B ,

E
[∣∣Trunkρ,r

η

∣∣ | Gk

]
< 2Cδ,kr

−2+α′
2 .

Then, by Markov’s inequality, for any β > 0,

P
[∣∣Trunkρ,r

η

∣∣ > 2Cδ,kr
−2+α′

2−β/2 | Gk

]
< rβ/2.

By taking rk > 0 so small that 2Cδ,k < r
−β/2
k and r

β/2
k < 3−k , we get that

P
[∣∣Trunkρ,rk

η

∣∣ > r
−2+α′

2−β

k | Gk

]
< 3−k.

Since we have

P
[∣∣Trunkρ,rk

η

∣∣ > r
−2+α′

2−β

k

]
< P

[∣∣Trunkρ,rk
η

∣∣ > r
−2+α′

2−β

k | Gk

] + P
[
Gc

k

]
< 3−k + 3−k,

we have verified (6.3) and completed the proof. �

7. Invasion percolation. The Invasion Tree in a finite graph is simply the
MST itself; hence, it cannot provide us with a good finite approximation to InvPerc
in the infinite plane. Instead, we will consider the following finite versions:

• InvPercM,∂
η will be the tree built by the invasion process started from the

origin, stopped at the first time that it reaches ∂[−M,M]2.
• For a fixed vertex x ∈ V (ηT) and M large enough so that x ∈ [−M,M]2, we

will denote by InvPercM,x
η the invasion process in the torus T

2
M , started from the

origin, stopped at the first time when it reaches x.
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When M → ∞, the weak limits of the above measures are InvPercη = InvPercη(0)

and InvPercη(0) ∪ InvPercη(x), respectively. Of course, the latter coincides with
InvPercη(0) with positive probability, and the symmetric difference InvPercη(0)�
InvPercη(x) is almost surely finite. These results are classical [6, 7, 20, 42].

Given the enhanced ε-networks ENλ̄,ε
η and ENλ̄,ε∞ defined in Proposition 3.9, the

cut-off versions of the above invasion trees, both in the discrete case and in the
continuum, can be defined quite similar to MSFλ̄,ε (done in Definition 3.11) and
MSTλ̄,ε (in Lemma 4.4).

DEFINITION 7.1 (The cut-off invasion trees InvPercλ̄,ε,s in T
2
M , with target set ∂

or x). 1. Consider the edge-labelled graph defined in steps 1–3 of Definition 3.11
on the set of the primal routers of ENλ̄,ε as vertices.

2. Take the giant component of this graphs, which exists with large probability
by Lemma 4.4. On the bad event that this giant cannot be defined, our cut-off
invasion trees will be just degenerate one-point trees.

3. Take the router closest to the origin 0; in case of a tie, decide in some arbitrary
but fixed manner. This will be called the origin router. Furthermore, consider all
routers that are at most distance s > 0 from the target set ∂[−M,M]2 or x. By
Lemma 4.4, for any s > 0, if λ is very negative, λ′ is very positive and ε is small,
then with high probability the set of these target routers is not empty. When it is
empty, the invasion tree will consist of just the origin router.

4. Take the invasion tree process in the above graph, started from the origin
router, stopped when reaching any of the target routers. There may be steps in the
invasion process when more than one edge with label λ lead out of the invaded set;
in such a case, all these edges get invaded simultaneously.

It was proved already in [4] that the set of points with degree larger than 1 (i.e.,
points in the trunk or having a loop) in any subsequential scaling limit of MSTη is
of zero measure. Therefore, almost surely there is a unique path of MST∞ that goes
to the origin, and hence we did not lose any information in the above definition by
taking the router closest to the origin instead of considering all routers that are
s-close to it.

Given this definition, we immediately have the following analogues of Corol-
lary 4.5 and Proposition 4.7. Note the double meaning of the parameter s: if we
want to reach precision s > 0 in d�M

, it is enough to get s-close to the target sets.

LEMMA 7.2. For any M > 0, target set ∂ or x ∈ T
2
M , and any s, α > 0, if

λ < −1 is very negative, ε > 0 is small and λ′ > 1 is large enough, then, in the
coupling of Proposition 3.9(ii) between (ωλ

η,PPPε
λ̄
) and (ωλ∞,PPPε

λ̄
), for all η > 0

small enough,

P
[
d�M

(
InvPercλ̄,ε,s

η , InvPercλ̄,ε,s∞
)
< s

]
> 1 − α.
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LEMMA 7.3. For any M > 0, target set ∂ or x ∈ T
2
M , and s, α > 0, if λ < −1

is very negative, ε > 0 is small, and λ′ > 1 is large enough, then, for all η > 0
small enough,

P
[
d�M

(
InvPercη, InvPercλ̄,ε,s

η

)
< s

]
> 1 − α,

where InvPercη is only a shorthand now for InvPercM,∂
η or InvPercM,x

η .

Using these lemmas, the proof of the following theorem follows exactly the
proofs of Theorem 5.1 and Theorem 1.1.

THEOREM 7.4. For any M > 0, the invasion trees InvPercM,∂
η and InvPercM,x

η

started at the origin of ηT ∩ T
2
M converge in distribution as η → 0, in the metric

d�M
of Definition 2.2, to the unique scaling limits InvPercM,∂∞ and InvPercM,x∞ ,

respectively.
The invasion tree InvPercη started at the origin of ηT converges in distribution

to a unique scaling limit InvPerc∞ that is invariant under scalings and rotations.
As M → ∞, the weak limit of InvPercM,∂∞ is InvPerc∞ and the weak limit of

InvPercM,x∞ is InvPerc∞(0) ∪ InvPerc∞(x).

8. Questions and conjectures. We start with a very natural and interesting
open problem.

CONJECTURE 8.1. (i) Show that MST∞ is not conformally invariant. In par-
ticular, show that it is different from the scaling limit of the Uniform Spanning Tree,
described in [40].

(ii) Show that InvPerc∞ is not conformally invariant.

This is of course supported by simulation results [59]. Moreover, it was ex-
plained in [26] why our description of these scaling limits using the near-critical
ensemble gives serious support to this conjecture, and why it is nevertheless not at
all an easy issue. The case of InvPerc∞ might be simpler, using the results of [24].

Probably the simplest open problem in this section is the following one, left
open by Lemma 6.1.

CONJECTURE 8.2. Show that there is a unique dual tree MST†∞, measurable
w.r.t. MST∞.

The following questions are left open by Theorem 6.2.

QUESTION 8.3 (Topology of MST∞). (i) Are there nonsimple paths giving
figures of 6, that is, points with degree type (2,1)?

(ii) Show that almost surely there are no points of degree 4.
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Finally, sharpening the bound of Theorem 6.3 would probably require new tech-
niques.

QUESTION 8.4. Find the Hausdorff dimension of the paths of MST∞.

Acknowledgements. We thank Louigi Addario-Berry, Nicolas Broutin, Laure
Dumaz, Grégory Miermont and David Wilson for stimulating discussions, Rob van
den Berg for pointing out the connection between Proposition 3.6 and [34], and
Alan Hammond and two amazing anonymous referees for very good comments on
the manuscript.

Part of this work was done while all authors were at Microsoft Research, Red-
mond, WA, or G. Pete was visiting C. Garban at ENS Lyon.

REFERENCES

[1] ADDARIO-BERRY, L., BROUTIN, N. and GOLDSCHMIDT, C. (2012). The continuum limit of
critical random graphs. Probab. Theory Related Fields 152 367–406.

[2] ADDARIO-BERRY, L., BROUTIN, N., GOLDSCHMIDT, C. and MIERMONT, G. (2017). The
scaling limit of the minimum spanning tree of the complete graph. Ann. Probab. 45 3075–
3144. MR3706739

[3] AIZENMAN, M. (1997). On the number of incipient spanning clusters. Nuclear Phys. B 485
551–582.

[4] AIZENMAN, M., BURCHARD, A., NEWMAN, C. M. and WILSON, D. B. (1999). Scaling
limits for minimal and random spanning trees in two dimensions. Random Structures
Algorithms 15 319–365.

[5] ALDOUS, D. and STEELE, J. M. (2004). The objective method: Probabilistic combinatorial
optimization and local weak convergence. In Probability on Discrete Structures. Ency-
clopaedia Math. Sci. 110 1–72. Springer, Berlin.

[6] ALEXANDER, K. S. (1995). Percolation and minimal spanning forests in infinite graphs. Ann.
Probab. 23 87–104.

[7] ALEXANDER, K. S. and MOLCHANOV, S. (1994). Percolation of level sets for two-
dimensional random fields with lattice symmetry. J. Stat. Phys. 77 627–643.

[8] ANGEL, O., GOODMAN, J., DEN HOLLANDER, F. and SLADE, G. (2008). Invasion percola-
tion on regular trees. Ann. Probab. 36 420–466. MR2393988

[9] ANGEL, O., GOODMAN, J. and MERLE, M. (2013). Scaling limit of the invasion percolation
cluster on a regular tree. Ann. Probab. 41 229–261. MR3059198

[10] AUMANN, S. (2014). Singularity of full scaling limits of planar near-critical percolation.
Stochastic Process. Appl. 124 3807–3818.

[11] BEFFARA, V. and NOLIN, P. (2009). Numerical estimates for monochromatic percolation ex-
ponents. Available at http://perso.ens-lyon.fr/vincent.beffara/pdfs/Monochromatic-simu.
pdf.

[12] BEFFARA, V. and NOLIN, P. (2011). On monochromatic arm exponents for 2D critical perco-
lation. Ann. Probab. 39 1286–1304. MR2857240

[13] BORGS, C., CHAYES, J. T., KESTEN, H. and SPENCER, J. (2001). The birth of the infinite
cluster: Finite-size scaling in percolation. Comm. Math. Phys. 224 153–204.
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